
C H A P T E R 7
Barycentric Coordinates

I suppose it is tempting, if the only tool you have is a hammer, to treat everything as
if it were a nail. Maslow’s Hammer

We now present another technique, barycentric coordinates. At the time of writing, it is
surprisingly unknown to most olympiad contestants and problem writers.

In this chapter, the area notation [XYZ] refers to signed areas (see Section 5.1). That
means that the area [XYZ] is positive if the points X, Y , Z are oriented in counterclockwise
order, and negative otherwise.

7.1 Definitions and First Theorems
Throughout this section we fix a nondegenerate triangle ABC, called the reference triangle.
(This is much like selecting an origin and axes in a Cartesian coordinate system.) Each
point P in the plane is assigned an ordered triple of real numbers P = (x, y, z) such that

�P = x �A + y �B + z �C and x + y + z = 1.

These are called the barycentric coordinates of point P with respect to triangle ABC.
Barycentric coordinates are also sometimes called areal coordinates because if P =

(x, y, z), then the signed area [PBC] is equal to x[ABC], and so on. In other words, these
coordinates can be viewed as

P =
(

[PBC]

[ABC]
,

[PCA]

[BCA]
,

[PAB]

[CAB]

)
.

The areas are signed in order to permit the point P to lie outside the triangle. If P = (x, y, z)
and A lie on opposite sides of BC, then the signed areas of [PBC] and [ABC] have
opposite signs and x < 0. In particular, the point P lies in the interior of ABC if and only
if x, y, z > 0.

Observe that A = (1, 0, 0), B = (0, 1, 0) and C = (0, 0, 1). This is why barycentric
coordinates are substantially more suited for standard triangle geometry problems; the
vertices are both simple and symmetric.

The soul of barycentric coordinates derives from the following result, which we state
without proof.
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120 7. Barycentric Coordinates
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Figure 7.1A. Regions corresponding to the areas of ABC when P is inside the triangle.

Theorem 7.1 (Barycentric Area Formula). Let P1, P2, P3 be points with barycentric
coordinates Pi = (xi, yi, zi) for i = 1, 2, 3. Then the signed area of �P1P2P3 is given by
the determinant

[P1P2P3]

[ABC]
=

∣∣∣∣∣∣
x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣ .
Again, the area is signed, following the convention in Section 5.1.

As a corollary, we derive the equation of a line.

Theorem 7.2 (Equation of a Line). The equation of a line takes the form ux + vy + wz =
0 where u, v, w are real numbers. The u, v, and w are unique up to scaling.

Proof. The main idea is that three points are collinear if and only if the signed area of
their “triangle” is zero. Suppose we wish to characterize the points P = (x, y, z) lying on
a line XY , where X = (x1, y1, z1) and Y = (x2, y2, z2). Using the above area formula with
[PAB] = 0, we find this occurs precisely when

0 = (y1z2 − y2z1)x + (z1x2 − z2x1)y + (x1y2 − x2y1)z,

i.e., 0 = ux + vy + wz for some constants u, v, w.

In particular, the equation for the line AB is simply z = 0, by substituting (1, 0, 0) and
(0, 1, 0) into ux + vy + wz = 0. In general, the formula for a cevian through A is of the
form vy + wz = 0, by substituting the point A = (1, 0, 0).

In fact, the above techniques are already sufficient to prove both Ceva’s and Menelaus’s
theorem.

Example 7.3 (Ceva’s Theorem). Let D, E, F be points in the interiors of sides BC,
CA, AB of a triangle ABC. Then the cevians AD, BE, CF are concurrent if and only if

BD

DC

CE

EA

AF

FB
= 1.
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7.1. Definitions and First Theorems 121

Proof. Define

D = (0, d, 1 − d)

E = (1 − e, 0, e)

F = (f, 1 − f, 0)

where d, e, f are real numbers strictly between 0 and 1.
Then the corresponding equations of lines are

AD : dz = (1 − d)y

BE : ex = (1 − e)z

CF : fy = (1 − f )x.

We wish to show there is a nontrivial solution to this system of equations (i.e., one other
than (0, 0, 0)) if and only if def = (1 − d)(1 − e)(1 − f ), which is evidently equivalent to
the constraint BD

DC
CE
EA

AF
FB

= 1.
First suppose that a nontrivial solution (x, y, z) exists. Notice that if any of x, y, z is

zero, then the others must all be zero as well. So we may assume xyz �= 0. Now taking the
product and cancelling xyz yields def = (1 − d)(1 − e)(1 − f ).

On the other hand, suppose the condition def = (1 − d)(1 − e)(1 − f ) holds. We
opportunistically pick x, y, z. Put y1 = d and z1 = 1 − d. Then we require

x1 = 1 − e

e
(1 − d) = f

1 − f
d

and this is okay since def = (1 − d)(1 − e)(1 − f ); hence we can set x1 as above. Thus
x = x1, y = y1, and z = z1 is a solution to the equations above.

However, there is no reason to believe that x1 + y1 + z1 = 1, so the triple we found
earlier may not actually correspond to a point. (However, we at least know x1, y1, z1 > 0.)
This is not a big issue: we instead consider the triple

(x, y, z) =
(

x1

x1 + y1 + z1
,

y1

x1 + y1 + z1
,

z1

x1 + y1 + z1

)
which still satisfies the conditions, but now has sum 1. Thus this triple corresponds to the
desired point of concurrency.

The last step in the above proof illustrates that barycentric coordinates are homogeneous.
Let us make his idea explicit. Suppose (x, y, z) lies on a line

ux + vy + wz = 0.

Then so does the “triple”, (2x, 2y, 2z), (1000x, 1000y, 1000z) or indeed any multiple. In
light of this, we permit unhomogenized barycentric coordinates by writing (x : y : z) as
shorthand for the appropriate triple

(x : y : z) =
(

x

x + y + z
,

y

x + y + z
,

z

x + y + z

)
whenever x + y + z �= 0. Note the use of colons instead of commas. An equivalent defini-
tion is as follows: for any nonzero k, the points (x : y : z) and (kx : ky : kz) are considered
the same, and (x : y : z) = (x, y, z) when x + y + z = 1.
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122 7. Barycentric Coordinates

This shorthand is convenient because such coordinates may still be “plugged in” to the
line formula, often saving computations. For example, we have the following convenient
corollary.

Theorem 7.4 (Barycentric Cevian). Let P = (x1 : y1 : z1) be any point other than A.
Then the points on line AP (other than A) can be parametrized by

(t : y1 : z1)

where t ∈ R and t + y1 + z1 �= 0.

On the other hand, it makes no sense to put unhomogenized coordinates into, say,
the area formula. For these purposes, our usual coordinates (x, y, z) with the restriction
x + y + z = 1 will be called homogenized barycentric coordinates and delimited with
colons.

Problems for this Section

Problem 7.5. Find the coordinates for the midpoint of AB. Hint: 623

Lemma 7.6 (Barycentric Conjugates). Let P = (x : y : z) be a point with x, y, z �= 0.
Show that the isogonal conjugate of P is given by

P ∗ =
(

a2

x
:

b2

y
:

c2

z

)
and the isotomic conjugate is given by

P t =
(

1

x
:

1

y
:

1

z

)
.

