
C H A P T E R 1
Angle Chasing

This is your last chance. After this, there is no turning back. You take the blue pill—the
story ends, you wake up in your bed and believe whatever you want to believe. You
take the red pill—you stay in Wonderland and I show you how deep the rabbit-hole
goes. Morpheus in The Matrix

Angle chasing is one of the most fundamental skills in olympiad geometry. For that reason,
we dedicate the entire first chapter to fully developing the technique.

1.1 Triangles and Circles
Consider the following example problem, illustrated in Figure 1.1A.

Example 1.1. In quadrilateral WXYZ with perpendicular diagonals (as in Figure 1.1A),
we are given ∠WZX = 30◦, ∠XWY = 40◦, and ∠WYZ = 50◦.

(a) Compute ∠Z.
(b) Compute ∠X.

W X

Y

Z

40◦

50◦30◦

Figure 1.1A. Given these angles, which other angles can you compute?

You probably already know the following fact:

Proposition 1.2 (Triangle Sum). The sum of the angles in a triangle is 180◦.
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4 1. Angle Chasing

As it turns out, this is not sufficient to solve the entire problem, only the first half. The
next section develops the tools necessary for the second half. Nevertheless, it is perhaps
surprising what results we can derive from Proposition 1.2 alone. Here is one of the more
surprising theorems.

Theorem 1.3 (Inscribed Angle Theorem). If ∠ACB is inscribed in a circle, then it
subtends an arc with measure 2∠ACB.

Proof. Draw in OC. Set α = ∠ACO and β = ∠BCO, and let θ = α + β.

O

A B

C

θ

2θ

Figure 1.1B. The inscribed angle theorem.

We need some way to use the condition AO = BO = CO. How do we do so? Using
isosceles triangles, roughly the only way we know how to convert lengths into angles.
Because AO = CO, we know that ∠OAC = ∠OCA = α. How does this help? Using
Proposition 1.2 gives

∠AOC = 180◦ − (∠OAC + ∠OCA) = 180◦ − 2α.

Now we do exactly the same thing with B. We can derive

∠BOC = 180◦ − 2β.

Therefore,

∠AOB = 360◦ − (∠AOC + ∠BOC) = 360◦ − (360◦ − 2α − 2β) = 2θ

and we are done.

We can also get information about the centers defined in Section 0.2. For example,
recall the incenter is the intersection of the angle bisectors.

Example 1.4. If I is the incenter of �ABC then

∠BIC = 90◦ + 1

2
A.
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1.1. Triangles and Circles 5

Proof. We have

∠BIC = 180◦ − (∠IBC + ∠ICB)

= 180◦ − 1

2
(B + C)

= 180◦ − 1

2
(180◦ − A)

= 90◦ + 1

2
A.

A

B C

I

Figure 1.1C. The incenter of a triangle.

Problems for this Section

Problem 1.5. Solve the first part of Example 1.1. Hint: 185

Problem 1.6. Let ABC be a triangle inscribed in a circle ω. Show that AC ⊥ CB if and
only if AB is a diameter of ω.

Problem 1.7. Let O and H denote the circumcenter and orthocenter of an acute �ABC,
respectively, as in Figure 1.1D. Show that ∠BAH = ∠CAO. Hints: 540 373

A

B C

H O

Figure 1.1D. The orthocenter and circumcenter. See Section 0.2 if you are not familiar with these.
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6 1. Angle Chasing

1.2 Cyclic Quadrilaterals
The heart of this section is the following proposition, which follows directly from the
inscribed angle theorem.

Proposition 1.8. Let ABCD be a convex cyclic quadrilateral. Then ∠ABC + ∠CDA =
180◦ and ∠ABD = ∠ACD.

Here a cyclic quadrilateral refers to a quadrilateral that can be inscribed in a circle.
See Figure 1.2A. More generally, points are concyclic if they all lie on some circle.

A

B

C
D

A

B

C
D

Figure 1.2A. Cyclic quadrilaterals with angles marked.

At first, this result seems not very impressive in comparison to our original theorem.
However, it turns out that the converse of the above fact is true as well. Here it is more
explicitly.

Theorem 1.9 (Cyclic Quadrilaterals). Let ABCD be a convex quadrilateral. Then the
following are equivalent:

(i) ABCD is cyclic.
(ii) ∠ABC + ∠CDA = 180◦.

(iii) ∠ABD = ∠ACD.

