
C H A P T E R 9
Projective Geometry

Projective geometry is all geometry. Arthur Cayley

In the previous chapter we studied inversion, a transformation that deals with circles. It also
happened to nicely preserve incidence, i.e., inversion preserves intersections. Projective
geometry features a powerful set of tools that this time focus primarily on analyzing
incidence. Problems that mostly deal with intersections, parallel lines, tangent circles, and
so on, often succumb to projective geometry.

9.1 Completing the Plane
First, we set up the projective plane with points at infinity.

Imagine we are walking down the infinitely long corridor in Figure 9.1A and take a
moment to look around us.

Figure 9.1A. A long hallway with a few doors.

There are some parallel lines in the figure, say the two lines that mark the floor. But
they are not actually parallel in the picture: the two lines are converging towards a point. In
fact, all the parallel lines are converging towards the same point on the horizon. So it does
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170 9. Projective Geometry

seem like parallel lines intersect infinitely far away, even in a plane (for example, consider
the left wall or the right wall).

Figure 9.1B. Are the parallel lines really parallel?

The real projective plane uses precisely this idea. In addition to the standard points
of Euclidean plane (which we call Euclidean points), it also includes a point at infinity
for each class of parallel lines (one can think of this as adding a point at infinity for
each direction). To be more precise, we partition all the lines of the Euclidean plane into
equivalence classes (called pencils of parallel lines) where two distinct lines are in the same
class if they are parallel. Then we add a point at infinity for each pencil. We also add one
extra line, the line at infinity, comprising exactly of all the points at infinity.

With this modification, any two lines do in fact intersect at exactly one point. The
intersection of two non-parallel lines is a Euclidean point, while two parallel lines meet
at the point at infinity. The use of this convention lets us replace the clumsy language of
“concurrent or all parallel” (as in Theorem 2.9).

Finally, throughout this chapter we use a special shorthand. For points A, B, C, D, let
AB ∩ CD denote the intersection of lines AB and CD, possibly at infinity.

9.2 Cross Ratios
The cross ratio is an important invariant in projective geometry. Given four collinear points
A, B, X, Y (which may be points at infinity), we define the cross ratio as

(A,B; X, Y ) = XA

XB
÷ YA

YB
.

Here the ratios are directed with the same convention as Menelaus’s theorem; in particular,
the cross ratio can be negative! If A, B, X, Y lie on a number line then this can be written
as

(A,B; X, Y ) = x − a

x − b
÷ y − a

y − b
.
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9.2. Cross Ratios 171

You can check that (A,B; X, Y ) > 0 precisely when segments AB and XY are disjoint
or one is contained inside the other. We also generally assume A �= X, B �= X, A �= Y ,
B �= Y .

We can also define the cross ratio for four lines a, b, x, y concurrent at some point P .
If ∠(	,m) is the angle between the two lines 	 and m, then we can write

(a, b; x, y) = ± sin∠(x, a)

sin∠(x, b)
÷ sin∠(y, a)

sin∠(y, b)
.

The sign is chosen in a similar manner as the procedure for four points: if one of the
four angles formed by line a and b contains neither x nor y, then (a, b; x, y) is positive;
otherwise it is negative.

If A, B, X, Y are collinear points on lines a, b, x, y (respectively) concurrent at P , we
write

P (A,B; X, Y ) = (a, b; x, y).

The structure P (A,B; X, Y ) is called a pencil of lines. See Figure 9.2A.

P

A X
B Y

Figure 9.2A. Actually, P (A, B; X, Y ) = (A,B; X, Y ).

As you might have already guessed, the sign convention for the trigonometric form is
just contrived so that the following theorem holds.

Theorem 9.1 (Cross-Ratio Under Perspectivity). Suppose that P (A,B; X, Y ) is a pen-
cil of lines. If A, B, X, Y are collinear then

P (A,B; X, Y ) = (A,B; X, Y ).

Proof. This is just a computation with the law of sines on �XPA, �XPB, �YPA,
�YPB. There are multiple configurations to check, but they are not so different.

We can even define the cross ratio for four points on a circle, as follows:

Theorem 9.2 (Cross Ratios on Cyclic Quadrilaterals). Let A, B, X, Y be concyclic. If
P is any point on its circumcircle, then P (A,B; X, Y ) does not depend on P . Moreover,

P (A,B; X, Y ) = ±XA

XB
÷ YA

YB

where the sign is positive if AB and XY do not intersect, and negative otherwise.
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172 9. Projective Geometry

The invariance just follows from the fact that the angles are preserved as P varies
around the circle. Hence, we just define the cross ratio of four concyclic points to be the
value of P (A,B; X, Y ) for any particular P . The actual ratio XA

XB
: YA

YB
follows by applying

the law of sines and the details are left as an exercise.

P

A X B Y

A′
X ′

B′
Y ′

Figure 9.2B. Taking perspectivity at P .

Why do we care? Consider the situation in Figure 9.2B. Two lines 	 and m are given,
and points A, B, X, Y are on 	. We can pick any point P and consider the intersections of
lines PA, PB, PX, PY with m, say A′, B ′, X′, Y ′. Then

(A,B; X, Y ) = P (A,B; X, Y ) = P (A′, B ′; X′, Y ′) = (A′, B ′; X′, Y ′).

In effect, that means we have the power to project (A,B; X, Y ) from line 	 onto line m.
This is called taking perspectivity at P . We often denote this by

(A,B; X, Y )
P= (A′, B ′; X′, Y ′).