Hint: 419

7.2 Centers of the Triangle
In Table 7.1 we give explicit forms for several centers of the reference triangle. Remember
that (u : v : w) refers to the point with coordinates ( u

u+v+w
, v

u+v+w
, w

u+v+w
); that is, we are

not normalizing the coordinates.
This is so important we say it twice: the coordinates here are unhomogenized.
Here G, I , H , O denote the usual centroid, incenter, orthocenter, and circumcenter,

while IA denotes the A-excenter and K denotes the symmedian point. Notice that O and
H are not particularly nice in barycentric coordinates (as compared to in, say, complex
numbers), but I and K are particularly elegant.

It is often more useful to convert the trigonometric forms of H and O into expressions
entirely in terms of the side lengths by

O = (a2SA : b2SB : c2SC)

and

H = (SBSC : SCSA : SASB)
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7.3. Collinearity, Concurrence, and Points at Infinity 123

Table 7.1. Barycentric Coordinates of the Centers of
a Triangle.

Point/Coordinates Sketch of Proof

G = (1 : 1 : 1) Trivial
I = (a : b : c) Areal definition
IA = (−a : b : c), etc. Areal definition
K = (a2 : b2 : c2) Isogonal conjugates
H = (tan A : tan B : tan C) Areal definition
O = (sin 2A : sin 2B : sin 2C) Areal definition

where we define

SA = b2 + c2 − a2

2
, SB = c2 + a2 − b2

2
, SC = a2 + b2 − c2

2
.

In Section 7.6 we investigate further properties of these expressions which provide a more
viable way of dealing with them.

Just to provide some intuition on why Table 7.1 and Theorem 7.4 are useful, here is a
simple example.

Example 7.7. Find the barycentric coordinates for the intersection of the internal angle
bisector from A and the symmedian from B.

Solution. Suppose the desired intersection point is P = (x : y : z). It is the intersection
of lines AI and BK . According to Theorem 7.4, because I = (a : b : c) we deduce that
y : z = b : c. Similarly, because K = (a2 : b2 : c2) we deduce that x : z = a2 : c2. It is now
elementary to find a solution to this: take

P = (a2 : bc : c2).

Moral: Cevians are extremely good in barycentric coordinates. And do not be afraid to use
the law of sines if you have angles instead of side ratios.

Problems for this Section

Problem 7.8. Using the areal definition, show that I = (a : b : c). Deduce the angle bisector
theorem. Hint: 605

Problem 7.9. Find the barycentric coordinates for the intersection of the symmedian from
A and the median from B. Hint: 463

7.3 Collinearity, Concurrence, and Points at Infinity
Theorem 7.1 can often be applied to show that three points are collinear. Specifically, we
have the following result.
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124 7. Barycentric Coordinates

Theorem 7.10 (Collinearity). Consider points P1, P2, P3 with Pi = (xi : yi : zi) for
i = 1, 2, 3. The three points are collinear if and only if

0 =
∣∣∣∣∣∣
x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣ .
Note the coordinates need not be homogenized! This saves much computation.

Proof. The signed area of P1, P2, P3 is zero (i.e., the points are collinear) if and only if

0 =

∣∣∣∣∣∣∣∣
x1

x1+y1+z1

y1

x1+y1+z1

z1
x1+y1+z1

x2
x2+y2+z2

y2

x2+y2+z2

z2
x2+y2+z2

x3
x3+y3+z3

y3

x3+y3+z3

z3
x3+y3+z3

∣∣∣∣∣∣∣∣ · [ABC].

The right-hand side simplifies as

[ABC]∏3
i=1 (xi + yi + zi)

∣∣∣∣∣∣
x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣ .
Because [ABC] �= 0 the conclusion follows.

This can be restated in the following useful form.

Proposition 7.11. The line through two points P = (x1 : y1 : z1) and Q = (x2 : y2 : z2)
is given precisely by the formula

0 =
∣∣∣∣∣∣
x y z

x1 y1 z1

x2 y2 z2

∣∣∣∣∣∣ .
We often use this in combination with Theorem 7.4 in order to intersect a cevian with

an arbitrary line through two points.
We also have a similar criterion for when three lines are concurrent. However, before

proceeding, we make a remark about points at infinity. We earlier defined

(x : y : z) =
(

x

x + y + z
,

y

x + y + z
,

z

x + y + z

)
whenever x + y + z �= 0. What of the case x + y + z = 0?

Consider two parallel lines u1x + v1y + w1z = 0 and u2x + v2y + w2z = 0. Because
they are parallel, we know that the system

0 = u1x + v1y + w1z

0 = u2x + v2y + w2z

1 = x + y + z
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7.3. Collinearity, Concurrence, and Points at Infinity 125

has no solutions (x, y, z). This is only possible when∣∣∣∣∣∣
u1 v1 w1

u2 v2 w2

1 1 1

∣∣∣∣∣∣ = 0.

However, this implies that the system of equations

0 = u1x + v1y + w1z

0 = u2x + v2y + w2z

0 = x + y + z

has a nontrivial solution! (Conversely, if the lines are not parallel, the determinant is nonzero,
and hence there is exactly one solution, namely (0, 0, 0).)

In light of this, we make each of our lines just “a little longer” by adding one point
to it, a point at infinity. It is a point (x : y : z) satisfying the equation of the line and the
additional condition x + y + z = 0. With this addition, every two lines intersect; the lines
that were parallel before now correspond to lines that intersect at points at infinity. Points
at infinity are defined more precisely at the start of Chapter 9.

Example 7.12. Find the point at infinity along the internal bisector of angle A.

Solution. The point at infinity is (−(b + c) : b : c). After all, it lies on the equation of
the angle bisector, and the sum of its coordinates is zero.

Theorem 7.13 (Concurrence). Consider three lines

	i : uix + viy + wiz = 0

for i = 1, 2, 3. They are concurrent or all parallel if and only if

0 =
∣∣∣∣∣∣
u1 v1 w1

u2 v2 w2

u3 v3 w3

∣∣∣∣∣∣ .
Proof. This is essentially linear algebra. Consider the system of equations

0 = u1x + v1y + w1z

0 = u2x + v2y + w2z

0 = u3x + v3y + w3z.

It always has a solution (x, y, z) = (0, 0, 0) and other solutions exist if and only if the lines
concur (possibly at a point at infinity), which occurs only when the determinant of the
matrix is zero.
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126 7. Barycentric Coordinates

7.4 Displacement Vectors
In this section, we develop the notion of distance and direction through the use of vectors.
This gives us a distance formula, and hence a circle formula, as well as a formula for the
distance between two lines.

The chief definition is as follows. A displacement vector of two (normalized) points
P = (p1, p2, p3) and Q = (q1, q2, q3) is denoted by

−→
PQ and is equal to (q1 − p1, q2 −

p2, q3 − p3). Note that the sum of the coordinates of a displacement vector is 0.
This section frequently involves translating the circumcenter O to the zero vector �0;

this lets us invoke properties of the dot product described in Appendix A.3. This translation
is valid since the point (x, y, z) satisfies x + y + z = 1, so the coordinates of the points do
not change as a result; to be explicit, we can write

�P − �O = x
(

�A − �O
)

+ y
(

�B − �O
)

+ z
(

�C − �O
)

since x + y + z = 1. As a result, however:

It is important that x + y + z = 1 when doing calculations with displacement vectors.

Our first major result is the distance formula.

Theorem 7.14 (Distance Formula). Let P and Q be two arbitrary points and consider
a displacement vector

−→
PQ = (x, y, z). Then the distance from P to Q is given by

|PQ|2 = −a2yz − b2zx − c2xy.