This turns out to be extremely useful, and several applications appear in the subsequent
sections. For now, however, let us resolve the problem we proposed at the beginning.

W X

Y

Z

40◦

50◦30◦

40◦

Figure 1.2B. Finishing Example 1.1. We discover WXYZ is cyclic.
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1.3. The Orthic Triangle 7

Solution to Example 1.1, part (b). Let P be the intersection of the diagonals. Then we
have ∠PZY = 90◦ − ∠PYZ = 40◦. Add this to the figure to obtain Figure 1.2B.

Now consider the 40◦ angles. They satisfy condition (iii) of Theorem 1.9. That means
the quadrilateral WXYZ is cyclic. Then by condition (ii), we know

∠X = 180◦ − ∠Z

Yet ∠Z = 30◦ + 40◦ = 70◦, so ∠X = 110◦, as desired.

In some ways, this solution is totally unexpected. Nowhere in the problem did the
problem mention a circle; nowhere in the solution does its center ever appear. And yet,
using the notion of a cyclic quadrilateral reduced it to a mere calculation, whereas the
problem was not tractable beforehand. This is where Theorem 1.9 draws its power.

We stress the importance of Theorem 1.9. It is not an exaggeration to say that more
than 50% of standard olympiad geometry problems use it as an intermediate step. We will
see countless applications of this theorem throughout the text.

Problems for this Section

Problem 1.10. Show that a trapezoid is cyclic if and only if it is isosceles.

Problem 1.11. Quadrilateral ABCD has ∠ABC = ∠ADC = 90◦. Show that ABCD is
cyclic, and that (ABCD) (that is, the circumcircle of ABCD) has diameter AC.

1.3 The Orthic Triangle
In �ABC, let D, E, F denote the feet of the altitudes from A, B, and C. The �DEF is
called the orthic triangle of �ABC. This is illustrated in Figure 1.3A.

A

B CD

E

F
H

Figure 1.3A. The orthic triangle.

It also turns out that lines AD, BE, and CF all pass through a common point H , which
is called the orthocenter of H . We will show the orthocenter exists in Chapter 3.
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8 1. Angle Chasing

Although there are no circles drawn in the figure, the diagram actually contains six
cyclic quadrilaterals.

Problem 1.12. In Figure 1.3A, there are six cyclic quadrilaterals with vertices in
{A,B,C,D,E, F,H }. What are they? Hint: 91

To get you started, one of them is AFHE. This is because ∠AFH = ∠AEH = 90◦,
and so we can apply (ii) of Theorem 1.9. Now find the other five!

Once the quadrilaterals are found, we are in a position of power; we can apply any
part of Theorem 1.9 freely to these six quadrilaterals. (In fact, you can say even more—the
right angles also tell you where the diameter of the circle is. See Problem 1.6.) Upon closer
inspection, one stumbles upon the following.

Example 1.13. Prove that H is the incenter of �DEF .

Check that this looks reasonable in Figure 1.3A.
We encourage the reader to try this problem before reading the solution below.

Solution to Example 1.13. Refer to Figure 1.3A. We prove that DH is the bisector of
∠EDF . The other cases are identical, and left as an exercise.

Because ∠BFH = ∠BDH = 90◦, we see that BFHD is cyclic by Theorem 1.9.
Applying the last clause of Theorem 1.9 again, we find

∠FDH = ∠FBH.

Similarly, ∠HEC = ∠HDC = 90◦, so CEHD is cyclic. Therefore,

∠HDE = ∠HCE.

Because we want to prove that ∠FDH = ∠HDE, we only need to prove that ∠FBH =
∠HCE; in other words, ∠FBE = ∠FCE. This is equivalent to showing that FBCE is
cyclic, which follows from ∠BFC = ∠BEC = 90◦. (One can also simply show that both
are equal to 90◦ − A by considering right triangles BEA and CFA.)

Hence, DH is indeed the bisector, and therefore we conclude that H is the incenter of
�DEF .

Combining the results of the above, we obtain our first configuration.

Lemma 1.14 (The Orthic Triangle). Suppose �DEF is the orthic triangle of acute
�ABC with orthocenter H . Then

(a) Points A, E, F , H lie on a circle with diameter AH .
(b) Points B, E, F , C lie on a circle with diameter BC.
(c) H is the incenter of �DEF .

