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Foreword

Problems, exercises, circles, and olympiads

This is a translation of Part 1 of the book Mathematics Through Problems:
From Mathematical Circles and Olympiads to the Profession, and is part

of the MSRI Mathematical Circles Library series. The other two parts,

Geometry and Combinatorics, will be published in the same series soon.

The goal of the MSRI Mathematical Circles Library series is to build a

body of works in English that help to spread the “math circle” culture. A

mathematical circle is an eastern-European notion. Math circles are similar

to what most Americans would call a math club for kids, but with several

important distinguishing features.

First, they are vertically integrated : young students may interact with

older students, college students, graduate students, industrial mathemati-

cians, professors, and even world-class researchers, all in the same room.

The circle is not so much a classroom as a gathering of young initiates with

elder tribespeople, who pass down folklore.
Second, the “curriculum,” such as it is, is dominated by problems rather

than specific mathematical topics. A problem, in contrast to an exercise,

is a mathematical question that one doesn’t know how, at least initially, to

approach. For example, “What is 3 times 5?” is an exercise for most people

but a problem for a very young child. Computing 534 is also an exercise,

conceptually very much like the first example, certainly harder, but only in

a “technical” sense. And a question like “Evaluate
∫ 7
2 e

5x sin 3x dx” is also

an exercise for calculus students—a matter of “merely” knowing the right

algorithm and how to apply it.

Problems, by contrast, do not come with algorithms attached. By their

very nature, they require investigation, which is both an art and a sci-

ence, demanding technical skill along with focus, tenacity, and inventiveness.

Math circles teach students these skills, not with formal instruction, but by

having them do math and observe others doing math. Students learn that a

problem worth solving may require not minutes but possibly hours, days, or

even years of effort. They work on some of the classic folklore problems and

discover how these problems can help them investigate other problems. They

learn how not to give up and how to turn errors or failures into opportunities

xi



xii FOREWORD

for more investigation. A child in a math circle learns to do exactly what a

research mathematician does; indeed, he or she does independent research,

albeit on a lower level, and often—although not always—on problems that

others have already solved.

Finally, many math circles have a culture similar to a sports team, with

intense camaraderie, respect for the “coach,” and healthy competitiveness

(managed wisely, ideally, by the leader/facilitator). The math circle culture

is often complemented by a variety of problem solving contests, often called

olympiads. A mathematical olympiad problem is, first of all, a genuine

problem (at least for the contestant), and usually requires an answer which

is, ideally, a well-written argument (a “proof”).

Why this book, and how to use it

The Mathematical Circles Library editorial board chose to translate this

book because it has an audacious goal—promised by its title—to develop

mathematics through problems. This is not an original idea, nor just a

Russian one. American universities have experimented for years with IBL

(inquiry-based learning) and Moore-method courses, structured methods for

teaching advanced mathematics through open-ended problem solving.1

But this massive work is an attempt to curate sequences of problems for

secondary students (the stated focus is high school students, but that can

be broadly interpreted) that allow them to discover and recreate much of

“elementary” mathematics (number theory, polynomials, inequalities, cal-

culus, geometry, combinatorics, game theory, probability) and start edging

into the sophisticated world of group theory, Galois theory, etc.

The book is not possible to read from cover to cover—nor should it be.

Instead, the reader is invited to start working on problems that he or she

finds appealing and challenging. Many of the problems have hints and so-

lution sketches, but not all. No reader will solve all the problems. That’s

not the point—it is not a contest. Furthermore, some of the problems are

not supposed to be solved, but should rather be pondered. For example,

when learning about primes, it is natural to wonder whether there is al-

ways a prime between n and 2n. Indeed, this is problem 1.6.9 (c)—the very

nontrivial result known as Bertrand’s postulate—and the text provides ref-

erences for learning more about it. Just because it is “too advanced” doesn’t

mean that it shouldn’t be thought about! In fact, sometimes the reader is

explicitly directed to jump ahead, with references to material that appears

later in the book (the authors assure the reader that this will not lead to

circular reasoning).

Indeed, this is the philosophy of the book: Mathematics is not a sequen-

tial discipline, where one is presented with a definition that leads to a lemma

which leads to a theorem which leads to a proof. Instead it is an adventure

1See, for example, https://en.wikipedia.org/wiki/Moore_method and http://

www.jiblm.org.
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filled with exciting side trips as well as wild goose chases. The adventure

is its own reward, but it also, fortuitously, leads to deep understanding and

appreciation of mathematical ideas that cannot be accomplished by passive

reading.

English-language references

Most of the references cited in this book are in Russian. However, there are

many excellent books in English (some translated from Russian). Here is a

very brief list, organized by topic and chapter.2

Articles from Kvant : This superb journal is published in Russian.

However, it has been sporadically translated into English under the

name Quantum, and there are several excellent collections in English;

see [FT07,Tab99,Tab01].

Problem collections: The USSR Olympiad Problem Book [SC93] is a

classic collection of carefully discussed problems. Additionally, [FK91]

and [FBKY11a,FBKY11b] are good collections of olympiads from

Leningrad and Moscow, respectively. See also the nicely curated col-

lections of fairly elementary Hungarian contest problems [Kur63a,

Kur63b,Liu01] and the more advanced (undergraduate-level) Put-

nam Exam problems [KPV02].

Inequalities: See [Ste04] for a comprehensive guide and [AS16b] for a

more elementary text. The author also recommends two classic books,

[HLP67] and [BB65], and the more specialized text [MO09], but

cautions that these are all rather advanced.

Geometry: Geometry Revisited [CG67] is a classic, and [Che16] is a

recent and very comprehensive guide to “olympiad geometry.”

Polynomials and theory of equations: See [Bar03] for an elemen-

tary guide, and [Bew06] for a historically motivated exposition of con-

structability and solvability and unsolvability. In Chapter 8, see the

book [Gin07] for English translations of the Kvant articles [Gin72,

Gin76], and [Skoa] for an abridged English version of [Sko10].

Combinatorics: The best book in English, and possibly any language,

is Concrete Mathematics [GKP94].

Functions, limits, complex numbers, and calculus: The classic

Problems and Theorems in Analysis by Pólya and Szegő [PS04] is—

like the current text—a curated selection of problems but at a much

higher mathematical level.

Paul Zeitz

April 2019

2We omit any supplementary Russian-language references mentioned in the original

text that were not actually cited in the text.





Introduction

What this book is about and who it is for

A deep understanding of mathematics is useful both for mathematicians and

for high-tech professionals. In particular, the “profession” in the title of this

book does not necessarily mean the profession of mathematics.

This book is intended for high school students and undergraduates (in

particular, those interested in olympiads). For more details, see “Olympiads

and mathematics” on p. xvii. The book can be used both for self-study and

for teaching.

This book attempts to build a bridge (by showing that there is no gap)

between ordinary high school exercises and the more sophisticated, intricate,

and abstract concepts in mathematics. The focus is on engaging a wide

audience of students to think creatively in applying techniques and strategies

to problems motivated by “real world or real work” [Mey]. Students are

encouraged to express their ideas, conjectures, and conclusions in writing.

Our goal is to help students develop a host of new mathematical tools and

strategies that will be useful beyond the classroom and in a number of

disciplines (cf. [IBL,Mey,RMP]).

The book contains the most standard “base” material (although we ex-

pect that at least some of this material is review—that not all is being

learned for the first time). But the main content of the book is more complex

material. Some topics are not well known in the traditions of mathematical

circles, but are useful both for mathematical education and for preparation

for olympiads.

The book is based on the classes taught by the author at different times

at the Independent University of Moscow, at various Moscow schools and

math circles, in preparing the Russian team for the International Mathemat-

ical Olympiad, in the “Modern Mathematics” summer school, in the Kirov

and Kostroma Summer Mathematical Schools, in the Moscow Olympiad

School, and also in the summer Conference of the Tournament of Towns.

xv



xvi INTRODUCTION

Much of this book is accessible to high school students with a strong

interest in mathematics.3 We provide definitions or references for mate-

rial that is not standard in the school curriculum. However, many topics

are difficult if you study them “from scratch.” Thus, the ordering of the

problems helps to provide “scaffolding.” At the same time, many topics are

independent of each other. For more details, see p. xviii, “How this book is

organized”.

Learning by doing problems

We subscribe to the tradition of studying mathematics by solving and dis-

cussing problems. These problems are selected so that in the process of

solving them the reader (more precisely, the solver) masters the fundamen-

tals of important ideas, both classical and modern. The main ideas are

developed incrementally with olympiad-style examples—in other words, by

the simplest special cases, free from technical details. In this way, we show

how you can explore and discover these ideas on your own.
Learning by solving problems is not just a serious approach to mathe-

matics; it also continues a venerable cultural tradition. For example, the

novices in Zen monasteries study by reflecting on riddles (“koans”) given to

them by their mentors. (However, these riddles are rather more like para-

doxes than what we consider to be problems.) See, for example, [Suz18];

compare with [Pla12, pp. 26–33]. “Math” examples include [Arn16b,BSe,

RSG+16,KBK08,Pra07b,PS04, SC93, Sko09,Vas87,Zvo12], which

sometimes describe not only problems but also the principles of selecting

appropriate problems. For the American tradition, see [IBL,Mey,RMP].

Learning by solving problems is difficult, in part, because it generally

does not create the illusion of understanding. However, one’s efforts are

fully rewarded by a deep understanding of the material, leading to the ability

to carry out similar (and sometimes rather different) reasoning. Eventually,

while working on fascinating problems, readers will be following the thought

processes of the great mathematicians and may see how important concepts

and theories naturally evolve. Hopefully this will help them make their own

equally useful discoveries (not necessarily in math)!

Solving a problem, theoretically, requires only understanding its state-

ment. Other facts and concepts are not needed. (Actually, useful facts and

ideas will be developed while solving the problems presented in this book.)

Sometimes, you may need to know things from other parts of the book as

indicated in the instructions and hints. For the most important problems

we provide hints, instructions, solutions, and answers, located at the end of

3Some of the material is studied in math circles and summer schools by those who

are just getting acquainted with mathematics (for example, 6th graders). However, the

presentation here is aimed at the reader who already has at least a minimal understanding

of mathematical culture. Younger students need a different approach; see, for example,

[GIF94].



OLYMPIADS AND MATHEMATICS xvii

each section. However, they should be referred to only after attempting to

solve a problem.

As a rule, we present the formulation of a beautiful or important result

(in the form of a problem) before its proof. In such cases, one may need

to solve later problems in order to fully work out the proof. This is always

explicitly mentioned in hints, and sometimes even in the text. Consequently,

if you fail to solve a problem, please read on. This guideline is helpful because

it simulates the typical research situation.

This book “is an attempt to demonstrate learning as dialogue based on

solving and discussing problems” (see [KBK15]).

A message By A.Ya.Kanel-Belov

To solve difficult olympiad problems, at the very least one must have a

robust knowledge of algebra (particularly algebraic transformations) and

geometry. Most olympiad problems (except for the easiest ones) require

“mixed” approaches; rarely is a problem resolved by applying a method or

idea in its pure form. Approaching such mixed problems involves combining

several “crux” problems, each of which may involve single ideas in a “pure”

form. Learning to manipulate algebraic expressions is essential. The lack of
this skill among olympians often leads to ridiculous and annoying mistakes.

Olympiads and mathematics

To him a thinking man’s job was not to deny one reality

at the expense of the other, but to include and to connect.

U.K. Le Guin. The Dispossessed.

Here are three common misconceptions about very worthwhile goals: the

best way to prepare for a math olympiad is by solving last year’s problems;

the best way to learn “serious” mathematics is by reading university text-

books; the best way to master any other skill is with no math at all. There is

a further misconception that one cannot achieve these apparently divergent

goals simultaneously. The authors share the widespread belief that these

three approaches miss the point and lead to harmful side effects: students

become too keen on emulation, or they study the language of mathematics

rather than its substance, or they underestimate the value of robust math

knowledge in other disciplines.

We believe that these three goals are not as divergent as they might

seem. The foundation of mathematical education should be the solution
and discussion of problems interesting to the student, during which a stu-
dent learns important mathematical facts and concepts. This simultaneously

prepares the student for math olympiads and the “serious” study of mathe-

matics, and is good for his or her general development. Moreover, it is more

effective for achieving success in any one of the three goals above.
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Research problems for high school students

Many talented high school or university students are interested in solving

research problems. Such problems are usually formulated as complex ques-

tions broken into incremental steps; see, e.g., [LKT]. The final result may

even be unknown initially, appearing naturally only in the course of thinking

about the problem. Working on such questions is useful in itself and is a

good approximation to scientific research. Therefore it is useful if a teacher

or a book can support and develop this interest.

For a description of successful examples of this activity, see, for ex-

ample, projects in the Moscow Mathematical Conference of High School

Students [M]. While most of these projects are not completely original,

sometimes they can lead to new results.

How this book is organized

You should not read each page in this book, one after the other. You can

choose a sequence of study that is convenient for you (or omit some topics

altogether). Any section (or subsection) of the book can be used for a math

circle session.

The book is divided into chapters and sections (some sections are divided

into subsections), with a plan of organization outlined at the start of each

section. If the material of another section is needed in a problem, you can

either ignore it or look up the reference. This allows greater freedom when

studying the book, but at the same time it may require careful attention.

Topics of each section are arranged approximately in order of increas-

ing complexity. The numbers in parentheses after a topic name indicate

its “relative level”: 1 is the simplest, and 4 is the most difficult. The first

topics (not marked with an asterisk) are basic; unless indicated otherwise,

you should begin your study with them. The remaining ones (marked with

an asterisk) can be returned to later; unless otherwise stated, they are in-

dependent of each other. As you read, try to return to old material, but at

a new level. Thus you should end up studying different levels of a topic not
sequentially but as part of a mixture of topics.

The notation used throughout the book is given on p. xx. Notation and

conventions particular to a specific section are introduced at the beginning

of that section. The book concludes with a subject index. The numbers in

bold are the pages on which formal definitions of concepts are given.

Sources and literature

Each chapter ends with a bibliography that relates to the entire chapter,

with sources for each topic.4 For example, we cite the book [GKP94],

4Editor’s note: In the English edition all the references are combined into one list at

the end of the book.
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which involves both combinatorics and algebra. In addition to sources for

specialized material, we also tried to include the very best popular writing

on the topics studied. We hope that this bibliography, at least as a first

approximation, can guide readers through the sea of popular scientific liter-

ature in mathematics. However, the great size of this genre guarantees that

many remarkable works had to be omitted. Please note that items in the

bibliography are not necessary for solving the problems in this book, unless

explicitly stated otherwise.

Many of the problems are not original, but the source (even if it is

known) is usually not specified. When a reference is provided, it comes

after the statement of the problem, so that the reader can compare his or

her solution with the one given there. When we know that many problems

in a section come from one source, we mention this.

We do not provide links to online versions of articles in the popular

magazines Kvant (the English magazine Quantum is based on Kvant) and
Matematicheskoe Prosveshchenie (“Mathematical Enlightment”); they can

be found at the websites http://kvant.ras.ru, http://kvant.mccme.ru,

https://en.wikipedia.org?wiki?Quantum_Magazine, and http://www.

mccme.ru/free-books/matpros.html.
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xx INTRODUCTION

Numbering and notation

Sections in each chapter are arranged approximately in order of increasing

complexity of the material. The numbers in parentheses after the section

name indicate its “relative level”: 1 is the simplest, and 4 is the most dif-

ficult. The first sections (not marked with an asterisk) are basic; unless

indicated otherwise, you can begin to study the chapter with them. The re-

maining sections (marked with an asterisk) can be returned to later; unless

otherwise stated, they are independent of each other.

If a mathematical fact is formulated as a problem, then the objective

is to prove this fact. Open-ended questions are called challenges; here one

must come up with clear wording and a proof; cf., for example, [VINK10].

The most difficult problems are marked with asterisks (*). If the state-

ment of the problem asks you to “find” something, then you need to give

a “closed form” answer (as opposed to, say, an unevaluated sum of many

terms).

Once again, if you are unable to solve a problem, continue reading: later

problems may turn out to be hints.

Notation

• �x� = [x] — (lower) integer part of number x (“floor”); that is, the largest

integer not exceeding x.
• �x� — upper integer part of number x (“ceiling”); that is, the smallest

integer not less than x.
• {x} — fractional part of number x; equal to x− �x�.
• d|n, or n ... d — d divides n; that is, there exists an integer k such that

n = kd (the number d is called a divisor of the number n; we assume that

d �= 0).

• R, Q, and Z — the sets of all real numbers, rational numbers, and integers,

respectively.

• Z2 — the set {0, 1} of remainders upon division by 2 with the operations

of addition and multiplication modulo 2.

• Zm — the set {0, 1, . . . ,m−1} of remainders upon division by m with the

operations of addition and multiplication modulo m. (Specialists in algebra

often write this set as Z/mZ and use Zm for the set of m-adic integers for

the prime m.)

• (nk) — the number of k-element subsets of an n-element set (also denoted

by Ck
n).

• |X| — the number of elements in set X.

• A−B = {x | x ∈ A and x /∈ B} — the difference of the sets A and B.

• A � B — the disjoint union of the sets A and B; that is, the union of A
and B viewed as the union of disjoint sets.



NUMBERING AND NOTATION xxi

• A ⊂ B — means the set A is contained in the set B. In some books, this

is denoted by A ⊆ B, and A ⊂ B means “the set A is in the set B and is

not equal to B.”

• We abbreviate the phrase “Define x to be a” to x := a.





Chapter 1

Divisibility

The parts of this chapter used in the rest of the book are: the Euclidean

algorithm and its applications (problems 1.5.7 and 1.5.9), the language of

congruences (section 4, “Division with a remainder and congruences”), and

some simple facts (e.g., problem 1.1.3 and 1.3.2).

In this chapter all variables are integers. Many solutions are based on

M.A.Prasolov’s texts.

1. Divisibility (1)

1.1.1. (a) State and prove the rules of divisibility by 2, 4, 5, 10, 3, 9, 11.

(b) Is the number 11 . . . 1 consisting of 1993 ones divisible by 111111?

(c) Prove that the number 1 . . . 1 consisting of 2001 ones is divisible by

37.

1.1.2. If a is divisible by 2 and not divisible by 4, then the number of even

divisors of a is equal to the number of its odd divisors.

1.1.3. Which of the following statements are correct for any a and b? (Recall

the notation a|b defined on p. xx.)

(a) 2|(a2 − a).
(b) 4|(a4 − a).
(c) 6|(a3 − a).
(d) 30|(a5 − a).
(e) If c|a and c|b, then c|(a+ b).
(f) If b|a, then bc|ac.
(g) If bc|ac for some c �= 0, then b|a.
To solve problem 1.1.3 (c), we used 1.1.4 (a). Prove it using the defini-

tion of divisibility, but not using the Unique Factorization Theorem (prob-

lem 1.2.8 (d))! The use of this theorem might lead to a circular argument

since a result similar to 1.1.4 (a) is usually used in a proof of uniqueness of

factorization.

1
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1.1.4. (a) If a is divisible by 2 and 3, then it is also divisible by 6;

(b) If a is divisible by 2, 3, and 5, then it is also divisible by 30;

(c) If a is divisible by 17 and 19, then it is also divisible by 323.

1.1.5. (a) If k is not divisible by 2, 3, or 5, then k4 − 1 is divisible by 240.

(b) If a+ b+ c is divisible by 6, then a3 + b3 + c3 is also divisible by 6.

(c) If a+ b+ c is divisible by 30, then a5+ b5+ c5 is also divisible by 30.

(d) If n ≥ 0 then 202n + 162n − 32n − 1 is divisible by 323.

Suggestions, solutions, and answers

1.1.1. In the proofs of divisibility rules below, we denote the number in

the statements by n = ±(10mam + 10m−1am−1 + . . . + 10a1 + a0) for some

0 ≤ ai ≤ 9.

Rule of divisibility by 2: An integer is divisible by 2 if and only if the

last digit of the integer is divisible by 2.

Proof. Clearly, the number n − a0 is even. Suppose a0 is also even. If a

number divides each term of the sum, it divides the sum. Therefore n is

even. Conversely, if a number n is even, then a0 is even. �

Rule of divisibility by 4: An integer n is divisible by 4 if and only if the

number formed by its last two digits is divisible by 4.

Proof. Clearly, the number (n− 10a1 − a0) is divisible by 4. Suppose that

the number a0 + 10a1 formed by the last two digits of n is divisible by 4.

Then n is divisible by 4. Conversely, if 4|n then 4|(a0 + 10a1). �

Rule of divisibility by 5: An integer is divisible by 5 if and only if its

last digit is 5 or 0.

Prove this similarly to proving the rule of divisibility by 2.

Rule of divisibility by 10: An integer is divisible by 10 if and only if its

last digit is 0.

Prove this similarly to proving the rule of divisibility by 2.

Rule of divisibility by 3: An integer n is divisible by 3 if and only if the

sum of its digits is divisible by 3.
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Proof. Subtract the sum of digits from the number and group the sum-

mands as follows:

n− am − am−1 − . . .− a1 − a0

= (10m − 1)am + (10m−1 − 1)am−1 + · · ·+ (10− 1)a1 + (1− 1)a0.

The number 10k − 1 = (10− 1)(10k−1 +10k−2 + . . .+10+1) is divisible

by 3. The rule of divisibility by 3 follows from this observation. �

Rule of divisibility by 9: An integer n is divisible by 9 if and only if the

sum of its digits is divisible by 9.

Prove this similarly to proving of the rule of divisibility by 3.

Rule of divisibility by 11: Subtract the sum of all digits of n at odd

positions from the sum of all digits at even positions. The number n is

divisible by 11 if and only if the resulting number f(n) is divisible by 11.

Proof. First, we will prove that for any m ≥ 0 the number 10m − (−1)m is

divisible by 11. For odd m, the number 10m+1 = (10+1)(10m−1−10m−2+

10m−3 − . . .− 10 + 1) is divisible by 11. For even m, the number 10m − 1 is

divisible by 102 − 1 and hence divisible by 11. Now we have

n− f(n) = (10m − (−1)m)am + (10m−1 − (−1)m−1)am−1

+ . . .+ (10 + 1)a1 + (1− 1)a0.

Since every term of the sum on the right-hand side of the equation is divisible

by 11, n is divisible by 11 if and only if f(n) is divisible by 11. �

1.1.3. Answers: (a, c, d, e, f) true; (b) false.
(a) We have a2 − a = a(a− 1). Taken in the natural order, every other

integer is even; thus one of the numbers a or a− 1 is even, so their product

a2 − a is also even.

(b) 4 does not divide (24 − 2) = 14.
(c) We have a3 − a = a(a− 1)(a+ 1). The number a(a− 1) is divisible

by 2 while (a− 1)a(a+1) is divisible by 3. Thus a3− a is divisible by 2 and

3, and, as follows from 1.1.4 (a), it is divisible by 6.

(d) We have a5 − a = a(a− 1)(a+ 1)(a2 + 1). Now, a(a− 1) is divisible

by 2 while (a− 1)a(a+ 1) is divisible by 3. If none of the numbers a− 1, a,
and a+1 is divisible by 5, then the remainder from dividing a by 5 is equal

to 2 or 3. Thus a2 + 1 is divisible by 5. Then, as follows from 1.1.4 (b),

a5 − a is divisible by 30.

(e) If a = kc and b = mc, then a+ b = (k +m)c.
(f) If a = kb then ac = k(bc).
(g) If ac = kbc then c(a− kb) = 0. Since bc �= 0 we have c �= 0; therefore

a = kb.
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1.1.4. (a) Hint. We have 3a− 2a = a.
Solution. Since 2|a we have 6|3a, and since 3|a we have 6|2a; therefore

6|(3a− 2a) = a.
(b) Hint. 6a− 5a = a.
Solution. From the given conditions and part (a) above we have 6|a and

5|a. Therefore 30|6a and 30|5a, so 30|(6a− 5a) = a.
(c) Hint. 19a− 17a = 2a, 17a− 8 · 2a = a.
Solution. From the given conditions we have 17|a and 19|a. Therefore

17 · 19|17a and 19 · 17|19a. So 17 · 19|(19a− 17a) = 2a. Then 17 · 19|(17a−
8 · 2a) = a.

1.1.5. (d) The number (an − bn) = (a − b)(an−1 + an−2b + . . . + bn−1) is

divisible by (a−b). Therefore 202n+162n−32n−1 = (202n−32n)+((162)n−
(12)n) is divisible by 17. Similarly, 202n + 162n − 32n − 1 = (202n − 1) +

((162)n−(32)n) is divisible by 19. Then, according to 1.1.4 (c), 202n+162n−
32n − 1 is divisible by 323.

2. Prime numbers (1)

An integer p > 1 is said to be a prime if it does not have positive divisors

other than p and 1. An integer q is a composite if it has at least one positive

divisor different from 1 and |q|. (Thus 1 is neither a prime nor a composite

number.)

1.2.1. (a) Lemma. If a¿1 is not divisible by any prime p ≤ √
a, then a is

a prime.

(b) Sieve of Eratosthenes. Let p1, . . . , pk all be primes between 1 and

n. For each i = 1, . . . , k we will cross out all numbers between 1 and n2

which are divisible by pi. Numbers which are left are all primes between n
and n2.

(c) Write down all primes between 1 and 200.

1.2.2. (a) Find all p such that p, p+ 2, and p+ 4 are primes.

(b) Prove that if the number 11. . . 1 consisting of n ones is a prime, then

n is a prime.

(c) Prove that the converse of (b) is not true.

Theorem 1.2.3 (Euclid). (a) There are infinitely many primes.

(b) There are infinitely many primes of the form 4k + 3.

Compare to problem 2.3.3 (f). Using advanced techniques it’s possible

to prove the following statement.
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Theorem 1.2.4 (Dirichlet). If the integers a, b > 0 have no common divisors

other than ±1, then there are infinitely many primes of the form ak + b.

1.2.5. Let pn denote the nth prime number (in ascending order).

(a) Prove that pn+1 ≤ p1 · . . . · pn + 1

(b) Prove that pn+1 ≤ p1 · . . . · pn − 1 for n ≥ 2.

(c)∗ Prove that there is a perfect square between p1 + . . . + pn and

p1 + . . .+ pn+1.

1.2.6. (a) Is it true that for any n, the number n2 + n+ 41 is a prime?

(b) Prove that for any non-constant quadratic function f with integer

coefficients, there exists an integer n such that the number |f(n)| is com-

posite.

(c) Prove that for any non-constant polynomial f with integer coeffi-

cients, there exists an integer n such that the number |f(n)| is composite.

1.2.7. There exist 1000 consecutive numbers, none of which is

(a) a prime;

(b) a power of a prime.

1.2.8. (a) Any positive integer may be decomposed into a product of prime

numbers.