Proof. Translate the coordinate plane so that the circumcenter O becomes the zero
vector. Recall (from Appendix A.3) that this implies

�A · �A = R2 and �A · �B = R2 − 1

2
c2.

Here R is the circumradius of triangle ABC, as usual. Then we simply compute

|PQ|2 =
(
x �A + y �B + z �C

)
·
(
x �A + y �B + z �C

)
.

Applying the properties of the dot product and using cyclic sum notation (defined in
Section 0.3),

|PQ|2 =
∑
cyc

x2 �A · �A + 2
∑
cyc

xy �A · �B

= R2(x2 + y2 + z2) + 2
∑
cyc

xy

(
R2 − 1

2
c2

)
.

Collecting the R2 terms,

|PQ|2 = R2(x2 + y2 + z2 + 2xy + 2yz + 2zx) − (c2xy + a2yz + b2zx)

= R2(x + y + z)2 − a2yz − b2zx − c2xy

= −a2yz − b2zx − c2xy

since x + y + z = 0, being the sum of the coordinates in a displacement vector.
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7.4. Displacement Vectors 127

As a consequence we can deduce the formula for the equation of a circle. It looks
unwieldy, but it can often be tamed; see the remarks that follow the proof.

Theorem 7.15 (Barycentric Circle). The general equation of a circle is

−a2yz − b2zx − c2xy + (ux + vy + wz)(x + y + z) = 0

for reals u, v,w.

Proof. Assume the circle has center (j, k, l) and radius r . Then applying the distance
formula, we see that the circle is given by

−a2(y − k)(z − l) − b2(z − l)(x − j ) − c2(x − j )(y − k) = r2.

Expand everything, and collect terms to get

−a2yz − b2zx − c2xy + C1x + C2y + C3z = C

for some hideous constants Ci and C. Since x + y + z = 1, we can rewrite

−a2yz − b2zx − c2xy + ux + vy + wz = 0

as

−a2yz − b2zx − c2xy + (ux + vy + wz)(x + y + z) = 0

where u = C1 − C, etc.

While this may look complicated, it turns out that circles that pass through vertices and
sides are often very nice. For example, consider what occurs if the circle passes through
A = (1, 0, 0). The terms a2yz, b2zx, c2xy all vanish, and accordingly we arrive at u = 0.
Even if only one coordinate is zero, we still find many vanishing terms. Several examples
are illustrated in the exercises.

As a result, whenever you are trying to solve a problem involving circumcircles through
barycentrics, you should strive to set up the coordinates so that points on the circle are points
on the sides, or better yet, vertices of the reference triangle. In other words, the choice of
reference triangle is of paramount importance whenever circles appear.

Our last development for this section is a criterion to determine when two displacement
vectors are perpendicular.

Theorem 7.16 (Barycentric Perpendiculars). Let
−−→
MN = (x1, y1, z1) and

−→
PQ =

(x2, y2, z2) be displacement vectors. Then MN ⊥ PQ if and only if

0 = a2(z1y2 + y1z2) + b2(x1z2 + z1x2) + c2(y1x2 + x1y2).

The proof is essentially the same as before: shift �O to the zero vector, and then expand
the condition

−−→
MN · −→

PQ = 0, which is equivalent to perpendicularity. We encourage you
to prove the theorem yourself before reading the following proof.

Proof. Translate �O to �0. It is necessary and sufficient that(
x1 �A + y1 �B + z1 �C

)
·
(
x2 �A + y2 �B + z2 �C

)
= 0.
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128 7. Barycentric Coordinates

Expanding, this is just∑
cyc

(
x1x2 �A · �A

)
+

∑
cyc

(
(x1y2 + x2y1) �A · �B

)
= 0.

Taking advantage of the fact that �O = 0, we may rewrite this as

0 =
∑
cyc

(x1x2R
2) +

∑
cyc

(x1y2 + x2y1)

(
R2 − c2

2

)
.

This rearranges as

R2

(∑
cyc

(x1x2) +
∑
cyc

(x1y2 + x2y1)

)
= 1

2

∑
cyc

(
(x1y2 + x2y1)(c2)

)
R2(x1 + y1 + z1)(x2 + y2 + z2) = 1

2

∑
cyc

(
(x1y2 + x2y1)(c2)

)
.

But we know that x1 + y1 + z1 = x2 + y2 + z2 = 0 in a displacement vector, so this
becomes

R2 · 0 · 0 = 1

2

∑
cyc

(
(x1y2 + x2y1)(c2)

)
0 =

∑
cyc

(
(x1y2 + x2y1)(c2)

)
.

Theorem 7.16 is particularly useful when one of the displacement vectors is a side of the
triangle. Several applications are given in the exercises, and more are seen in the examples
section.

Problems for this Section

Lemma 7.17 (Barycentric Circumcircle). The circumcircle (ABC) of the reference tri-
angle has equation

a2yz + b2zx + c2xy = 0.

Hint: 688

Problem 7.18. Consider a displacement vector
−→
PQ = (x1, y1, z1). Show that PQ ⊥ BC

if and only if

0 = a2(z1 − y1) + x1(c2 − b2).

Lemma 7.19 (Barycentric Perpendicular Bisector). The perpendicular bisector of BC

has equation

0 = a2(z − y) + x(c2 − b2).
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7.5. A Demonstration from the IMO Shortlist 129

7.5 A Demonstration from the IMO Shortlist
Before proceeding to even more obscure theory, we take the time to discuss an illustrative
example. Here is a problem from the IMO Shortlist of 2011.

Example 7.20 (Shortlist 2011/G6). Let ABC be a triangle with AB = AC and let D

be the midpoint of AC. The angle bisector of ∠BAC intersects the circle through D, B,
and C at the point E inside triangle ABC. The line BD intersects the circle through A, E,
and B in two points B and F . The lines AF and BE meet at a point I , and the lines CI

and BD meet at a point K . Show that I is the incenter of triangle KAB.

B C

A

DD′
E

F

I

K

Figure 7.5A. IMO Shortlist 2011, Problem G6 (Example 7.20).

There are many nice and relatively painless synthetic observations that you can make
in this problem. However, for the sake of discussion, we pretend we missed all of them.
How should we apply barycentric coordinates?

Perhaps a better question is whether we should apply barycentric coordinates at all.
There are two circles, but they seem relatively tame. There are lots of intersections of lines,
but they seem to be mostly things that could be made into cevians. The final condition is
about an angle bisector, which could pose difficulties, but we might make it.

A large part of this decision is based on what we choose for our reference triangle. At
first we might be inclined to choose �ABC, as the two circles in the problem pass through
at least two vertices, and the condition AB = AC is easy to encode. However, trying to
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130 7. Barycentric Coordinates

prove that BI bisects ∠ABD, and that AI bisects ∠BAK , seems much less pleasant. Can
we make at least one of them nicer?

That motivates a new choice of reference triangle: let us pick �ABD instead. That way,
the BE bisection condition is extremely clean, and in fact almost immediate from the start
(since E is the first point we compute). We still have the property that all circles pass through
two vertices. Even better, the points F and K now lie on a side of the triangle, rather than
just on some cevian (even though cevians are usually good too). And the second bisection
condition looks much nicer now too, because we would only need to check AB2

AK2 = BF 2

FK2 ;
since F and K lie on BD, the right-hand side of this equality looks much better, and so the
only truly nontrivial step would be computing AK2. And finally, the isosceles condition is
just AB = 2AD, which is trivial to encode.