Problems for this Section

Problem 1.15. Work out the similar cases in the solution to Example 1.13. That is, explicitly
check that EH and FH are actually bisectors as well.
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1.4. The Incenter/Excenter Lemma 9

Problem 1.16. In Figure 1.3A, show that �AEF , �BFD, and �CDE are each similar
to �ABC. Hint: 181

A

B C

H

X Y

Figure 1.3B. Reflecting the orthocenter. See Lemma 1.17.

Lemma 1.17 (Reflecting the Orthocenter). Let H be the orthocenter of �ABC, as in
Figure 1.3B. Let X be the reflection of H over BC and Y the reflection over the midpoint
of BC.

(a) Show that X lies on (ABC).
(b) Show that AY is a diameter of (ABC). Hint: 674

1.4 The Incenter/Excenter Lemma
We now turn our attention from the orthocenter to the incenter. Unlike before, the cyclic
quadrilateral is essentially given to us. We can use it to produce some interesting results.

Lemma 1.18 (The Incenter/Excenter Lemma). Let ABC be a triangle with incenter I .
Ray AI meets (ABC) again at L. Let IA be the reflection of I over L. Then,

(a) The points I , B, C, and IA lie on a circle with diameter IIA and center L. In particular,
LI = LB = LC = LIA.

(b) Rays BIA and CIA bisect the exterior angles of �ABC.

By “exterior angle”, we mean that ray BIA bisects the angle formed by the segment
BC and the extension of line AB past B. The point IA is called the A-excenter∗ of �ABC;
we visit it again in Section 2.6.

Let us see what we can do with cyclic quadrilateral ABLC.

∗ Usually the A-excenter is defined as the intersection of exterior angle bisectors of ∠B and ∠C, rather than
as the reflection of I over L. In any case, Lemma 1.18 shows these definitions are equivalent.
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10 1. Angle Chasing

A

B C

L

I

IA

Figure 1.4A. Lemma 1.18, the incenter/excenter lemma.

Proof. Let ∠A = 2α, ∠B = 2β, and ∠C = 2γ and notice that ∠A + ∠B + ∠C =
180◦ ⇒ α + β + γ = 90◦.

Our first goal is to prove that LI = LB. We prove this by establishing ∠IBL = ∠LIB

(this lets us convert the conclusion completely into the language of angles). To do this, we
invoke (iii) of Theorem 1.9 to get ∠CBL = ∠LAC = ∠IAC = α. Therefore,

∠IBL = ∠IBC + ∠CBL = β + α.

All that remains is to compute ∠BIL. But this is simple, as

∠BIL = 180◦ − ∠AIB = ∠IBA + ∠BAI = α + β

Therefore triangle LBI is isosceles, with LI = LB, which is what we wanted.
Similar calculations give LI = LC.
Because LB = LI = LC, we see that L is indeed the center of (IBC). Because L is

given to be the midpoint of IIA, it follows that IIA is a diameter of (LBC) as well.
Let us now approach the second part. We wish to show that ∠IABC = 1

2 (180◦ − 2β) =
90◦ − β. Recalling that IIA is a diameter of the circle, we observe that

∠IBIA = ∠ICIA = 90◦.

so ∠IABC = ∠IABI − ∠IBC = 90◦ − β.
Similar calculations yield that ∠BCIA = 90◦ − γ , as required.

This configuration shows up very often in olympiad geometry, so recognize it when it
appears!

Problem for this Section

Problem 1.19. Fill in the two similar calculations in the proof of Lemma 1.18.
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1.5. Directed Angles 11

1.5 Directed Angles
Some motivation is in order. Look again at Figure 1.3A. We assumed that �ABC was
acute. What happens if that is not true? For example, what if ∠A > 90◦ as in Figure 1.5A?

A

B C
D

E

F

H

Figure 1.5A. No one likes configuration issues.

There should be something scary in the above figure. Earlier, we proved that points B,
E, A, D were concyclic using criterion (iii) of Theorem 1.9. Now, the situation is different.
Has anything changed?

Problem 1.20. Recall the six cyclic quadrilaterals from Problem 1.12. Check that they are
still cyclic in Figure 1.5A.

Problem 1.21. Prove that, in fact, A is the orthocenter of �HBC.

In this case, we are okay, but the dangers are clear. For example, when �ABC was
acute, we proved that B, H , F , D were concyclic by noticing that the opposite angles
satisfied ∠BDH + ∠HFB = 180◦. Here, however, we instead have to use the fact that
∠BDH = ∠BFH ; in other words, for the same problem we have to use different parts of
Theorem 1.9. We should not need to worry about solving the same problem twice!