The same technique can be done if P , A, X, B, Y are concyclic, in which case we may
project onto a line. Conversely, given (A,B; X, Y ) on a line we may pull from P onto circle
through P , as in Figure 9.2C (and vice versa). The important thing is that these operations
all preserve the cross ratio (A,B; X, Y ).

P

A′

X ′
B′

Y ′

A
X

B
Y

Figure 9.2C. Projecting via P from a line onto a circle through P .

The fact that cross ratio is preserved under all of these is why it is well-suited for
problems that deal with lots of intersections. One can even think of chasing cross ratios
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9.3. Harmonic Bundles 173

around the diagram by repeatedly applying perspectives. We see more of this in later
examples.

In the next section we investigate the most important case of the cross ratio, the harmonic
bundle.

Problems for this Section

Problem 9.3. Check that

(A,B; X, Y ) = (B,A; X, Y )−1 = (A,B; Y,X)−1 = (X, Y ; A,B).

for any four distinct points A, B, X, Y .

Problem 9.4. Let A, B, X be distinct collinear points and k a real number. Prove that there
is exactly one point Y (possibly the point at infinity) such that (A,B; X, Y ) = k. Hint: 287

Problem 9.5. In Figure 9.2A, is P (A,B; X, Y ) positive or negative? Hint: 83

Problem 9.6. Let A, B, X be collinear points and P∞ a point at infinity along their common
line. What is (A,B; X,P∞)? Hint: 666

Problem 9.7. Give the proof of Theorem 9.2.

9.3 Harmonic Bundles
The most important case of our cross ratio is when (A,B; X, Y ) = −1. We say that
(A,B; X, Y ) is a harmonic bundle in this case, or just harmonic. Furthermore, a cyclic
quadrilateral AXBY is a harmonic quadrilateral if (A,B; X, Y ) = −1.

Observe that if (A,B; X, Y ) = −1, then (A,B; Y,X) = (B,A; X, Y ) = −1. We some-
times also say that Y is the harmonic conjugate of X with respect to AB; as the name
suggests, it is unique, and the harmonic conjugate of Y is X itself.

Harmonic bundles are important because they appear naturally in many configurations.
We present four configurations in which they arise.

The first lemma is trivial to prove, but gives us a new way to handle midpoints, particu-
larly if they appear along with parallel lines.

Lemma 9.8 (Midpoints and Parallel Lines). Given points A and B, let M be the
midpoint of AB and P∞ the point at infinity of line AB. Then (A,B; M,P∞) is a harmonic
bundle.

The next lemma (illustrated in Figure 9.3A) describes harmonic quadrilaterals in terms
of tangents to a circle.

Lemma 9.9 (Harmonic Quadrilaterals). Let ω be a circle and let P be a point outside
it. Let PX and PY be tangents to ω. Take a line through P intersecting ω again at A and
B. Then

(a) AXBY is a harmonic quadrilateral.
(b) If Q = AB ∩ XY , then (A,B; Q,P ) is a harmonic bundle.
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174 9. Projective Geometry

X

Y

P
B

A Q

Figure 9.3A. A harmonic quadrilateral. (A,B; P,Q) is also harmonic.

Proof. We use symmedians. We obtain XA
XB

= YA
YB

from Lemma 4.26, and (A,B; X, Y )
is negative by construction. This establishes that AXBY is harmonic.

To see that (A,B; Q,P ) is harmonic, just write

(A,B; X, Y )
X= (A,B; Q,P ).

Here we are projecting from the circle onto the line AB from X, noting that line XX in
this context is actually just the tangent to ω. (To see this, consider the behavior of line XX′

when X′ is very close to X on the circle.)

This also implies the tangents to A and B intersect on line XY . (Why?)
An important special case is when AB is selected as a diameter of ω. In that case, P

and Q are inverses when inverting around ω. In full detail, we have the following.

Proposition 9.10 (Inversion Induces Harmonic Bundles). Let P be a point on line AB,
and let P ∗ denote the image of P after inverting around the circle with diameter AB. Then
(A,B; P,P ∗) is harmonic.

The third and fourth lemmas involve no circles at all. Actually the fourth is really a
consequence of the third.

Lemma 9.11 (Cevians Induces Harmonic Bundles). Let ABC be a triangle with con-
current cevians AD, BE, CF (possibly on the extensions of the sides). Line EF meets BC

at X (possibly at a point at infinity). Then (X,D; B,C) is a harmonic bundle.

A

B C

P

D

E

F

X

Figure 9.3B. Ceva’s and Menelaus’s theorems produce (X,D; B, C) = −1.
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9.3. Harmonic Bundles 175

Proof. Use the directed form Ceva’s theorem and Menelaus’s theorem on Figure 9.3B.

Lemma 9.12 (Complete Quadrilaterals Induces Harmonic Bundles). Let ABCD be
a quadrilateral whose diagonals meet at K . Lines AD and BC meet at L, and line KL

meets AB and CD at M and N . Then (K,L; M,N ) is a harmonic bundle.

A

B

CD

K

L

M

N

P

Q

Figure 9.3C. You can modify Lemma 9.11 to get (K,L; M,N ) a harmonic bundle as well.

Proof. As in Figure 9.3C, let P = AB ∩ CD, and let Q = PK ∩ BC. By Lemma 9.11,
(Q,L; B,C) = −1. Projecting onto the desired line, we derive

−1 = (Q,L; B,C)
P= (K,L; M,N ).