It really is quite important that everything works out. A single thorn can doom the
entire solution. We should always worry the most about the most time-consuming step of
the entire plan—often this bottleneck takes longer to clear than the rest of the problem
combined.

Let us begin. Set A = (1, 0, 0), B = (0, 1, 0), and D = (0, 0, 1), and denote a = BD,
b = AD, c = AB = 2b. We also abbreviate ∠A = ∠BAD, ∠B = ∠DBA, and ∠D =
∠ADB.

Our first objective is to compute E, so we need the equation of (BDC). We know
that C is the reflection of A over D, and hence C = (−1, 0, 2). Thus we are plugging in
B = (0, 1, 0), C = (−1, 0, 2), and D = (0, 0, 1) into the circle equation

(BDC) : −a2yz − b2zx − c2xy + (x + y + z)(ux + vy + wz) = 0.

The points B and D now force v = w = 0—indeed this is why we want circles to pass
through vertices. Now plugging in C gives

2b2 − u = 0 ⇒ u = 2b2.

Great. Now E lies on the bisector of ∠BAD. Hence, set E = (t : 1 : 2) (which is equivalent
to (bs : b : 2b) = (bs : b : c), where s = t

b
) for some t . We can now solve for t by just

dropping it into the circle equation, which gives

−a2(1)(2) − b2(2)(t) − c2(t)(1) + (3 + t)(2b2 · t) = 0.

Putting c = 2b, we enjoy a cancellation of all the t terms, leaving us with merely 2b2 · t2 =
2a2, and hence t = ± a

b
. We pick t > 0 since E is in the interior, and accordingly we deduce

E = (
a
b

: 1 : 2
)
, or

E = (a : b : 2b) = (a : b : c) .

This means E is the incenter of �ABD! Glancing back at the diagram, that implies that
BE is the angle bisector of ∠ABD. And the explanation is simple: if D′ is the reflection of
D across AE, then the arcs D′E and DE of (BCD) are equal by simple symmetry. Hence
∠D′BE = ∠EBD. Oops. That was embarrassing. But let us trudge on.

The next step is to compute the point F . We first need the equation of (AEB). By
proceeding as before with generic u, v, w, we may derive that u = v = 0 with the points
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7.5. A Demonstration from the IMO Shortlist 131

A and B. As for E, we require

−a2bc − b2ca − c2ab + (a + b + c)(cw) = 0 ⇒ w = ab.

Now set F = (0 : m : n) and throw this into our discovered circle formula. The computa-
tions give us

−a2mn + (m + n)(abn) = 0 ⇒ −am + b(m + n) = 0

and so m : n = b : a − b. Hence

F = (0 : b : a − b) =
(

0 :
b

a
:

a − b

a

)
.

Wait, that is pretty clean. Why might that be?
Upon further thought, we see that

DF = b

a
· BD = b = AD.

In other words, F is the reflection of A over the bisector ED. Is this obvious? Yes, it is—the
center of (AEB) lies on ED by our ubiquitous Lemma 1.18. Cue sound of slap against
forehead.

(At this point we might take a moment to verify that a > b, to rule out configuration
issues. This just follows from the triangle inequality a + b > 2b.)

Next, we compute I . This is trivial, because AF and BE are cevians. Verify that

I = (a(a − b) : bc : c(a − b)) = (
a(a − b) : 2b2 : 2b(a − b)

)
is the correct point.

We now wish to compute K . Let us set K = (0 : y : z) and solve again for y : z. Because
the points I , K , and C are collinear, our collinearity criterion (Theorem 7.10) gives us

0 =
∣∣∣∣∣∣

0 y z

−1 0 2
a(a − b) 2b2 2b(a − b)

∣∣∣∣∣∣ .
Let us see if we make more zeros. Add a(a − b) times the second row to the last to obtain

0 = 2

∣∣∣∣∣∣
0 y z

−1 0 2
0 b2 (b + a)(a − b)

∣∣∣∣∣∣ .
Here we have factored the naturally occurring 2 in the bottom row. Apparently this implies,
upon evaluating by minors (in the first column) that we have

0 =
∣∣∣∣ y z

b2 a2 − b2

∣∣∣∣ .
Hence we discover K = (

0 : b2 : a2 − b2
) =

(
0, b2

a2 ,
a2−b2

a2

)
. This is really nice as well.

Actually, it implies in a similar way as before that

DK = b2

a
= AD2

BD
⇒ DB · DK = AD2.
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132 7. Barycentric Coordinates

Did we miss another synthetic observation? This new discovery implies �DAK ∼ �DBA,
and hence ∠KAD = ∠KBA. That would mean ∠BAK = ∠A − ∠B, which is positive
by a > b.

Our calculations have given us ∠BAK = ∠A − ∠B, meaning it suffices to prove that
∠BAF = 1

2 (∠A − ∠B). And yet ∠BAE = 1
2∠A, so we only need to prove ∠FAE =

1
2∠B. In a blinding flash of obvious, ∠FAE = ∠FBE = 1

2∠B and we are done.
The calculation of K from F encodes all of the nontrivial synthetic steps of the problem,

and our surprise at the resulting K led us naturally to the end. We write this up nicely, hiding
the fact that we ever missed such steps.

Solution to Example 7.20. Let D′ be the midpoint of AB. Evidently the points B, D′,
D, E, C are concyclic. By symmetry, DE = D′E, and hence BE is a bisector of ∠D′BD.
It follows that E is the incenter of triangle ABD. Since the center of (AEB) lies on ray
DE by Lemma 1.18, it follows that the reflection of A over ED lies on (AEB), and hence
is F .

We now claim that DK · DB = DA2. The proof is by barycentric coordinates on
�ABD. Set A = (1, 0, 0), B = (0, 1, 0), C = (0, 0, 1) and let a = BD, b = AD, and
c = AB = 2b. The observations above imply that F = (0 : b : b − a) and E = (a : b : c).
This implies

I = (a(a − b) : bc : c(a − b)) = (
a(a − b) : 2b2 : 2b(a − b)

)
.

Finally, C = (−1, 0, 2). Hence if K = (0 : y : z) then we have

0 =
∣∣∣∣∣∣

0 y z

−1 0 2
a(a − b) 2b2 2b(a − b)

∣∣∣∣∣∣ =
∣∣∣∣∣∣

0 y z

−1 0 2
0 2b2 2(a2 − b2)

∣∣∣∣∣∣
so y : z = b2 : (a2 − b2), so K =

(
0, b2

a2 , 1 − b2

a2

)
. It follows immediately that DK = b2

a

as desired.
Now remark that

DK · DB = DA2 ⇒ �DAK ∼ �DBA ⇒ ∠FAD = ∠B.

So ∠BAK = ∠A − ∠B. But ∠EAD = 1
2∠A and ∠FAE = ∠FBE = 1

2∠B imply
∠BAF = 1

2 (∠A − ∠B), and we are done.

7.6 Conway’s Notations
We now adapt Conway’s notation∗ and define

SA = b2 + c2 − a2

2

and SB and SC analogously. Furthermore, let us define the shorthand SBC = SBSC , and so
on.