How do we handle this? The solution is to use directed angles mod 180◦. Such angles
will be denoted with a � symbol instead of the standard ∠. (This notation is not standard;
should you use it on a contest, do not neglect to say so in the opening lines of your solution.)

Here is how it works. First, we consider �ABC to be positive if the vertices A, B, C

appear in clockwise order, and negative otherwise. In particular, �ABC �= �CBA; they
are negatives. See Figure 1.5B.

Then, we are taking the angles modulo 180◦. For example,

−150◦ = 30◦ = 210◦.

Why on earth would we adopt such a strange convention? The key is that our
Theorem 1.9 can now be rewritten as follows.
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12 1. Angle Chasing

A

B

C

50◦

Figure 1.5B. Here, �ABC = 50◦ and �CBA = −50◦.

Theorem 1.22 (Cyclic Quadrilaterals with Directed Angles). Points A, B, X, Y lie on
a circle if and only if

�AXB = �AYB.

This seems too good to be true, as we have dropped the convex condition—there is now
only one case of the theorem. In other words, as long as we direct our angles, we no longer
have to worry about configuration issues when applying Theorem 1.9.

Problem 1.23. Verify that parts (ii) and (iii) of Theorem 1.9 match the description in
Theorem 1.22.

We present some more convenient truths in the following proposition.

Proposition 1.24 (Directed Angles). For any distinct points A, B, C, P in the plane, we
have the following rules.

Oblivion. �APA = 0.

Anti-Reflexivity. �ABC = −�CBA.

Replacement. �PBA = �PBC if and only if A, B, C are collinear. (What happens
when P = A?) Equivalently, if C lies on line BA, then the A in �PBA may be
replaced by C.

Right Angles. If AP ⊥ BP , then �APB = �BPA = 90◦.

Directed Angle Addition. �APB + �BPC = �APC.

Triangle Sum. �ABC + �BCA + �CAB = 0.

Isosceles Triangles. AB = AC if and only if �ACB = �CBA.

Inscribed Angle Theorem. If (ABC) has center P , then �APB = 2�ACB.

Parallel Lines. If AB ‖ CD, then �ABC + �BCD = 0.

One thing we have to be careful about is that 2�ABC = 2�XYZ does not imply
�ABC = �XYZ, because we are taking angles modulo 180◦. Hence it does not make
sense to take half of a directed angle.†

Problem 1.25. Convince yourself that all the claims in Proposition 1.24 are correct.

† Because of this, it is customary to take arc measures modulo 360◦. We may then write the inscribed angle
theorem as �ABC = 1

2 ÂC. This is okay since �ABC is taken mod 180◦ but ÂC is taken mod 360◦.
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1.5. Directed Angles 13

Directed angles are quite counterintuitive at first, but with a little practice they become
much more natural. The right way to think about them is to solve the problem for a specific
configuration, but write down all statements in terms of directed angles. The solution for a
specific configuration then automatically applies to all configurations.

Before moving in to a less trivial example, let us finish the issue with the orthic triangle
once and for all.

Example 1.26. Let H be the orthocenter of �ABC, acute or not. Using directed angles,
show that AEHF , BFHD, CDHE, BEFC, CFDA, and ADEB are cyclic.

Solution. We know that

90◦ = �ADB = �ADC

90◦ = �BEC = �BEA

90◦ = �CFA = �CFB

because of right angles. Then

�AEH = �AEB = −�BEA = −90◦ = 90◦

and

�AFH = �AFC = −�CFA = −90◦ = 90◦

so A, E, F , H are concyclic. Also,

�BFC = −�CFB = −90◦ = 90◦ = �BEC

so B, E, F , C are concyclic. The other quadrilaterals have similar stories.

We conclude with one final example.

Lemma 1.27 (Miquel Point of a Triangle). Points D, E, F lie on lines BC, CA, and
AB of �ABC, respectively. Then there exists a point lying on all three circles (AEF ),
(BFD), (CDE).

This point is often called the Miquel point of the triangle.
It should be clear by looking at Figure 1.5C that many, many configurations are possible.

Trying to handle this with standard angles would be quite messy. Fortunately, we can get
them all in one go with directed angles.

Let K be the intersection of (BFD) and (CDE) other than D. The goal is to show that
AFEK is cyclic as well. For the case when K is inside �ABC, this is an easy angle chase.
All we need to do is use the corresponding statements with directed angles for each step.