Harmonic bundles let us move from one of these configurations to the others. As an
example, we revisit Problem 4.45.

A

B CD

E

F
H

P
Q

R

Figure 9.3D. The first problem from the USA TST 2011.

Example 9.13 (USA TST 2011/1). In an acute scalene triangle ABC, points D, E,
F lie on sides BC, CA, AB, respectively, such that AD ⊥ BC, BE ⊥ CA, CF ⊥ AB.
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176 9. Projective Geometry

Altitudes AD,BE,CF meet at orthocenter H . Points P and Q lie on segment EF such that
AP ⊥ EF and HQ ⊥ EF . Lines DP and QH intersect at point R. Compute HQ/HR.

We might readily dismiss this as an uninteresting problem. The answer is 1; the problem
is just Lemma 4.9 applied to triangle DEF . However, it turns out there is a quick projective
proof completely independent of this.

Remember Lemma 9.8? We indeed have both a midpoint (H of QR) and a line parallel
to it (AP ‖ QR). Hence we take perspectivity through P . More precisely, let P∞ be the
point at infinity for AP and QR. Then

(Q,R; H,P∞)
P= (QP ∩ AD,D; H,A).

If we can show the latter is a harmonic bundle, then we are done. But this is just Lemma 9.12!
Needless to say, we can go backwards, as in the proof below.

Solution. By Lemma 9.12, (A,H ; AD ∩ EF,D) = −1. Projecting through P , we find
(P∞,H ; Q,R) = −1, where P∞ is the point at infinity on parallel lines AP and QR. Hence
HQ

HR
= 1.

Problems for this Section

Problem 9.14. Check the details in the proofs of Lemma 9.11 and Lemma 9.18.

Problem 9.15. In the coordinate plane, the points A = (−1, 0), B = (1, 0), X = (
1

100 , 0
)

and Y = (m, 0) form a harmonic bundle (A,B; X, Y ) = −1. What is m? Hint: 334

Problem 9.16. Show that Problem 1.43 (see Figure 9.3E) is immediate from the tools
developed in this chapter. Hints: 107 687 607 451 520

B

D

P

C

A

E

Figure 9.3E. Solve JMO 2011/5 (Problem 1.43) using harmonic bundles.

Lemma 9.17 (Midpoint Lengths). Points A, X, B, P lie on a line in that order, and
(A,B; X,P ) = −1. Let M be the midpoint of AB. Show that MX · MP = (

1
2AB

)2
and

PX · PM = PA · PB. Hints: 41 557

9.4 Apollonian Circles
There is one additional configuration with naturally occurring harmonic bundles. First, we
need to state a lemma (see Figure 9.4A).
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9.4. Apollonian Circles 177

Lemma 9.18 (Right Angles and Bisectors). Let X, A, Y , B be collinear points in that
order and let C be any point not on this line. Then any two of the following conditions
implies the third condition.

(i) (A,B; X, Y ) is a harmonic bundle.
(ii) ∠XCY = 90◦.

(iii) CY bisects ∠ACB.

C

A
BYX

P

Q

Figure 9.4A. CX and CY are external and internal angle bisectors.

Proof. There is a straightforward trigonometric proof, but here we present a synthetic
solution. Draw the line through Y parallel to CX and let it intersect rays CA and CB at P

and Q, respectively. Since �XAC ∼ �YAP and �XBC ∼ �YBQ, we derive

PY = AY

AX
· CX and QY = BY

BX
· CX.

Thus PY = QY if and only if (A,B; X, Y ) = −1. Now any two of the conditions imply
�CYP and �CYQ are congruent, which gives the third.

While this is useful in its own right, it leads directly to the so-called Apollonian circle,
which is a way of linking angles with ratios. The statement is as follows.

Theorem 9.19 (Apollonian Circles). Let AB be a segment and k �= 1 be a positive real.
The locus of points C satisfying CA

CB
= k is a circle whose diameter lies on AB.

A BYX

C1C2

C3

Figure 9.4B. Apollonian Circles
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178 9. Projective Geometry

This is really just a restatement of Lemma 9.18, with the congruent angles rewritten as
a ratio because of the angle bisector theorem. Here are the details; refer to Figure 9.4B.

Proof. First of all, let X and Y be the two points on line AB with

XA

XB
= YA

YB
= k.

Without loss of generality, Y lies on AB.
Now observe that for any other point C, CA

CB
= k is just equivalent to ∠CAY = ∠YBC

by the angle bisector theorem. That is equivalent to ∠XCY = 90◦ by Lemma 9.18, and
hence we discover the Apollonian circle.

Problems for this Section

Problem 9.20. In the notation of Figure 9.4B, what is the Apollonian circle of XY through
A? Hints: 411 70

Problem 9.21. Check that as k varies, the resulting set of circles are all coaxial∗. Hints: 315

147

Lemma 9.22 (Harmonic Bundles on the Bisector). Let ABC be a triangle with incenter
I and A-excenter IA. Prove that

(I, IA; A,AI ∩ BC) = −1.

9.5 Poles/Polars and Brocard’s Theorem
Projective and inversive techniques are actually closely related by the concepts of poles
and polars.

P ∗ P

Figure 9.5A. The polar of point P is the line shown.