We first encountered these when we gave the coordinates of the circumcenter, and
claimed they were friendlier than they seemed. This is because they happen to satisfy a

∗ The notation is named after John Horton Conway, a British mathematician.
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7.7. Displacement Vectors, Continued 133

lot of nice identities. For example, it is easy to see that SB + SC = a2. Here are some less
obvious ones.

Proposition 7.21 (Conway Identities). Let S denote twice the area of triangle ABC.
Then

S2 = SAB + SBC + SCA

= SBC + a2SA

= 1

2
(a2SA + b2SB + c2SC)

= (bc)2 − S2
A.

In particular,

a2Sa + b2SB − c2SC = 2SAB.

One might notice that there are a lot of a2SA and SAB terms involved. This is because these
are the coordinates of the circumcenter and orthocenter—hence these terms tend to arise
naturally, and the identities provide a way of manipulating them.

More generally, if S is again equal to twice the area of triangle ABC, we define

Sθ = S cot θ.

Here the angle is directed modulo 180◦. The special case when θ = ∠A yields SA =
1
2 (b2 + c2 − a2).

With this notation, we also have the following occasionally useful result.

Theorem 7.22 (Conway’s Formula). Let P be an arbitrary point. If β = �PBC and
γ = �BCP , then

P = (−a2 : SC + Sγ : SB + Sβ

)
.

The proof follows by computing the signed areas of triangles PBC, PAB, PCA and
performing some manipulations. The proof is not particularly insightful and left to a diligent
reader as an exercise. An example of an application appears in the exercises, Problem 7.37.

7.7 Displacement Vectors, Continued
In this section we refine some of our work in Section 7.4.

First of all, we look at our circle again:

−a2yz − b2zx − c2xy + (x + y + z)(ux + vy + wz) = 0.

It might have seemed odd to insist on the negative signs in the first three terms, since we
could have just as easily inverted the signs of u, v, w. It turns out that there is a good reason
for this. Recall that we derived the circle formula by writing

(distance from (x, y, z) to center)2 − radius2 = 0.
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134 7. Barycentric Coordinates

This should look familiar! What happens if we substitute an arbitrary point (x, y, z) into the
formula? In that case we obtain the power of a point with respect to the circle. Explicitly,
we obtain the following lemma.

Lemma 7.23 (Barycentric Power of a Point). Let ω be the circle given by

−a2yz − b2zx − c2xy + (x + y + z)(ux + vy + wz) = 0.

Then let P = (x, y, z) be any point. Then

Powω(P ) = −a2yz − b2zx − c2xy + (x + y + z)(ux + vy + wz).

Note that we must have (x, y, z) homogenized here. Otherwise the distance formula breaks,
and hence so does this lemma.

An easy but nonetheless indispensable consequence of Lemma 7.23 is the following
lemma which gives us the radical axis of two circles.

Lemma 7.24 (Barycentric Radical Axis). Suppose two non-concentric circles are given
by the equations

−a2yz − b2zx − c2xy + (x + y + z)(u1x + v1y + w1z) = 0

−a2yz − b2zx − c2xy + (x + y + z)(u2x + v2y + w2z) = 0.

Then their radical axis is given by

(u1 − u2)x + (v1 − v2)y + (w1 − w2)z = 0.

Proof. Just set the powers equal to each other and remark x + y + z �= 0. Notice that
this equation is homogeneous.

We may also improve upon Theorem 7.16. In our proof of the theorem, we shifted �O
to zero and then used that

R2(x1 + y1 + z1)(x2 + y2 + z2) = R2 · 0 · 0 = 0.

In fact, we only need one of the displacement vectors to be zero for the entire product to be
zero. For the other, we can get away with using a pseudo displacement vector; that is, we
may cheat and, for example, write

−−→
HO = �H − �O = �H = �A + �B + �C = (1, 1, 1) .

(Again, �O = 0 here. The lemma that �H = �A + �B + �C under these conditions was proved
in Chapter 6.)

Of course this is strictly nonsense, but the idea is there. Here is the formal statement.

Theorem 7.25 (Generalized Perpendicularity). Suppose M , N , P , and Q are points
with

−−→
MN = x1

−→
AO + y1

−→
BO + z1

−→
CO

−→
PQ = x2

−→
AO + y2

−→
BO + z2

−→
CO

such that either x1 + y1 + z1 = 0 or x2 + y2 + z2 = 0.
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7.8. More Examples 135

In that case, lines MN and PQ are perpendicular if and only if

0 = a2(z1y2 + y1z2) + b2(x1z2 + z1x2) + c2(y1x2 + x1y2).

Proof. Repeat the proof of Theorem 7.16.

This becomes useful when O or H is involved in a perpendicularity. For example, we
can obtain the following corollary by finding the perpendicular line to AO through A.

Example 7.26. The tangent to (ABC) at A is given by

b2z + c2y = 0.

Proof. Let P = (x, y, z) be a point on the tangent and assume as usual that �O = 0. The
displacement vector

−→
PA is

−→
PA = (x − 1, y, z) = (x − 1) �A + y �B + z �C.

We can also use the pseudo displacement vector
−→
AO = �A − �O = 1 �A + 0 �B + 0 �C.

Putting (x1, y1, z1) = (x − 1, y, z) and (x2, y2, z2) = (1, 0, 0) yields the result.

7.8 More Examples
Our first example is the famous Pascal’s theorem from projective geometry.

Example 7.27 (Pascal’s Theorem). Let A, B, C, D, E, F be six distinct points on a
circle �. Prove that the three intersections of lines AB and DE, BC and EF , and CD and
FA are collinear.

A

B

C

D

E

F

Figure 7.8A. Pascal’s theorem (or one case thereof).

This problem seems okay because we have lots of intersections and only one circle.
Now we need to decide on a reference triangle. We might be tempted to pick ABC, but

doing so loses much of the symmetry in the statement of Pascal’s theorem. In addition, the
lines DE and EF would fail to be cevians. Let us set reference triangle ACE instead—
this way, our computations are symmetric, and the lines AB, DE, BC, EF , CD, FA are
symmetric.

We can now proceed with the computation.
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136 7. Barycentric Coordinates

Solution. In some terrible notation, let a = CE, b = EA, c = AE. Set A = (1, 0, 0),
C = (0, 1, 0), E = (0, 0, 1). We still have to deal with the other points, which have a lot of
freedom. Now we write

B = (x1 : y1 : z1)

D = (x2 : y2 : z2)

F = (x3 : y3 : z3)

and hope for the best. Here, the points are subject to the constraint that they must lie on
(ACE). That is, we have that

−a2yizi − b2zixi − c2xiyi = 0, i = 1, 2, 3.

Hopefully this will be helpful later, but for now there is no clear way to use this.
Now to actually compute the intersections. First, we need to smash the cevians AB and

ED together. (For organization, I am always writing the vertex of the reference triangle
first.) The line AB is the locus of points (x : y : z) with y : z = y1 : z1, while the line ED

is the locus of points with x : y = x2 : y2. Hence, the intersection of lines AB and ED is

AB ∩ ED =
(

x2

y2
: 1 :

z1

y1

)
.

(Here we are borrowing the intersection notation from Chapter 9, a bit prematurely. Bear
with me.) We can do the exact same procedure to determine the other intersections:

CD ∩ AF =
(

x2

z2
:

y3

z3
: 1

)

EF ∩ CB =
(

1 :
y3

x3
:

z1

x1

)
.