We strongly encourage readers to try this themselves before reading the solution that
follows.

First, here is the solution for the first configuration of Figure 1.5C. Define K as above.
Now we just notice that ∠FKD = 180◦ − B and ∠EKD = 180◦ − C. Consequently,
∠FKE = 360◦ − (180◦ − C) − (180◦ − B) = B + C = 180◦ − A and AFEK is cyclic.
Now we just need to convert this into directed angles.
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14 1. Angle Chasing

A

B CD

EF

A

B C

D
E

F

A

B C D

E

F

Figure 1.5C. The Miquel point, as in Lemma 1.27.

Proof. The first two claims are just

�FKD = �FBD = �ABC and �DKE = �DCE = �BCA.

We also know that

�FKD + �DKE + �EKF = 0 and �ABC + �BCA + �CAB = 0.

The first equation represents the fact that the sum of the angles at K is 360◦; the second
is the fact that the sum of the angles in a triangle is 180◦. From here we derive that
�CAB = �EKF . But �CAB = �EAF ; hence �EAF = �EKF as desired.

Having hopefully convinced you that directed angles are natural and often useful, let us
provide a warning on when not to use them. Most importantly, you should not use directed
angles when the problem only works for a certain configuration! An example of this is
Problem 1.38; the problem statement becomes false if the quadrilateral is instead ABDC.
You should also avoid using directed angles if you need to invoke trigonometry, or if you
need to take half an angle (as in Problem 1.38 again). These operations do not make sense
modulo 180◦.

Problems for this Section

Problem 1.28. We claimed that �FKD + �DKE + �EKF = 0 in the above proof.
Verify this using Proposition 1.24.

Problem 1.29. Show that for any distinct points A, B, C, D we have �ABC + �BCD +
�CDA + �DAB = 0. Hints: 114 645
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1.6. Tangents to Circles and Phantom Points 15

Lemma 1.30. Points A, B, C lie on a circle with center O. Show that �OAC = 90◦ −
�CBA. (This is not completely trivial.) Hints: 8 530 109

1.6 Tangents to Circles and Phantom Points
Here we introduce one final configuration and one general technique.

First, we discuss the tangents to a circle. In many ways, one can think of it as
Theorem 1.22 applied to the “quadrilateral” AABC. Indeed, consider a point X on the
circle and the line XA. As we move X closer to A, the line XA approaches the tangent at
A. The limiting case becomes the theorem below.

Proposition 1.31 (Tangent Criterion). Suppose �ABC is inscribed in a circle with
center O. Let P be a point in the plane. Then the following are equivalent:

(i) PA is tangent to (ABC).
(ii) OA ⊥ AP .

(iii) �PAB = �ACB.

AP

B

C

O

Figure 1.6A. PA is a tangent to (ABC). See Proposition 1.31.

In the following example we also introduce the technique of adding a phantom point.
(This general theme is sometimes also called reverse reconstruction.)

Example 1.32. Let ABC be an acute triangle with circumcenter O, and let K be a
point such that KA is tangent to (ABC) and ∠KCB = 90◦. Point D lies on BC such that
KD ‖ AB. Show that line DO passes through A.

This problem is perhaps a bit trickier to solve directly, because we have not developed
any tools to show that three points are collinear. (We will!) But here is a different idea.
We define a phantom point D′ as the intersection of ray AO with BC. If we can show
that KD′ ‖ AB, then this will prove D′ = D, because there is only one point on BC with
KD ‖ AB.

Fortunately, this can be done with merely the angle chasing that we know earlier. We
leave it as Problem 1.33. As a hint, you will have to use both parts of Proposition 1.31.

We have actually encountered a similar idea before, in our proof of Lemma 1.27. The
idea was to let (BDF ) and (CDE) intersect at a point K , and then show that K was on the
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16 1. Angle Chasing

A

B C

O

D

K

A

B C

O

D′

K

D

Figure 1.6B. Example 1.32, and the phantom point.

third circle as well. This theme is common in geometry. A second example where phantom
points are helpful is Lemma 1.45 on page 19.

It is worth noting that solutions using phantom points can often (but not always) be
rearranged to avoid them, although such solutions may be much less natural. For example,
another way to solve Example 1.32 is to show that �KAO = �KAD. Problem 1.34 is the
most common example of a problem that is not easy to rewrite without phantom points.