(b) An even number is called primish if it is not a product of two smaller

positive even numbers. Is the decomposition of an even number into a

product of primish numbers necessarily unique? (See a more meaningful

example in problem 3.7.3 (b).)

(c)∗ If a number is equal to the product of two primes, this decomposition

is unique up to the order of the factors.

(d) Fundamental Theorem of Arithmetic. The decomposition of

any positive integer into a product of primes is unique up to the order of

the factors. (This theorem is often referred to as the Unique Factorization

Theorem or the Canonical Decomposition Theorem.)

For the (usual) solution of (b) and (c) you will need the lemmas in

problem 1.5.7. See also problem 3.4.5.

Suggestions, solutions, and answers

1.2.2. (a)Answer : p = 3.

Solution. The numbers p, p + 2, and p + 4 have different remainders

upon division by 3. Therefore one of them is divisible by 3. This number

is a prime, so it is equal to 3. Since all primes by definition are positive
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integers, then p+4 �= 3. Since 1 is not a prime, p+2 �= 3. Thus p = 3. This

is indeed our solution, because 3, 5, and 7 are primes.

(b) Assume to the contrary that n is composite, i.e., n = ab, where

a, b > 1. We have xb − 1 = (x− 1)(xb−1 + xb−2 + . . .+ x+ 1). Substituting

x = 10a we see that 11 . . . 1 = 10n−1
9 is divisible by 10a−1

9 .

(c) The converse statement is false: 111 = 37 · 3.

1.2.7. (a) For example, 1000!+2, 1000!+3, . . . , 1000!+1001. The problem

can also be solved similarly to part (b).

(b) Take different primes p1, p2, . . . , p2000. The Chinese Remainder The-
orem 1.5.10 (d) implies that there exists n such that n + i is divisible by

p2i−1p2i for any i = 1, 2, . . . , 1000.

1.2.8. (a) Suppose that not every integer is a product of primes. Consider

the smallest positive integer n which is not a product of primes. If it is not a

prime, then it is a composite number, so n = ab for some a, b > 1. Therefore

n > a and n > b. But n is the smallest integer not equal to a product of

primes, so a and b are both products of primes. Hence n is also a product

of primes. This contradicts our assumption.

(d) Suppose the assertion is false. Consider the smallest number n having

two different canonical decompositions: n = pa11 ·pa22 ·. . .·pamm = qb11 ·qb22 ·. . .·qbkk .

Since n is minimal, none of the numbers pi is equal to any qj , for otherwise
we could divide both sides of the equality by this number and get a smaller

number with two different canonical decompositions. On the other hand, q1
divides pa11 · pa22 · . . . · pamm and therefore, as follows from 1.5.7 (c), q1 divides

one of numbers pi. Since pi is a prime, we have q1 = pi. This contradicts

our assumption.

3. Greatest common divisor (GCD) and least common multi-
ple (LCM) (1)

The integers a and b are said to be relatively prime if they don’t have

common divisors other than ±1.
An integer is said to be the greatest common divisor (GCD) of two

positive integers a and b if it is the greatest number that divides both a and

b. We denote the GCD of a and b by (a, b) or GCD(a, b) or gcd(a, b).

1.3.1. Find all possible values:

(a) (n, 12); (b) (n, n+1); (c) (n, n+6); (d) (2n+3, 7n+6); (e) (n2, n+1).

Lemma 1.3.2. For a �= b the following equality is valid: (a, b) = (|a− b|, b).

1.3.3. (a) (a, b) = b if and only if a is divisible by b.



3. GCD AND LCM 7

(b) The numbers a
(a,b) and b

(a,b) are relatively prime.

(c)∗ The number (a, b) is divisible by any common divisor of a and b.
(d)∗ We have (ca, cb) = c(a, b) for any c > 0.

To solve problems marked with an asterisk, you will need the lemmas

in 1.5.7.

1.3.4. (a) For all positive m and n we have

(2m, 2n) = 2(m,n), (2m+ 1, 2n) = (2m+ 1, n),

(2m+ 1, 2n+ 1) = (2m+ 1,m− n) for m > n.

(b) Binary algorithm. Using the equalities from (a) construct an algorithm

for finding the GCD.

1.3.5.* If a fraction a
b is irreducible, then the fraction a+b

ab is also irreducible.

An integer is said to be the least common multiple (LCM) of two positive

integers a and b if it is the smallest number that is divisible by a and b. We

denote the LCM of a and b by [a, b] or LCM(a, b) or lcm(a, b).

1.3.6. Find [192, 270].

1.3.7. (a) [a, b] = a if and only if a is divisible by b.

(b) The numbers
[a,b]
a and

[a,b]
b are relatively prime.

(c)∗ Any common multiple of a and b is divisible by [a, b].
(d)∗ [ca, cb] = c[a, b] for any c > 0.

Suggestions, solutions, and answers

1.3.1. Answers: (a) 1,2,3,4,6,12. (b) 1. (c) 1,2,3,6. (d) 1,3,9. (e) 1.
Solutions.
(a) The number (12, n) is a positive divisor of 12. Let d|12. The number

d does not have divisors greater than itself, so (12, d) = d. Thus, all positive
divisors of 12 satisfy the condition of the problem.

(b) Let d|n, d|(n+ 1), and d > 0. Then d|(n+ 1− n) = 1, so d = 1.

(c) By Lemma 1.3.2 above, (n, n + 6) = (6, n). Similarly to (a), all

positive divisors of 6 satisfy the condition of the problem.

(d) By Lemma 1.3.2, (2n+3, 7n+6) = (2n+3, 5n+3) = (2n+3, 3n) =
(2n+ 3, n− 3) = (n+ 6, n− 3) = (n+ 6, 9).

Thus, all positive divisors of 9 satisfy the condition of the problem.

(e) Let d > 0 be a common divisor of the numbers n+ 1 and n2. Thus

d|(n + 1)(n − 1) = n2 − 1 by Lemma 1.3.2. So d|(n2 − (n2 − 1)) = 1, and

hence d = ±1.
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1.3.2. The statement follows from the fact that the set of common divisors

of a and b coincides with the set of common divisors of a and a±b. Indeed, if
d|a and d|b then d|(a±b). Conversely, if d|(a±b) and d|a then d|(a±b−a) =
±b.

1.3.3. (a) Let b|a. Since any positive divisor of a nonzero integer n does

not exceed |n|, we have (a, b) = |b|. Conversely, let (a, b) = |b|. Then b|a by

definition.

(b) If d > 0 is a common divisor of a
(a,b) and b

(a,b) , then d · (a, b) is a

common divisor of a and b. If d > 1 this is a contradiction.

(c) Let a > b ≥ 0. In the proof of Lemma 1.3.2 we showed that the set

of common divisors of a and b coincides with the set of common divisors of

a and a± b. Apply the Euclidean algorithm to the pair of numbers a0 = a
and b0 = b (see problem 1.5.9 (b)). The numbers ak and bk obtained in

the kth step are positive. The common divisors of ak and bk coincide with

common divisors of ak − bk and bk. Therefore all common divisors (and, in

particular, the GCD) of all intermediate pairs are the same. At the final step

of the Euclidean algorithm, we see that divisors of the number d = gcd(a, b)
coincide with common divisors of the numbers a and b.

(d) The number c(a, b) is a common divisor of the numbers ca and cb.
To prove this we show that (ca, cb)|c(a, b). Obviously c|ca and c|cb. From

(c) above we conclude that c|(ca, cb), so (ca, cb) = ck for some integer k. The
GCD of two numbers divides each of them, so (ck)|(ca) and (ck)|(cb). Thus
k|a and k|b. From (c) it follows that k|(a, b). Multiplying both sides by c,
we see that (ca, cb)|c(a, b).

4. Division with remainder and congruences (1)

Theorem 1.4.1 (Division with a remainder). (a) For any a and b �= 0 there

exists q such that q|b| ≤ a < (q + 1)|b|.
(b) For any a and b �= 0 there exist unique q and r such that a = bq + r

and 0 ≤ r < |b|. The number q is said to be the quotient and the number r
is said to be the remainder of division of a by b.

1.4.2. (a, b, c) Find the quotients and remainders for

(a) 1996 divided by −17;
(b) −17 divided by 4;

(c) n2 + n+ 1 divided by n+ 1, for any n.
(d) Find all possible quotients and all possible remainders when dividing

57 by some number. (More precisely, assume that 57 = bq + r is division

with remainder. Find the list of all possible q’s and the list of all possible

r’s.)
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Hint. There is a quicker way to do this than dividing 57 by 1, 2, 3, . . . ,
listing all resulting pairs (q, r), and removing identical entries.

1.4.3. Find

(a) the remainder upon dividing 316 by 23;

(b) the last digit of the number 19971997
1997

.

To solve the problem above (among others), it’s useful to be familiar

with the following notion: The integers a and b are said to be congruent
modulo m �= 0 if a − b is divisible by m (or, equivalently, if a and b have

equal remainders upon division by m). This is denoted by a ≡ b (mod m),

or a ≡ b mod m, or a ≡ b (m), or a ≡
m
b.

1.4.4. Properties of congruences: For any a, b,m �= 0 the following

statements are true:

(a) Transitivity: If a ≡ b (m) and b ≡ c (m), then a ≡ c (m).

(b) Addition: If a ≡ b (m) and c ≡ d (m), then a+ c ≡ b+ d (m).

(c) Multiplication: If a ≡ b (m) and c ≡ d (m), then ac ≡ bd (m).

(d) Multiplication by an integer: If a ≡ b (m), then ac ≡ bc (mc) for

any c �= 0.

(e)∗ Division by an integer: If ac ≡ bc (m) and (m, c) = 1, then a ≡
b (m).

1.4.5. (a) Any number is congruent mod 9 and mod 3 to the sum of its

digits.

(b) Formulate and prove similar rules of divisibility for 2, 4, and 11.

1.4.6. The sequence of remainders of an (n = 0, 1, . . .) upon division by

b �= 0 becomes periodic starting from some n.

Hints

1.4.1. (a) Use induction on a going “up” and “down.” The base case when

0 ≤ a ≤ |b| is obvious. If a ≥ |b|, then the inductive step reduces the

assertion to the statement about a− b. If a < 0, then the next step reduces

the assertion to the statement for a+ |b|.
(b) This statement is equivalent to (a).

1.4.3. We have

316 = (32)8 = 98 = (92)4 = 814 ≡ 124 = (122)2 ≡ 62 ≡ 13 mod 23.
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5. Linear Diophantine equations (2)

1.5.1. (a) A grasshopper moves along a line jumping 6 cm or 10 cm in either

direction. What points can it get to?

(b) On the island of Utopia, each week consists of 7 days, and each

month has 31 days. Sir Thomas Moore lived there for 365 days. Was one of

the days necessarily Friday the 13th?

(c) Mike added together the day of his birth multiplied by 12 and the

number of the month of his birth multiplied by 31 and got 670. What is his

birthday? Find all possible solutions!

(d) Solve the equation nx + (2n − 1)y = 3, where n is a given number

(from here on we mean to find a solution in integers).

1.5.2. (a) One can make change for any amount of money greater than 23

yuan using just 5- and 7-yuan coins.

(b)∗ Find the smallest number m such that one can make change for any

amount of money greater than m yuan using 12-, 21-, and 28-yuan coins.

1.5.3. A cue ball is launched from the corner of a billiard table at angle

45◦. Will the ball hit the pin standing at the point (2, 1), if the table is a

rectangle with one of its vertices at the origin of the coordinate plane and

another one at the point

(a) (12, 18); (b) (13, 18)?

1.5.4. The equation 19x+ 17y = 1 has a solution in integers.

1.5.5. Let a and b be integers that are not both equal to 0 and let c ∈ Z.

(a) Theorem. Let both a and b be nonzero. If a pair (x0, y0) is a

solution of ax+ by = c, then the set of all solutions of the equation is{(
x0 +

b

(|a|, |b|) t, y0 −
a

(|a|, |b|) t
)∣∣∣ t ∈ Z

}
.

(b) The equation ax + by = c has a solution if and only if the equation

(a− b)u+ bv = c has a solution.

(c) Theorem. The equation ax+ by = c has a solution if and only if c
is divisible by (a, b).

(d) Construct an algorithm that either finds at least one solution of the

equation ax+ by = c or reports that there are no solutions.

1.5.6. For any a and b not equal to 0 simultaneously, let M = {ax +

by | x, y ∈ Z}.
(a) Any element of M is divisible by the smallest positive element of M .

(b) The smallest positive element of M is equal to (a, b).
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1.5.7. Let a and b be integers that are not both equal to 0 and let c ∈ Z.

(a) GCD representation lemma. There exist x and y such that

ax+ by = (a, b).
(b) Lemma. If (b, c) = 1 and c|ab, then c|a.
(c) Euclid’s lemma. If p is a prime and p|ab, then p|a or p|b.
(d) Lemma. If (b, c) = 1, b|a, and c|a, then bc|a.

1.5.8. (a) Find (291 − 1, 263 − 1).

(b) Find (22
k
+ 1, 22

l
+ 1).

(c) For which a, b, and n is na + 1 divisible by nb − 1?

1.5.9. (a) For any a and b �= 0 we have the equality gcd(a, b) = gcd(b, r),
where r is the remainder on division of a by b.

(b) For a pair of numbers (a0, b0) �= (0, 0), the Euclidean algorithm
constructs the sequence of pairs (ak, bk) by the following rules:

• If bk = 0, set d := ak and halt the algorithm.

• If bk �= 0, set ak+1 := bk and let bk+1 be equal to the remainder when

ak is divided by bk.

Prove that for any pair of numbers (a0, b0) �= (0, 0), the Euclidian algo-

rithm will come to an end and return d = gcd(a0, b0).

1.5.10. Solve the following systems of congruences:

(a)

{
x ≡ −1 (7),

x ≡ 15 (5);
(b)

{
x ≡ 6 (12),

x ≡ 8 (20);
(c)

⎧⎪⎨
⎪⎩

x ≡ 7 (8),

x ≡ 18 (25),

6x ≡ 2 (7).

(d) The Chinese Remainder Theorem. If nonzero integers m1, . . . ,
ms are pairwise relatively prime, then for any integers a1, . . . , as, there exists
x such that x ≡ ai (mi) for all i = 1, . . . , s.

(e) Construct an algorithm for finding x.

Suggestions, solutions, and answers

1.5.1. (a) Answer : The grasshopper can get to all points whose distances

from the starting point are even.

Solution. The grasshopper jumps even distances, so it can move away

from the starting point only by an even distance. To show that it can get to

the point located at a distance 2n to the right of the starting point, make 2n
jumps by 6 to the right and n jumps by 10 to the left, since 6(2n)−10n = 2n.
An analogous argument works for points located to the left of the starting

point.

(b) Consider 7 consecutive months during which Sir Thomas Moore was

on the island, numbered 1 to 7 in the same way as we number days of the



12 1. DIVISIBILITY

week. The number of days in a month has the remainder 3 upon division

by 7. This means that if the 13th day of the ith month is the kth day of

the week, then the 13th day of the (i + 1)th month will be the (k + 3)th

day of the week modulo 7. Therefore, the days of the week of 13th days

of the seven months are k, k + 3, k + 6, k + 2, k + 5, k + 1, k + 4 modulo 7.

This contains all 7 days of the week among them. Thus, one of them will

be Friday.

1.5.2. (a) If 24 ≤ n < 29, we can make change for n yuan as follows:

24 = 2 · 5 + 2 · 7, 25 = 5 · 5, 26 = 5 + 3 · 7, 27 = 4 · 5 + 7, 28 = 4 · 7.
We will prove the problem’s assertion by induction on n. We just proved

it for 24 ≤ n < 29. If n ≥ 29, by the induction hypothesis, we can make

change for n− 5 yuan using 5- and 7-yuan coins.

1.5.5. (c) Assume that a ≥ b > 0 and use induction on a+ b.

1.5.7. (a) The statement follows from 1.5.5 (c), or from 1.5.6 (b) (or can be

proved similarly).

(b) Use part (a).

(c) Use part (b).

Another hint. For fixed numbers p and a ≥ 0, find the smallest positive

number b satisfying the following conditions: p|ab and b is not divisible

by p. It’s clear that if p|ab, then p|a(b − p). Therefore the minimality

of b implies that b ≤ p. Since p|ab, we have ab ≥ p. Consider integers

b, 2b, . . . , (a− 1)b, ab. Among them there is an integer i satisfying (i− 1)b <
p ≤ ib. If p = ib, then b = 1, so p|ab. Now let p ≤ ib. Note that 0 ≤ ib−p ≤ b
and p|a(ib− p). This contradicts the minimality of b.

1.5.8. (a) Prove that (na − 1, nb − 1) = n(a,b) − 1.

1.5.9. (b) If bk �= 0, then for any two consecutive steps, the largest numbers

in a pair will decrease. So at some step the largest number in the pair will

reach its minimal value and the algorithm will halt. Therefore at some step

we will obtain the pair (ak, 0). Consequently, ak = gcd(ak, 0) = gcd(a0, b0).

1.5.10. Answers: (a) x≡ 20 (35); (b) ∅ (empty set); (c) x≡ 943 (1400).

6. Canonical decomposition (2*)

The existence of prime factorization (problem 1.2.8 (a)) implies that for any

number n ≥ 2, there are distinct primes p1, . . . , pm and positive integers

α1, . . . , αm such that n = pα1
1 · . . . · pαm

m . This representation is said to be

the canonical decomposition of the number n. It is uniquely determined up

to the order of the factors (problem 1.2.8 (d)).
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1.6.1. Find the canonical decomposition of the following numbers:

(a) 1995; (b) 17!; (c)
(
22
11

)
.

1.6.2. (a) Lemma. The exponent of a prime p in the canonical decompo-

sition of n! is equal to
∞∑
i=1

[
n
pi

]
.

(b) n! is not divisible by 2n for any n ≥ 1.

(c) How many zeros are there at the end of 1000!?

1.6.3. Let n = pα1
1 · . . . · pαn

n be the canonical decomposition. Find

(a) the number α(n) of all positive divisors of the number n;
(b) the sum s(n) of all positive divisors of the number n;
(c)
∑
d|n
α(d), where the sum is taken over all positive divisors of the

number n.

1.6.4. (a) Suppose that (a, b) = 15 and [a, b] = 840. Find a and b.
(b) Prove that (a, b) · [a, b] = ab.
(c) Express [a, b, c] in terms of a, b, c, (a, b), (b, c), (c, a), and (a, b, c).
(d) Express (a, b, c) in terms of a, b, c, [a, b], [b, c], [c, a], and [a, b, c].
(e)∗ Find expressions similar to the ones above for n integers.

1.6.5. A positive number is said to be perfect if it is equal to the sum of

all of its positive divisors other than itself. Prove that n is an even perfect

number if and only if n = 2p−1(2p − 1), where p and 2p − 1 are primes.

1.6.6. (a) If (a, b) = 1 and ab = m2, then there exist k and l such that

a = k2 and b = l2.
(b) Find n > m > 100 such that 1 + 2 + . . .+ n = m2.

(c) Find all m > n > 1 such that 12 + 22 + . . .+ n2 = m2.

(d) If n > 2, ab = cn, and (a, b) = 1, then a = xn and b = yn for some x
and y.

(e) The integer m(m + 1) is not a power of a prime number for any

m > 1.

1.6.7. (a) If ab = cd, then there exist k, l, m, and n such that a = kl,
b = mn, c = km, and d = ln.

(b) Find all integers a, b, c, d, k, and m such that ab = cd, a+ d = 2k,

and b+ c = 2m.

1.6.8. Find the smallest integer n such that for any set of n numbers between

1 and 200, there are a and b in the set with a|b.
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1.6.9. (a) Let p be a prime and let n < p < 2n. Then
(
2n
n

)
is divisible by p.

(b) The following inequality holds: 22pn+1 > p1 · . . . · pn, where pn is the

nth prime.

(c) Bertrand’s postulate. For any n > 1 there exists a prime between

n and 2n.

Suggestions, solutions, and answers

1.6.1. (a) We have 1995 = 5 · 399 = 5 · 3 · 133 = 5 · 3 · 7 · 19 (= 5 · 7 · 57).
(b) Calculate the exponent of 2 in the canonical decomposition of 17! =

1 · 2 · 3 · . . . · 17. Every second number in this product is divisible by 2, so

we can factor out 28. Then, each fourth number is divisible by 4, providing

an additional factor of 24. Similarly we find two more 2’s in factors of 8 and

one more 2 in factors of 16. Applying this to the other primes yields

17! = 215 · 3
[
17
3

]
+
[
17
9

]
· 5
[
17
5

]
· 7
[
17
7

]
· 11 · 13 · 17 = 215 · 36 · 53 · 72 · 11 · 13 · 17.

(c) Similarly to part (b) we have

11! = 2

[
11
2

]
+
[
11
4

]
+
[
11
8

]
· 3
[
11
3

]
+
[
11
9

]
· 5
[
11
5

]
· 7 · 11 and

22! = 2

[
22
2

]
+
[
22
4

]
+
[
22
8

]
+
[
22
16

]
· 3
[
22
3

]
+
[
22
9

]
· 5
[
22
5

]
· 7
[
22
7

]
· 11
[
22
11

]
· 13 · 17 · 19.

Therefore(
22

11

)
=

22!

11! · 11! = 219−16 ·39−8 ·54−4 ·73−2 ·13 ·17 ·19 = 23 ·3 ·7 ·13 ·17 ·19.

1.6.3. Solve this problem for a prime n, then for n = pα, then for n = p1p2,
and finally for the general case.

1.6.4. Hint. Use the inclusion-exclusion principle and canonical decompo-

sition.

(c) Answer :

[a, b, c] =
a · b · c · (a, b, c)

(a, b) · (b, c) · (c, a) .

1.6.9. A proof can be found in [Tik94]. Most of the technical details there

are not needed if we just want to prove Bertrand’s postulate, rather than

Chebyshev’s theorem. See also [AZ04].

7. Integer points under a line (2*)

The problems in this section investigate the sum

fα(n) =
n∑

k=1

[αk],
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which gives the number of integer points with positive y-coordinate and x-
coordinate between 1 and n that lie under the line y = αx, where α is a

positive real number. An algorithm for rational α is developed in problems

1.7.3 (a, b, c), while problems 1.7.1 and 1.7.2 are useful as warm-ups.

1.7.1. (a) Find f√2(4).

(b) Do there exist numbers α �= β such that fα(n) = fβ(n) for any n?

1.7.2. Find fα(n)
(a) if α is an integer; (b) if 2α is an integer; (c) if 3α is an integer;

(d) if α = u/n for given integers u and n.

(e) Prove that lim
n→∞

fα(n)
n2 exists, and find it. (See the definition of limits

in problem 6.4.2; skip this problem if you are unfamiliar with this concept.)

1.7.3. (a) Prove the equality fα(n) = f{α}(n) +
1
2 [α]n(n + 1) for arbitrary

α and n.
(b) Prove the equality fα(n)+f1/α([nα])− [n/q] = n[nα], where q is the

denominator of the irreducible fraction representing α if α is rational, and

q =∞ (i.e., [n/q] = 0) if α is irrational.

(c) Construct an algorithm for calculating fα(n) for rational α, using
(a) and (b).

(d) Find the complexity of that algorithm, that is, the number of oper-

ations of addition and multiplication in the algorithm, and compare it with

the complexity of the straightforward calculation of fα(n).

(e) Find an algorithm for calculating the sum
n∑

k=1

{αk} for a rational α.

Remark 1.7.4. The special case of the equality in 1.7.3 (b) for odd positive

relatively prime numbers p < q, α = p/q, and n = (q − 1)/2 (then [nα] =
(p − 1)/2) appears in the proof of the quadratic reciprocity law (see the

solution of problem 2.4.5 (d)). The proof in the general case is similar.

The sum from 1.7.3 (e) was calculated (in a more cumbersome way than

proposed here) in [Dob04].

Suggestions, solutions, and answers

1.7.2. (a) We have
n∑

k=1

[αk] = α
n∑

k=1

k = α · n(n+1)
2 .

(b) For integer α see (a). For half-integers (α = q/2 where q is odd) we

have

[α] + [2α] + [3α] + . . .+ [nα]

=
(
α− 1

2

)
+ 2α+

(
3α− 1

2

)
+ . . . = α · n(n+ 1)

2
−
[n+ 1

2

]
.
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There are other ways to write this sum, for example

[α]
n(n+ 1)

2
+ {α}n

2 + (−1)n
2

.

(c) For integer α see (a). If α is not an integer we have

fα(n) =

⎧⎨
⎩α ·

n(n+1)
2 −

[
n+1
3

]
, n �= 3k + 1;

α · n(n+1)
2 −

[
n
3

]
− {α}, n = 3k + 1.

Hint. If α is not an integer, we have

[α] + [2α] + [3α] = α+ 2α+ 3α− 1

3
− 2

3
= (1 + 2 + 3)α− 1.

Solutions to (a), (b), (c), and (d) can be obtained using Pick’s formula.

See [Sop].

(e) Answer : α/2.

1.7.3. (a) We have

fα(n) =
n∑

k=1

[αk] =
n∑

k=1

[([α] + {α}) · k] =
n∑

k=1

[[α]k + {α}k]

=

n∑
k=1

([α]k + [{α}k]) =
n∑

k=1

[α]k +
n∑

k=1

[{α}k]

= [α]
n∑

k=1

k + f{α}(n) = [α]
n(n+ 1)

2
+ f{α}(n).

(b) Calculate the number of integer points in the rectangular region

1 ≤ x ≤ n, 1 ≤ y ≤ [nα]. The details are similar to the solution of problem

2.4.5 (d).

(c) For example,

f2/3(n) = n
[2n
3

]
+
[n
3

]
− f3/2

([2n
3

])
;

f3/2

([2n
3

])
=

1

2

[2n
3

]([2n
3

]
+ 1
)
+ f1/2

([2n
3

])
;

f1/2

([2n
3

])
=
[2n
3

][n
3

]
+
[n
3

]
− f2

([n
3

])
,

since [[x]/n] = [x/n] for an integer n > 0 and so

[[
2n
3

]
2

]
=
[
n
3

]
;

f2

([n
3

])
=
[n
3

]([n
3

]
+ 1
)
.



Chapter 2

Multiplication modulo p

The results in this chapter used in the rest of the book are the Euler–

Fermat Theorem (problems 2.1.1 and 2.1.5) and the Primitive Root Theorem

(problem 2.5.6 (b)). However, to use the Primitive Root Theorem it is not

necessary to understand its proof.

In this chapter all variables are integers or residues modulo a prime (the

exact meaning of the term will be clear from the context).

1. Fermat’s Little Theorem (2)

2.1.1. (a) Let Z97 = {0, 1, . . . , 96}. Define the mapping f : Z97 → Z97 as

follows: f(a) is the remainder on division of the number 14a by 97. Then f
is a one-to-one correspondence.