Now to show that these are collinear, it suffices to show that the determinant∣∣∣∣∣∣∣∣∣∣∣∣

1
y3

x3

z1

x1

x2

y2
1

z1

y1

x2

z2

y3

z3
1

∣∣∣∣∣∣∣∣∣∣∣∣
is zero. (We have lined up the 1s on the main diagonal.) Seeing this, we are inspired to
rewrite our given condition as

a2 · 1

x1
+ b2 · 1

y1
+ c2 · 1

z1
= 0

a2 · 1

x2
+ b2 · 1

y2
+ c2 · 1

z2
= 0

a2 · 1

x3
+ b2 · 1

y3
+ c2 · 1

z3
= 0.

https://www.cambridge.org/core/terms. https://doi.org/10.5948/9781614444114.009
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 04 Mar 2019 at 14:32:35, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.5948/9781614444114.009
https://www.cambridge.org/core
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Linear algebra now tells us that

0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1

x1

1

y1

1

z1

1

x2

1

y2

1

z2

1

x3

1

y3

1

z3

∣∣∣∣∣∣∣∣∣∣∣∣∣
but this equals

1

x2y3z1
·

∣∣∣∣∣∣∣∣∣∣∣∣

z1

x1

z1

y1
1

1
x2

y2

x2

z2

y3

x3
1

y3

z3

∣∣∣∣∣∣∣∣∣∣∣∣
which quickly implies that the first determinant is zero.

There is actually little geometry involved in our proof of Pascal’s theorem. In fact,
there is very little special about the use of barycentric coordinates versus any other type of
symmetric coordinates. Indeed they are a special case of homogeneous coordinates, i.e.,
a coordinate system that identifies (kx : ky : kz) with (x, y, z). This is why the determinant
calculations involved virtually no geometric observations.

Our next example involves a pair of incircles.

Example 7.28. Let ABC be a triangle and D a point on BC. Let I1 and I2 denote the
incenters of triangles ABD and ACD, respectively. Lines BI2 and CI1 meet at K . Prove
that K lies on AD if and only if AD is the angle bisector of angle A.

A

B CD

I2I1 K

Figure 7.8B. Using barycentric coordinates to tame incircles.

The first thing we notice in this problem is the incenters. This should evoke fear, because
we do not know much about how to deal with incenters other than that of ABC. Fortunately,
these ones seem somewhat bound to ABC, so we might be okay.
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138 7. Barycentric Coordinates

We take ABC as the reference triangle. (After all, we do have a set of concurrent
cevians, so this seems like something we want to use.) Now the hard part is deciding how
to determine I2.

Perhaps we can phrase I2 as the intersection of two angle bisectors. Obviously one of
them is the C-bisector. For the other, we consider the bisector DI2 (using AI2 will also
work). If we can intersect the lines DI2 and CI2, this will of course give I2.

So how can we handle DI2? If we let C1 be the intersection of DI2 with AC, then C1

splits side AC in an AD : AC ratio, by the angle bisector theorem. This suggests setting
d = AD, p = CD, q = BD, where p + q = a. In that case, C1 = (p : 0 : d).

One might pause to worry about the fact we now have six variables. There are some
relations, p + q = a and Stewart’s theorem, but we prefer not to use these. The reassurance
is that so far all our equations have been of linear degree, so high degrees seem unlikely to
appear. Indeed, we see that the solution is very short.

Solution to Example 7.28. Use barycentric coordinates with respect to ABC. Put
AD = d, CD = p, BD = q.

Let ray DI2 meet AC at C1. Evidently C1 = (p : 0 : d) while D = (0 : p : q).
Thus if I2 = (a : b : t) then we have∣∣∣∣∣∣

p 0 d

0 p q

a b t

∣∣∣∣∣∣ = 0 ⇒ t = ad + bq

p

which yields

I2 = (ap : bp : ad + bq).

Similarly,

I1 = (aq : ad + cp : cq).

So lines BI2 and CI1 intersect at a point

K = (apq : p(ad + cp) : q(ad + bq)) .

This lies on line AD, so

p

q
= p(ad + cp)

q(ad + bq)
.

Hence we obtain cp = bq or p : q = b : c implying D is the foot of the angle bisector.

Next in line is a problem from the USAMO in 2008.

Example 7.29 (USAMO 2008/2). Let ABC be an acute, scalene triangle, and let M , N ,
and P be the midpoints of BC, CA, and AB, respectively. Let the perpendicular bisectors
of AB and AC intersect ray AM in points D and E respectively, and let lines BD and CE

intersect in point F , inside triangle ABC. Prove that points A, N , F , and P all lie on one
circle.

This one is actually a straightforward computation (but not a straightforward synthetic
problem) with reference triangle ABC, but we have selected it to illustrate the use of
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A

B CM

NP
D

E

F

Figure 7.8C. Show that A, N , F , P are concyclic.

determinants and Conway’s notation. There are only two nontrivial steps we will make.
The first is to compute D as the intersection of lines PO and AM (where O is of course
the circumcenter); there are other approaches but this is (I think) the cleanest. The second
is that a homothety with ratio 2 at A to check that F lies on (ANP ); we show that the
reflection of A over F lies on (ABC), which solves the problem. All else is algebra.

Solution to Example 7.29. First, we find the coordinates of D. As D lies on AM , we
know D = (t : 1 : 1) for some t . Now by Lemma 7.19, we find

0 = b2(t − 1) + (a2 − c2) ⇒ t = c2 + b2 − a2

b2
.

Thus we obtain

D = (
2SA : c2 : c2) .

Analogously E = (2SA : b2 : b2), and it follows that

F = (
2SA : b2 : c2

)
.

The sum of the coordinates of F is

(b2 + c2 − a2) + b2 + c2 = 2b2 + 2c2 − a2.

Hence the reflection of A over F is simply

2F − A = (−a2 : 2b2 : 2c2
)
.

It is evident that F ′ lies on (ABC) : −a2yz − b2zx − c2xy = 0, and we are done.

Our final example is the closing problem from Chapter 3. It stretches the power of our
technique by showing even intersections with circles can be handled.

Example 7.30 (USA TSTST 2011/4). Acute triangle ABC is inscribed in circle ω.
Let H and O denote its orthocenter and circumcenter, respectively. Let M and N be the
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140 7. Barycentric Coordinates

midpoints of sides AB and AC, respectively. Rays MH and NH meet ω at P and Q,
respectively. Lines MN and PQ meet at R. Prove that OA ⊥ RA.

A

B C

H

M N

P

Q

R

Figure 7.8D. Show that RA is a tangent.

This one is going to be wilder. We step back and plan before we begin the siege.
Intersecting MN and PQ, and then showing the result is tangent, does not seem too

hard. We have M , N , and H for free. However, it seems trickier to obtain the coordinates
of P and Q.

Not all hope is lost. We want to avoid solving quadratics, so consider what happens
when we intersect line MH with circle (ABC). Because M = (1 : 1 : 0) and H = (SBC :
SCA : SAB), the equation of line MH can be computed as

0 = x − y +
(

SAC − SBC

SAB

)
z.

Also, we of course know 0 = a2yz + b2zx + c2xy. Let us select P = (x : y : −SAB). Then
our system of equations in x and y is

x + y = SC (SA − SB)

c2xy = SASB

(
a2y + b2x

)
.

We can attempt to solve directly for x, and we get some sloppy quadratic of the form
αx2 + βx + γ = 0 for some (messy) expressions α, β, γ . The quadratic formula seems
hopeless at this point.