Fix a circle ω with center O and a point P . Let P ∗ be the inverse of P with respect to
inversion around ω. The polar of point P (possibly at infinity and distinct from O) is the
line passing through P ∗ perpendicular to OP . As we have mentioned before, when P is
outside circle ω then its polar is the line through the two tangency points from P to ω. The
polar of O is just the line at infinity.

∗ Actually, it turns out any non-intersecting coaxial circles are Apollonian.
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9.5. Poles/Polars and Brocard’s Theorem 179

Similarly, given a line 	 not through O, we define its pole† as the point P that has 	 as
its polar.

First, an obvious result that is nonetheless useful.

Theorem 9.23 (La Hire’s Theorem). A point X lies on the polar of a point Y if and only
if Y lies on the polar of X.

Proof. Left as an exercise. It is merely similar triangles.

La Hire’s theorem demonstrates a concept called duality: one can exchange points for
lines, lines for intersections, collinearity for concurrence. Simply swap every point with its
polar and every line with its pole.

We can now state an important result relating poles and polars to harmonic bundles.

Proposition 9.24. Let AB be a chord of a circle ω and select points P and Q on line AB.
Then (A,B; P,Q) = −1 if and only if P lies on the polar of Q.

X

Y

P
B

A Q

Figure 9.5B. Harmonic quadrilaterals again.

Proof. We consider only the case where P is outside ω and Q is inside it. Construct
the tangents PX and PY to ω. Lemma 9.9 gives

(A,B; P, XY ∩ AB) = −1,

so Q lies on the polar of P (namely line XY ) if and only if (A,B; P,Q) = −1.

We are now ready to state one of the most profound theorems about cyclic quadrilaterals.
It shows that any cyclic quadrilateral has hidden within it three pairs of poles and polars.

Theorem 9.25 (Brocard’s Theorem). Let ABCD be an arbitrary cyclic quadrilateral
inscribed in a circle with center O, and set P = AB ∩ CD, Q = BC ∩ DA, and R =
AC ∩ BD. Then P , Q, R are the poles of QR, RP , PQ, respectively.

In particular, O is the orthocenter of triangle PQR.

We say that triangle PQR is self-polar with respect to ω, because each of its sides is
the polar of the opposite vertex.

† Not the best choice of terms, as the two are easily confused. Mnemonic: “pole” is shorter than “polar”, and
points are much smaller than lines.
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180 9. Projective Geometry

A

B
C

D

P

Q

R

O

Figure 9.5C. The triangle PQR determined by completing a cyclic quadrilateral is self-polar.

Take a moment to appreciate the power of Brocard’s theorem. Nowhere do the words
“pole”, “polar”, “harmonic”, “projective”, or anything of that sort appear in the hypothesis.
We could have stated this theorem in Chapter 1—all we did was take a completely arbitrary
cyclic quadrilateral and intersect the sides and diagonals—and then suddenly, we have an
entire orthocenter! It seems too good to be true. This really highlights the type of problems
that projective geometry handles well: anything with lots of intersections and maybe a few
circles.

On to the proof of the theorem. The idea is that Brocard’s theorem looks a lot like
Lemma 9.11.

A

B
C

D

P

Q

R

O

X

Y

Figure 9.5D. Triangle PQR is self-polar.

https://www.cambridge.org/core/terms. https://doi.org/10.5948/9781614444114.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 04 Mar 2019 at 14:22:46, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.5948/9781614444114.011
https://www.cambridge.org/core


9.6. Pascal’s Theorem 181

Proof. First, we show that Q is the pole of line PR. Define the points X = AD ∩ PR

and Y = BC ∩ PR, as in Figure 9.5D. By Lemma 9.11, both (A,D; Q,X) and (B,C; Q,Y )
are harmonic bundles.

Therefore, X and Y both lie on the polar of Q, by Proposition 9.24. Since the polar of
Q is a line, it must be precisely line XY , which is the same as line PR.

The same can be used to show that P is the pole of line QR and R is the pole of line
PQ; projective geometry is immune to configuration issues. (This is part of the reason we
like points at infinity.) This gives that PQR is indeed self-polar. Finally, the definition of a
polar implies that O is the orthocenter of triangle PQR, completing the proof.

Problems for this Section

Problem 9.26. Prove La Hire’s theorem (Theorem 9.23).

Lemma 9.27 (Self-Polar Orthogonality). Let ω be a circle and suppose P and Q are
points such that P lies on the pole of Q (and hence Q lies on the pole of P ). Prove that the
circle γ with diameter PQ is orthogonal to ω. Hint: 616

Problem 9.28. Let ABC be an acute scalene triangle, and let H be a point inside it such
that AH ⊥ BC. Rays BH and CH meet AC and AB at E, F . Prove that if quadrilateral
BFEC is cyclic then H is in fact the orthocenter of ABC. Hints: 492 52

9.6 Pascal’s Theorem
Pascal’s theorem is of a different flavor than the previous theorems, but is useful in similar
situations. It handles many points on a circle and their intersections. Here is the statement‡;
see Example 7.27 for a proof. Many other proofs exist, of course.

Theorem 9.29 (Pascal’s Theorem). Let ABCDEF be a cyclic hexagon, possibly self-
intersecting. Then the points AB ∩ DE, BC ∩ EF , and CD ∩ FA are collinear.