Discussion. It is sufficient to prove either surjectivity or injectivity. Usu-

ally one proves injectivity. This proof is usually based on Lemma 1.5.7 (b),

whose proof in turn stems from the solvability of the equation 97x+14y = 1,

which immediately implies surjectivity.
(b) The following congruence holds: (14 · 1) · (14 · 2) · . . . · (14 · 96) ≡ 96!

(mod 97).

(c) The following congruence holds: 1496 ≡ 1 (mod 97).

(d) Fermat’s Little Theorem. If p is prime, then np − n is divisible

by p for any integer n.
Alternative formulation. If p is a prime and n is not divisible by p, then

np − 1 is divisible by p.
(e) For prime p,

(
p
k

)
is divisible by p for all k = 1, 2, . . . , p− 1. (This can

be used for another proof [by induction] of Fermat’s Little Theorem.)

2.1.2. Find the remainder upon division of

(a) 2100 by 101; (b) 3102 by 101; (c) 8900 by 29;

(d) 32000 by 43; (e) 760 by 143; (f) 260 + 650 by 143.

2.1.3. (a) If p is a prime and p > 2, then 7p − 5p − 2 is divisible by 6p.
(b) The number 1 . . . 1 consisting of 2002 ones is divisible by 2003.

17
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(c) If p and q are different primes, then pq + qp− p− q is divisible by pq.
(d) The number 30239 + 23930 is composite.

(e) If p is a prime, then the length of the period of the decimal expansion

of the fraction 1/p divides p− 1.

2.1.4. For a prime p and an integer (or a residue) a not divisible by p, the
smallest number k > 0 such that ak ≡ 1 (mod p) is called the order of a
modulo p and is denoted by ord a = ordp a. In other words,

ord a = ordp a := min{k ≥ 1 | ak ≡ 1 (mod p)}.
(a) The set {m ≥ 0 | am ≡ 1 (mod p)} consists of non-negative multiples

of ord a.
(b) If am ≡ an (mod p), then m− n is divisible by ord a.
(c) Lemma. The number p− 1 is divisible by ord a.
(d) If ordx and ord y are relatively prime, then ord(xy) = ordx · ord y.
(e) Let a and x be any integers, and let p be any prime number. Is it

true that a ordp x
a = ordp x?

Notice that we can define division and negative powers modulo a prime.

Statements analogous to 2.1.4 (a, b) hold for negative powers.

2.1.5. In these problems, p, q, p1, . . . , pk denote different prime numbers.

(a) If p �= q and n is divisible neither by p nor by q, then n(p−1)(q−1)− 1

is divisible by pq.
(b) If n is not divisible by p, then np

α(p−1) − 1 is divisible by pα+1.

(c) Euler’s Theorem. If n is relatively prime to m = pα1
1 · . . . · pαk

k and

ϕ(m) := (p1− 1)pα1−1
1 · . . . · (pk− 1)pαk−1

k , then nϕ(m)− 1 is divisible by m.

(d) The number ϕ(m) is equal to the number of integers between 1 and

m that are relatively prime to m.

2.1.6. (Challenge.) Let n be an odd integer between 3 and 47 that is not

divisible by 5. How can we quickly calculate the unknown n if we know

n7 mod 50?

The solution of this challenge shows why cryptography requires efficient

ways to find the prime decomposition of a number or to recognize if a number

is prime.

Suggestions, solutions, and answers

2.1.1. (a) 14 · 7k ≡ k (mod 97).

(b) (14 · 1) · (14 · 2) · . . . · (14 · 96) ≡ f(1) · f(2) · . . . · f(96) = 96! mod 97.

(c) Cancel out 96! from the equality in (b) .

2.1.2. Answers: (a) 1; (b) 9; (c) 7; (d) 15; (e) 1; (f) 24.
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2.1.6. n ≡ (n7)3 mod 50.

2. Primality tests (3*)
By S.V.Konyagin

2.2.1. If 2m − 1 is prime, then the number m is prime.

2.2.2. (a) If 22
n
+ 1 is divisible by d, then d− 1 is divisible by 2n+1.

(b)∗ Using the equality 641 = 54 + 24 = 1 + 5 · 27, prove that 22
5
+ 1 is

composite.

2.2.3. (a) Let p > 2 be prime. If 2p − 1 is divisible by d, then d − 1 is

divisible by 2p. In other words, any divisor of the number 2p − 1 has the

form 2kp+ 1.

(b) If p > 2 is prime and a is not divisible by p, then a(p−1)/2 ≡ ±1 mod

p.
(c) If n− 1 is divisible by 2s and a(n−1)/2 + 1 is divisible by n for some

a, then any prime divisor of n has the form 2sk + 1.

(d) If n = 2sk + 1, k ≤ 2s, and a(n−1)/2 ≡ −1 mod n for some a, then n
is prime.

We obtained a sufficient condition for primality for numbers of a special

type. Notice that if the number n = 2sk+1 is actually prime, then as a rule it

is possible to find a number a satisfying the congruence a(n−1)/2 ≡ −1 mod n
by a small search.

2.2.4. Fermat’s Little Theorem is not a sufficient condition for primality.
(a) If p ≥ 5 is prime, then n = (22p − 1)/3 is composite, but 2n−1 ≡

1 mod n.
(b)∗ Find at least one composite number n such that for any integer a,

the equality (a, n) = 1 implies that an−1 ≡ 1 mod n.

2.2.5. The Lucas test. A number n = 2m − 1 > 3 is a prime if and only

if m > 2 is a prime and Mm−1 is divisible by n. Here the Lucas sequence is

defined by the formulas M1 = 4 and Mk =M2
k−1 − 2.

The proof is outlined in the following problem. Before trying to solve it

you may find it useful to solve problems 2.4.1–2.4.4 with the help of hints

from S.V.Konyagin.

2.2.6. Let p ≥ 5 be a prime number. Define x±k = (2 +
√
3)k ± (2−√

3)k,

X+ = {k : x+k ≡ 0 mod p}, and X− = {k : x−k /
√
3 ≡ 0 mod p}.
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(a) For any integer k, x+k and x−k /
√
3 are integers.

(b) If z1, z2 ∈ X+, then z1 + z2 ∈ X−.
(c) If z1, z2 ∈ X−, then z1 + z2 ∈ X−.
(d) If z1 ∈ X+ and z2 ∈ X−, then z1 + z2 ∈ X+.

(e) Either p+ 1 ∈ X− or p− 1 ∈ X−.
(f) If X+ �= ∅ and z is the smallest positive element of the set X+, then

X+ = {(2k + 1)z} where k runs through the set of integers and z < p.
(g) If k is a prime, then Mk = x+

2k−1 .

Hints

2.2.4. (b) Consider integers of the form n = pqr, where p, q, and r are

distinct primes.

Suggestions, solutions, and answers

2.2.2. (a) If d1 ≡ d2 ≡ 1 mod 2n+1 then d1d2 ≡ 1 mod 2n+1. Therefore we

can assume that d is prime. The number 22
n+1 − 1 is divisible by d and

22
n − 1 is not. Therefore ordd 2 (see the definition of ordp in problem 2.1.4)

divides 2n+1 and does not divide 2n. Thus, ordd 2 = 2n+1, and ordd 2 divides

d− 1.

2.2.3. (b) Note that

ap−1 − 1 =
(
a

p−1
2
)2 − 1 =

(
a

p−1
2 − 1

)(
a

p−1
2 + 1

)
is divisible by p by Fermat’s Little Theorem. Therefore, one of the two

factors a
p−1
2 − 1 and a

p−1
2 + 1 is divisible by p.

(c) Let p be a prime divisor of n. Let t be non-negative and let l be
an odd number such that ordp a = 2tl (see the definition in problem 2.1.4).

From 2.1.4 (c), p− 1 is divisible by ordp a = 2tl. Therefore it is sufficient to

show that t ≥ s.
According to the statement of problem 2.1.4 (c), n− 1 = 2sk is divisible

by ordp a = 2tl. Therefore, l divides k. If t < s then 2tl divides (n− 1)/2 =

2s−1k. Therefore a
n−1
2 ≡ 1 mod p, contradicting the fact that n divides

a
n−1
2 + 1.

(d) If n is composite, then it has a prime divisor p ≤ √
n. From (c)

it follows that p ≥ 2s + 1, and thus n ≥ (2s + 1)2. This contradicts the

condition n = 2sk + 1 ≤ (2s)2 + 1.

2.2.4. (a) Clearly 2p = 2 · (22) p−1
2 ≡ 2 mod 3. Therefore n =

(2p+1)(2p−1)
3

is composite. Since 22p = 22 · (2p−1)2 ≡ 4 mod p, we see that 22p − 4

is divisible by 2p. Since p > 3, n − 1 = (22p − 4)/3 is also divisible by 2p.

Consequently, 2n−1 = (22p)
n−1
2p ≡ 1 mod (22p−1). Thus, 2n−1−1 is divisible

by 22p − 1 = 3n.
(b) Answer : For example, n = 561.
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3. Quadratic residues (2*)

The goal of the problems in this section is to motivate and illuminate the

problem of solvability of the congruence x2 ≡ a (mod p), where p is an odd

prime.

2.3.1. (a) What are possible remainders when a perfect square is divided

by

3, 4, 5, 6, 7, 8, 9, and 10?

(b) If a2 + b2 is divisible by 3 (by 7), then a and b are divisible by 3 (by

7).

(c) A number of the form 4k + 3 is not representable as a sum of two

squares.

(d) There are infinitely many numbers not representable as sums of three

squares.

2.3.2. Solve the following equations in integers.

(a) x21 + x22 + x23 + x24 + x25 = y2 (in odd numbers);

(b) 3x = 5y2 + 4y − 1;

(c) x2 + y2 = 3z2;
(d) 2x + 1 = 3y2;
(e) x2 = 2003y − 1;

(f) x2 + 1 = py, where p = 4k + 3.

2.3.3. (a) If the prime p = 4k + 3 divides a2 + b2, then p|a and p|b.
(b) If the canonical decomposition of a number contains a prime factor of

the form 4k+3 with an odd exponent, then this number cannot be expressed

as the sum of two squares.

(c)∗ The equation x2 + 1 = py is solvable in integers if p = 4k + 1 (and

not solvable if p = 4k + 3).

(d)∗ Any prime number of the form 4k+1 can be expressed as a sum of

two squares.

(e)∗ If every prime factor of the form 4k+3 in the canonical decomposi-

tion of a number has an even exponent, then the number can be expressed

as a sum of two squares.

(f) There are infinitely many primes of the form 4k + 1.

A very short proof of part (d) was given by Don Zagier in [Pra07a].

2.3.4. (Challenge.) Reduce the equation py = at2 + bt + c, a �= 0, to the

congruence x2 ≡ k (mod p).
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A residue a �= 0 is said to be a quadratic residue (quadratic nonresidue)
modulo p if the congruence x2 ≡ a (mod p) is solvable (not solvable).

2.3.5. (a) Give an example of a and p such that a and −a are both quadratic

residues modulo p.
(b) If a is not divisible by p, then the congruence x2 ≡ a2 (mod p) has

exactly two solutions.

(c) Lemma. The number of quadratic residues is equal to the number

of quadratic nonresidues and is equal to
p−1
2 .

2.3.6. (a) Lemma. For any a �= 0 there exists a unique b such that ab ≡ 1

(mod p).
Notation: b = a−1.

(b) Solve the congruence x ≡ x−1 (mod p).
(c) Wilson’s Theorem. The number (p− 1)! + 1 is divisible by p.

2.3.7. (a) If a �= 0 is a quadratic residue, then a−1 is also a quadratic

residue.

(b) The number of quadratic residues is even if and only if −1 is a

quadratic residue.

Lemma 2.3.8. (a) The product of two quadratic residues is a quadratic

residue.

(b) The product of a quadratic residue and a quadratic nonresidue is a

quadratic nonresidue.

(c) The product of two quadratic nonresidues is a quadratic residue.

Hints

2.3.3. (c) If you have difficulty, come back to this problem after you have

studied this section.

(e) Use the statement (d) without proof.

Suggestions, solutions, and answers

2.3.1. (a) Answer : The squares have the following remainders upon division

by 3: 0, 1; by 4: 0, 1; by 5: 0, 1, 4;

by 6: 0, 1, 3, 4; by 7: 0, 1, 2, 4; by 8: 0, 1, 4;

by 9: 0, 1, 4, 7; by 10: 0, 1, 4, 5, 6, 9.

Solution. It is sufficient to find squares of the remainders. Notice that

0 and 1 are squares modulo any number. Also, note that k2 and (−k)2



4. THE LAW OF QUADRATIC RECIPROCITY (3*) 23

have the same remainder on division by n, so we need only consider k2 for

2 ≤ k ≤ n/2. We have

22 ≡ 0 mod 4; 22 ≡ 4 mod 5;

22 ≡ 4, 32 ≡ 3 mod 6; 22 ≡ 4, 32 ≡ 2 mod 7;

22 ≡ 4, 32 ≡ 1, 42 ≡ 0 mod 8; 22 ≡ 4, 32 ≡ 0, 42 ≡ 7 mod 9;

22 ≡ 4, 32 ≡ 9, 42 ≡ 6, 52 ≡ 5 mod 10.

(b:3) Considering divisibility by 3, assume the opposite. Then, accord-

ing to (a), the remainders upon division by 3 of a2 and b2 are both equal to

1. Therefore a2 + b2 is not divisible by 3.

(b:7) Considering divisibility by 7, assume the opposite. By (a), the

remainder upon division by 7 of a2 is equal to 1, 2, or 4. Then the remainder

upon division by 7 of b2 is equal to 6, 5, or 3 respectively. This contradicts

(a).

(c) By (a), the remainder upon division by 4 of x2 is equal to 0 or 1.

Thus, the remainder upon division by 4 of the sum of two squares is equal

to 0, 1, or 2.

2.3.2. (b) Answer : {(3k − 1, 15k2 − 6k)} = {(3k + 2, 15k2 + 24k + 9)}.

(e, f) Use Fermat’s Little Theorem.

2.3.5. (c) The number of quadratic residues does not exceed
p−1
2 , because

a2 ≡ (−a)2(p).
Suppose that there exist 1 ≤ l < k ≤ p−1

2 such that k2 ≡ l2 (mod p).

Then one of the numbers k − l and k + l is divisible by p. But 0 < k − l <
k + l < p, a contradiction. Consequently, the number of residues is exactly

equal to
p−1
2 , and the number of nonresidues is p− 1− p−1

2 =
p−1
2 .

2.3.8. (c) In contrast to (a) and (b) we do not employ a direct proof. Use

(a), (b), and Lemma 2.3.5 (c).

4. The law of quadratic reciprocity (3*)

Here we build on the previous section to develop an algorithm for determin-

ing the solvability of the congruence x2 ≡ a (mod p) for a prime p.

2.4.1. If the number p = 8k + 5 is a prime, then

(a) 24k+2 ≡ −1 (mod p);
(b) the equation x2 − 2 = py is not solvable in integers.

2.4.2. If the number p = 8k + 1 is a prime then

(a) 24k ≡ 1 (mod p);
(b) The equation x2 − 2 = py is solvable in integers.
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2.4.3. (a) If the number p = 8k ± 1 is a prime, then 2(p−1)/2 ≡ 1 (mod p).

(b) If the number p = 8k ± 3 is a prime, then 2(p−1)/2 ≡ −1 (mod p).
(c) For which primes p is the equation x2 − 2 = py solvable in integers?

2.4.4. (a) If the number p = 12k± 1 is a prime, then 3(p−1)/2 ≡ 1 (mod p).

(b) If the number p = 12k ± 5 is a prime, then 3(p−1)/2 ≡ −1 (mod p).
(c) For which primes p is x2 − 3 = py solvable in integers?

2.4.5. For each residue a and odd prime p we define the Legendre symbol(a
p

)
:=

{
+1 if a is a quadratic residue modulo p;
−1 if a is a quadratic nonresidue modulo p.

For example,
(
2
p

)
= (−1)(p2−1)/8 by problem 2.4.3 and

(
ab
p

)
=
(
a
p

)(
b
p

)
by

problem 2.3.8.

(a) Euler’s criterion. The following congruence holds:(a
p

)
≡ a

p−1
2 (mod p).

(b) Gauss’s lemma. The following equation holds:

(a
p

)
= (−1)

(p−1)/2∑
x=1

[ 2ax
p

]
.

(c) For any odd number a, the following equation holds:

(a
p

)
= (−1)

(p−1)/2∑
x=1

[ax
p
]
.

(d) The law of quadratic reciprocity. If p and q are odd primes,

then (q
p

)
= (−1) p−1

2
· q−1

2

(p
q

)
.

(e) Devise an algorithm for calculating
(
a
p

)
and estimate its complexity

(complexity is defined in problem 1.7.3 (d)).

2.4.6. If p is a prime and n and a are integers with n > 0, then the con-

gruence xn ≡ a (mod p) has no more than n solutions. (If you cannot solve

this problem, see problem 3.3.5 (f).)

Suggestions, solutions, and answers

Solutions of problems 2.4.1 (a), 2.4.2 (a), and 2.4.5 are based on K.Oganes-

yan’s texts.
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2.4.1. (a) Let X := {1, 2, . . . , 4k+2}−{2 · 1, 2 · 2, . . . , 2(2k+1)}. Then the

sets of remainders upon division by p = 8k+5 in the sets {2(2k+2), 2(2k+
3), . . . , 2(4k+2)} and −X coincide. Therefore 24k+2 · (4k+2)! ≡ −(4k+2)!

(mod p).
In other words,

(8k + 4)! ≡ 24k+2 · 1 · 2 · . . . · (4k + 2) · 1 · 3 · . . .
· (8k + 3)24k+2(4k + 2)! · (−1)2k+1(8k + 5− 1)(8k + 5− 3) · . . .
· (8k + 5− (4k + 1)) · (4k + 3)(4k + 5) · . . . · (8k + 3)

≡ 24k+2(−1)(8k + 4)! (mod p).

Note: Solutions to problems 2.4.2(a), 2.4.3(a, b), 2.4.4(a, b), 2.4.5(b)

are similar to the solution of problem 2.4.1(a).

2.4.2. (a) We have

−(8k)! ≡ −24k · 1 · 2 · . . . · 4k · 1 · 3 · . . .
· (8k − 1)(−1)24k(4k)! · (−1)2k(8k + 1− 1)(8k + 1− 3) · . . .
· (8k + 1− (4k − 1)) · (4k + 1)(4k + 3) · . . . · (8k − 1)

≡ −24k(−1)2k(8k)! (mod p).

2.4.3. (c) Answer : p = 8k ± 1.

2.4.4. (c) Answer : p = 12k ± 1.

2.4.1 (a), 2.4.2 (a), 2.4.3 (a, b). Hint (by S.V.Konyagin). Let z =

(1 + i)
√
2/2. Then (z + 1/z)p − (zp + 1/zp) can be expressed in the form

p(A+B
√
2), where A and B are integers.

2.4.4. (a, b) Hint (by S.V.Konyagin). Let z = (1 + i
√
3)/2. Then (z +

1/z)p− (zp +1/zp) can be written in the form p(A+B
√
3), where A and B

are integers.

2.4.5. (a) Denote by R (respectively, Q) the product of all residues (re-

spectively, nonresidues) modulo p. If a is a quadratic nonresidue, then

a
p−1
2 R ≡ Q (mod p). From problem 2.3.7 (a) we have R ≡ ±1 (mod p).

ThenWilson’s Theorem yieldsQ ≡ −R (mod p). Thus, a
p−1
2 ≡ −1 (mod p).

(a) Another solution. Suppose, to the contrary, that a is a quadratic

nonresidue, and a
p−1
2 ≡ 1 (mod p). Then the polynomial x

p−1
2 − 1 over Zp

has more than
p−1
2 roots, contradicting 2.4.6.1

(c) Use the equalities
(
a
p

)
=
(
2
p

)( a+p
2
p

)
and

(
2
p

)
= (−1) p2−1

8 .

1See p. xx for a definition of Zp.
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(d) From (c) we have
(
p
q

)(
q
p

)
= (−1)

(q−1)/2∑
x=1

[
px
q

]
+

(q−1)/2∑
y=1

[
py
p

]
. It is sufficient

to show that the following equality holds:

(q−1)/2∑
x=1

[px
q

]
+

(q−1)/2∑
y=1

[py
p

]
=

(p− 1)(q − 1)

4
.

To prove it, consider the rectangle 1 ≤ x ≤ p−1
2 , 1 ≤ y ≤ q−1

2 . On the

straight line y = qx/p there are no integer points. Since the number of

integer points over the given line with the ordinate y is equal to [py/q], the
total number of integer points over the line inside of the rectangle is equal

to
(q−1)/2∑
x=1

[
px
q

]
. Similarly, the number of integer points under the given line

inside the rectangle is equal to
(q−1)/2∑
y=1

[
py
p

]
. The total number of integer

points inside the considered rectangle is (p− 1)/2 · (q − 1)/2.
(e) Use (a, b, c, d) above.

5. Primitive roots (3*)

2.5.1. Let a and b be relatively prime to m. Formulate and justify an algo-

rithm for solving the congruence ax ≡ b (mod m) for m ∈ {2, 3, 4, 5, 6, 7}.
(Analysis of similar congruences is one of the main motivations for this
section.)

2.5.2. (a) If (a, 35) = 1, then a12 ≡ 1 (mod 35).

(b) If m is divisible by two different odd prime numbers and (a,m) = 1,

then a
ϕ(m)

2 ≡ 1 (mod m).2

Let (g,m) = 1. A residue g is said to be a primitive root modulo m if

g1, g2, . . . , gϕ(m) ≡ 1 are distinct (mod m). For example,

• 2 is a primitive root modulo 5 but 4 is not;

• from 2.5.2 (b) we see that if m is divisible by two different odd prime

numbers, then there does not exist a primitive root modulo m.

2.5.3. Prove the existence of a primitive root modulo a prime for primes of

the following forms:

(a) 257; (b) 2l + 1; (c) 2k · 3l + 1; (d) 151; (e) 2k · 3l · 5m + 1.

2Recall that ϕ(m) is defined to be the number of positive integers less than or equal

to m that are relatively prime to m (see p. 18).
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There is a simple way of solving (a), (b), and (c) that does not extend

to (d) and (e). We will show how to solve (d) and (e) by examples.

2.5.4. (a) The residue g is a primitive root modulo 97 if and only if neither

g3 nor g32 is congruent to 1 modulo 97.

(b) The congruence x3 ≡ 1 (mod 97) has exactly 3 solutions.

(c) The congruence x32 ≡ 1 (mod 97) has exactly 32 solutions.

(d) There exists a primitive root modulo 97.

(e) The number of primitive roots modulo 97 is equal to 63.

2.5.5. (a) The residue g is a primitive root modulo 151 if and only if neither

g30 nor g50 nor g75 is congruent to 1 modulo 151.

(b) The congruence xk ≡ 1 (mod 151) has exactly k solutions for k ∈
{30, 50, 75}.

(c) The following equivalence holds:

{
x30 ≡ 1 (mod 151)

x50 ≡ 1 (mod 151)
⇐⇒ x10 ≡ 1 (mod 151).

(d) There exists a primitive root modulo 151.

(e) The number of primitive roots modulo 151 is equal to 40.

2.5.6. (a) If p is a prime and p − 1 is divisible by d, then the congruence

xd ≡ 1 (mod p) has exactly d solutions.

(b) Primitive Root Theorem. For any prime p there exists a number

g such that the residues modulo p of g1, g2, g3, . . . , gp−1 = 1 are distinct.

(c) How many primitive roots are there modulo a prime p?

Suggestions, solutions, and answers

2.5.3. (b) If there is no primitive root, then the congruence x2
l−1 ≡ 1

(mod p) has p− 1 = 2l > 2l−1 solutions.

2.5.6. (a) Notice that the polynomial xp−1 − 1 over Zp has exactly p − 1

roots and is divisible by xd − 1. Prove that if a polynomial of degree a
has exactly a roots and is divisible by a polynomial of degree b, then the

polynomial of degree b has exactly b roots.
Another solution may by obtained by noticing that if p = kd then for

any a the congruence yk ≡ a (mod p) has no more than k solutions.

(c) Answer : ϕ(p− 1).
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6. Higher degrees (3*)
By A.Ya.Kanel-Belov and
A.B. Skopenkov

2.6.1. (a) For each integer n and each odd k, the number k2
n−1 is divisible

by 2n+2.

(b) For any integer n, 23·7
n − 1 is divisible by 7n+1.

2.6.2. For which numbers a it is true that

(a) 2a − 1 is divisible by 3100; (b) 2a + 1 is divisible by 3100;

(c) 5a − 1 is divisible by 2100; (d) 2a − 1 is divisible by 5100?

Statement 2.6.1 (a) means that for any n ≥ 3 there are no primitive roots

modulo 2n (see the definition in section 5). The answers to problem 2.6.2(a,

d, c) and statement 2.6.1(b) mean that for any number n, 2 is a primitive

root modulo 3n and modulo 5n, but 5 and 2 are not primitive roots modulo

2n and modulo 7n.

2.6.3. (a) Find a primitive root modulo 7100.

(b) Theorem. Primitive roots exist only for moduli 2, 4, pn, and 2pn.

2.6.4. Let p > 2 be prime and g a primitive root modulo p, and suppose

that gp−1 − 1 is not divisible by p2. Then g is a primitive root modulo

(a) p2; (b) p3; (c) pn for any n.

2.6.5. Let p > 2 be prime.

(a) If g is a primitive root modulo p, then one of gp−1−1 or (g+p)p−1−1

is not divisible by p2.
(b) If g is a primitive root modulo p2, then g is a primitive root modulo

pn for any n.
(c) For any positive integer n, there exists a primitive root modulo pn.
(d) The same is true for modulo 2pn.

2.6.6. Lemma about increasing the exponent. Let p be prime, with

p > 2 or n > 1, and let q not be divisible by p. Also, suppose that x− 1 is

divisible by pn but not by pn+1. Then

(a) the number xq − 1 is divisible by pn, but not by pn+1;

(b) the number xp − 1 is divisible by pn+1, but not by pn+2;

(c) the number xp
kq − 1 is divisible by pn+k, but not by pn+k+1. (A

closely related statement is called Hensel’s lemma.3)

3Hensel’s lemma allows one to “lift” a solution x of f(x) ≡ 0 (mod pk−1) to a new

solution y of f(y) ≡ 0 (mod pk), where p is a prime and f a polynomial with integer
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2.6.7. Find the length of the period of the decimal expansion of the fractions

(a) 1/3100; (b) 1/7100.

2.6.8. (a) Each cyclic permutation of the digits in the period of the fraction

1/7 = 0.(142857) yields the fractions 1/7, 2/7, 3/7, 4/7, 5/7, and 6/7.
Generalize this to all fractions 1/p with period length p− 1.