But we are not stuck yet. Think about the two values of x. They correspond to the
coordinates of two points, P and second point P ′, which has been marked in Figure 7.8E.

But the point P ′ is very familiar—it is just the point diametrically opposite C, and also
the reflection of H over M . So it is straightforward to compute the value of x corresponding
to P ′. Vieta’s formulas then tell us the sum of the roots of our quadratic is − β

α
, and we get

our value of x for free.
Now we can start the computation.
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A

B C

H

M
N

P

Q

P ′ Q′

Figure 7.8E. Vieta jumping, anyone?

Solution to Example 7.30. We use barycentrics on ABC.
First, we compute the coordinates of P ′, the second intersection of line MH with

(ABC). Since it is the reflection of H = (SBC, SCA, SAB) over M , and the coordinates of
H sum to SAB + SBC + SCA, we may write

P ′ = 2

(
SAB + SBC + SCA

2
:

SAB + SBC + SCA

2
: 0

)
− (SBC : SCA : SAB)

= (SAB + SAC : SAB + SBC : −SAB)

= (
a2SA : b2SB : −SAB

)
.

Now let us determine the coordinates of P , where we let P = (
x ′ : y ′ : z′) =(

x ′ : y ′ : −SAB

)
(valid since we just scale the coordinates so that z′ = −SAB). Because

it lies on line MH , we find

0 = x ′ − y ′ +
(

SAC − SBC

SAB

)
z′ ⇒ y ′ = x ′ + SBC − SAC.

Also, we know that a2y ′z′ + b2z′x ′ + c2x ′y ′ = 0, which gives

c2x ′y ′ = SAB

(
a2y ′ + b2x ′) .

Substituting, we have

c2 (
x ′ (x ′ + SBC − SAC

)) = SAB

(
a2 (

x ′ + SBC − SAC

) + b2x ′) .

Collecting like terms gives the quadratic

c2x ′2 + [
c2 (SBC − SAC) − (a2 + b2)SAB

]
x ′ + constant = 0.

By Vieta’s formulas, then, the x ′ we seek is just

a2 + b2

c2
SAB − SBC + SAC − a2SA.
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142 7. Barycentric Coordinates

Writing a2 = SAB + SAC in hopes of clearing out some terms, this becomes

a2 + b2 − c2

c2
SAB − SBC = SASBSC

c2
− SBC.

Now y ′ = SASBSC

c2 − SAC . Cleaning further,

P = (
S2

BSC : S2
ASC : c2SAB

)
.

Analogous calculations give that

Q = (
SBS2

C : b2SAC : S2
ASB

)
.

Finding the equation of line PQ looks painful, so let us find where R should be
first. Let the tangent to A meet line MN at R′. It is straightforward to derive that R′ =(
b2 − c2 : b2 : −c2

)
. Now we can just take a determinant. To show the three points P , Q,

R′ are collinear it suffices to check that

0 =

∣∣∣∣∣∣∣∣
S2

BSC S2
ASC c2SASB

SBS2
C b2SASC S2

ASB

b2 − c2 b2 −c2

∣∣∣∣∣∣∣∣ .
Note that S2

BSC − S2
ASC − c2SASB = c2 [SC(SB − SA) − SASB]. So upon subtracting the

second and third columns from the first, this factors as

(SBC − SAB − SAC) ·

∣∣∣∣∣∣∣∣
c2 S2

ASC c2SASB

b2 b2SASC S2
ASB

0 b2 −c2

∣∣∣∣∣∣∣∣ .
To show this is zero, it suffices to check that

b2
(
c2S2

ASB − b2c2SASB

) = c2
(
b2S2

ASC − b2c2SASC

)
.

The left-hand side factors as SASBb2c2
(
SA − b2

) = −SASBSCb2c2 and so does the right-
hand side, so we are done.

This is certainly a somewhat brutal solution, but the calculation can be carried out
within a half hour (and two pages) with some experience (and little insight). Notice how
Conway’s notation kept the expressions manageable.

7.9 When (Not) to Use Barycentric Coordinates
To summarize, let us discuss briefly when barycentrics are useful.

� Cevians are wonderful in every way, shape, and form. Know them, use them, love them.
Pick reference triangles in which many lines become cevians.

� Problems heavily involving centers of a prominent triangle are in general good, because
we have nice forms for most of the centers.

� Intersections of lines, collinearity, and concurrence are fine. Bonus points when cevians
are involved.
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7.10. Problems 143

� Problems that are symmetric around the vertices of a triangle. Because barycentric
coordinates are also symmetric, this allows us to take advantage of the nice symmetry,
unlike with Cartesian coordinates.

� Ratios, lengths, or areas.
� Problems with few points. This is kind of obvious—the fewer points you have to compute,

the better.

In contrast, here are things that barycentric coordinates do not handle well.

� Lots of circles. One can sometimes find a way around circles (for example, if only the
radical axis or power of a point is relevant).

� Circles that do not pass through vertices of sides of a reference triangle. In general, the
equation of a circle through three completely arbitrary points will be very ugly. However,
the circle becomes much more tractable if the points it passes through have zeros.

� Arbitrary circumcenters.
� General angle conditions. Of course, there are exceptions; they typically involve angle

conditions that can be translated into length conditions. The angle bisector theorem is
your friend here.

7.10 Problems
There are quite a few contest problems that can be solved by barycentrics; this represents a
rather small subset of problems I have encountered that are susceptible. Part of the reason is
that, at the time of writing, barycentrics are a relatively unknown technique. As a result, test-
writers are not aware when a problem they propose is trivialized by barycentric coordinates,
as they would have been for a problem approachable by either complex numbers or Cartesian
coordinates.

Lemma 7.31. Let ABC be a triangle with altitude AL and let M be the midpoint of AL.
If K is the symmedian point of triangle ABC, prove that KM bisects BC. Hints: 652 393

Problem 7.32. Let I and G denote the incenter and centroid of a triangle ABC and let
N denote the Nagel point; this is the intersection of the cevians that join A to the contact
point of the A-excircle on BC, and similarly for B and C. Prove that I , G, N are collinear
and that NG = 2GI . Hints: 271 243

Problem 7.33 (IMO 2014/4). Let P and Q be on segment BC of an acute triangle ABC

such that ∠PAB = ∠BCA and ∠CAQ = ∠ABC. Let M and N be the points on AP and
AQ, respectively, such that P is the midpoint of AM and Q is the midpoint of AN . Prove
that the intersection of BM and CN is on the circumference of triangle ABC. Hints: 486 574

251 Sol: p.265

Problem 7.34 (EGMO 2013/1). The side BC of triangle ABC is extended beyond C to
D so that CD = BC. The side CA is extended beyond A to E so that AE = 2CA. Prove
that, if AD = BE, then triangle ABC is right-angled. Hint: 188 Sol: p.265

Problem 7.35 (ELMO Shortlist 2013). In �ABC, a point D lies on line BC. The
circumcircle of ABD meets AC at F (other than A), and the circumcircle of ADC meets
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144 7. Barycentric Coordinates

AB at E (other than A). Prove that as D varies, the circumcircle of AEF always passes
through a fixed point other than A, and that this point lies on the median from A to BC.
Hints: 657 653