Problems for this Section

Problem 1.33. Let ABC be a triangle and let ray AO meet BC at D′. Point K is selected
so that KA is tangent to (ABC) and ∠KC = 90◦. Prove that KD′ ‖ AB.

Problem 1.34. In scalene triangle ABC, let K be the intersection of the angle bisector of
∠A and the perpendicular bisector of BC. Prove that the points A, B, C, K are concyclic.
Hints: 356 101

1.7 Solving a Problem from the IMO Shortlist
To conclude the chapter, we leave the reader with one last example problem. We hope the
discussion is instructive.

Example 1.35 (Shortlist 2010/G1). Let ABC be an acute triangle with D,E,F the
feet of the altitudes lying on BC,CA,AB respectively. One of the intersection points of
the line EF and the circumcircle is P . The lines BP and DF meet at point Q. Prove that
AP = AQ.

In this problem there are two possible configurations. Directed angles allows us to
handle both, but let us focus on just one—say P2 and Q2.

The first thing we notice is the orthic triangle. Because of it we should keep the results
of Lemma 1.14 close at heart. Additionally, we are essentially given that ACBP2 is a cyclic
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1.7. Solving a Problem from the IMO Shortlist 17
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Figure 1.7A. IMO Shortlist 2010, Problem G1 (Example 1.35).

quadrilateral. Let us see what we can do with that. The conclusion AP2 = AQ2 seems
better expressed in terms of angles—we want to show that �AQ2P2 = �Q2P2A. Now we
already know �Q2P2A, because

�Q2P2A = �BP2A = �BCA

so it is equivalent to compute �AQ2P2.
There are two ways to realize the next step. The first is wishful thinking—the hope

that a convenient cyclic quadrilateral will give us �AQ2P2. The second way is to have a
scaled diagram at hand. Either way, we stumble upon the following hope: might AQ2P2F

be cyclic? It certainly looks like it in the diagram.
How might we prove that AQ2P2F is cyclic? Trying to use supplementary angles seems

not as hopeful, because this is what we want to use as a final step. However, inscribed arcs
seems more promising. We already know �AP2Q2 = �ACB. Might we be able to find
AFQ2? Yes—we know that

�AFQ2 = �AFD

and now we are certain this will succeed, because �AFD is entirely within the realm of
�ABC and its orthic triangle. In other words, we have eliminated P and Q. In fact,

�AFD = �ACD = �ACB
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18 1. Angle Chasing

since AFDC is cyclic. This solves the problem for P2 and Q2. Because we have been
careful to direct all the angles, this automatically solves the case P1 and Q1 as well—and
this is why directed angles are useful.

It is important to realize that the above is not a well-written proof, but instead a
description of how to arrive at the solution. Below is an example of how to write the proof
in a contest—one direction only (so without working backwards like we did at first), and
without the motivation. Follow along in the following proof with P1 and Q1, checking that
the directed angles work out.

Solution to Example 1.35. First, because APBC and AFDC are cyclic,

�QPA = �BPA = �BCA = �DCA = �DFA = �QFA.

Therefore, we see AFPQ is cyclic. Then

�AQP = �AFP = �AFE = �AHE = �DHE = �DCE = �BCA.

We deduce that �AQP = �BCA = �QPA which is enough to imply that �APQ is
isosceles with AP = AQ.

This problem is much easier if Lemma 1.14 is kept in mind. In that case, the only
key observation is that AFPQ is cyclic. As we saw above, one way to make this key
observation is to merely peruse the diagram for quadrilaterals that appear cyclic. That is
why it is often a good idea, on any contest problem, to draw a scaled diagram using ruler and
compass—in fact, preferably more than one diagram. This often gives away intermediate
steps in the problem, prevents you from missing obvious facts, or gives you something
to attempt to prove. It will also prevent you from wasting time trying to prove false
statements.

1.8 Problems
Problem 1.36. Let ABCDE be a convex pentagon such that BCDE is a square with
center O and ∠A = 90◦. Prove that AO bisects ∠BAE. Hints: 18 115 Sol: p.241

Problem 1.37 (BAMO 1999/2). Let O = (0, 0), A = (0, a), and B = (0, b), where 0 <

a < b are reals. Let � be a circle with diameter AB and let P be any other point on �. Line
PA meets the x-axis again at Q. Prove that ∠BQP = ∠BOP . Hints: 635 100

Problem 1.38. In cyclic quadrilateral ABCD, let I1 and I2 denote the incenters of �ABC

and �DBC, respectively. Prove that I1I2BC is cyclic. Hints: 684 569

Problem 1.39 (CGMO 2012/5). Let ABC be a triangle. The incircle of �ABC is tangent
to AB and AC at D and E respectively. Let O denote the circumcenter of �BCI .