(b) Find all values of the remainders when 10k is divided by 3100.

(c) Prove that any combination of 20 consecutive digits can be found in

the decimal expansion of 1/3100.

2.6.9. Find an integer n such that among the last 1000 digits of the number

2n one can find 100 consecutive (a) zeros; (b)∗ nines.

2.6.10. Same questions as in 2.6.9 for 5n.

Hints

2.6.2. (a) 22 = 1 + 3. (b) Use the result from part (a). (c) 5 = 22 + 1.

Suggestions, solutions, and answers

2.6.2. (a) Answer : For 2 · 399|a.

Hint. It’s sufficient to prove that 22·3
k
is the smallest nonzero degree

of 2 which has remainder 1 when divided by 3k+1. This follows from the

congruence 22·3
k ≡ 3k+1 + 1 (mod 3k+2). We can prove this congruence by

induction on k. The base case k = 0 is easily verified. Now suppose that the

congruence is true for k ≥ 0. Then 22·3
k
= t3k+1 + 1, where t ≡ 1 (mod 3).

Therefore

22·3
k+1

= (22·3
k
)3 = t333k+3 + t232k+3 + t3k+2 + 1 ≡ 3k+2 + 1 (mod 3k+3).

Hint for another solution. By induction on k prove that min{a : 2a ≡ 1

(mod 3k)} = 2 · 3k−1 and 22·3
k−1 − 1 is not divisible by 3k+1.

(c) Answer : For 298|a.
Hint. It is enough to prove that 52

k
is the smallest nonzero degree of

the number 5 that has remainder 1 upon division by 2k+2. This follows from

the congruence 52
k ≡ 2k+2 + 1 (mod 2k+3). We can prove this congruence

by induction on k. The base case k = 0 is easily verified. Suppose the

coefficients. More precisely, if p and f ′(x) are relatively prime, then y = x+upk−1, where

k satisfies f(x)/pk−1 + uf ′(x) ≡ 0 (mod p) and f ′ is the derivative of f (see p. 113).
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congruence is true for k ≥ 0. Then 52
k
= t2k+2+1, where t is odd. Therefore

52
k+1

= (52
k
)2 = t222k+4 + t2k+3 + 1 ≡ 2k+3 + 1 (mod 2k+4).

(d) Answer : For 4 · 599|a.



Chapter 3

Polynomials and complex numbers

Results in this chapter to be used later in the book are Bezout’s Theo-

rem and its applications (problems 3.3.4 (a, b) and 3.3.5), the trigonometric

form of complex numbers (problem 3.5.4), and a few simple facts (e.g., prob-

lem 3.3.3).

In this section, “solve the equation or inequality” means “find all real so-
lutions.” Those not familiar with trigonometric functions may skip problems

whose formulation involves such functions.

1. Rational and irrational numbers (1)

A number is called rational if it is a quotient of two integers, and otherwise

is called irrational.1

3.1.1. Are the following numbers rational?

(a)
√
2;

(b)
n
√
k, where the integer k ≥ 2 is not the nth power of an integer;

(c)
√
2 +

√
3;

(d)
7

√
1 +

3
√
2 +

√
3;

(e)
√
2+

√
3√

2−
√
3
+ 2

√
6;

(f)
√

3 + 2
√
2−√

2;

(g)
3
√√

5 + 2− 3
√√

5− 2;

(h)
√
2 +

3
√
2;

(i)
√
2 +

√
3 +

√
5;

(j)
√
p1 + . . .+

√
pn, where p1, . . . , pn are different prime numbers.

3.1.2. The numbers
√
2,
√
3, and

√
5 are not members of any arithmetic

progression (in any order; not even non-consecutive members).

Theorem 3.1.3. Let A(x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0 be a poly-

nomial with integer coefficients.

1Recall that the set of rational numbers is denoted by Q (see p. xx).

31
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(a) On integer roots. If A(p) = 0 for an integer p �= 0, then p divides

a0.
(b) On rational roots. If A(p/q) = 0 for an irreducible fraction p/q �=

0, then p divides a0 and q divides an.
(c) If A(p/q) = 0 for an irreducible fraction p/q, then for any integer k

the number A(k) is divisible by p− kq.

3.1.4. Are the following numbers rational?

(a) cos 60◦; (b) sin 60◦; (c) cos 36◦; (d) cos 20◦;
(e) sin 10◦; (f) cos(2π/7); (g)* arccos(13)/π.

3.1.5. Prove the following equalities assuming that the angles α, 2α, 3α, β,
α+ β, and α− β are acute.

(a) cos 2α = 2 cos2 α− 1;

(b) sin 2α = 2 sinα cosα;
(c) cos(α+ β) = cosα cosβ − sinα sinβ;
(d) sin(α+ β) = sinα cosβ + cosα sinβ;
(e) cos 3α = 4 cos3 α− 3 cosα;
(f) sin 3α = 3 sinα− 4 sin3 α;
(g) cos(α+ β) + cos(α− β) = 2 cosα cosβ.

3.1.6. (a) For any n there is a polynomial Tn with integer coefficients such

that Tn(cosx) = cosnx for any x.
(b) Find the constant term of the polynomial Tn.
(c) Find the leading term of the polynomial Tn.

3.1.7. For which integersm and n is each of the following numbers rational?

(a) cos(2π/n); (b) cosn◦; (c) cos(2πm/n).

Suggestions, solutions, and answers

3.1.1. Answers: (a, b, c, d, h) No; (e, f, g) Yes.

Hints. (a) Assume the opposite: suppose
√
2 = p/q, where p/q is an

irreducible fraction. Square the equation and multiply both sides by q2,
thus getting 2q2 = p2. Since p and q are integers, we conclude that p is

even. Thus, p = 2r, where r is an integer. Substitute this into our equality

to get 2q2 = (2r)2. Divide both sides of this by 2, yielding q2 = 2r2. Again,

we conclude that q is even. This contradicts the fact that the fraction p/q
is irreducible, which proves that

√
2 is irrational.

(e) We have
√
2+

√
3√

2−
√
3
=

(
√
2+

√
3)(

√
2+

√
3)

(
√
2−

√
3)(

√
2+

√
3)

= 5+2
√
6

−1 = −5− 2
√
6.

(f) We have
√

3 + 2
√
2−√

2 = 1.

(g) We have
3
√√

5 + 2− 3
√√

5− 2 = 1; see problem 3.2.2 (a).
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(h) First hint. Raise both sides of the equality r−√2 =
3
√
2 to the third

power and get a contradiction.

Second hint. The number
√
2 +

3
√
2 is a root of the polynomial ((x −√

2)3 − 2)((x +
√
2)3 − 2) with integer coefficients. By the rational roots

theorem 3.1.3 (b), this equation does not have rational roots.

(i, j) See instruction for problem 8.3.1 (f).

3.1.2. The number
√
5−

√
3√

3−
√
2
is irrational.

3.1.3. (a) In the given equality all terms except a0 are divisible by p.
(c) See Bezout’s Theorem 3.3.4.

3.1.4. Answers: (b, c, d, e, f, g) No; (a) Yes.

Hints.
(a) cos 60◦ = 1/2.
(b) sin 60◦ =

√
3/2.

(c) cos 36◦ = (
√
5 + 1)/4.

(d) Using formula 3.1.5 (e) for the cosine of the triple angle yields 1/2 =

cos(π/3) = 4 cos3(π/9) − 3 cos(π/9). If for an irreducible fraction p/q the

equality 4(p/q)3 − 3(p/q) = 1/2 holds, then 8p3 − 6pq2 − q3 = 0, so 1 is

divisible by p and 8 is divisible by q (this is a special case of Theorem 3.1.3 (b)

on rational roots). Therefore p/q �∈ (1/2, 1). But cos(π/9) ∈ (1/2, 1).
(e) The solution is similar to (d) or can be reduced to (d) using cos 20◦ =

1− 2 sin2 10◦.
(f) Similar to (d). Use the condition cos(2π/7) ∈ (1/2, 1) and problem

3.1.6 (a, b).

(g) Similar to (d), using problem 3.1.6 (a, c).

3.1.5. (a, b) Consider an isosceles triangle with vertex angle 2α.

3.1.6. (a) Induction on n using formula 3.1.5(g).

3.1.7. (a) For odd n �= 5, the solution is similar to 3.1.4 (f). For even n �= 8,

the solution reduces to the n/2 case by applying the equality cos(2π/n) =
2 cos2(π/n)− 1.

Answer : n ∈ {1, 2, 3, 4, 6}.
(c) Suppose cos(2πm/n) is a rational number for an irreducible frac-

tion m/n. Then there exists k such that mk ≡ 1 (mod n). Consequently,

cos(2πmk/n) = cos(2π/n) is rational.
Hint for an alternative solution. If cosα ∈ Q− {±1/2,±1}, then the

denominator of the irreducible fraction representing cos 2α is bigger than

the denominator of cosα. On the other hand, there exist integers a, b > 0

for which 2a − 2b is divisible by n.
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2. Solving polynomial equations of the third and fourth de-
grees (2)

The author thanks O.E.Orel for useful discussions.

The material presented here is important and widely known, yet is not

included in the school or university curriculum. Our treatment contrasts

with other sources in that instead of unmotivated changes of variables, we

show that equations can be naturally reduced to those whose solutions are

clearly seen.

For example, the equation x2 +4x− 1 = 0 can be reduced to y2− 5 = 0

by the substitution y = x+ 2.

3.2.1. (a) The equation x3 + 3x2 + 5x+ 7 = 0 can be reduced, by a change

of variable, to y3 + py + q = 0 for some p and q.
(b) The equation ax3 + bx2 + cx+ d = 0 with a �= 0 can be reduced by

a suitable change of variable to the form y3 + py + q = 0 for some p and q.
(c) We can reduce ax4 + bx3 + cx2 + dx+ c = 0 with a �= 0 by a suitable

change of variable to the form y4 + py2 + qy + r = 0 for some p, q, and r.

3.2.2. (a) Prove that
3
√√

5 + 2− 3
√√

5− 2 = 1.

(b) Find at least one root of x3 − 3
3
√
2x+ 3 = 0.

Hint.The del Ferro method. Since

(u+ v)3 = u3 + v3 + 3uv(u+ v),

u+ v is a root of the equation x3 − 3uvx− (u3 + v3) = 0.

(c) Solve the equation x3 − 3
3
√
2x+ 3 = 0.

3.2.3. (a) Factor a3 + b3 + c3 − 3abc.
(b) Prove the inequality a2 + b2 + c2 ≥ ab + bc + ca. When is equality

achieved?

(c) Prove the inequality a3 + b3 + c3 ≥ 3abc for a, b, c > 0.

(d) Factor a3+b3+c3−3abc into linear factors with complex coefficients.

For problems 3.2.4–3.2.7 below, one should have basic knowledge of com-

plex numbers; for example, it is enough to be able to solve problems 3.5.1

and 3.5.2. Otherwise, feel free to skip these four problems.

3.2.4. (a) State and prove theorems describing all real (all complex) roots

of x2 + px+ q = 0.

(b) State and prove theorems describing all real (all complex) roots of

the equation x3 + px+ q = 0 in the case where the del Ferro method works

(see problem 3.2.2). Under what condition is this method applicable if we

only take square roots of positive numbers?
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(c) Construct an explicit (i.e., symbolic) algorithm for finding all real

roots of ax3 + bx2 + cx+ d = 0, where a �= 0.

When solving some cubic equations by the del Ferro method, complex

numbers unexpectedly arise exactly in the case where all roots of the original

equation are real. Such equations could be solved by the following purely real

method. (Interestingly, this method also leads to transcendental methods of

solving equations [PS97].)

3.2.5. Vieta’s method. (a) Solve 4x3 − 3x = 1
2 .

(b) Solve x3 − 3x− 1 = 0.

(c) Use the cosine and inverse cosine functions to devise a general formula

for the solution of x3+px+q = 0 by the method outlined in these problems.

Under what conditions can x3 + px+ q = 0 be solved by this method?

3.2.6. Solve

(a) (x2 + 2)2 = 9(x− 1)2; (b) x4 + 4x− 1 = 0;

(c) x4 + 2x2 − 8x− 4 = 0; (d) x4 − 12x2 − 24x− 14 = 0.

Hint for part 3.2.6 (b). Ferrari’s method. Find α, b, and c such that

x4 + 4x− 1 = (x2 + α)2 − (bx+ c)2.

To do so we must find at least one α such that (x2 + α)2 − (x4 + 4x− 1) is

a perfect square. This leads to computing the discriminant of a quadratic

polynomial. The discriminant is a cubic polynomial in α, called the resolvent
cubic of x4 + 4x− 1.

3.2.7.* (a) State and prove a theorem describing all real roots of the equation

x4 + px2 + qx+ s = 0. Use the resolvent cubic.

(b) Do the same for all complex roots.

(c) All complex roots of x4 + px2 + qx + s = 0 can be given by the

following formula:

±
√

2α1 − p±
√
2α2 − p±

√
2α3 − p,

where α1, α2, and α3 are all roots of resolvent cubic, the number of minuses is

even, and the values of the square roots are selected such that their product

is equal to −q.

Hints

The hints below use material from [ABG+].

3.2.2. (a) Take cubes and use the identity (u− v)3 = u3− v3− 3uv(u− v).
3.2.3. (a) When a = −b − c, the polynomial is equal to zero. Then divide

a3 − 3abc+ (b3 + c3) by a+ b+ c using “long division.”
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3.2.4. (b) Answer : The del Ferro method is applicable if Dpq :=
(
p
3

)3
+(

q
2

)2 ≥ 0.

Theorem 3.2.8. Let p, q ∈ R. If Dpq > 0, then x3 + px + q = 0 has one

real root

3

√
−q
2
+
√
Dpq − 3

√
q

2
+
√
Dpq.

If Dpq = 0, then the real roots of the equation x3 + px+ q = 0 are −2 3
√
q/2

and − 3
√
q/2 (they are distinct if q �= 0).

3.2.5. (a) Use statement 3.1.5 (a).

3.2.7. Use Ferrari’s method (see problem 3.2.6 (b)). Take care to analyze

all cases.

It is also possible to solve the equation x4 + ax3 + bx2 + cx + d = 0 by

selecting α, A, and B so that

x4 + ax3 + bx2 + cx+ d =
(
x2 +

ax

2
+ α
)2 − (Ax+B)2.

Suggestions, solutions, and answers

3.2.1. Make the substitution y := x+ b
3a in parts (a) and (b), and y := x+ b

4a
in part (c).

3.2.2. (a) Let x =
3
√
2 +

√
5− 3
√√

5− 2. Then x3 = 4− 3x. This equation
has the root x = 1, and since x3 + 3x − 4 is monotone, there are no other

(real) roots.

Another solution follows from the equality
3
√√

5± 2 = (
√
5± 1)/2.

(b) We have x3 − 3
3
√
2x + 3 = x3 − 3bcx + (b3 + c3), where b = 1 and

c = 3
√
2.

Answer : x = −1− 3
√
2.

(c) From the solution to 3.2.3 (a) we see that x3 − 3
3
√
2x + 3 = 0 is

equivalent to

(x+ b+ c)(x2 + b2 + c2 − bc− bx− cx) = 0, where b = 1 and c =
3
√
2.

From 3.2.3 (b) we see that since b �= c, the second factor in the product

is positive for all x. Therefore the original equation has the unique root

x = −b− c = −1− 3
√
2.

Answer : x = −1− 3
√
2.
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3.2.3. (a, d) Answer :

a3 + b3 + c3 − 3abc = (a+ b+ c)(a2 + b2 + c2 − ab− bc− ca)

= (a+ b+ c)(a+ bε+ cε2)(a+ bε2 + cε) where ε =
−1 + i

√
3

2
.

(b) 2(a2 + b2 + c2 − ab − bc − ca) = (a − b)2 + (b − c)2 + (c − a)2 ≥ 0.

Equality is achieved if and only if a = b = c.

3.2.4. (b) Proof of Theorem 3.2.8. Write

u := − 3

√
q

2
+
√
Dpq and v := 3

√
−q
2
+
√
Dpq.

We have uv = −p/3 and u3+ v3 = −q. Using the formula from the solution

to 3.2.3 (a) for a = x, b = −u, and c = −v, we see that u + v is a root of

the polynomial x3 + px + q = x3 − 3uvx − u3 − v3. Using the solution to

3.2.3 (b), if Dpq > 0 there are no other roots, and if Dpq = 0 there is another

root, u = v = − 3
√
q/2.

Theorem. Let p, q ∈ C and pq �= 0. Let

• √Dpq denote any of the two values of the square root of Dpq;

• u denote any of the three values of the cube root of − q
2 −
√
Dpq;

• v := − p
3u (p �= 0, so (q/2)2 �= Dpq, so u

3 = − q
2 −
√
Dpq �= 0).

Then all roots of the equation x3 + px+ q = 0 are u+ v, uε3 + vε23, and
uε23 + vε3 (not necessarily different).

Proof. We have uv = −p/3 and u3 + v3 = −q. The theorem follows by the

formula used in the solution to problem 3.2.3 (d) for a = x, b = −u, and
c = −v. �

3.2.5. (a) Similarly to 3.1.5 (b) cos π
9 , cos

7π
9 , and cos 13π

9 are the roots of

4y3 − 3y = 1
2 . By 3.3.5 (b) there are no other roots.

Answer : x ∈
{
cos π

9 , cos
7π
9 , cos

13π
9

}
.

(b) The substitution y = 2x reduces this to (a).

Answer : x ∈
{
2 cos π

9 , 2 cos
7π
9 , 2 cos

13π
9

}
.

3.2.6. Answers: (b)
−
√
2±
√

4
√
2−2

2 ; (c)
√
2±
√

8
√
2−6

2 ; (d)
√
2± (

4
√
2+

4
√
8).

3.2.7. If q = 0, then we have a biquadratic (fourth-degree) equation which

is easy to solve. So assume that q �= 0.

(a) Theorem. Let p, q, s ∈ R, with q �= 0. Then there exists α > p/2
such that q2 = 4(2α− p)(α2 − s). For any such α define A :=

√
2α− p. All
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real roots of the equation x4 + px2 + qx+ s = 0 are described as follows:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

no roots, 2α+ p > 2|q|/A;
x±, where x :=

(
−A±

√
−2α− p+ 2q

A

)
/2, −2q/A < 2α+ p ≤ 2q/A;

y±, where y :=
(
A±

√
−2α− p− 2q

A

)
/2, 2q/A < 2α+ p ≤ −2q/A;

x±, y±, 2α+ p ≤ −2|q|/A.

Proof. Let R(x) := 4(2x − p)(x2 − s) − q2. Then R(p/2) = −q2 < 0. For

sufficiently large x we have R(x) > 0. The Intermediate Value Theorem

7.1.13 implies that there exists α > p/2 such that R(α) = 0.

Since p = 2α − A2 and α are roots of the resolvent, we have s = α2 −
q2

4(2α−p) = α2 − q2

4A2 . Then

x4 + px2 + qx+ s =
(
x2 −Ax+ α+

q

2A

)(
x2 +Ax+ α− q

2A

)
.

Solving the two quadratic equations yields the required formulas. �

(b) Theorem. Let p, q, s ∈ C, with q �= 0. Let α denote any root of

q2 = 4(2α− p)(α2− s). Let A denote any value of the square root of 2α− p.
Then the roots of the equation x4 + px2 + qx+ s = 0 are(

A+

√
−2α− p− 2q

A

)
/2 and

(
A+

√
−2α− p+

2q

A

)
/2,

where
√
y is viewed as a multivalued function giving both root values of y;

note that A �= 0, because q2 = 4A2(α2 − s) �= 0.

The proof is similar to the proof of the theorem from part (a).

3. Bezout’s Theorem and its corollaries (2)

3.3.1. (a) Calculate the values of the functions

P (x) = 2x3 − 27x2 + 141x− 256 for x = 16

and

Q(x) = x4 +
x3

4
− x2

2
+ 1 for x = −3

4
.

Hint.

anx
n+an−1x

n−1+. . .+a1x+a0 = (. . . ((anx+an−1)x+an−2)x+. . .+a1)x+a0.

This algorithm is called Horner’s method.
(b) How many addition and multiplication operations do you need to cal-

culate the value of a polynomial of nth degree? Compare the “conventional”

way with Horner’s method.
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In order to understand the motivation for the definitions below, it is

useful to have some experience with polynomial manipulation.

A polynomial with real coefficients is an infinite sequence (a0, . . . , an, . . .)
of real numbers, among which there are only a finite number of nonzero

numbers. The words “with real coefficients” are omitted in this section.

We associate a polynomial, that is, a sequence P = (a0, . . . , an, . . .), with
the function P : R→ R given by the formula P (x) = a0+a1x+. . .+anx

n+. . .
(the sum is finite). The polynomial P = (a0, . . . , an, . . .) is usually written

in the form P (x) = a0 + a1x + . . . + anx
n, i.e., seemingly identical to P .

However, we will distinguish between P and P , until we prove that they are

“the same thing” (problem 3.3.5 (c)), or in those generalizations where they

are “not the same thing” (problem 3.3.5 (f)).

3.3.2. (Challenge.)

Give definitions of

(a) the sum and product of polynomials;

(b) a polynomial with integer coefficients, a polynomial with rational

coefficients, and a polynomial with coefficients in Zp.

The degree of a polynomial P (denoted by degP ) is the largest number n
such that an �= 0. It is convenient to define the degree of the zero polynomial

to be −∞; in this case the following statements hold without the assumption

that all polynomials are nonzero.

3.3.3. (Challenge.)

(a) The degree of the sum of polynomials of different degrees is equal to

the largest of their degrees.

(b) The degree of the product of polynomials is equal to the sum of their

degrees.

3.3.4. Let P be a nonzero polynomial and a be a real number.

(a) Bezout’s Theorem. There exists a polynomial Q such that

P (x) = (x− a)Q(x) + P (a).

In other words, the polynomial P (x) − P (a) is divisible by (x − a).
Moreover, degQ < degP .

(b) Corollary. If P (a) = 0, then there exists a polynomial Q such that

P (x) = (x− a)Q(x) and degQ < degP .
(c) For which values of a is the polynomial x1000 + ax + 9 divisible by

x+ 1?

A number x0 is said to be a root of a polynomial P if P (x0) = 0.
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3.3.5. (a) Lemma. If P is a polynomial and a1, . . . , ak are its different

roots, then there exists a polynomial Q such that P (x) = (x − a1) · · · (x −
ak)Q(x).

(b) Lemma. A polynomial of degree n ≥ 0 has at most n roots.

(c) Theorem. If the values of two polynomials at all points are the

same, then these polynomials are equal. In other words, if P and P1 are

polynomials and P (x) = P1(x) for all x, then P = P1.

(d) Theorem. If the values of two polynomials of degree n coincide at

n+ 1 different points, then these polynomials are equal.

(e) Does the statement (c) hold if we assume the coefficients to be inte-

gers, or rational numbers, or elements of Zp?

(f) Does the statement (d) hold if we assume the coefficients to be inte-

gers, or rational numbers, or elements of Zp?

3.3.6. The following equalities hold for any pairwise different numbers a, b,
c, d, and x:

(a)
c(x− a)(x− b)

(c− a)(c− b)
+
a(x− b)(x− c)

(a− b)(a− c)
+
b(x− c)(x− a)

(b− c)(b− a)
= x;

(b)
d(x− a)(x− b)(x− c)

(d− a)(d− b)(d− c)
+
a(x− b)(x− c)(x− d)

(a− b)(a− c)(a− d)

+
b(x− d)(x− c)(x− a)

(b− d)(b− c)(b− a)
+
c(x− d)(x− b)(x− a)

(c− d)(c− b)(c− a)
= x.

Suggestions, solutions, and answers

3.3.4. (a) Hint. First prove the statement for P = xn. Then prove that if

it is true for P and P ′, then it is true for P + P ′ and bP for any number b.

3.3.5. (b) We prove the statement by induction on the degree n of P . The
statement is true for n = 0: a polynomial of zero degree is a nonzero constant

and hence has no roots. Suppose that any nonzero polynomial Q of degree
k < n has at most k roots. Consider an arbitrary nonzero polynomial P of

degree n. Suppose that it has at least n+1 distinct roots x0, x1, x2, . . . , xn.
By the corollary in 3.3.4 (b), we have P = (x−x0)Q for some polynomial

Q of degree less than n. Substituting x = x1 into this equation yields 0 =

(x1 − x0)Q(x1), which implies that Q(x1) = 0. Similarly, x2, x3, . . . , xn are

also roots of the polynomial Q, which contradicts the inductive hypothesis.

The same solution can be written in a more explicit form. Let the

polynomial P of degree n have distinct roots x0, x1, . . . , xn. Rewrite it in

the form

P (x) = bn(x− x1) · . . . · (x− xn) + bn−1(x− x1) · . . . · (x− xn−1)

+ · · ·+ b1(x− x1) + b0
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(this is Newton’s interpolation formula). Successively substituting the num-

bers x1, x2, . . . , xn, x0 into the equality P (x) = 0 yields 0 = b0 = b1 = . . . =
bn.

(e) The statement holds for polynomials with integer and rational co-

efficients, but does not hold for polynomials with coefficients in Zp. For

example, consider the polynomials xp and x.

4. Divisibility of polynomials (3*)
By A.Ya.Kanel-Belov and
A.B. Skopenkov

Let A and B �= 0 be polynomials with real coefficients. We say that A is

divisible by B if there exists a polynomial Q with real coefficients such that

A = BQ. In this case we call B a divisor of A.

3.4.1. (a) Suppose that A = BQ where A and B �= 0 are polynomials with

rational coefficients and Q is a polynomial with real coefficients. Then the

coefficients of Q are also rational.

(b) Does a statement analogous to (a) hold if we replace rational coeffi-

cients with integers?

(c) Formulate definitions of divisibility for polynomials with integer, ra-

tional, and Zp coefficients.

3.4.2. (a) Do there exist polynomials P and Q with integer coefficients such

that P has no integer roots, P does not divide Q, and P (n) divides Q(n)
for any integer n?

(b) If P and Q are polynomials with integer coefficients, P has no integer

roots, the leading coefficient of polynomial P is equal to 1, and P (n) divides
Q(n) for any integer n, then P divides Q.

(c)∗ Suppose that P and Q are nonzero polynomials with integer coef-

ficients having no common divisors of positive degree. Then the sequence

gcd(P (n), Q(n)) contains finitely many values.

3.4.3. (a) Theorem on division with remainder for polynomials. For

any two polynomials A and B �= 0 with real coefficients, there exist unique

polynomials Q and R with real coefficients such that A = BQ + R with

degR < degB. These polynomials are called the quotient and remainder of

the division of A by B.

(b) Does the theorem hold for polynomials with integer, rational, or Zp

coefficients?