Problem 7.36 (IMO 2012/1). Given triangle ABC the point J is the center of the excircle
opposite the vertex A. This excircle is tangent to side BC at M , and to lines AB and AC at
K and L, respectively. Lines LM and BJ meet at F , and lines KM and CJ meet at G. Let
S be the point of intersection of lines AF and BC, and let T be the point of intersection of
lines AG and BC. Prove that M is the midpoint of ST . Hints: 447 280 Sol: p.266

Problem 7.37 (Shortlist 2001/G1). Let A1 be the center of the square inscribed in acute
triangle ABC with two vertices of the square on side BC. Thus one of the two remaining
vertices of the square is on side AB and the other is on AC. Points B1, C1 are defined in
a similar way for inscribed squares with two vertices on sides AC and AB, respectively.
Prove that lines AA1, BB1, CC1 are concurrent. Hints: 123 466

Problem 7.38 (USA TST 2008/7). Let ABC be a triangle with G as its centroid. Let P be
a variable point on segment BC. Points Q and R lie on sides AC and AB respectively, such
that PQ ‖ AB and PR ‖ AC. Prove that, as P varies along segment BC, the circumcircle
of triangle AQR passes through a fixed point X such that ∠BAG = ∠CAX. Hints: 6 647

Sol: p.266

Problem 7.39 (USAMO 2001/2). Let ABC be a triangle and let ω be its incircle. Denote
by D1 and E1 the points where ω is tangent to sides BC and AC, respectively. Denote
by D2 and E2 the points on sides BC and AC, respectively, such that CD2 = BD1 and
CE2 = AE1, and denote by P the point of intersection of segments AD2 and BE2. Circle
ω intersects segment AD2 at two points, the closer of which to the vertex A is denoted by
Q. Prove that AQ = D2P . Hints: 320 160

Problem 7.40 (USA TSTST 2012/7). Triangle ABC is inscribed in circle �. The interior
angle bisector of angle A intersects side BC and � at D and L (other than A), respectively.
Let M be the midpoint of side BC. The circumcircle of triangle ADM intersects sides AB

and AC again at Q and P (other than A), respectively. Let N be the midpoint of segment
PQ, and let H be the foot of the perpendicular from L to line ND. Prove that line ML is
tangent to the circumcircle of triangle HMN . Hints: 381 345 576

Problem 7.41. Let ABC be a triangle with incenter I . Let P and Q denote the reflections of
B and C across CI and BI , respectively. Show that PQ ⊥ OI , where O is the circumcenter
of ABC. Hints: 396 461

Lemma 7.42. Let ABC be a triangle with circumcircle � and let TA denote the tangency
points of the A-mixtilinear incircle to �. Define TB and TC similarly. Prove that lines ATA,
BTB , CTC , IO are concurrent, where I and O denote the incenter and circumcenter of
triangle ABC. Hints: 490 54 602 488 Sol: p.267

Problem 7.43 (USA December TST for IMO 2012). In acute triangle ABC, ∠A < ∠B

and ∠A < ∠C. Let P be a variable point on side BC. Points D and E lie on sides AB and
AC, respectively, such that BP = PD and CP = PE. Prove that as P moves along side
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BC, the circumcircle of triangle ADE passes through a fixed point other than A. Hints: 179

144 137

Problem 7.44 (Sharygin 2013). Let C1 be an arbitrary point on side AB of �ABC. Points
A1 and B1 are on rays BC and AC such that ∠AC1B1 = ∠BC1A1 = ∠ACB. The lines
AA1 and BB1 meet in point C2. Prove that all the lines C1C2 have a common point. Hints:

51 12 66 304 Sol: p.268

Problem 7.45 (APMO 2013/5). Let ABCD be a quadrilateral inscribed in a circle ω, and
let P be a point on the extension of AC such that PB and PD are tangent to ω. The tangent
at C intersects PD at Q and the line AD at R. Let E be the second point of intersection
between AQ and ω. Prove that B, E, R are collinear. Hints: 379 524 129

Problem 7.46 (USAMO 2005/3). Let ABC be an acute-angled triangle, and let P and Q be
two points on its side BC. Construct a point C1 in such a way that the convex quadrilateral
APBC1 is cyclic, QC1 ‖ CA, and C1 and Q lie on opposite sides of line AB. Construct
a point B1 in such a way that the convex quadrilateral APCB1 is cyclic, QB1 ‖ BA, and
B1 and Q lie on opposite sides of line AC. Prove that the points B1, C1, P , and Q lie on a
circle. Hints: 191 325 204

Problem 7.47 (Shortlist 2011/G2). Let A1A2A3A4 be a non-cyclic quadrilateral. For
1 ≤ i ≤ 4, let Oi and ri be the circumcenter and the circumradius of triangle Ai+1Ai+2Ai+3

(where Ai+4 = Ai). Prove that

1

O1A
2
1 − r2

1

+ 1

O2A
2
2 − r2

2

+ 1

O3A
2
3 − r2

3

+ 1

O4A
2
4 − r2

4

= 0.

Hints: 468 588 224 621 Sol: p.269

Problem 7.48 (Romania TST 2010). Let ABC be a scalene triangle, let I be its incenter,
and let A1, B1, and C1 be the points of contact of the excircles with the sides BC, CA,
and AB, respectively. Prove that the circumcircles of the triangles AIA1, BIB1, and CIC1

have a common point different from I . Hints: 549 23 94

Problem 7.49 (ELMO 2012/5). Let ABC be an acute triangle with AB < AC, and let D

and E be points on side BC such that BD = CE and D lies between B and E. Suppose
there exists a point P inside ABC such that PD ‖ AE and ∠PAB = ∠EAC. Prove that
∠PBA = ∠PCA. Hints: 171 229 Sol: p.270

Problem 7.50 (USA TST 2004/4). Let ABC be a triangle. Choose a point D in its interior.
Let ω1 be a circle passing through B and D and ω2 be a circle passing through C and D so
that the other point of intersection of the two circles lies on AD. Let ω1 and ω2 intersect
side BC at E and F , respectively. Denote by X the intersection of lines DF and AB, and
let Y the intersection of DE and AC. Show that XY ‖ BC. Hints: 301 206 567 126

Problem 7.51 (USA TSTST 2012/2). Let ABCD be a quadrilateral with AC = BD. Diag-
onals AC and BD meet at P . Let ω1 and O1 denote the circumcircle and the circumcenter
of triangle ABP . Let ω2 and O2 denote the circumcircle and circumcenter of triangle CDP .
Segment BC meets ω1 and ω2 again at S and T (other than B and C), respectively. Let
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146 7. Barycentric Coordinates

M and N be the midpoints of minor arcs ŜP (not including B) and T̂ P (not including C).
Prove that MN ‖ O1O2. Hints: 651 518 664 364

Problem 7.52 (IMO 2004/5). In a convex quadrilateral ABCD, the diagonal BD bisects
neither the angle ABC nor the angle CDA. Point P lies inside ABCD with ∠PCB =
∠DBA and ∠PDC = ∠BDA. Prove that ABCD is a cyclic quadrilateral if and only if
AP = CP . Hints: 117 266 641 349 Sol: p.270

Problem 7.53 (Shortlist 2006/G4). Let ABC be a triangle with ∠C < ∠A < 90◦. Select
point D on side AC so that BD = BA. The incircle of ABC is tangent to AB and AC at
points K and L, respectively. Let J be the incenter of triangle BCD. Prove that the line
KL bisects AJ . Hints: 5 295 281 394
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