Note that Pascal’s theorem can look very different depending on what order the vertices
lie in. Figure 9.6A shows four different shapes that Pascal’s theorem can take on. It is often
useful to take two consecutive vertices of the hexagon to be the same point. The “side” AA

degenerates to a tangent to the circle at A.§ An example of this technique is in the solution
to Example 9.38.

For an example, we revisit the first part of Lemma 4.40, and give a short proof using
Pascal’s theorem.

Example 9.30. Let ABC be a triangle inscribed in a circle. The A-mixtilinear circle is
drawn, tangent to AB, AC at K , L. Then the incenter I is the midpoint of KL.

‡ The converse is also true if we replace “circle” with “conic”. See the next section on projective transformations.
§ Think of it this way: XY is the line intersecting the circle at points X and Y . So AA is a line intersecting the

circle at A and A, i.e., the tangent to A.
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Figure 9.6A. The many faces of Pascal’s theorem.

Proof. Obviously AI bisects KL (since AK = AL and ∠KAI = ∠IAL) so it suffices
to prove that K , I , L are collinear.

By Lemma 4.33, MC , K , T are collinear, where MC is the midpoint of arc AB not
containing C. In particular, C, I , MC are collinear. Similarly, the midpoint MB of arc
AC lies on both lines BI and LT . Now we just apply Pascal’s theorem on the hexagon
ABMBT MCC.

An even more striking illustration is Problem 9.32 below.

A

B C

T

MB

MC

K

LI

Figure 9.6B. Using Pascal’s theorem on the A-mixtilinear incircle.
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9.7. Projective Transformations 183

Problems for this Section

Problem 9.31. Let ABC be a triangle with circumcircle �. Let X be the intersection of line
BC with the tangent to � at A. Define Y and Z similarly. Show that X, Y , Z are collinear.
Hint: 378

Problem 9.32. Let ABCD be a cyclic quadrilateral and apply Pascal’s theorem to
AABCCD and ABBCDD. What do we discover? Hints: 421 473 309

9.7 Projective Transformations
This is only a brief digression on what is otherwise a deep topic. See the last chapter of [7]
for further exposition.

Occasionally we run into a problem that we say is purely projective. Essentially this
means the problem statement involves only intersections, tangency, and perhaps a few
circles. This happens very rarely, but when it does, the problems can usually be eradicated
via projective transformations.

O

Figure 9.7A. An example of a projective transformation.

Projective transformations are essentially the most general type of transformation. Actu-
ally, they are defined as any map that sends lines to lines and conics to conics (but need not
preserve anything else). Loosely speaking, a conic is a second-degree curve in the plane
determined by five points. In more precise terms, a conic is a curve in the xy-plane of the
form

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

extended to include points at infinity. This includes parabolas, hyperbolas, and ellipses (in
particular, circles). For our purposes, we only care that a circle is a conic. See Figure 9.7A.

Why would we consider a transformation that preserves so few things? The gain is
encapsulated in the following theorem, stated without proof, which exploits the generality
of the transformation.
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184 9. Projective Geometry

Theorem 9.33 (Projective Transformations). Each of the following is achievable with
a unique projective transformation.

(a) Taking four points A, B, C, D (no three collinear) to any other four points W , X, Y , Z
(no three collinear).

(b) Taking a circle to itself and a point P inside the circle to any other point Q inside the
circle.

(c) Taking a circle to itself and any given line outside the circle into the line at infinity.

Furthermore, projective transformations preserve the cross ratio of any four collinear
points. Moreover, if four concyclic points are sent to four concyclic points, then the cross
ratio of the quadrilaterals are the same.

The power of this technique is made most clear by example.

Example 9.34. Let ABCD be a quadrilateral. Define the points P = AD ∩ BC, Q =
AB ∩ CD, and R = AC ∩ BD. Let X1, X2, Y1, Y2 denote PR ∩ AD, PR ∩ BC, QR ∩
AB, QR ∩ CD.

Prove that lines X1Y1, X2Y2, and PQ are concurrent.

This problem looks like a nightmare until we realize that it is purely projective. That
means we can make some very convenient assumptions—we simply use a projective map
taking ABCD to a square A′B ′C ′D′.

A′ B′

C ′D′

R′
P ′

Q′

X ′
1

X ′
2

Y ′
1

Y ′
2

Figure 9.7B. We can take ABCD to a square, trivializing the problem.

Solution. By Theorem 9.33, we can use a projective transformation to send ABCD

to the vertices of a square A′B ′C ′D′. Then P ′ is the intersection of lines A′D′ and B ′C ′,
since projective transformations preserve intersections. We can define the remaining points
similarly.

The problem is now trivial: just look at Figure 9.7B! P ′ and Q′ become the points at
infinity, and we find that X′

1, X′
2, Y ′

1, Y ′
2 are just midpoints of the respective sides. Hence
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the intersection of lines X′
1Y

′
1 and X′

2Y
′
2 is yet another point at infinity (as they are parallel).

This implies P ′, Q′, and X′
1Y

′
1 ∩ X′

2Y
′
2 are collinear along the line at infinity.

We can even extend this technique to tackle problems that do not look purely projective
when the condition can be re-written with cross ratios. For example, consider the famous
butterfly theorem.

Theorem 9.35 (Butterfly Theorem). Let AB, CD, PQ be chords of a circle concurrent
at M . Put X = PQ ∩ AD and Y = PQ ∩ BC. If MP = MQ then MX = MY .

P Q
M

A

B

C

D

X Y

Figure 9.7C. The butterfly theorem.