(c) Formulate and prove an analogous theorem for polynomials with

integer coefficients whose leading coefficients are equal to 1.
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(d) A polynomial has remainder 1 upon division by x−1 and remainder

−1 upon division by x+ 1. What is the remainder when this polynomial is

divided by x2 − 1?

3.4.4. (a) Find at least one pair of polynomials U and V with rational

coefficients such that

(2x2 + x+ 2)U(x) + (x2 − 3x+ 1)V (x) = 1.

(b) Remove the irrational quantity in the denominator of the fraction
1

2α2+α+2
, where α2 − 3α+ 1 = 0.

(c) Remove the irrational quantity in the denominator of the fraction
1

α+1 , where α
3 − 3α+ 1 = 0.

The Euclidean algorithm for polynomials is similar to the Euclidean

algorithm for integers; see problem 1.5.9 (b).

3.4.5. A polynomial with coefficients in F is called irreducible over the set F
if it cannot be factored into the product of two polynomials of lesser degrees

with coefficients in F . Is factorization into irreducible polynomials unique

for polynomials with (a) real; (b) integer; (c) rational; (d) Zp coefficients?

3.4.6. If nonzero polynomials P and Q with integer coefficients have no

common divisors of positive degree, then there exist c1 > c2 > 0 such that

for any rational α, we have

c2h(α)
n < h(P (α)/Q(α)) < c1h(α)

n.

Here n := max(degP, degQ) and the height h(p/q) of an irreducible fraction

p/q is defined to be max(|p|, |q|) where p �= 0, with h(0) = 1.

3.4.7.* Given a rectangle, cut off a square that shares the smaller of its sides.

Perform the same procedure with the remaining rectangle, etc. Determine

if the sequence of ratios of the sides of the rectangles is periodic if one of

the sides of the original rectangle is 1 and the other is equal to

(a)
√
2; (b) (1 +

√
5)/2; (c)

3
√
2; (d)

√
2005.

This problem involves the Euclidean algorithm for real numbers. For

details see [Arn16a].

Hints and answers

3.4.3. (d) We have

P (x) = (x2 − 1)Q(x) + ax+ b =⇒ a+ b = 1, −a+ b = −1.

3.4.4. (a) Use the Euclidean algorithm.

(b) Use part (a).
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3.4.5. The solution is similar to problem 3.7.2.

Answers: (a, c) Yes; (b, d) No.

The uniqueness holds either if we view decompositions differing by a

constant factor to be the same, or if we consider polynomials with integer

coefficients and leading coefficient 1.

5. Applications of complex numbers (3*)

The author thanks O.E.Orel for useful discussions.

A complex number is a pair (a, b) of real numbers. It is written in the

form a+bi. The sum of complex numbers is defined to be (a+bi)+(a′+b′i) =
(a + a′) + (b + b′)i, and the product is defined to be (a + bi)(a′ + b′i) =

(aa′−bb′)+(ab′+a′b)i. The formula for the product is engineered to ensure

that the equality i2 = −1 holds.

3.5.1. Represent each of the following in the form a+ bi:

(a) (1 + 2i)(2− i) + (1− 2i)(2 + i); (b) 3+8i
−5+2i ; (c)

(
1−i
1+i

)3
;

(d)
√
3− 4i.

3.5.2. Solve the following equations in complex numbers:

(a) z2 + 4z + 29 = 0; (b) z2 − (3− 2i)z + 5− 5i = 0; (c) z3 − 1 = 0.

3.5.3. (a) For any complex number z �= 0 there exists a complex number u
such that zu = 1.

(b) A number |a+ bi| := √
a2 + b2 is called the modulus of the complex

number a+ bi. Prove that |z1 · z2| = |z1| · |z2|.

3.5.4. (a) Trigonometric form of complex numbers. For any complex

number z, there exist real numbers r ≥ 0 and ϕ such that z = r(cosϕ +

i sinϕ). Are the numbers r and ϕ unique?

(b) Formula for product of complex numbers. The following equal-

ity holds:

(cosϕ+ i sinϕ)(cosψ + i sinψ) = cos(ϕ+ ψ) + i sin(ϕ+ ψ).

(c) De Moivre’s formula. The following equality holds:

(cosϕ+ i sinϕ)n = cosnϕ+ i sinnϕ.

(d) For any integer n > 0, solve the equation zn = 1 in complex numbers.
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3.5.5. Represent each of the following complex numbers in trigonometric

form:

(a) −1/2 + i
√
3/2; (b)

√
2 +

√
2i; (c) −5; (d) −17i;

(e) sinπ/6 + i sinπ/6; (f) 1 + cosϕ+ i sinϕ; (g)
cosϕ+i sinϕ
cosϕ−i sinϕ .

Other introductory material about complex numbers can be found, for

example, in [V+15].

3.5.6. Factor the following polynomials into quadratic and linear polyno-

mials with real coefficients:

(a) x4 + 4; (b) x4 + x3 + x2 + x+ 1; (c) xn − 1.

3.5.7. (a)∗ Fundamental Theorem of Algebra. Any non-constant poly-
nomial with complex coefficients has a complex root.

(This statement can be used further without proof.)

(b) A polynomial with complex coefficients of degree n has exactly n
roots, taking into account their multiplicity. It is said that a root z0 of

polynomial P has multiplicity k if P is divisible by (z − z0)
k and is not

divisible by (z − z0)
k+1.

(c) If z1, . . . , zn are roots of a polynomial P with leading coefficient an,
each root occurring as many times as its multiplicity, then P (z) = an(z −
z1) · · · (z − zn).

3.5.8. Define a+ bi := a− bi, called the conjugate of a+ bi.
(a) The following equalities hold:

• z + w = z + w;
• zw = z · w;
• z · z = |z|2;
• P (z) = P (z), for any polynomial P with real coefficients.

(b) Any polynomial with real coefficients can be factored into a product

of polynomials of degrees 1 and 2 with real coefficients.

(c) If P is a polynomial with real coefficients and P (x) > 0 for any

x ∈ R, then there exist polynomials Q and R with real coefficients such that

P = Q2 +R2.

3.5.9.* Find all polynomials with real coefficients such that P (x2+x+1) ≡
P (x)P (x+ 1).

3.5.10. (a) (Challenge.) Express cosnϕ and sinnϕ in terms of cosϕ and

sinϕ.
(b) Lemma. One can express cosnϕ and

sinnϕ
sinϕ as polynomials in cosϕ.
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3.5.11. Find {xn} and{yn} if

{
xn+1 = 3xn − 4yn,

yn+1 = 3yn + 4xn,

and (a) x0 = 1, y0 = 0; (b) x0 = 1, y0 = 2.

3.5.12. Find (a)
n∑

k=0

cos kϕ; (b)
n∑

k=0

2k sin kϕ; (c)
∞∑
k=0

cos kϕ
3k

.

3.5.13. (a) For 0 < x < π/2, the following inequality holds:

cot2 x <
1

x2
< cot2 x+ 1.

(b) For any k = 1, . . . , n the following equality holds:

n∑
j=0

(−1)j
(
2n+ 1

2j + 1

)
cot2n−2j πk

2n+ 1
= 0.

(c)
n∑

k=1

cot2 πk
2n+1 =

n(2n−1)
3 .

(d)
∞∑
k=1

1
k2

= π2

6 .

(e, f)∗ Find
∞∑
k=1

1
k4

and
∞∑
k=1

1
k6
.

The infinite sums used here are defined in section 5.

Hints and answers

3.5.6. Find all complex roots of these polynomials.

3.5.8. (b) By (a), the complex roots of this polynomial can be grouped into

conjugate pairs.

(c) The product of two sums of squares is also a sum of squares.

3.5.11. Take zn = xn + iyn.

3.5.12. Hint. Write Re(a + bi) := a for real a and b. Use the fact that

cos kϕ = Re(cosϕ+ i sinϕ)k.

3.5.12. Answers: (a)
sin n+1

2
ϕ cos n

2
ϕ

sin ϕ
2

. (b)
2n+2 sinnϕ−2n+1 sin(n+1)ϕ+2 sinϕ

5−4 cosϕ .

(c)
9−3 cosϕ
10−6 cosϕ .

3.5.13. (a) Use the fact that sinx < x < tanx for 0 < x < π/2.

(b) Note that
(
cos πk

2n+1 + i sin πk
2n+1

)2n+1
= (−1)k.



46 3. POLYNOMIALS AND COMPLEX NUMBERS

6. Vieta’s Theorem and symmetric polynomials (3*)

3.6.1. (a) Construct the polynomial whose roots are cubes of the roots of

the equation x2 − 6x+ 6 = 0.

(b) Express x3 + 4x2y + 4xy2 + y3 in terms of x+ y and xy.
(c) Solve the following system of equations:{

x3y + xy3 = 300,

xy + x2 + y2 = 37.

3.6.2. (a, b, c) Represent

x2 + y2 + z2, x2y + y2z + z2x+ x2z + z2y + y2x, x3 + y3 + z3

as polynomials in

σ1 := x+ y + z, σ2 := xy + yz + zx, and σ3 := xyz.

(d) Is it possible to represent (x100y+y100z+z100x)(x100z+z100y+y100x)
as a polynomial in σ1, σ2, and σ3?

Formulate your own definition of a polynomial in several variables and

its multi-degree. Generalizing the notation above, we define the elementary
symmetric polynomials σ1, σ2, . . . , σn by

σk :=
∑

1≤i1<i2<···<ik≤n

xi1xi2 · · ·xik ,

where the number of variables is n. For example, if n = 4, then

σ2 = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4.

3.6.3. (a) The multi-degree of the product of polynomials in several vari-

ables is equal to the sum of their multi-degrees.

(b) A polynomial f in two variables x and y is called symmetric if

the polynomials f(x, y) and f(y, x) are equal. Prove that any symmetric

polynomial in two variables x and y can be expressed as polynomial in x+y
and xy.

(c) A polynomial f in n variables x1, x2, . . . , xn is called symmetric if

f(x1, x2, . . . , xn) = f(xσ(1), xσ(2), . . . , xσ(n)) for every permutation σ of the

set {1, 2, . . . , n}.
Prove that any symmetric polynomial in three variables x, y, and z can

be expressed as a polynomial in σ1, σ2, and σ3.
(d) Fundamental Theorem on Symmetric Polynomials. Any sym-

metric polynomial in n variables can be expressed as a polynomial in the

elementary symmetric functions σ1, σ2, . . ., and σn.
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3.6.4. Let x1 < x2 < . . . < x7, y1 < y2 < . . . < y7, x1 < y1, and
7∑

i=1
xki =

7∑
i=1

yki for any k ∈ {1, . . . , 6}. Then x7 < y7.

The following important result is a simple consequence of factoring a

polynomial into terms of the form (x−r), where r is a root of the polynomial

(cf. Lemma 3.3.5 (a)).

Theorem 3.6.5 (Vieta’s Theorem). Let x1, x2, . . . , xn be the roots of the

polynomial

xn + a1x
n−1 + a2x

n−2 + · · ·+ an = 0.

Then ak = (−1)kσk for k = 1, 2, . . . , n.

Suggestions, solutions, and answers

3.6.1. (c) See [Vin80, IX.2.6, ex. 1].

3.6.2. Answers: (a) σ21 − 2σ2; (b) σ1σ2 − 3σ3; (c) σ31 − 3σ1σ2 + 3σ3.
(d) Use 3.6.3 (c).

3.6.3. (b) Use induction on the multi-degree of the polynomial, in lexico-

graphic order. For a symmetric polynomial f of multi-degree (k, l), i.e., with
leading term axkyl, k ≥ l, consider the polynomial f − a(x+ y)k−l(xy)l.

(c) Use induction; see (b). For the symmetric polynomial f of multi-

degree (k, l,m), consider the polynomial f − aσk−l
1 σl−m

2 σm3 .

(d) To prove the Fundamental Theorem on Symmetric Polynomials we

use induction on the multi-degree of the given symmetric polynomial f(x1, x2,
. . . , xn) in lexicographic order. The base case f = 0 is obvious.

To prove the inductive step, denote the lexicographically leading term

of the polynomial f by u := axk11 x
k2
2 · · ·xknn .

Suppose ki < ki+1 for some i. Then together with u, the polynomial

must contain a term axk11 · · ·xki+1

i xkii+1 · · ·xknn , which comes before u in lexi-

cographic order, a contradiction. Therefore, k1 ≥ k2 ≥ . . . ≥ kn. According

to (a), the leading term of the polynomial g := aσk1−k2
1 σk2−k3

2 · · ·σkn−1−kn
n−1 σknn

coincides with u. So the multi-degree of polynomial f − g is less than the

multi-degree of polynomial f . We now apply the inductive hypothesis to

f − g. �

7. Diophantine equations and Gaussian integers (4*)
By A.Ya. Kanel-Belov

Everybody knows the Euclidean algorithm well. Given two numbers a and

b, the greater of them is selected, the smaller is subtracted from the larger,
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the larger is replaced by the difference, and with the new pair of numbers

the same procedure is performed again. See problem 1.5.9 (b). We used

the Euclidean algorithm earlier to prove various properties of integers, e.g.,

in sections 5 and 4 We shall now demonstrate a novel (to most readers)

application of the Euclidean algorithm.

3.7.1. Solve the following equations in integers:

(a) x2 + 4 = y3; (b) x2 + 2 = yn; (c)∗ x3 + y3 = z3.

Try to solve them without reading further! However, you are unlikely to

succeed. Return to them after you have read this section.

When confronted with x2 + 4 = y3 in integers, you probably considered

the factorization x2 + 4 = (x + 2i)(x − 2i). For odd x, the two factors are

relatively prime and therefore both must be cubes. This leads to a solution.

(When x is even, it’s trickier: both factors are divisible by (1 + i)3. Try to

solve the equation and then compare your solution with the one at the end

of the section.)

The idea is that we benefit from the additional possibilities in the fac-

torization due to the use of Gaussian integers, i.e., numbers of the form

a + bi with integer a and b. However, since life is not a bowl of cherries,

it only works sometimes (see problems 1.2.8 (b) and 3.7.3 (b)). In order to

use factorization to solve equations, we need uniqueness of factorization into
primes. This would allow us to inherit all the nice arithmetical properties of

the integers. The following problem illuminates an amazing phenomenon:

to get the arithmetical goodies, it is sufficient to prove a geometric property

about the possibility of division with a remainder.

3.7.2. A Gaussian integer is called prime if it cannot be decomposed into

two Gaussian factors, each different from ±1 and ±i.
(a) The uniqueness of factorization into prime factors is a consequence

of the following analogue of Euclid’s lemma 1.5.7 (c):

Generalized Euclid’s lemma. For any a and b, if a prime p divides

ab, then p divides a or p divides b.
(b) The generalized Euclid’s lemma is a consequence of the following fact

(an analogue of the lemma about representation of the GCD in 1.5.7 (a)):

Principal ideal property. For any a and b there exist x and y such

that xa+ yb = gcd(a, b). Give your own definition of the greatest common

divisor gcd(a, b) of Gaussian integers a and b.
(c) The principal ideal property results from the following property (an

analogue of the theorem about division with a remainder in 1.4.1 (b)):

Euclidean property. For any b �= 0 and a there exists k such that

|a− kb| < |b|.
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3.7.3. Is the Euclidean property (and, therefore, the unique factorization

property) true for the set Z[ξ] of numbers of the form a+ bξ where a and b
are integers, if ξ is

(a)
√−2; (b)

√−3; (c) (1−√−3)/2; (d) (1−√−5)/2;
(e) (1−√−7)/2?

3.7.4. (a) No prime of the form 4k − 1 can be expressed as a sum of two

squares.

(b) Any prime of the form 4k + 1 can be expressed as a sum of two

squares exactly in one way.

(c) There exists an integer which can be decomposed into the sum of

squares in exactly 1024 ways.

This problem is easier to solve without Gaussian integers (see section 3),

but it is instructive to practice using them!

See more in [Pos78, § 4]. See also problem 3.4.7.

Suggestions, solutions, and answers

3.7.1. (a) (By R. I. Devyatov) Answer : x = ±2, y = 2 and x = ±11, y = 5.

Pass to Gaussian integers and obtain (x+ 2i)(x− 2i) = y3.
A Gaussian integer is called a perfect cube if it is equal to b3 for some

Gaussian integer b. Note that all invertible numbers ±1 and ±i are perfect

cubes. So all Gaussian integers of the form ωa3, where a is a Gaussian

integer and ω is one of the invertible numbers ±1 and ±i, are perfect cubes.
Two Gaussian integers a and b are called associates if a = ωb where ω

is one of the invertible numbers ±1 and ±i.
Lemma. Both x+ 2i and x− 2i are perfect cubes.

Proof. We use the uniqueness of decomposition into prime Gaussian factors

up to multiplication by invertible numbers ±1 or ±i. Let d := gcd(x+2i, x−
2i). Then x+2i− (x− 2i) = 4i = −i(1 + i)4 is divisible by d. Since 1 + i is
prime, d is a power of (1 + i) of degree at most four.

Note that the decomposition of x− 2i into prime Gaussian integers can

be obtained from the decomposition of x + 2i by replacing all factors by

their conjugates.

Since 1 + i = i(1− i), the powers to which (1 + i) occurs in the decom-

position of x + 2i and x − 2i into prime factors are the same. Denote this

power by k.
Then y3 is divisible by (1 + i)2k. Since 2k is divisible by 3, k is also

divisible by 3. Since d is a power of 1 + i of degree at most four, the

Gaussian integer x + 2i either is not divisible by 1 + i or is divisible by

(1 + i)3.



50 3. POLYNOMIALS AND COMPLEX NUMBERS

If x + 2i is not divisible by 1 + i, then x + 2i and x − 2i are relatively

prime. Since their product is a perfect cube, x + 2i and x − 2i must both

be perfect cubes.

If x+2i = a(1+ i)3 for some Gaussian integer a, then x− 2i = b(1+ i)3

for some Gaussian integer b. Thus y3 = ab(1 + i)6. So ab =
(

y
(1+i)2

)3
is

a perfect cube. Since a and b are relatively prime, they are perfect cubes.

Therefore x+2i = a(1+ i)3 and x−2i = b(1+ i)3 are perfect cubes, proving

the lemma. �

Continuation of solution. Write

x+ 2i = (c+ di)3 = c3 + 3c2di+ 3cd2i2 + d3i3 = c3 − 3cd2 + (3c2d− d3)i.

Compare the imaginary parts: 2 = 3c2d − d3 = d(3c2 − d2). This is an

equality of ordinary integers, so d = ±2 or d = ±1.
Case 1: d = ±1. Then 3c2 − 1 = ±2, i.e., 3c2 = −1 or 3. It cannot be

equal to −1, so c = ±1, c+di = 1+i or an associate of it, and x+2i = 2+2i
or one of its associates. Therefore x = ±2 and y = 2.

Case 2: d = ±2. Then 3c2−2 = ±1, i.e., 3c2 = 1 or 3. It cannot be equal

to 1, so c = ±1, c+ di = 2 + i or one of its associates, and x+ 2i = 11 + 2i
or one of its associates. Thus x = ±11 and y = 5.

3.7.1. (b) Use problem 3.7.3 (a).

(c) Use problem 3.7.3 (c).

3.7.2. (a) If p does not divide b, then pm + bn = 1. If at the same time p
divides ab, then p divides nab+mpa; i.e., p divides a.

(b) Divide a by b with remainder a′: a = kb+a′. Any common divisor of

a′ and b is a common divisor of a and b. Likewise, the set of Gaussian integers

of the form ma′ + nb contains a and certainly contains b, and therefore

contains any Gaussian integer of the form pa+ qb. Similarly, we can verify

the converse statement: the set of Gaussian integers of the form pa + qb
contains the set of Gaussian integers of the form ma′ + nb. Thus the pair

(a, b) may be replaced by the pair (a′, b), which in a sense is “smaller.” The

process stops at the pair (gcd(a, b), 0). The details of this proof are similar

to the proof of the GCD representation lemma; see problem 1.5.7 (a).

(c) The set of Gaussian integers (p+ qi)b, that is, multiples of b, forms

a lattice of squares with side |b|. The Gaussian integer a falls into one of

the lattice squares. It suffices to apply the geometric fact that the distance
from any point inside a square to the nearest vertex is strictly less than the
length of the side of the square.

3.7.3. (a) Answer : The unique factorization property holds.

The proof is similar to that of problem 3.7.2 (c). A necessary geometric

fact is that the distance from any point inside a
√
2 × 1 rectangle to the

nearest vertex is strictly less than 1.
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(b) Answer : The unique factorization property does not hold.

Example: 4 = 2 · 2 = (1 +
√−3)(1 − √−3). Think about why the

corresponding geometric fact is incorrect.

8. Diagonals of regular polygons (4*)
By I.N. Shnurnikov

The goal is to determine which diagonals of a regular n-gon and how many

of them can intersect at one point. Problem 3.8.2 describes possible inter-

section points, and problems 3.8.4 and 3.8.6 are needed to prove the impos-

sibility of other points of intersection, which ends with a computer-assisted

analysis of cases.

3.8.1. (a) In an isosceles triangle ABC with base BC, the vertex angle A
is 80◦. Inside the triangle a point M is chosen so that ∠MBC = 30◦ and

∠MCB = 10◦. Then ∠AMC = 70◦.
(b) Choose P inside square ABCD so that triangle ABP is equilateral.

Then ∠PCD = 15◦.
(c) In an isosceles triangle ABC with base AC, the angle at the vertex

B is equal to 20◦. On sides BC and AB, choose points D and E respectively

so that ∠DAC = 60◦ and ∠ECA = 50◦. Then ∠ADE = 30◦.

In this section, the word “intersect” means “intersect at a single point.”

3.8.2. (a) Diagonals A1An+2, A2n−1A3, and A2nA5 of a regular 2n-gon
intersect.

(b) Diagonals A1A7, A3A11, A4A16 and A5A21, of a regular 24-gon in-

tersect.

(c) In the regular 30-gon, the following seven diagonals intersect:

A1A13, A2A17, A3A21, A4A24, A5A26, A8A29, A10A30.

3.8.3. (a) Let ABC be a triangle with ∠A = 50◦, ∠B = 60◦, and ∠C = 70◦.
Choose points D and E respectively on sides BA and BC so that ∠DCA =

50◦ and ∠EAC = 40◦. Then ∠AED = 30◦.
(b) Let ABC be a triangle with ∠A = 14◦, ∠B = 62◦ and ∠C = 104◦.

On sides AC and AB choose points D and E respectively so that ∠DBC =

50◦ and ∠ECB = 94◦. Then ∠CED = 34◦.

3.8.4. If p is prime, then no three diagonals of the regular p-gon intersect

at one point in the interior.

Theorem 3.8.5 ([PR98]). For n > 4, the maximum number of diagonals
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of a regular n-gon that intersect at one point (other than the center or a

vertex) is equal to:

2 if n is odd or n = 6;

3 if n is even and not divisible by 6;

4 if n = 12;

5 if n is divisible by 6, n is not divisible by 30, and n �∈ {6, 12};
7 if n is divisible by 30.

3.8.6. a) Let p be prime and let S be a polynomial of degree not greater

than 2p− 1 with integer coefficients that has the root e
iπ
p . Then

S(x) = a(1 + x2 + x4 + . . .+ x2p−2) +

p−1∑
j=0

aj(x
j + xp+j)

for some a, a0, a1, . . . , ap−1 ∈ Z.

(b) A nonzero polynomial S(x) =
k∑

j=1
ajx

j with non-negative integer

coefficients is called k-minimal if S(e
2πi
k ) = 0 and there do not exist integers

bj , 0 ≤ bj ≤ aj , such that
k∑

j=1
bje

2πij
k = 0, where not all of the bj are equal

to zero and not all of the bj are equal to aj . Prove that for every k-minimal

polynomial S, there exist distinct primes p1 < p2 < . . . < ps ≤ k, integers m
and l, and a p1p2 · · · ps-minimal polynomial S1 satisfying S(x) = xl ·S1(xm).

(c) For a k-minimal polynomial S, choose m, l, p1, p2, . . . , ps and S1 from
(b) above with minimal ps. Suppose p1 = 2 and S(1) < 2ps. Then there

exist integers l, r < ps and p1p2 · · · ps−1-minimal polynomials T1, T2, . . . Tr
satisfying

S(x) = xl ·
r∑

j=1

T j
j (x) and

r∑
j=1

Tj(1) = 2r + S(1)− ps.

(d) There exist exactly 107 k-minimal polynomials with k > 0 whose

values at 1 do not exceed 12.

Suggestions, solutions, and answers

3.8.1. Perform additional constructions and reduce the problem to finding

intersections of diagonals in a regular n-gon.

3.8.2. Use the trigonometric form of Ceva’s Theorem. (See [Cev] for a nice

discussion of Ceva’s Theorem and its trigonometric form.)

3.8.3. Using isogonal conjugates [ISO], the problem is reduced to previous

ones.
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3.8.4, 3.8.5. If you cannot solve them, continue reading.

Reformulate the trigonometric form of Ceva’s theorem for the point

of intersection of three distinct diagonals of an n-gon into the equation
6∑

j=1
eiπxj +

6∑
j=1

e−iπxj = 0, where the six values xj , j = 1, 2, . . . , 6, are de-

fined by a certain formula (which should be found) and satisfy the equality
6∑

j=1
xj = 1.

9. A short refutation of Borsuk’s conjecture

This section2 provides the simplest known refutation of Borsuk’s conjecture:

Any bounded subset of n-dimensional Euclidean space containing more than
n points can be partitioned into n + 1 non-empty sets of smaller diame-
ter. The presented counterexample is due to N.Alon and is a wonderful

application of combinatorics and algebra to geometry.

Theorem 3.9.1 (Borsuk). Any bounded subset of the plane that contains

more than two points can be partitioned into three non-empty sets of smaller

diameter.

The diameter of a non-empty subset of a plane is the greatest distance

between its points (more precisely, the supremum of these distances). A

subset of a plane is called bounded if its diameter is finite. (For subsets of

n-dimensional Euclidean space, these terms have analogous definitions.)

The diameter of the empty set is assumed to be zero.

Borsuk conjectured a higher-dimensional generalization of his result,

which for many years was one of the most intriguing problems of combi-

natorial geometry.

A point x = (x1, . . . , xn) in n-dimensional Euclidean space is an ordered

set of n real numbers. The distance between points x = (x1, . . . , xn) and

y = (y1, . . . , yn) is given by the formula

|xy| =
√

(x1 − y1)2 + · · ·+ (xn − yn)2.

The diameter and the property of being bounded for a subset of the n-
dimensional Euclidean space are defined in the same way as for a subset of

the plane.

This conjecture states that any bounded subset of n-dimensional Eu-

clidean space containing more than n points can be divided into n+ 1 non-

empty parts of smaller diameter.