Prove that ∠ODB = ∠OEC. Hints: 643 89 Sol: p.241

Problem 1.40 (Canada 1991/3). Let P be a point inside circle ω. Consider the set of
chords of ω that contain P . Prove that their midpoints all lie on a circle. Hints: 455 186 169
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1.8. Problems 19

Problem 1.41 (Russian Olympiad 1996). Points E and F are on side BC of convex
quadrilateral ABCD (with E closer than F to B). It is known that ∠BAE = ∠CDF and
∠EAF = ∠FDE. Prove that ∠FAC = ∠EDB. Hints: 245 614

Lemma 1.42. Let ABC be an acute triangle inscribed in circle �. Let X be the midpoint
of the arc B̂C not containing A and define Y , Z similarly. Show that the orthocenter of
XYZ is the incenter I of ABC. Hints: 432 21 326 195
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Figure 1.8A. Lemma 1.42. I is the orthocenter of �XYZ.

Problem 1.43 (JMO 2011/5). Points A,B,C,D,E lie on a circle ω and point P lies
outside the circle. The given points are such that (i) lines PB and PD are tangent to ω, (ii)
P,A,C are collinear, and (iii) DE ‖ AC.

Prove that BE bisects AC. Hints: 401 575 Sol: p.242

Lemma 1.44 (Three Tangents). Let ABC be an acute triangle. Let BE and CF be
altitudes of �ABC, and denote by M the midpoint of BC. Prove that ME, MF , and the
line through A parallel to BC are all tangents to (AEF ). Hints: 24 335
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Figure 1.8B. Lemma 1.44, involving tangents to (AEF ).

Lemma 1.45 (Right Angles on Incircle Chord). The incircle of �ABC is tangent to
BC, CA, AB at D, E, F , respectively. Let M and N be the midpoints of BC and AC,
respectively. Ray BI meets line EF at K . Show that BK ⊥ CK . Then show K lies on line
MN . Hints: 460 84
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20 1. Angle Chasing
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Figure 1.8C. Diagram for Lemma 1.45.

Problem 1.46 (Canada 1997/4). The point O is situated inside the parallelogram ABCD

such that ∠AOB + ∠COD = 180◦. Prove that ∠OBC = ∠ODC. Hints: 386 110 214 Sol:

p.242

Problem 1.47 (IMO 2006/1). Let ABC be triangle with incenter I . A point P in the
interior of the triangle satisfies

∠PBA + ∠PCA = ∠PBC + ∠PCB.

Show that AP ≥ AI and that equality holds if and only if P = I . Hints: 212 453 670

Lemma 1.48 (Simson Line). Let ABC be a triangle and P be any point on (ABC). Let
X, Y , Z be the feet of the perpendiculars from P onto lines BC, CA, and AB. Prove that
points X, Y , Z are collinear. Hints: 278 502 Sol: p.243
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Figure 1.8D. Lemma 1.48; the Simson line.

Problem 1.49 (USAMO 2010/1). Let AXYZB be a convex pentagon inscribed in a
semicircle of diameter AB. Denote by P , Q, R, S the feet of the perpendiculars from Y

onto lines AX, BX, AZ, BZ, respectively. Prove that the acute angle formed by lines PQ

and RS is half the size of ∠XOZ, where O is the midpoint of segment AB. Hint: 661
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1.8. Problems 21

Problem 1.50 (IMO 2013/4). Let ABC be an acute triangle with orthocenter H , and let
W be a point on the side BC, between B and C. The points M and N are the feet of the
altitudes drawn from B and C, respectively. ω1 is the circumcircle of triangle BWN and
X is a point such that WX is a diameter of ω1. Similarly, ω2 is the circumcircle of triangle
CWM and Y is a point such that WY is a diameter of ω2. Show that the points X, Y , and
H are collinear. Hints: 106 157 15 Sol: p.243

Problem 1.51 (IMO 1985/1). A circle has center on the side AB of the cyclic quadrilateral
ABCD. The other three sides are tangent to the circle. Prove that AD + BC = AB. Hints:

36 201
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