Proof. This problem looks completely projective except for the midpoint condition.
We can handle this by adding the point at infinity P∞ to line PQ. The condition becomes
(P,Q; P∞,M) = −1, and we wish to show that (X, Y ; P∞,M) = −1.

By rewriting the givens as cross ratios, the problem becomes purely projective! We
therefore take the projective transformation sending M to the center of the circle, say M ′.
Then P ′Q′ is a diameter. Because we must have the cross ratio (P ′,Q′, P ′

∞,M ′) = −1 is
preserved, we find that P ′

∞ is still the point at infinity. Hence it simply suffices to prove
that M ′ is the midpoint of X′Y ′.

On the other hand, proving the butterfly theorem when M is the center of the circle
is not very hard. Actually, it is obvious by symmetry. Therefore (X′, Y ′, P ′

∞,M ′) = −1.
Consequently (X, Y ; P∞,M) = −1 as well and we are done.

Problems for this Section

Problem 9.36. Give a short proof of Lemma 9.9 using projective transformations. Hints:

183 218 231

Problem 9.37. Give a short proof of Lemma 9.11 using projective transformations. Hints:

333 595

9.8 Examples
We present two example problems. First, let us consider the following problem from the
51st IMO.
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186 9. Projective Geometry

Example 9.38 (IMO 2010/2). Let I be the incenter of a triangle ABC and let � be its
circumcircle. Let line AI intersect � again at D. Let E be a point on arc B̂DC and F a
point on side BC such that ∠BAF = ∠CAE < 1

2∠BAC. Finally, let G be the midpoint
of IF . Prove that DG and EI intersect on �.

A

B C

I

D

E

F

G

Figure 9.8A. Example 9.38.

We begin by extending AF to meet � again at a point F1; evidently F1E ‖ BC. We also
let K denote the second intersection of EI with �. Our goal is to prove that DK bisects
IF .

Seeing so many points and intersections on a circle motivates us to try Pascal’s theo-
rem in the hopes of finding something interesting. Specifically, we have I = AD ∩ KE,
DD ∩ EF1 is the point at infinity, and F = AF1 ∩ BC. Trying to string two of these into
one application of Pascal’s theorem, we find with some trial and error that the hexagon
AF1EKDD is useful.

A

B C

I

D

EF1

F

G

K

P

Figure 9.8B. Applying Pascal’s theorem on Example 9.38.

Pascal’s theorem now implies that AF1 ∩ KD, the point at infinity F1E ∩ DD, and the
incenter I = DA ∩ KE are collinear. In other words, if we set P = AF1 ∩ KD, then we
find that IP ‖ EF1 ‖ BC.
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9.8. Examples 187

Once the point P is introduced, we can effectively ignore the points E, F1, and K now.
In other words, we have the convenient recasting of the problem as follows.

Let AF be a cevian of the triangle ABC and let P be a point on AF with IP ‖ BC.
If D is the midpoint of arc B̂C not containing A, then DP bisects IF .

This is much simpler, and you can actually finish using barycentric coordinates. At least
this indicates that we are probably on the right track. So what do we do next?

A

B C

I

D

F

G

IA

P
Z

Figure 9.8C. The finishing touch using harmonic bundles.

Seeing the midpoint, we consider a homothety at I with ratio 2, which conveniently
grabs the excenter IA. That means it suffices to prove that if Z = IAF ∩ IP , then P is the
midpoint of IZ. Seeing midpoints and parallel lines once again, we take harmonic bundles
(in light of Lemma 9.8). And indeed, the first decent choice of a point on BC works;
perspectivity at F solves the problem.

Solution to Example 9.38. Let EI meet � again at K and AF meet � again at F1. Set
P = DK ∩ AF and Z = IP ∩ IAF . By Pascal’s theorem on AF1EKDD, we see that
IP ‖ BC.

Setting IA as the A-excenter and recalling Lemma 9.22 gives

−1 = (
I, IA; A,AI ∩ BC

) F= (
I, Z; P,BC ∩ IP

)
.

Since IP ‖ BC, we conclude that P is the midpoint of IZ. Then we simply take a homothety
at I .

Our other example is the final problem from an Asian-Pacific olympiad; it yields many
different projective solutions. We present three of them.

Example 9.39 (APMO 2013/5). Let ABCD be a quadrilateral inscribed in a circle ω,
and let P be a point on the extension of AC such that PB and PD are tangent to ω. The
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188 9. Projective Geometry

tangent at C intersects PD at Q and the line AD at R. Let E be the second point of
intersection between AQ and ω. Prove that B, E, R are collinear.

A

B D

P

C
Q

R

E

Figure 9.8D. Problem 5 from APMO 2013.

We immediately recognize Lemma 9.9 twice: ACED and ABCD are both harmonic
quadrilaterals. This motivates us to try projective geometry in the first place, since there are
a lot of intersections and the conditions are natural in the language of harmonic bundles.

A

B
D

P

C
Q

R

E

T

Z

K

Figure 9.8E. A solution to Example 9.39 that involves only harmonic bundles.