2The author thanks N.Dolbilin and A.Raygorodsky, from whom he learned about

counterexamples to the hypothesis of Borsuk, students of Moscow School 57, who

learned these counterexamples from him, and M.Akhmedov, V.Dubrovsky, I. Pak, and

A.Rukhovich for helpful discussions.
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It is not difficult to construct a subset of n-dimensional Euclidean space

which cannot be divided into n parts of smaller diameter. For n = 3 it is

the regular tetrahedron; for any n it is the n-dimensional simplex.

In 1993 J.Kahn and G.Kalai used combinatorial ideas of Boltyanski,

Erdős, and Larman to find a counterexample to Borsuk’s conjecture; see

[KBK08]. A detailed history of the problem is described in [AZ04,Rai04].

Theorem 3.9.2. There exist an integer n and a bounded subset M of n-
dimensional Euclidean space containing more than n points such that M
cannot be divided into n+ 1 parts of smaller diameter.

We will present the simplest known proof, due to N.Alon; cf. [Nil94,

Skob,Ger99,AZ04,Rai04]; other proofs give stronger results. It is an

amazing example of an important result in modern mathematics that does

not require two years of prerequisite courses followed by a semester-long

special course for full comprehension. Other simple examples using similar

algebraic techniques in combinatorics can be found in [RSG+16, 7.1].

Proof. Let

M = {(x1, . . . , xn) such that x1 = 1, x2, . . . , xn ∈ {1,−1} ,
and an odd number of coordinates x2, . . . , xn are equal to 1.}

Each vertex of an n2-dimensional cube is an ordered n2-tuple of 1’s and

−1’s. It is convenient to think of it as a n × n matrix. However, if you

prefer, imagine a vector with n2 elements.

We will map each point x = (x1, . . . , xn) ∈M to a matrix xT⊗x, defined
by (xT ⊗ x)ij := xixj . For example,

(1,−1,−1)T ⊗ (1,−1,−1) =

⎛
⎜⎝ 1 −1 −1
−1 1 1

−1 1 1

⎞
⎟⎠

= (1,−1,−1,−1, 1, 1,−1, 1, 1).
We will prove that the set

M ′ = {xT ⊗ x : x ∈M}
provides a counterexample to Borsuk’s conjecture, for n = 4p where p is a

sufficiently large prime.

Let x, y ∈M . Then

(xixj − yiyj)
2 = (xixj)

2(1− xiyixjyj)
2 = (1− xiyixjyj)

2.

Let a = a(x, y) denote the number of indices i for which xi = yi. Then

xiyi = 1 for a indices i and xiyi = −1 for n − a indices i. Thus |xT ⊗
x, yT ⊗ y|2 = 4a(n − a). This expression reaches its maximum at a = n/2.
Consequently, the condition |xT ⊗ x, yT ⊗ y| = diamM ′ is equivalent to

a = n/2.
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Therefore, if the set M ′ is partitioned into k sets Z ′
1, . . . , Z

′
k of smaller

diameter, then in every subset Zj of M corresponding to one part Z ′
j , no

two vectors differ at exactly half of the coordinates. Since for any x ∈ M ,

x1 = 1, we have xT ⊗ x �= yT ⊗ y for x �= y. Thus |Zi| = |Z ′
i|. The theorem

follows from the estimation lemma 3.9.3 below since |M | = 2n−2. �

Lemma 3.9.3 (Estimation). If p is a sufficiently large prime and n = 4p,
then among any �2n−2/(n2 + 1)� vectors in M there are two that differ at

exactly half of the coordinates.

When proving Lemma 3.9.3, we do not need to remember the construc-

tion xT ⊗ x.

3.9.4. For a prime p and an integer t, the number

G(t) := (t− 1)(t− 2) · · · (t− p+ 1)

is divisible by p if and only if t is not divisible by p.

Any polynomial λ1F1 + . . . + λsFs with rational λ1, . . . , λs is called a

rational linear combination of polynomials F1, . . . , Fs. For example, the

polynomial x2 is a rational linear combination of the polynomials 2x1, 1,
and x1 + x2.

Polynomials are called linearly independent if the only rational linear

combination of them that equals zero requires all λk to equal zero. For

example, the polynomials 1, x2, x3, . . . , xn are linearly independent.

(*) A polynomial in n− 1 variables x2, . . . , xn with rational coefficients

has degree less than n/4 if it is a rational linear combination of polynomials

of the form xα2
2 · · ·xαn

n , where α2, . . . , αn are non-negative integers whose

sum is less than n/4.
The estimation lemma 3.9.3 follows from the linear independence lemma

3.9.5 below and from statement 3.9.6.

Lemma 3.9.5 (Linear independence). Let p be prime, n = 4p, and A ⊂M
such that no two vectors in A differ at exactly half of the coordinates. For

each vector a ∈ A, define the polynomial Fa in x2, . . . , xn with coefficients

in Zp by

Fa(x2, . . . , xn) := G(a · (1, x2, . . . , xn)).
Then the polynomials Fa, a ∈ A, all have degrees less than n/4 and are

linearly independent.

3.9.6. Let q be prime and n be a sufficiently large integer (note that n/4
need not be prime nor be equal to q). Then any family of polynomials in

x2, . . . , xn with coefficients in Zq of degree less than n/4 that is linearly

independent over Zq contains fewer than �2n−2/(n2 + 1)� polynomials.
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3.9.7.* Borsuk’s conjecture is false for

(a) d = 946 [Nil94]; (b) d = 561 [Rai04].

Suggestions, solutions, and answers

3.9.1. First, use continuity to prove that any planar figure of diameter 1 can

be positioned inside a regular hexagon whose inscribed circle has diameter 1.

Then prove that although the obtained regular hexagon has diameter greater

than 1, it can be cut into three pieces of diameter less than 1 (cf. [Yan]).

3.9.5.

Proof of the linear independence lemma. The statement about the

degree is obvious. To prove linear independence, assume to the contrary

that λ1Fa1 + · · · + λsFas = 0 for some a1, . . . , as ∈ A with λ1, . . . , λs ∈ Zp

and not all λk zero. Here the a1, . . . , as are vectors, not scalar coordinates.

Without loss of generality, we can assume that λ1 �= 0 ∈ Zp. In the above

equality, for each j = 2, . . . , n take x2 = (a1)2, . . . , xn = (a1)n.
Recall that the dot product of vectors is an integer and not a residue

modulo p. From the equality a1 · a1 = n = 4p and assertion 3.9.4 it follows

that λ1Fa1 �= 0. If a = b then a · b = a · a = n is divisible by 4. For each

a, b ∈ A, replacing in a (or in b) two 1’s by −1’s does not change a · b mod 4.

For each a ∈ A the number of 1’s in a is even. Then a · b is divisible by 4

for each a, b ∈ A. Therefore a · b �∈ {±p,±2p,±3p}. Also, a · b �= n = 4p
because a �= b, and a · b �= −n because the first coordinates of a and of b are
both equal to 1.

From this and the fact that a · b �= 0 it follows that a · b is not divisible
by p. Thus 3.9.4 implies that λkFak = 0 for any k > 1, a contradiction. �

3.9.6.

Proof. The number of ordered solutions (α2, . . . , αn) to the equation α2 +

. . .+ αn = d in non-negative integers is equal to
(
n+d−2

d

)
.

For d < p := �n/4�, we have(
n+ d− 2

d

)
(1)
<

(
n+ p− 3

p− 1

)
(2)
<

(
5p

p− 1

)
(3)
<

(4 + 1)5p

44p+1

(4)
< 13p.

Here

• inequality (1) holds because 2d < 2p < n− d− 2;

• inequality (2) holds because n+ p− 3 < 5p;
• inequality (3) follows from the Newton binomial formula for (4 + 1)5p

(cf. [RSG+16, problem 6.1.5]);

• inequality (4) holds because 55 < 27 · 52 < 28 · 13.
Since 13 < 24, this implies that for sufficiently large n the number r of

polynomials in the family (*) does not exceed n · 13n/4 < �2n−2/(n2 + 1)�.
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Let Q1, . . . , Qr denote the family of polynomials (*) and let F1, . . . , Fk be

the given linearly independent family. Consider the k×r matrix of elements

λi,j ∈ Zq for which Fi =
∑

j λi,jQj for any i = 1, . . . , k. The family of poly-

nomials obtained from the family F1, . . . , Fk by replacing Fi with Fi + λFj ,

j �= i, is also linearly independent. By such substitutions and permutations

of polynomials (i.e., by Gaussian elimination of the unknowns), the k × r
matrix can be reduced to “upper triangular” form. Since the polynomials

F1, . . . , Fk are linearly independent, there is no zero row in this new matrix.

Thus k ≤ r. �

3.9.7. (a) We built our example in an
n(n−1)

2 -dimensional space (albeit with

a different metric) whose points are given by sets zij in which the indices i
and j run from 1 to n so that i < j.

Prove that for each k ≤ 7 we have
(
27
k

)
(28·272 + 1) < 226.

(b) Similar to (a), only x1 = x2 = x3 = 1, n = 36, and G(t) = 1
9(t −

1)(t− 2)(t− 3)(t− 5)(t− 6)(t− 7)(t− 8).





Chapter 4

Permutations

Solving the problems in this chapter does not require any prior knowledge.

The problems relate more to combinatorics than to algebra up until their

connection with the solution of equations is explored (see Chapter 8). They

naturally lead the reader to the concept of a group of transformations, which

is explicitly introduced in subsection3.I of Chapter 8. A mini-course on

group theory can be constructed from this chapter, Chapter 2 “Multiplica-

tion modulo a prime number”, and Chapter 8 “Solvability in radicals”.

1. Order, type, and conjugacy (1)

4.1.1. Fifteen students sit on fifteen numbered chairs. Every minute a kind

teacher moves them according to the following scheme:(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 5 10 8 11 14 15 6 13 1 4 9 7 2 12

)
.

In how many minutes will all the students be in their original places again?

A permutation of a set is a list of the elements of this set in some order.

More strictly speaking, a permutation of a set is a one-to-one mapping of

the set onto itself (that is, a bijection).

A permutation f can be conveniently represented as an oriented graph
whose nodes are elements of a set and whose edges go from node ak to node

f(ak). A permutation of a set which takes ak to f(ak) is written as(
a1 a2 . . . an

f(a1) f(a2) . . . f(an)

)
.

Conventionally, ak = k for k = 1, . . . , n.
The inverse permutation of the permutation f is the permutation f−1

defined by f(f−1(x)) = x. It is written as(
f(a1) f(a2) . . . f(an)

a1 a2 . . . an

)
.

59
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A composition of the permutations f and g is the permutation defined

by (f ◦ g)(x) := f(g(x)).

4.1.2. Find the compositions

(a)

(
1 2 3

2 1 3

)
◦
(
1 2 3

3 1 2

)
;

(b)

(
1 2 3

2 3 1

)
◦
(
1 2 3

3 1 2

)
.

A cycle (a1, a2, . . . , an) is the permutation(
a1 a2 . . . an−1 an

a2 a3 . . . an a1

)

of a set containing the elements a1, a2, . . . , an (and possibly other elements),

which takes an to a1 and ai to ai+1 for any i < n, and maps each of the

other elements of the set to itself.

In this language, the results of problem 4.1.2 can be briefly expressed as

follows: (12) ◦ (132) = (13) and (123) ◦ (132) = (1).

4.1.3. Find the compositions (of permutations on the set of numbers)

(a) (12) ◦ (23); (b) (23) ◦ (12); (c) (12) ◦ (13) ◦ (12);
(d) (12345) ◦ (12); (e) (12345) ◦ (56789).
Give the answers in the form of compositions of disjoint cycles.1

Below, we will omit writing ◦ to indicate composition.

4.1.4. For any permutation f , there exists an integer n > 0 for which

fn = id, that is, after an n-fold application of the permutation, each element

goes to itself.

The smallest positive integer n for which fn = id is called the order,
denoted by ord f , of the permutation.

4.1.5. Are there any permutations of a 9-element set that have order 7; 10;

12; 11?

1Compositions of disjoint cycles are compositions of cycles that have no common

elements, for example, the right-hand side of the equation (123) ◦ (234) = (12) ◦ (34).
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4.1.6. What is the order of the composition of disjoint cycles of lengths

n1, . . . , nk?

The permutations from problem 4.1.6 of a set of (n1+ . . .+nk) elements

are called permutations of type 〈n1, . . . , nk〉. For example, (14)(253) and

(15)(432) are of type 〈2, 3〉, and (1)(3)(245) is of type 〈1, 1, 3〉.

Figure 4.1. A permutation of type 〈1, 2, 3, 4〉.

4.1.7. Find the number of permutations of the following types:

(a) 〈2, 3〉; (b) 〈3, 3〉; (c) 〈1, 2, 3, 4〉.

Permutations a and b are called conjugate if a = xbx−1 for some permu-

tation x.

4.1.8. (a) Permutations a and b are conjugate if and only if their types are

the same.

(b) Let a and x be arbitrary permutations of the n-element set. Then

xax−1 =

(
x(1) x(2) . . . x(n)

x(a(1)) x(a(2)) . . . x(a(n))

)
.

In other words, the cyclic decomposition of the permutation xax−1 is ob-

tained from the cyclic decomposition of the permutation a by replacing each

element with its x-image: if a =
q∏

j=1
(ij,1, ij,2, . . . , ij,sj ), then

xax−1 =

q∏
j=1

(x(ij,1), x(ij,2), . . . , x(ij,sj )).

(c) Find gf−1g−1f for f := (1, 2, . . . , N) and g := (N,N + 1, . . . , L).
(d) The rotations of a cube around its long diagonals generate conjugate

permutations of the set of its vertices.

4.1.9. Any permutation can be represented as a composition of

(a) disjoint cycles;

(b) transpositions (cycles of length 2);

(c) transpositions of the form (1, i), i = 2, 3, . . . , n.
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4.1.10. Find two permutations whose compositions can be used to obtain

any permutation of an n-element set.

Hints and answers

4.1.1. Answer : After 105 minutes.

4.1.3. Answer : (a) (123); (b) (132); (c) (23); (d) (1345); (e) (123456789).

4.1.5. Answer : There is no permutation of order 11, but the others exist.

4.1.6. Answer : LCM(n1, . . . , nk).

4.1.7. Answers: (a) 20; (b) 4
(
6
3

)
/2 = 40; (c) 10!/4!.

4.1.8. (a) Hint. Renumber the elements of the set so that the permutation

a becomes b. This yields the required permutation x.

(c) Answer : (N − 1, N,N + 1).

4.1.10. Answer : For example, (12) and (123 . . . n).

2. The parity of a permutation (1)

4.2.1. (a) Can an arbitrary permutation be represented as a composition of

3-cycles?

(b) Can an arbitrary permutation be represented as a composition of an

even number of transpositions?

(c) The Russian 15-challenge. Consider a 4 × 4 grid containing 15

square pieces of size 1×1 labeled 1, 2, . . . , 15, with one open (empty) square.

Initially, the squares are arranged as in the figure on the right, with the

empty square indicated by *. Is it possible, by sequentially moving the

squares to an open square, to change the arrangement to the one shown on

the left? ⎡
⎢⎢⎢⎢⎣
1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 ∗

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
1 2 3 4

5 6 7 8

9 10 11 12

13 15 14 ∗

⎤
⎥⎥⎥⎥⎦

If you cannot solve problem 4.2.1, continue reading.

Let f be permutation of {1, 2, . . . , n}. Call the pair (i, j), 1 ≤ i, j ≤ n,
a disorder for f if i < j but f(i) > f(j). A permutation is called even if
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the total number of its disorders is even. A permutation is called odd if it

is not even.

4.2.2. Which cycles (a1, . . . , an) are even?

4.2.3. (a) The composition of an even (odd) permutation and a transposi-

tion is odd (even).

(b) What is an appropriate theorem on the parity of the composition of

permutations if we know the parity of each factor?

4.2.4. The following conditions are equivalent.

(a) A permutation can be represented as a composition of an even num-

ber of transpositions.

(b) Any representation of a permutation as a composition of transposi-

tions contains an even number of them.

(c) A permutation can be represented as a composition of (possibly zero)

3-cycles.

4.2.5. Let Sn denote the set of all permutations of an n-element set.

(a) In Sn, which set has more elements—the set of even or the set of

odd permutations?

(b) For any n and k, find the minimum number of transpositions whose

compositions yield an arbitrary permutation of Sn consisting of k disjoint

cycles of length greater than 1.

4.2.6.* A permutation x is generated by the permutations p1, p2, . . . , pk if

x = x1x2 . . . xn and each factor xi equals some pj .
(a) Any even permutation is generated by any pair of cycles (each of

length ≥ 2) that have exactly one common element and contain all elements

of the set.

(b) If nk is even with n > 1 and k > 1, then the cycles (1 . . . n) and

(n . . . n+ k − 1) generate all permutations in Sn+k−1.

(c) If nk is odd with n > 1 and k > 1, then the cycles (1 . . . n) and

(n . . . n+ k − 1) generate all even permutations (and no others).

Hints and answers

4.2.1. Answers: (a) No; (b) No; (c) No.

4.2.2. Answer : A cycle of length n is even if n is odd, and is odd if n is

even.

4.2.3. Hint. Sum the parities of the factors modulo 2.
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4.2.5. Answer : (a) For n > 1 there is an equal number of odd and even

permutations; (b) n− k.

4.2.6. See I. Grigoriev, Generation of permutations by figure “eight”,
http://www.mccme.ru/mmks/dec10/grigoriev_report.pdf.

(Be careful—there are flaws!).

3. The combinatorics of equivalence classes (2)

This section is devoted to counting the number of different equivalence

classes (such as colorings). These computations will lead to the important

notion of a group of transformations and to an elementary formulation of

Burnside’s lemma. The formulation and proof of this and other results in

the abstract language of group theory makes them less accessible.

We do not require that all given colors be used in a coloring. When a

coloring is transformed under a rotation, the new coloring is considered the

same as the old one (see 4.3.1 (c) for an exception).

The following definitions are used only in 4.3.1 (b), 4.3.6 (e), and 4.3.11,

and therefore can be skipped when doing other problems.

An isomorphism between two graphs is a bijection between the vertex

sets of these graphs such that any two vertices in one graph are connected by

an edge if and only if their images under the bijection are connected by an

edge in the second graph. An automorphism of a graph is an isomorphism

of the graph with itself.

4.3.1. (a) How many different ways can one color the faces of a cube in red

and gray?

(b) How many different (i.e., nonisomorphic) non-oriented graphs with

four vertices are there?

(c) How many different ways can one color the vertices of a regular

tetrahedron using r colors?

(Here we view two colorings to be the same if one can be obtained from

the other by a not necessarily orientation-preserving motion, for example, a

reflection.)

4.3.2. For a prime p, find the number of closed oriented connected length-p
circuits (possibly self-intersecting) passing through all the vertices of a given

regular p-gon. (The edges of the circuit are sides or diagonals of the regular

p-gon. Circuits that coincide after a rotation are considered to be the same;

thus, for example, 12543 and 14532 are indistinguishable circuits of a regular

5-gon.)
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Problems 4.3.1 and 4.3.2 are simple and can be solved without using

Burnside’s lemma.

4.3.3. Find the number of colorings in r colors of a circular track (“carousel”)
consisting of n unlabeled train cars (that is, the number of colorings of the

vertices of a regular n-gon in r colors if colorings coinciding after rotation

are indistinguishable) for

(a) n = 5; (b) n = 4; (c) n = 6.

For arbitrary n, problem 4.3.3 can be solved by generalizing the methods

used for small n, but this can be cumbersome. We give a simple method to

deal with trickier values of n by presenting an alternative solution of (c).

Call a coloring of the carousel of numbered cars in r colors a (painted)
train. Clearly, there are a total of r6 painted 6-car trains.

Distribute trains between stations so that at each station we place all the

different trains that can be obtained from a single coloring of the carousel

(by decoupling two cars in the carousel). Then the required number Z of

colorings is equal to the number of stations.

Let us define the period T (α) of the train α to be the smallest positive

value of the cyclic shift that takes the train α to itself.

4.3.4. The number of trains at a station is equal to the period of each of

the trains standing at this station. In particular, the periods of trains at the

same station are equal.

At each station, choose one train and put 6 passengers in it. Give each

person a different ticket labeled with one of the numbers 0, 1, 2, 3, 4, 5. We

want to find the total number of passengers, which equals 6Z.
We instruct each passenger to go to the (painted) train obtained from

the chosen one by the cyclic shift indicated by the passenger’s ticket number.

Clearly every passenger stays at the same station.

4.3.5. (a) In train α there are 6/T (α) passengers left. More formally, the

number of those s’s for which the cyclic shift by s translates the train α into

itself is 6/T (α).
(b) Each train α will have 6/T (α) passengers.

This means that the total number 6Z of passengers is equal to the num-

ber of all pairs in which s ∈ {0, 1, 2, 3, 4, 5} and α is a train that is unchanged

after a cyclic shift of cars. A cyclic shift by s leaves exactly rgcd(s,6) trains
unchanged. Therefore

6Z = r6 + r + r2 + r3 + r2 + r.



66 4. PERMUTATIONS

The above formula is expressed as follows:

6Z =
∑
x

T (x) · 6

T (x)
=
∑
α

6

T (α)
= r6 + r + r2 + r3 + r2 + r.

Here, the first summation is over all the colorings of the carousels, and the

second one is over all trains α.

4.3.6. Find the number of colorings of

(a) a carousel of n cars using r colors;

(b) necklaces of n = 2k + 1 beads using r colors (two necklaces are

considered to be the same if one is transformed into the other after rotating

around the center of the necklace or after turning the necklace over);

(c) unnumbered faces of a cube using r colors;

(d) unnumbered vertices of a cube using r colors;

(e) unnumbered vertices of the graph K3,3 (Figure 4.2) using r colors.

Two colorings are considered to be the same if one can be transformed into

the other by an automorphism of this graph.

Figure 4.2. The graph K3,3

4.3.7. List all rotations of the cube, that is, the rotations of space that map

the cube to itself.

Here is a plan for attacking problem 4.3.6 (c). Parts (b)–(e) can be solved

similarly. Part (b) can be solved even without this hint.

Call the coloring of the numbered faces of the cube using r colors the

(colored) box (or frozen coloring). Then there are a total of r6 boxes. Place

the boxes in rooms so that each room contains all the boxes obtained from

some box by various rotations. Hence the number of distinct colorings, Z,
is equal to the number of rooms.

In each room, choose one box and put 24 cockroaches in it, correspond-

ing to the rotations of the cube. We need to count the total number of

cockroaches, which equals 24Z.
Instruct each cockroach to crawl into the box obtained from the chosen

one by the rotation that corresponds to that cockroach. It is clear that every

cockroach stays in the same room.

The number of cockroaches remaining in the chosen box is equal to the

number of cube rotations that turn this box into itself. Let st(α) denote the
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number of cube rotations that leave the (painted) box (that is, the frozen

coloring) α unchanged.

4.3.8. (a) The number of cockroaches in box α is equal to st(α). More

formally, if there is a rotation that turns the frozen coloring α into the

frozen coloring α′, then the number of such rotations is equal to st(α).
(b) In any other box from the selected room, there will be as many

cockroaches as in the chosen box in the same room. More formally, for any

two frozen colorings α and α′ that turn into each other by some rotation,

we have st(α) = st(α′). This number is denoted by st(x), where x is the

corresponding coloring of unnumbered faces of the cube.

Therefore, the total number of cockroaches is equal to the number of

pairs (α, s) for which s is a rotation of the cube and α is a box left unchanged

by s. So it remains to solve the following problem.

4.3.9. For each rotation s of the cube find the number of boxes (frozen

colorings) left unchanged under s.

Denote by Nx the number of frozen colorings corresponding to the col-

oring of x. Then for any coloring x, the number st(x) · Nx is equal to the

number of rotations of the cube (i.e., to 24). In other words,

24Z =
∑
x

st(x) ·Nx =
∑
α

st(α) =
∑
s

fix(s).

Here, the first summation is over all colorings x of unnumbered faces, the

second is over all frozen colorings α, and the third is over all rotations s of

the cube.

Can we formulate a general result that could be applied instead of re-

peating the arguments of problem 4.3.6 (a) and (c)?

4.3.10. Burnside’s lemma. Let M be a set and let G = {g1, g2, . . . , gn}
be a family of transformations of this set that is closed with respect to com-

position and inverse.2 Two elements of the set M are called equivalent if

one of them can be transformed into the other by one of these transforma-

tions. Then the number of equivalence classes is equal to 1
n

n∑
k=1

fix(gk), where

fix(gk) is the number of elements of M that are left unchanged (“fixed”) by

gk.

4.3.11. Find the number of graphs with n vertices, up to isomorphism. The

answer can be left as a sum.

2In other words, G is a group of transformations of M .
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4.3.12. (a) Find the number bn of mappings {0, 1}n → {0, 1} up to variable

permutations.

(b) Prove that there exists a limit lim
n→∞

n!bn/2
2n and find it. (For the

definition of limit, see problem 6.4.2. Skip this problem if you are unfamiliar

with limits.)

Answers

4.3.1. Answers: (a) 10; (b) 11; (c) r(r + 1)(r + 2)(r + 3)/24.

4.3.2. Answer : p− 2 + ((p− 1)! + 1)/p.

4.3.3. Answers: (a) (r5+4r)/5; (b) (r4+ r2+2r)/4; (c) (r6+ r3+2r2+
2r)/6.

4.3.6. (a) Answer : 1
n

∑
d|n
ϕ
(
n
d

)
rd. Euler’s function ϕ(n) is defined in prob-

lem 2.1.5.



Chapter 5

Inequalities

This chapter is almost independent of the rest of the book. Only simple

facts from it are used in other chapters.

Unless otherwise stated, Roman and Greek letters denote non-negative

real numbers. In problem statements, denominators are assumed to be

nonzero. With problems involving xa it is useful to first consider ratio-

nal a; you can stop at this if you do not know what 2
√
2 is. After proving a

non-strict inequality, it is useful to consider how and under what conditions

it can turn into an equality. In this case, it is also useful to check that

all intermediate inequalities used in the proof of the original one turn into

equalities.

1. Towards Jensen’s inequality (2)

Remember to prove all the inequalities you use!

5.1.1. Paul took a physics and mathematics olympiad lasting 6 hours. He

receives x and y points (not necessarily integers) for the time he spends

on physics and mathematics problems respectively. How should he distrib-

ute time between physics and mathematics in order to obtain the highest

(lowest) total result if this result is obtained by the formula

(a) xy; (b) x2 + y2; (c)
√
x+

√
y; (d) 1

x + 1
y ;

(e) sin x
2 + sin

y
2 ; (f) x2y.

Let I ⊂ R be a finite or infinite interval. A function f : I → R is said to

be concave up if

f
(x+ y

2

)
≤ f(x) + f(y)

2
for any x, y ∈ I.

5.1.2. Solve problem 5.1.1 for the formula f(x) + f(y), where the function

f is concave up.

69
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5.1.3. Which of these functions are concave up and over what intervals?

(a) x; (b) x2; (c) −x2; (d) (x− 1)3; (e)
√
x; (f) |x− 3|?

5.1.4. Let n > 0 be an integer and let x1 + . . .+ xn = 1. Find the highest

and the lowest values of the following expressions:

(a) x1 · . . . · xn;
(b) x21 + . . .+ x2n;
(c) 1

x1
+ . . .+ 1

xn
;

(d) x31 + . . .+ x3n;
(e)∗ x21 · . . . · x2n−1 · xn.

5.1.5. Inequalities for mean values, or Cauchy’s inequalities. Prove

the following inequalities:

min{x1, . . . , xn} ≤ n
1
x1

+ . . .+ 1
xn

≤ n
√
x1 · . . . · xn

≤ x1 + . . .+ xn
n

≤
√
x21 + . . .+ x2n

n
≤ max{x1, . . . , xn}.

5.1.6. Solve problem 5.1.1 (b–e) in the case where Paul solves physics prob-

lems twice as fast as mathematics problems but the solution of a math prob-

lem has twice the value of a solved physics problem. More formally, find the

largest and the smallest values of the expression 2f(x)+f(2y) provided that

x+ y = 6 for f(x) = x2,
√
x, 1x , sin

x
2 .

5.1.7.* (a) If a continuous function f is concave up then

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) for any t ∈ [0, 1] and x, y ∈ I.
(b) Jensen’s inequality. If a continuous function f : I → R is concave

up then

f(t1x1 + . . .+ tnxn) ≤ t1f(x1) + . . .+ tnf(xn)

for any t1, . . . , tn whose sum is 1 and any x1, . . . , xn ∈ I.1
(c) We can check whether a function is concave up using the second

derivative. A function with continuous second derivative is concave up if

and only if f ′′(x) ≥ 0 on I. For a proof, we need analogues of some results

in section 2 of Chapter 7 for differentiable functions.

1One can define concave down functions analogously, and then Jensen’s inequality

holds with the inequality reversed. See the alternative solution to problem 5.2.5 (b) on

p. 75.
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5.1.8.* (a) Find the largest and smallest values of x1 · . . . · xn under the

conditions xi ≥ 1
n and x21 + . . .+ x2n = 1.

(b) Prove the inequality

x1x2 + x2x3 + . . .+ xn−1xn ≤ (x1 + . . .+ xn)
2

4
.

5.1.9.* A set of numbers x1 ≥ . . . ≥ xn from I majorizes a set of numbers

y1 ≥ . . . ≥ yn from I if x1 + . . . + xn = y1 + . . . + yn and x1 + . . . + xk ≥
y1 + . . .+ yk for each k.

(a) Karamata’s inequality. If a continuous function f : I → R is

convex down and a set of numbers x1 ≥ . . . ≥ xn from I majorizes a set of

numbers y1 ≥ . . . ≥ yn from I, then f(x1)+ . . .+f(xn) ≥ f(y1)+ . . .+f(yn).

(b) Prove the inequality
√
a+ b− c+

√
b+ c− a+

√
c+ a− b ≤ √

a+
√
b+

√
c

for sides a, b, c of a triangle.

(c) Find the smallest C such that for any x1, . . . , x9 ≥ 0 the following

inequality holds: ∑
1≤i<k≤9

xixk(x
2
i + x2k) ≤ C

( 9∑
i=1

xi

)4

.

Hints

5.1.4. (a) Hint. Below we describe a common mistake along with a useful

technique that corrects it.

Suppose you want to prove that the product x1 · . . . · xn attains a max-

imum value of
(

1
n

)n
with x1 = x2 = . . . = xn = 1

n . If among the numbers

x1, x2, . . . , xn satisfying the condition x1 + . . . + xn = 1 there is a pair of

distinct numbers xi and xj , then replace them by
xi+xj

2 and
xi+xj

2 . The

sum of the numbers of the new set remains 1, and the product will become

strictly larger, since xixj <
(
xi+xj

2

)2
. Hence, to maximize the product, the

values of xi must satisfy x1 = x2 = . . . = xn.
These arguments are not enough to solve the problem. There is no proof

that there is a set of x1, x2, . . . , xn for which the product x1 · . . . ·xn attains a

greatest value. This can be accomplished using results about the existence of

extrema for polynomials of several variables, that is, an analogue of Theorem

7.2.7 (a). However, it is simpler to change the argument as follows.

Let x1, x2, . . . , xn be non-negative numbers whose sum is 1. If not all of

them are equal to 1
n , then there are numbers xi <

1
n and xj >

1
n . Replace

the numbers xi and xj with 1
n and xi + xj − 1

n . The difference between the

numbers of the new pair (with the same sum) becomes smaller and therefore
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their product increases (check this!). Hence the product of numbers in the

new set also increases. Therefore, making no more than n replacements,

we get the set 1
n ,

1
n , . . . ,

1
n . The product of the numbers in each next set is

greater than the previous one. Therefore x1 · . . . · xn ≤ 1
n · . . . · 1

n =
(

1
n

)n
.

Suggestions, solutions, and answers

5.1.1. (a) Answer : The maximum is attained when x = y = 3, and the

minimum, for example, when x = 0 and y = 6.

Solution. It is easy to see that the minimum value of xy is zero for x ≥ 0

and y ≥ 0. Since

xy =
(x+ y)2 − (x− y)2

4
= 9− (x− y)2

4
,

the maximum value of xy is attained when the variables take equal values.

(b) Answer : The minimum is attained when x = y = 3, and the maxi-

mum, for example, when x = 0 and y = 6.

Hint. We have x2 + y2 = (x+y)2+(x−y)2

2 = 18 +
(x−y)2

2 .

(c) Answer : The maximum is attained when x = y = 3, and the mini-

mum, for example, at x = 0 and y = 6.

Solution. Since (
√
x+

√
y)2 = x+ y+2

√
xy = 6+2

√
xy, the expression√

x +
√
y attains its maximum (minimum) value simultaneously with xy.

Thus, the answer is the same as in part (a).

(d) Answer : The minimum is attained at x = y = 3, and there is no

maximum.

Solution. We have 1
x + 1

y =
x+y
xy = 6

xy . Therefore, according to part (a),

the minimum is attained when x = y = 3,

Since 1
1/a + 1

6−1/a > a for any a > 0, the value of 1
x + 1

y can be made

arbitrarily large.

(e) Answer : The maximum is attained when x = y = 3, and the mini-

mum, for example, at x = 0 and y = 6.

Solution. We have

sin
x

2
+ sin

y

2
= 2 sin

x+ y

4
cos

x− y

4
= 2 sin

3

2
cos

x− y

4
.

Since 3
2 < π, we have sin 3

2 > 0. Since cosx ≤ 1, the maximum is

attained when x = y = 3.

The function cosx decreases on the interval
[
0, π2

]
and increases on[

− π
2 , 0
]
. We have

|x−y|
4 ≤ 3

2 < π
2 . Therefore the minimum is attained

when x− y = ±6.

5.1.2. (a) For the maximum, Paul needs to solve all the problems in one

subject exclusively, and for the minimum, he needs to distribute time equally

between the subjects.
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5.1.4. Answers.
(a) The maximum is equal to (1/n)n and the minimum is equal to 0.

(b) The maximum is equal to 1 and the minimum is equal to 1/n.
(c) The maximum does not exist and the minimum is equal to n2.
(d) The maximum is equal to 1 and the minimum is equal to 1/n2.

5.1.6. Answers.
For the function x2 the minimum is attained when x = 2y = 4, and the

maximum when (x, y) = (0, 6).
For the function

√
x, the maximum is attained when x = 2y = 4, and

the minimum when (x, y) = (6, 0).
For the function 1/x, the minimum is attained when x = 2y = 4, and

there is no maximum.

For the function sin x
2 everything is more complicated. This is a special

case of the inequality in 5.1.7 (a).

5.1.7. Hints.
(a) First prove the statement for binary rational t. For arbitrary m, take

a limit.

(b) Deduce the statements from (a) using induction on n.
(c) Use Lagrange’s Mean Value Theorem 7.2.7 (c).

2. Some basic inequalities (2)

5.2.1. (a) If a ≥ b and x ≥ y, then ax+ by ≥ ay + bx.
(b) If a, b, c and α, β, γ are the sides and angles of a triangle, respectively

(with angle α opposite to side a, etc), then

aα+ bβ + cγ ≥ π

3
(a+ b+ c).

(c) If α, β, and γ are the angles of a triangle, then

2
(sinα

α
+

sinβ

β
+

sin γ

γ

)
≤
( 1
α
+

1

β

)
sin γ+

( 1
α
+

1

γ

)
sinβ+

( 1
β
+

1

γ

)
sinα.

(d) Rearrangement inequality. If x1 ≥ . . . ≥ xn, y1 ≥ . . . ≥ yn,
and {i1, . . . , in} is any permutation of {1, . . . , n}, then

x1y1 + . . .+ xnyn ≥ x1yi1 + . . .+ xnyin ≥ x1yn + . . .+ xny1.

(e) Chebyshev’s inequality. If x1 ≥ . . . ≥ xn and y1 ≥ . . . ≥ yn,
then

x1y1 + . . .+ xnyn
n

≥ x1 + . . .+ xn
n

· y1 + . . .+ yn
n

≥ x1yn + . . .+ xny1
n

.
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5.2.2. Prove the following inequalities.

(a) a3 + b3 ≥ a2b+ ab2;
(b) ak + bk ≥ ak−lbl + albk−l for any k > l > 0;

(c) a2 + b2 + c2 ≥ ab+ bc+ ca;
(d) 2(a3 + b3 + c3) ≥ a2b+ b2a+ b2c+ c2b+ c2a+ a2c ≥ 6abc;
(e) 2(a4 + b4 + c4) ≥ a3b+ b3a+ b3c+ c3b+ c3a+ a3c

≥ 2(a2b2 + b2c2 + c2a2) ≥ 2abc(a+ b+ c).

5.2.3. (Challenge.) Find and prove a chain of inequalities similar to the

previous problem: (a) between a5 + b5 + c5 and abc(ab+ bc+ ca);
(b) between ak + bk + ck and aqbqcqM , where k > q ≥ 0 are integers,

x0 := 1 for x ∈ {a, b, c}, and

M =

⎧⎪⎨
⎪⎩
1, n = 3q,

a+ b+ c, n = 3q + 1,

ab+ bc+ ca, n = 3q + 2;

(c) starting with ak1 + ak2 + . . .+ akn, where k > 0 is an integer.

5.2.4. (a) If at2 + 2bt+ c ≥ 0 for any t, then b2 ≤ ac.
(b) Cauchy–Buniakovsky–Schwarz (CBS) inequality. Prove the

following inequality:

(a1b1 + . . .+ anbn)
2 ≤ (a21 + . . .+ a2n)(b

2
1 + . . .+ b2n).

A geometric interpretation (which we will not use below) is that the scalar

product of two vectors in an n-dimensional space does not exceed the prod-

uct of their lengths.

(c) Equality in part (b) is achieved only with proportional sequences

a1, a2, . . . , an and b1, b2, . . . , bn, i.e., sequences such that a1/b1 = a2/b2 =

. . . = an/bn.
(d) The following inequality holds:

x21
y1

+
x22
y2

+ . . .+
x2n
yn

≥ (x1 + x2 + . . .+ xn)
2

y1 + y2 + . . .+ yn
.

5.2.5. Prove the inequalities below.

(a) x3 + 2y3/2 ≥ 3xy.

(b)Young’s inequality. If 1
p + 1

q = 1, then xy ≤ xp

p +
yq

q .

(c) Local inequality. For any k > l > 0, we have ak

bl
≥ kak−l−lbk−l

k−l .

Equality is achieved only when a = b.
(d) Hölder’s inequality. If 1

p + 1
q = 1, then

x1y1 + . . .+ xnyn ≤ (xp1 + . . .+ xpn)
1
p (yq1 + . . .+ yqn)

1
q .
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(e) Minkowski’s inequality. If p > 1, then( n∑
i=1

(xi + yi)
p

)1
p

≤
( n∑

i=1

xpi

)1
p

+

( n∑
i=1

ypi

)1
p

.

Hints

5.2.3. (c) Muirhead’s inequality. If a set of numbers a1 ≥ . . . ≥ an ≥ 0

majorizes a set of numbers b1 ≥ . . . ≥ bn ≥ 0 (see definition in problem

5.1.9), then ∑
σ∈Sn

x
aσ(1)

1 · . . . · xaσ(n)
n ≥

∑
σ∈Sn

x
bσ(1)

1 · . . . · xbσ(n)
n

for any x1, . . . , xn. Here x
0
s := 1. A proof can be found, for example, in the

article [DY85].

Suggestions, solutions, and answers

5.2.4. (b, d) Use induction on n or part (a).

Inequality (d) is equivalent to inequality (b) for the sequences x1√
y1
,

x2√
y2
, . . . , xn√

yn
and

√
y1,

√
y2, . . . ,

√
yn.

5.2.5. (b) Draw the graph of y(x) = xp−1 on the coordinate plane. Shade

the region between the graph and the x-axis for 0 ≤ x ≤ a. The same curve

is the graph of the function x(y) = yq−1. Shade the region between it and

the y-axis for 0 ≤ y ≤ b. The total area of the shaded regions is equal to
ap

p + bq

q . This region contains a rectangle with sides a and b, yielding the

inequality.

Alternative solution. Apply Jensen’s inequality to the function f(x) =
lnx, which is concave down for x > 0, with coefficients 1

p and 1
q and numbers

ap and bq:

ln
(ap
p

+
bq

q

)
≥ 1

p
ln ap +

1

q
ln bq = ln(ab).

(c) The inequality follows from part (b).

(d) It suffices to prove the inequality for the case where xp1 + . . .+ xpn =

yq1 + . . .+ yqn = 1, which follows from Young’s inequality.

(e) Apply Hölder’s inequality to the right-hand side of the equality below:

n∑
i=1

(xi + yi)
p =

n∑
i=1

xi(xi + yi)
p−1 +

n∑
i=1

yi(xi + yi)
p−1.

3. Applications of basic inequalities (3*)
By M.A.Bershtein

The author is grateful to A.Bershtein, A.Dudko, V.Karajko, K.Knop, and

V. Frank, who taught him almost everything that is written here.
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5.3.1. For positive integers a, b, and c, the following inequality holds(a2 + b2 + c2

a+ b+ c

)a+b+c ≥ aabbcc ≥
(a+ b+ c

3

)a+b+c
.

5.3.2. (a) Weighted Cauchy’s inequality. If a1 > 0, . . . , an > 0 and

a1 + . . .+ an = 1, then a1x1 + . . .+ anxn ≥ xa11 · . . . · xann .

(This is a generalization of Young’s inequality 5.2.5 (b).)

(b)∗ Define the weighted power mean with exponent m of numbers x1, . . . ,
xn with weights a1, . . . , an > 0, where a1 + . . .+ an = 1, by

Sm := m
√
a1xm1 + . . .+ anxmn for m �= 0, S0 := xa11 · . . . · xann ,

S−∞ := min{x1, . . . , xn}, and S+∞ := max{x1, . . . , xn}.
Prove that Sa ≤ Sb if a ≤ b for any a, b ∈ R ∪ {−∞,+∞}.

(c) Is it true that if a ≤ b then Sa ≤ Sb for any positive values of

x1, . . . , xn provided that one of ai’s is negative?

5.3.3. Prove the following inequalities.

(a)
a21
a2

+
a22
a3

+ . . .+ a2n
a1
≥ a1 + a2 + . . .+ an;

(b)
a21

a1+a2
+

a22
a2+a3

+ . . .+ a2n
an+a1

≥ 1
2(a1 + a2 + . . .+ an).

5.3.4. Prove

a2

b(a+ c)
+

b2

c(b+ d)
+

c2

d(c+ a)
+

d2

a(d+ b)
≥ 2.

5.3.5. Prove the following inequalities.

(a) a3b+ b3c+ c3a ≥ abc(a+ b+ c);
(b) a3b2 + b3c2 + c3a2 ≥ abc(ab+ bc+ ca).

5.3.6. Prove the following inequalities.

(a)
a31

a1+a2
+

a32
a2+a3

+ . . .+ a3n
an+a1

≥ 1
2(a

2
1 + a22 + . . .+ a2n);

(b) a
b+2c+d + b

c+2d+a + c
d+2a+b +

d
a+2b+c ≥ 1.

5.3.7. Prove the following inequalities.

(a) a
b+c +

b
c+d + c

d+a + d
a+b ≥ 2;

(b) a+c
a+b +

b+d
b+c +

c+a
c+d + d+b

d+a ≥ 4.

5.3.8. Prove that if ab+ bc+ cd+ da = 1, then

a3

b+ c+ d
+

b3

c+ d+ a
+

c3

d+ a+ b
+

d3

a+ b+ c
≥ 1

3
.
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5.3.9.* If P , S, and α1, . . . , αn are the perimeter, area, and angles of a

convex n-gon, respectively, then

P 2 ≥ 4S

n∑
i=1

cot
αi

2
.

5.3.10. (a) If A′, B′, and C ′ are the points where the angle bisectors of the

triangle ABC intersect the opposite sides and I is the center of the inscribed
circle, then 1

4 <
AI·BI·CI

AA′·BB′·CC′ ≤ 8
27 .

(International Mathematical Olympiad, 1994.)

(b) Prove that

a4 + b4 + c4 + d4 + 2abcd ≥ a2b2 + a2c2 + a2d2 + b2c2 + b2d2 + c2d2.

(c) Prove that

x6y6 + y6z6 + z6x6 + 3x4y4z4 ≥ 2(x3 + y3 + z3)x3y3z3.

5.3.11.* Let a, b, and c be positive numbers with product equal to 1.

(a) Then 1
a3(b+c)

+ 1
b3(a+c)

+ 1
c3(a+b)

≥ 3
2 .

(International Mathematical Olympiad , 1995.)

(b) Find all α ∈ R for which the following inequality holds:

aα

b+ c
+

bα

a+ c
+

cα

a+ b
≥ 3

2
.

Hints

An inequality of the form P (x1, x2, . . . , xn) ≥ 0 is said to be symmetric if

P (x1, x2, . . . , xn) is invariant under any permutation of the variables x1, x2,
. . . , xn. An inequality of the form P (x1, x2, . . . , xn) ≥ 0 is called cyclic if

P (x1, x2, . . . , xn) is invariant under a cyclic permutation of the variables

(which takes x1 to x2, x2 to x3, x3 to x4,. . . , and xn to x1). Muirhead’s

inequality 5.2.3 (c), the CBS inequality 5.2.4 (b, d), and Young’s inequality

5.2.5 (c) are very useful for proving symmetric and cyclic inequalities. It

is easier to apply the CBS inequality in the form 5.2.4 (d) (for example, in

inequalities 5.3.3, 5.3.4, and 5.3.6), as you can avoid complex substitution

with radicals (see the second solution to problem 5.3.6 (b) below; in other

cases you can easily make the necessary substitutions yourself). Similarly,

Young’s inequality is often easier to apply in the form of 5.2.5 (c).
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Suggestions, solutions, and answers

In the solutions of problems 5.3.1, 5.3.7, and 5.3.8 we used K.Oganesyan’s

work [Siv67, problem 204].

5.3.1. From the inequality 5.1.5 for mean values we have

( a+ a+ . . .+ a︸ ︷︷ ︸
a times

) + ( b+ b+ . . .+ b︸ ︷︷ ︸
b times

) + ( c+ c+ . . .+ c︸ ︷︷ ︸
c times

)

a+ b+ c

≥ a+ b+ c( 1

a
+

1

a
+ . . .+

1

a︸ ︷︷ ︸
a times

)
+
( 1

b
+

1

b
+ . . .+

1

b︸ ︷︷ ︸
b times

)
+
( 1

c
+

1

c
+ . . .+

1

c︸ ︷︷ ︸
c times

)

=
a+ b+ c

3
.

The right-hand side of the desired inequality follows by raising both sides

to the a+ b+ c power.

5.3.2. (a) For positive integers a1, . . . , an, the inequality follows from the

usual Cauchy inequality 5.1.5, similarly to problem 5.3.1 (here we relax the

condition that the ai’s sum to 1). The case of integer values reduces to

the case of positive integers, the case of rational values reduces to the case

of integers, and the general case reduces to the case of rational values by

passing to the limit.

(b) First let a1 = . . . = an. With rational a and b, the proof is similar

to the hint for problem 5.1.4. The case of arbitrary a and b is obtained by

passing to the limit.

Next, prove the inequality for rational a1, . . . , an. Finally, for arbitrary

a1, . . . , an, pass to the limit.

5.3.3. (a) This simple cyclic inequality has several different proofs:

A “global” method is to estimate the entire sum as a whole, applying

the CBS inequality 5.2.4 (d).

A “local” method proceeds by estimating each term in the sum, using

the inequality a2

b ≥ 2a− b (a special case of Young’s inequality in the form

of 5.2.5 (c)).

The inequality can be easily proved using the rearrangement inequality

5.2.1 (d).

A method using the weighted Cauchy’s inequality 5.3.2 (a) is described

in the instructions to problem 5.3.5 (a).

(b) First method. We can prove this inequality by estimating each term

of the sum on the left-hand side separately, using the inequality a2

b ≥ 2a−b,
which implies

(1)
(2a)2

a+ b
≥ 4a− (a+ b).
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Multiplying the inequality that we wish to prove by 4 yields

4a21
a1 + a2

+
4a22

a2 + a3
+ . . .+

4a2n
an + a1

≥ 2(a1 + a2 + . . .+ an).

Using (1), each term on the left-hand side can be estimated as follows:

(2ak)
2

ak + ak+1
≥ 4ak − (ak + ak+1).

By adding these, we obtain the required inequality.

Second method. It is possible to prove this inequality by estimating the

entire sum on the left-hand side using the CBS inequality 5.2.4 (d).

5.3.5. (a) Divide both sides by abc and reduce the inequality to 5.3.3 (a).

Another way is to use the weighted Cauchy’s inequality 5.3.2 (a). Namely,

select x, y, and z such that the inequality xa3b + yb3c + zc3a ≥ (x +

y + z)a2bc holds. For this it is enough that the following equality holds:

(a3b)x(b3c)y(c3a)z = (a2bc)x+y+z. We get the system of linear equations

3x+ z = 2(x+ y + z), 3y + x = x+ y + z, 3z + y = x+ y + z,

which has the solution x = 4, y = 2, z = 1. Then we have the inequality

4a3b+ 2b3c+ c3a ≥ 7a2bc. Similarly,

a3b+ 4b3c+ 2c3a ≥ 7ab2c and 2a3b+ b3c+ 4c3a ≥ 7abc2.

Adding these three inequalities, we get

a3b+ b3c+ c3a ≥ a2bc+ ab2c+ abc2.

(b) The proof is similar to that of (a). Use the weighted Cauchy’s in-

equality 5.3.2 (a) to prove that

4a3b2 + 2b3c2 + c3a2 ≥ 7a2b2c.

Remark 5.3.12. From Muirhead’s inequality in the hint for problem (5.2.3)

(c), it follows that

a3b+ a3c+ b3a+ b3c+ c3a+ c3b ≥ 2a2bc+ 2ab2c+ 2abc2.

Inequality 5.3.5 (a) shows that stronger inequalities are true:

a3b+b3c+c3a ≥ a2bc+ab2c+abc2 and a3c+c3b+b3c ≥ a2bc+ab2c+abc2.

Similarly, inequality 5.3.5 (b) strengthens the following particular case of

Muirhead’s inequality:

a3b2 + a3c2 + b3a2 + b3c2 + c3a2 + c3b2 ≥ 2a2b2c+ 2a2bc2 + 2ab2c2.
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5.3.6. First method. Estimate each term using the inequality a3

b ≥ 3a2−b2

2
(a special case of Young’s inequality 5.2.5 (c)). Equality is achieved when

the cubic root of the numerator in the left-hand side is equal to the left-hand

side’s denominator. In the original inequality, equality is achieved as usual

with a1 = a2 = . . . = an. Multiply the entire inequality by 8 so that when

a1 = a2 = . . . = an the cubic root of the numerator equals the denominator.

After that, estimate each term on the left-hand side using the inequality
(2a1)3

a1+a2
≥ 12a21−(a1+a2)2

2 . This reduces to proving

a21 + a22 + . . .+ a2n ≥ a1a2 + a2a3 + . . .+ ana1,

which is equivalent to

(a1 − a2)
2 + (a2 − a3)

2 + . . .+ (an − a1)
2 ≥ 0.

Second method. Estimate the total sum on the left-hand side:

a41
a1(a1 + a2)

+
a42

a2(a2 + a3)
+ . . .+

a4n
an(an + a1)

≥ (a21 + a22 + . . .+ a2n)
2

a1(a1 + a2) + a2(a2 + a3) + . . .+ an(an + a1)
≥ 1

2
(a21 + a22 + . . .+ a2n).

The first inequality follows from the CBS inequality (5.2.4 (d)), and the

second is equivalent to

a21 + a22 + . . .+ a2n ≥ a1a2 + a2a3 + . . .+ ana1

(see the end of the first method).

(b) Use the inequalities

a2

a(b+ 2c+ d)
+

b2

b(c+ 2d+ a)
+

c2

c(d+ 2a+ b)
+

d2

d(a+ 2b+ c)

≥ (a+ b+ c+ d)2

a(b+ 2c+ d) + b(c+ 2d+ a) + c(d+ 2a+ b) + d(a+ 2b+ c)
≥ 1.

The first inequality follows from the CBS inequality, and the second one is

equivalent to

a2 + b2 + c2 + d2 ≥ 2ac+ 2bd.

Another solution: Apply the CBS inequality to the sequences√
a(b+ 2c+ d),

√
b(c+ 2d+ a),

√
c(d+ 2a+ b),

√
d(a+ 2b+ c)

and √
a

b+ 2c+ d
,

√
b

c+ 2d+ a
,

√
c

d+ 2a+ b
,

√
d

a+ 2b+ c
.
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5.3.7. (a) We have

a

b+ c
+

b

c+ d
+

c

d+ a
+

d

a+ b
=

a2

a(b+ c)
+

b2

b(c+ d)
+

c2

(d+ a)
+

d2

d(a+ b)

(∗)
≥ (a+ b+ c+ d)2

ab+ ac+ bc+ bd+ cd+ ac+ ad+ bd

=
a2 + b2 + c2 + d2 + 2ab+ 2ac+ 2ad+ 2bc+ 2bd+ 2cd

ab+ bc+ cd+ da+ 2ac+ 2bd
(∗∗)
≥ 2ac+ 2bd+ 2ab+ 2ac+ 2ad+ 2bc+ 2bd+ 2cd

ab+ bc+ cd+ da+ 2ac+ 2bd
= 2.