In order to place things more in the frame of our projective tools, we let E′ be the second
intersection of line BR and ω. Then it would just suffice to prove ACE′D is harmonic
(rather than prove three points are collinear). How might we do that? We wish to prove
that (A,E′; C,D) = −1. Are there any points that look good for projecting through on ω?
After some trial we find that B looks like a good choice, because it handles the other points
somewhat nicely, but more importantly it lets us deal with the point E′.

https://www.cambridge.org/core/terms. https://doi.org/10.5948/9781614444114.011
Downloaded from https://www.cambridge.org/core. University of Sussex Library, on 04 Mar 2019 at 14:22:46, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.5948/9781614444114.011
https://www.cambridge.org/core
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Because we again want to focus on making point E′ behave well, we choose to project
onto line CR.

So we find that

(A,E′; C,D)
B= (AB ∩ CR,R; C,BD ∩ CR).

Taking advantage of the fact that ABCD is harmonic, we put T = BD ∩ CR as the
intersection of the tangents at A and C (hence on line BD). The point T seems nice
because it is pretty closely tied to ABCD.

On the other hand we should probably clean up AB ∩ CR in the next projection.
Since we already took perspectivity from B, we try taking perspectivity from A this time
(otherwise we are back where we started). Now the most logical choice for the line to
project onto is BD. Letting Z = AB ∩ CR for brevity, we find

(Z,R; C, T )
A= (B,D; AC ∩ BD, T ).

But this is harmonic by Lemma 9.9. Hence with just two projections we are done.

Solution 1. Set T = BD ∩ CR, K = AC ∩ BD, Z = AB ∩ CR and let E′ be the
second intersection of BR with ω. Since ABCD is harmonic, we have T , K , B, D

collinear and therefore

−1 = (T ,K; B,D)
A= (T ,C; Z,R)

B= (D,C; A,E′).

But DACE is harmonic, so E = E′.

A second solution involves interpreting the problem from the context of symmedians
(see Lemma 4.26). We can view DB and AE as the symmedians of triangle ACD. Suddenly
we can ignore the points P and Q completely! On the other hand we should probably add
in the symmedian point K of triangle ACD, which is the intersection of AE and BD.

A

B D

P

C
Q

R

E

K

F

Figure 9.8F. Solving Example 9.39 using symmedians.

Now what of the point R? It is the intersection of the tangent at C with line AD. Trying
to complete Lemma 9.9 again, we let F be the other point on ω other than C such that RF
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190 9. Projective Geometry

is a tangent. Hence ACDF is harmonic. So CF is a symmedian as well. This completes
the picture of the symmedian point. In particular, K lies on CF .

Now for the finish. By Brocard’s theorem, BE ∩ AD is the point on AD that lies on
the polar of K = BD ∩ AE. This is none other than the point R.

Solution 2. Let K = AE ∩ BD be the symmedian point of triangle ACD. Let F be
the second intersection of ray CK with (ACD). Noticing the symmedians, we find three
harmonic quadrilaterals ACED, ABCD, and ACDF .

In harmonic quadrilateral ACDF , we notice (by Lemma 9.9, say), that R is the pole of
CF . Because CF contains K , point R lies on the polar of K . Now by Brocard’s theorem,
the intersection of line BE with AD lies on the polar of K as well, implying that B, E, R

are collinear.

Finally, one last solution—note this problem is purely projective!

A

B C

D

Q

R

E

Figure 9.8G. Projective transformations trivialize Example 9.39, because they allow us to assume
ABCD is a square.

Take a projective transformation that fixes ω and sends the point AC ∩ BD to the center
of the circle. Thus ABCD is a rectangle. Because ABCD is harmonic, it must in fact be
a square. Thus P is the point at infinity along AB ‖ CD and the problem is not very hard
now.

9.9 Problems
Lemma 9.40 (Incircle Polars). Let ABC be a triangle with contact triangle DEF and
incenter I . Lines EF and BC meet at K . Prove that IK ⊥ AD. Hints: 351 689 Sol: p.275

Theorem 9.41 (Desargues’ Theorem). Let ABC and XYZ be triangles in the projective
plane. We say that the two triangles are perspective from a point if lines AX, BY , and
CZ concur (possibly at infinity), and we say they are perspective from a line if the
points AB ∩ XY , BC ∩ YZ, CA ∩ ZX are collinear. Prove that these two conditions are
equivalent. Hints: 253 456

Problem 9.42 (USA TSTST 2012/4). In scalene triangle ABC, let the feet of the perpen-
diculars from A to BC, B to CA, C to AB be A1, B1, C1, respectively. Denote by A2 the
intersection of lines BC and B1C1. Define B2 and C2 analogously. Let D, E, F be the
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respective midpoints of sides BC, CA, AB. Show that the perpendiculars from D to AA2,
E to BB2, and F to CC2 are concurrent. Hints: 308 233

Problem 9.43 (Singapore TST). Let ω and O be the circumcircle and circumcenter of
right triangle ABC with ∠B = 90◦. Let P be any point on the tangent to ω at A other
than A, and suppose ray PB intersects ω again at D. Point E lies on line CD such that
AE ‖ BC. Prove that P , O, and E are collinear. Hints: 587 675

Problem 9.44 (Canada 1994/5). Let ABC be an acute triangle. Let AD be the altitude on
BC, and let H be any interior point on AD. Lines BH and CH , when extended, intersect
AC, AB at E and F respectively. Prove that ∠EDH = ∠FDH . Hints: 20 164 80 Sol: p.275

Problem 9.45 (Bulgarian Olympiad 2001). Let ABC be a triangle and let k be a circle
through C tangent to AB at B. Side AC and the C-median of �ABC intersect k again at
D and E, respectively. Prove that if the intersecting point of the tangents to k through C

and E lies on the line BD then ∠ABC = 90◦. Hints: 111 318 571

Problem 9.46 (ELMO Shortlist 2012). Let ABC be a triangle with incenter I . The foot
of the perpendicular from I to BC is D, and the foot of the perpendicular from I to AD is
P . Prove that ∠BPD = ∠DPC. Hints: 240 354 347 Sol: p.276

Problem 9.47 (IMO 2014/4). Let P and Q be on segment BC of an acute triangle ABC

such that ∠PAB = ∠BCA and ∠CAQ = ∠ABC. Let M and N be the points on AP and
AQ, respectively, such that P is the midpoint of AM and Q is the midpoint of AN . Prove
that the intersection of BM and CN is on the circumference of triangle ABC. Hints: 145 216

286 Sol: p.276

Problem 9.48 (Shortlist 2004/G8). Given a cyclic quadrilateral ABCD, let M be the
midpoint of the side CD, and let N be a point on the circumcircle of triangle ABM .
Assume that the point N is different from the point M and satisfies AN

BN
= AM

BM
. Prove that

the points E, F , N are collinear, where E = AC ∩ BD and F = BC ∩ DA. Hints: 58 503

632

Problem 9.49 (Sharygin 2013). The incircle of triangle ABC touches BC, CA, and AB

at points A′, B ′, and C ′ respectively. The perpendicular from the incenter I to the C-median
meets the line A′B ′ in point K . Prove that CK ‖ AB. Hint: 55 Sol: p.277

Problem 9.50 (Shortlist 2004/G2). Let � be a circle and let d be a line such that � and
d have no common points. Further, let AB be a diameter of the circle �; assume that this
diameter AB is perpendicular to the line d , and the point B is nearer to the line d than
the point A. Let C be an arbitrary point on the circle �, different from the points A and
B. Let D be the point of intersection of the lines AC and d. One of the two tangents from
the point D to the circle � touches this circle � at a point E; hereby, we assume that the
points B and E lie in the same half-plane with respect to the line AC. Denote by F the
point of intersection of the lines BE and d . Let the line AF intersect the circle � at a point
G, different from A.
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192 9. Projective Geometry

Prove that the reflection of the point G in the line AB lies on the line CF . Hints: 25 285

406 497 Sol: p.277

A B

DC

E

F

G

G′

Figure 9.9A. Problem 9.50 is a mouthful.

Problem 9.51 (USA January TST for IMO 2013). Let ABC be an acute triangle. Circle
ω1, with diameter AC, intersects side BC at F (other than C). Circle ω2, with diameter BC,
intersects side AC at E (other than C). Ray AF intersects ω2 at K and M with AK < AM .
Ray BE intersects ω1 at L and N with BL < BN . Prove that lines AB, ML, NK are
concurrent. Hints: 168 374 239

Problem 9.52 (Brazilian Olympiad 2011/5). Let ABC be an acute triangle with ortho-
center H and altitudes BD, CE. The circumcircle of ADE cuts the circumcircle of ABC

at F �= A. Prove that the angle bisectors of ∠BFC and ∠BHC concur at a point on BC.
Hints: 405 221 366

Problem 9.53 (ELMO Shortlist 2013). In �ABC, a point D lies on line BC. The
circumcircle of ABD meets AC at F (other than A), and the circumcircle of ADC meets
AB at E (other than A). Prove that as D varies, the circumcircle of AEF always passes
through a fixed point other than A, and that this point lies on the median from A to BC.
Hints: 511 34 270

Problem 9.54 (APMO 2008/3). Let � be the circumcircle of a triangle ABC. A circle
passing through points A and C meets the sides BC and BA at D and E, respectively. The
lines AD and CE meet � again at G and H , respectively. The tangent lines to � at A and
C meet the line DE at L and M , respectively.

Prove that the lines LH and MG meet at �. Hints: 156 444 352 572 Sol: p.277

Theorem 9.55 (Brianchon’s Theorem). Let ABCDEF be a hexagon circumscribed
about a circle ω. Prove that AD, BE, CF are concurrent. Hints: 241 35

Problem 9.56 (ELMO Shortlist 2014). Suppose ABCD is a cyclic quadrilateral inscribed
in the circle ω. Let E = AB ∩ CD and F = AD ∩ BC. Let ω1, ω2 be the circumcircles of
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triangles AEF , CEF , respectively. Let G and H be the intersections of ω and ω1, ω and
ω2, respectively, with G �= A and H �= C. Show that AC, BD, and GH are concurrent.
Hints: 404 590 443 Sol: p.278

Problem 9.57 (ELMO Shortlist 2014). Let ABCD be a cyclic quadrilateral inscribed in
circle ω. The tangent to ω at A intersects lines CD and BC at E and F . Lines BE and DF

meet ω again G and I , and H = BE ∩ AD, J = DF ∩ AB. Prove that GI , HJ , and the
B-symmedian of �ABC are concurrent. Hints: 667 234

Problem 9.58 (Shortlist 2005/G6). Let ABC be a triangle, and M the midpoint of its side
BC. Let γ be the incircle of triangle ABC. The median AM of triangle ABC intersects the
incircle γ at two points K and L. Let the lines passing through K and L, parallel to BC,
intersect the incircle γ again in two points X and Y . Let the lines AX and AY intersect BC

again at the points P and Q. Prove that BP = CQ. Hints: 682 543 328 104 563
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