Inequality (*) follows from CBS and (**) follows from Cauchy’s inequalities

(5.1.5).

(b) We have

a+ c

a+ b
+
b+ d

b+ c
+
c+ a

c+ d
+
d+ b

d+ a

=
(a+ c)2

(a+ c)(a+ b)
+

(b+ d)2

(b+ d)(b+ c)
+

(c+ a)2

(c+ a)(c+ d)
+

(d+ b)2

(d+ b)(d+ a)

(∗)
≥ 4(a+ b+ c+ d)2

(a+ c)(a+ b) + (b+ d)(b+ c) + (c+ a)(c+ d) + (d+ b)(d+ a)
= 4,

with (*) following from CBS.

5.3.8. We have

a3

b+ c+ d
+

b3

c+ d+ a
+

c3

d+ a+ b
+

d3

a+ b+ c

=
a4

a(b+ c+ d)
+

b4

b(c+ d+ a)
+

c4

c(d+ a+ b)
+

d4

d(a+ b+ c)

(∗)
≥ (a2 + b2 + c2 + d2)2

2(ab+ ac+ ad+ bc+ bd+ cd)
=

S2

2 + k

(∗∗)
≥ S

2 + k

(∗∗∗)
≥ 1

3
.

Here S := a2 + b2 + c2 + d2 and k := 2(ac+ bd);
• Inequality (∗) follows from CBS;

• Inequality (∗∗) follows from S ≥ ab+ bc+ cd+ da = 1;

• Inequality (∗ ∗ ∗) is true because S ≥ 1 and S ≥ 2ac + 2bd = k,
so 3S ≥ 2 + k. Alternatively, since S ≥ 1 and S ≥ k, if k ≤ 1, then
S

2+k ≥ 1
2+1 = 1

3 , and if k ≥ 1, then S
2+k ≥ k

2+k = 1
2+ 1

k

≥ 1
3 .

5.3.11. (a) Let x = 1/a, y = 1/b, z = 1/c, S := x+ y + z. Then

1

a3(b+ c)
=
x3yz

y + z
=

x2

S − x
= −x− S +

S2

S − x
.

(b) Answer : Either α ≥ 1 or α ≤ −2.
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4. Geometric interpretation (3*)

5.4.1. (a) If

a+A = b+B = c+ C = k, then aB + bC + cA ≤ k2.

(b) If x1, x2, x3, x4 ≤ 1, then

x1(1− x2) + x2(1− x3) + x3(1− x4) + x4(1− x1) ≤ 2.

5.4.2. (a) At what value of x does the expression
√
x2 + 1+

√
(x− 1)2 + 4

attain its smallest value?

(b) Find the smallest value of√
x2 + 1 +

√
y2 + 4 +

√
z2 + 9 +

√
t2 + 16

subject to the condition x+ y + z + t = 17.

(c) Prove that if a, b, c > 0, then√
a2 − ab+ b2 +

√
b2 − bc+ c2 ≥

√
a2 + ac+ c2.

(d) If γ =
√
a2 + b2, β =

√
a2 + c2, and α =

√
b2 + c2, then√

(α+ β + γ)(α+ β − γ)(α− β + γ)(β + γ − α) = 2
√
a2b2 + b2c2 + a2c2.

(e) The following inequality holds:√
4a2 + b2 + c2 + 4ab+ 4ac− 2bc+

√
4b2 + a2 + c2 + 4ab+ 4bc− 2ac

≥
√

4c2 + a2 + b2 + 4ac+ 4bc− 2ab.

(f) The following inequality holds:√
ab(a+ b) +

√
bc(b+ c) +

√
ca(c+ a) ≥

√
(a+ b)(b+ c)(c+ a).

5.4.3. Let

x, y, z > 0 and

⎧⎪⎨
⎪⎩

x2 + xy +
y2

3 = 25,
y2

3 + z2 = 9,

z2 + zx + x2 = 16.

Find xy + 2yz + 3zx.

5.4.4. (a) Let a0 = 1/3 and an =

√
1+an−1

2 . Prove that the sequence {an}
is monotone.

(b) Prove that from any four numbers, you can choose two numbers x
and y such that 0 ≤ x−y

1+xy ≤ 1.

(c) Find all x > 0 that satisfy

x(8
√
1− x+

√
1 + x) ≤ 11

√
1 + x− 16

√
1− x.
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(d) Solve the following system of equations:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cotx cot y − 5 = cos z
sinx sin y ,

cot y cot z + 11 = cosx
sin y sin z ,

cot z cotx + 7 =
cos y

sin z sinx .

5.4.5. Find an explicit formula for xn if xn+1 = xn

√
xn+xn−1

2xn−1
and

(a) x0 = 1, x1 = 1/2;
(b) x0 = 1, x1 = 2.

5.4.6. If ab = 4 and c2 + 4d2 = 4, then

(a) (a− c)2 + (b− d)2 > 1.6;

(b)∗
√

(a− c)2 + (b− d)2 ≥ 4
√
α−

√
4+α2

√
1+α2

for any α > 0.

Suggestions, solutions, and answers

5.4.1. (a) Consider an equilateral triangle PQR with side k. Mark points

K, L, and M on sides PQ, QR, and RP , respectively, so that PK = A,
QL = B, and RM = C. Then it is easy to check that KQ = a, LR = b,
and MP = c. Therefore

(aB + bC + cA) sin 60◦ = SKQL + SLRM + SMPK < SPQR = k2 sin 60◦.

The inequality holds since the triangles KQL, LRM , and MPK are con-

tained in the triangle PQR and do not intersect each other. Canceling by

sin 60◦, we get the required inequality.

5.4.2. (c) Consider segments of length a and c forming an angle 60◦ with a

segment of length b.
(d) Consider three pairwise perpendicular segments of lengths a, b, and

c which meet at the same point in space.

(e) First prove that one can build a triangle from the medians of a

triangle. Apply this result to a triangle with sides a+ b, b+ c, and c+ a.

5.4.4. (a) Use the identity cos(α/2) = ±
√

1+cosα
2 .

(c) Divide by 1− x and make the substitution u =

√
1+x
1−x or (really the

same substitution) x = cos 2t.
(d) This problem requires hyperbolic geometry on the pseudosphere, for

those familiar with the subject.





Chapter 6

Sequences and limits

This chapter is almost independent of other parts of the book. In other

chapters, we will only use simple facts from this chapter.

1. Finite sums and differences (3)

The sequence bn = Σan := a1 + · · ·+ an is said to be a sequence of sums of

the sequence {an}∞n=1, and the sequence cn = Δan := an+1 − an is said to

be its sequence of differences.
For example, Δ2n = 2n and Σ2n = 2n+1 − 2. (The sum and difference

are analogues of the integral and derivative.) In this section, the variable n
denotes the index of the sequence element for which the sum or difference

is taken. Thus Δ2k = 0, since 2k is a constant function of the variable n.

6.1.1. Find

(a) Δnk for every integer k ≥ −1; (b) Δ cosn; (c) Δ(n · 2n).

6.1.2. Find

(a) Σ sinn; (b) Σ 1
n(n+1)···(n+k) for a positive integer k.

6.1.3. Which of the following equalities hold for some non-constant sequence

an?
(a) Δan = 0; (b) Δan = 1; (c) Δan = an;
(d) Σan = an; (e) ΣΔan = an; (f) ΔΣan = an.

Define the kth difference Δk of a sequence {an} to be Δ(Δ(· · · ))an,
where the difference operation is applied k times.

6.1.4. (a) Find
n∑

k=0

(−1)kk2(nk).
(b) Lemma. The kth difference of a polynomial of degree k is a constant,

and the (k + 1)th difference is 0.

(c) (Challenge.) Express Δkan in terms of an, an+1, . . . , an+k.

(d) Lemma. The equality Δkan = 0 holds if and only if an is a poly-

nomial in n of degree not greater than k − 1.

85
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(e) There exists a polynomial Pλ(n) of degree l for λ �= 1 and degree

l − 1 for λ = 1 such that Δ(nlλn) = Pλ(n)λ
n.

(f) Leibniz formula. The following equality holds:

Δ(anbn) = an+1Δbn + bnΔan.

(g)∗ Formulate and prove a similar formula for Δl(anbn).

6.1.5. (a) Find Σnk for k = 0, 1, 2, 3, 4.
(b) Lemma. The sequence of sums of a polynomial of degree k ≥ 0 is

a polynomial of degree k + 1.

6.1.6. (a) Find Σ(n · 2n).
(b) Let R[x] denote the set of polynomials in the variable x with coef-

ficients in R. For any polynomial f ∈ R[x] and any number λ ∈ R, there

exist a polynomial g ∈ R[x] and a number C ∈ R such that for any n ≥ 1

we have

Σ(f(n)λn) = g(n)λn + C and deg g(n) =

{
deg f(n), λ �= 1,
deg f(n) + 1, λ = 1.

(c) If Δlbn = λnnk for non-negative l, k, and λ, then bn = g(n)λn+h(n)
for some polynomials h and g, where h has degree less than l and g has

degree not greater than l + k if λ = 1 and not greater than k if λ �= 1.

6.1.7. The Abel summation formula (an analogue of integration

by parts for sums). Formulate and prove the formula for the sum of

products, which is obtained by summing the Leibniz formula 6.1.4 (f).

Hints

6.1.2. (b) Start with k = 1, 2; decompose the fraction into simplest frac-

tions.

6.1.4. (a) Use (b) and (c).

(b) The statement follows from the solution of problem 6.1.1 (a).

(c) Verify that Δkan =
k∑

j=0
(−1)j(kj)an+j .

(d) In the “if” direction, the result follows from part (b), and thus from

the solution to problem 6.1.1 (a). In the “only if” direction the result follows

from the solution to problem 6.1.1 (a); compare with problem 6.1.5 (a).

(e) Apply induction on l using the solution of 6.1.1 (a) and part (f) of

this problem.

(g) Verify that Δl(anbn) =
l∑

j=0
(−1)j(lj)Δjan+jΔ

l−jbn.
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6.1.5. (a) We have Δnk+1 = (k + 1)nk + . . . , which implies nk+1 = (k +

1)Σnk +Σ(. . .).
(b) Apply induction on k using the solution of problem 6.1.1 (a).

6.1.6. (a) This is similar to problem 6.1.5 (a). We have Δ(n2 ·2n) = n ·2n+
. . . , so n2 · 2n = Σ(n · 2n) + Σ(. . .).

(b) This is similar to (a) and problem 6.1.5.

6.1.7. See problem 6.5.6 (b).

Suggestions, solutions, and answers

6.1.1. (a) For k > 0 we have

Δnk = (n+ 1)k − nk =

(
k

1

)
nk−1 +

(
k

2

)
nk−2 + . . .+

(
k

k − 1

)
n+ 1.

For k = 0 we have Δn0 = 0. For k = −1 we have Δ 1
n = − 1

n(n+1) .

(b) We have Δ cosn = cos(n+ 1)− cosn = −2 sin 1
2 sin

(
n+ 1

2

)
.

(c) We have Δ(n2n) = (n+ 1)2n+1 − n2n = (n+ 2)2n.

6.1.2. (a)Answer :
cos 1

2
−cos

(
n+ 1

2

)
2 sin 1

2

.

Solution. According to 6.1.1 (b) we have

Δ cosn = −2 sin 1

2
sin
(
n+

1

2

)
, so Δ cos

(
n− 1

2

)
= −2 sin 1

2
sinn.

Summing (applying Σ to) both sides of the equality, we get

cos
(
n+

1

2

)
− cos

1

2
= Σ

(
− 2 sin

1

2
sinn

)
.

(b) Answer : 1
(k+2)(k+2)! +

1
(k+1)! − 1

(k+2)n(n+1)···(n+k+1) .

Solution. Verify that the following equality holds for positive integers k:

Δ
1

n(n+ 1) · · · (n+ (k + 1))
= − k + 2

(n+ 1)(n+ 2) · · · (n+ k + 1)
.

Summing (applying Σ to) both sides of equality yields

1

(n+ 1)(n+ 2) · · · (n+ k + 2)
− 1

(k + 2)!

= −(k + 2)Σ
1

(n+ 1)(n+ 2) · · · (n+ k + 1)
.

Note that the mth term of the sequence

Σ
1

(n+ 1)(n+ 2) · · · (n+ k + 1)
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is equal to the (m+ 1)th term of the sequence

− 1

(k + 1)!
+ Σ

1

n(n+ 1) · · · (n+ k)
.

Therefore

1

n(n+ 1) · · · (n+ k + 1)
− 1

(k + 2)!

= −(k + 2)
(
− 1

(k + 1)!
+ Σ

1

n(n+ 1) · · · (n+ k)

)
.

Finally, divide by k + 2.

2. Linear recurrences (3)

Thanks to T.Takebe for helpful comments.

In the following problems, the word “find” means “find as a formula

containing polynomials in n, an, and cos(ωn+ ϕ).”

6.2.1. Find the number of tilings with dominoes, that is, 1 × 2 rectangles,

of

(a) a 2× n rectangle; (b) a 3× 2n rectangle.

Here tilings that differ by rotation or reflection are considered distinct.

See also [RSG+16, problems 1.1.3 and 6.1.1 (d, e)].

6.2.2. Which of the following sequences satisfies the recurrence relation

an+2 − 2an+1 + an = 0?

(a) an = 5n+ 3; (b) an = (2n+ 1) · 2n; (c) an = cos(2n).

6.2.3. Find all sequences {an} with a1 = 1 and a2 = 3 satisfying the fol-

lowing recurrence relations for all n ≥ 1:

(a) an+2 = 3an+1− 2an; (b) an+2 = 5an+1 − 6an;
(c) an+2 = 2an+1 − an; (d) an+2 = 4an+1 − 4an;
(e) an+2 = an+1 − an; (f)∗ an+3 = 6an+2 − 11an+1 + 6an.

6.2.4. Find all sequences such that a1 = 5 and an+1 − 2an is equal to

(a) 0; (b) 1; (c) n; (d) 3n; (e)∗ 2n; (f)∗ n · 3n.

6.2.5. The same question as above, replacing an+1−2an with an+2−5an+1+

6an.

6.2.6. (a) Theorem. If λ is a root of multiplicity l of the equation xk =

pk−1x
k−1 + · · · + p0, then for any polynomial f ∈ R[x] of degree less than
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l, the function f(n)λn is a solution to the linear homogeneous recurrence

relation an+k = pk−1an+k−1 + · · ·+ p0an.
(b) For any l1, . . . , lk ∈ Z and distinct λ1, . . . , λk ∈ C, the sequences

niλnj , j = 1, . . . , k, i = 0, . . . , lj , are linearly independent.

(c)∗ Theorem. Let pk−1, . . . , p0 satisfy an+k = pk−1an+k−1+ · · ·+ p0an
for each n, and let λ1, . . . , λk be distinct complex roots of the polynomial

xk−pk−1x
k−1−· · ·−p1x−p0 with multiplicities l1, . . . , lk. Then there exist

polynomials f1, . . . , fk such that deg fj < lj and an = f1(n)λ
n
1+· · ·+fk(n)λnk

for any n.
(d)∗ (Challenge.) Formulate and prove a theorem about the explicit form

of the solutions of kth-order linear non-homogeneous recurrence relations.

For a more advanced interpretation and application of the method of

variation of parameters, see [VSY17].

The concept of derivative used below is defined for polynomials in section

2 of Chapter 7 and for the general case in, for example, [Zor15].

6.2.7. Find all differentiable functions y : R → R satisfying y(0) = 1 and

y′(x)− 2y(x) = f(x) for all x, where
(a) f(x) = 0; (b) f(x) = 1; (c) f(x) = x; (d) f(x) = ex;
(e)∗ f(x) = e2x; (f)∗ f(x) = xex.

6.2.8. The same problem as above, replacing y′(x) − 2y(x) with y′′(x) −
5y′(x) + 6y(x).

6.2.9. (a) Theorem. If λ is a root of multiplicity l of xk = pk−1x
k−1 +

· · ·+ p0, then for any polynomial f ∈ R[x] of degree less than l the function

f(x)eλx is a solution of the linear homogeneous differential equation y(k) =

pk−1y
(k−1) + · · ·+ p0y.

(b)∗ Formulate and prove a theorem about the explicit form of solutions

of a linear homogeneous differential equation y(k) = pk−1y
(k−1) + · · · + p0y

of order k.
(c)∗ Same as above, but for linear non-homogeneous differential equa-

tions.

Hints

6.2.1. (a) These are the Fibonacci numbers.

6.2.3. (a) For cn := an+1 − an, we get cn+1 = 2cn.
(a–f) The method of variation of parameters. Find the solution (not

taking into account the initial conditions) in the form an = λn and consider

bn = an/λ
n and cn = bn+1 − bn.
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(b) The sequences 2n and 3n satisfy the recurrence relation (not taking

into account the initial conditions). Let bn := an/2
n and cn = bn+1 − bn.

Then cn+1 = 3cn.

6.2.4. See problem 6.2.3.

6.2.6. See problem 6.2.3.

(b) Consider the limit as n→∞.

6.2.7. See problem 6.2.3 with y(x) = z(x)eλx.

Suggestions, solutions, and answers

Answers provided by A.Khrabrov.

6.2.3. Answers: (a) 2n − 1; (b) 3n−1; (c) 2n− 1;

(d) (n+ 1)2n−2; (e) a−7
6 3n + 9−a

2 (2n − 1), a := a3.

6.2.4. Answers: (a) 5 · 2n−1; (b) 3 · 2n − 1; (c) 7 · 2n−1 − n− 1;

(d) 2n + 3n; (e) (n+ 4)2n−1; (f) (n− 3)3n + 11 · 2n−1.

6.2.5. Answers, where a := a2:
(a) (a− 10)3n−1 + (15− a)2n−1;

(b)
(
a− 19

2

)
3n−1 + (14− a)2n−1 + 1

2 ;

(c)
(
a− 37

4

)
3n−1 + (13− a)2n−1 + n

2 + 3
4 ;

(d) (n+ a− 14)3n−1 + (18− a)2n−1;

(e) (a− 8)3n−1 + (14− a− n)2n−1;

(f)
(
n2−7n

2 + a− 1
)
3n−1 + (9− a)2n−1.

3. Concrete theory of limits (4*)

The problems of this section provide an interesting way to approach the

theory of limits. Similar problems using these estimation methods often

come up in olympiads and in applied and theoretical mathematics.

When solving these problems, you may not use functions such as n
√
x,

ax, loga x, arcsinx, etc. without first defining them. However, in order to

define them you may need to prove the existence of x such that x2 = 2. In

this case you would first need to solve the corresponding suggested problem!

An exception is that if a particular function is used in the statement of the

problem, then it can be used in the solution. You can also use the various

properties of inequalities without proof.
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6.3.1. Find at least one N such that for any n > N , the inequality an > 109

holds in the case where

(a) an =
√
n;

(b) an = n2 − 3n+ 5;

(c) an = 1.02n;
(d) an = 1 + 1

2 + 1
3 + 1

4 + · · ·+ 1
n .

6.3.2. Bernoulli’s inequality. Prove that (1+x)a ≥ 1+ax for any x ≥ −1
and

(a) integer a ≥ 1;

(b) rational a ≥ 1;

(c) real a ≥ 1.

6.3.3. Find at least one pair (a,N) such that for any n > N , the inequality

|an − a| < 10−8 holds for

(a) an = n2−n+28
n−2n2 ;

(b)

√
5 +

2

n
;

(c) an = n

(√
1 + 1

n − 1

)
;

(d) an = n

(
3

√
1 + 1

n − 1

)
;

(e) an = 0.99n;
(f) an =

n
√
2;

(g) an = n9/2n;
(h)∗ an = (1 + 1/n)n;
(i)∗ an = n( n

√
2− 1);

(j) an = 1
12

+ 1
22

+ · · ·+ 1
n2 ;

(k)∗ an = 1
1
√
1
+ 1

2
√
2
+ 1

3
√
3
+ · · ·+ 1

n
√
n
;

(l)∗ an = 1
0! +

1
1! + · · ·+ 1

n! ;

(m)∗ an = 1− 1
3 + 1

5 − 1
7 + · · ·+ (−1)n

2n+1 .

6.3.4. Find at least one pair (a, δ) with δ > 0 such that for any x ∈ (−δ, δ),
the inequality |f(x)− a| < 3 · 10−9 holds for f(x) equal to

(a) x3;
(b) 3x;

(c) sinx;
(d) sinx

x ;

(e)
√
1+x5

cosx−2 ;

(f) 1+sinx
x3−1

;

(g) (1 + 1/x)x.
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Suggestions, solutions, and answers

6.3.1. (b) n2 − 3n+ 5 > n(n− 3) > n for any n > 4.

(c) Use problem 6.3.2.

6.3.2. Use induction on k.

6.3.3. (a) a = −1
2 ;

(b)

√
5 +

2

n
−√

5 =

(√
5 +

2

n
−√

5

)(√
5 +

2

n
+
√
5

)
√
5 +

2

n
+
√
5

=
2

n

(√
5 +

2

n
+
√
5

) .

(e, f) Set a = 0 for (e) and a = 1 for (f), and use Bernoulli’s inequality.

(g) Put a = 0 and find N such that (n+ 1)9/n9 < 1.5 for any n > N .

(h) Prove and use the following inequalities:

(
1 +

1

n

)n
<
(
1 +

1

n+ 1

)n+1
<
(
1 +

1

n+ 1

)n+2
<
(
1 +

1

n

)n+1
.

And then (
1 +

1

n

)n+1 −
(
1 +

1

n

)n
=

1

n

(
1 +

1

n

)n
<

4

n
.

(i) Use the log2 function. A sketch of the proof of continuity of f(x) = 2x,

which is necessary for its definition, was given in parts (e) and (f). The

continuity of the function f(x) = xn with integer n, which is necessary for

the definition of f(x) = 2x, was actually proved in parts (c) and (d).

For L := log2

(
1 + 1

n

)
we have

n
(

n
√
2− 1

)
= n

(
n

√(
1 +

1

n

) 1
L − 1

)
= n
((

1 +
1

n

) 1
nL − 1

)
≤ 1

nL
.

The inequality can be verified using arguments similar to those in the proof

of Bernoulli’s inequality for a < 1. Using (1 + x)a ≥ 1 + ax + a(a − 1)x2

for a < 1, we get a sharp estimation in the other direction. The value of nL
was estimated in part (g).

(i–l) The number a should not necessarily be equal to the limit.

6.3.4. (a) If |x| < 1 then |x3| < |x|.
(c) Use the inequality sinx < x.
(e, f) If

|f(x)− a| < ε/2 when x ∈ (−δ1, δ1) and

|g(x)− b| < ε/2 when x ∈ (−δ2, δ2),
then |f(x) + g(x)− a− b| < ε when x ∈ (−min{δ1, δ2},min{δ1, δ2}).
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The same is true when the sum is replaced by the difference. Similar

statements are also true when the sum is replaced with a product or quotient.

4. How does a computer calculate the square root? (4*)
By A.C.Vorontsov and A. I. Sgibnev

The goal of the problems below is to show how to calculate the square root

to any precision using only arithmetic operations (for example, with a simple

calculator). The most difficult and interesting problem is the error estima-

tion (such estimations were actually carried out in the previous section).

We quote from Heron’s text. He explains his method with an example:

finding the square root of 720.

Since 720 does not have a rational root, we will find the square
root with a very small error as follows. Since the nearest
integer square is 729 and it has a root equal to 27, divide 720

by 27. You get 262
3 . Add 27. You get 532

3 . Take the half of

that. You get 265
6 . Thus, the nearest root of 720 will be 265

6 .

If you multiply it by itself you will get 720 1
36 , so the error is

equal to a 36th part of the unit. If we would like the error to
become a smaller part of the unit than the 36th, then instead
of 729 we take the newly found number 720 1

36 and, having
done the same, we find that the error has become much less
than 1

36 . [Vyg67]

Figure 6.1. Heron’s method

Let us write Heron’s calculations in modern notation (Figure 6.1). For

any x1 �= 0 and a > 0 define the sequence by the formula

xn+1 =
1

2

(
xn +

a

xn

)
.
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6.4.1. This definition makes sense, since xn �= 0 for any n.

6.4.2. This problem, and therefore the concept of limit, is not formally used

further.

The number A is called limit of the sequence an if for any ε > 0 there

exists N such that for any n > N the inequality |A− an| < ε holds. We use

the notation A = lim
n→∞

an.

The following principle, due to Weierstrass, can be used without proof:

Any monotone bounded sequence has a limit. Compare with section 5.

Find lim
n→∞

xn. You can start with a = 2 and then consider the general

case.

6.4.3. (a) Let a = 2 and x1 = 1, Find at least one, not necessarily minimal,

N such that if n > N we have |xn −
√
2| < 10−5.

(b, c, d, e) Same problem, but with x1 = 10, 100, 1000, 10k.
(a,’b’) Same problem, but with x1 = −1,−10.

6.4.4. If a > 0 then |xn+1 −
√
a| ≤ 1

2 |xn −
√
a| for any n ≥ 2. In other

words, at each step of Heron’s method, starting from the second, the error

is reduced by at least a factor of two compared to the error at the previous

step.

6.4.5. (Challenge.) To calculate cube roots, one can devise analogues of

Heron’s method, for example,

yn+1 =
1

2

(
yn +

a

y2n

)
, zn+1 =

1

3

(
2zn +

a

z2n

)
.

Find the rates of convergence of these sequences (for example, for a = 8);

that is, formulate and prove analogues of problem 6.4.4.

The formula for zn can be obtained using Newton’s method; see [Sgi09].

Suggestions, solutions, and answers

6.4.2. Answer : The sequence converges to
√
a when x0 > 0 and to −√a

when x0 < 0.

Outline of the solution. Let x0 > 0. We prove that the sequence xn is

decreasing and is bounded below, which implies that it has a limit.

Note that t+ a
t cannot be too small:

t+
a

t
= t− 2

√
a+

a

t
+ 2

√
a =

(√
t−

√
a√
t

)2
+ 2

√
a ≥ 2

√
a .

Thus, xn ≥
√
a for any n > 0.
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Next, we estimate the difference of the neighboring terms of the se-

quence.

xn+1 − xn =
1

2

( a
xn

− xn

)
=

1

2

(a− x2n
xn

)
≤ 0.

Thus, the sequence xn has a limit. Denote it by m. To find its value

we pass to the limit on the left- and right-hand sides of the equality xn+1 =
1
2

(
xn + a

xn

)
. We obtain m = 1

2

(
m+ a

m

)
. Therefore, m = ±√a.

6.4.4. We have

2|xn+1 −
√
a | =

∣∣∣xn +
a

xn
− 2

√
a
∣∣∣ = ∣∣∣(xn −√

a
)
+
( a
xn

−√
a
)∣∣∣

=

∣∣∣(xn−√a )+ √
a

xn

(√
a− xn

)∣∣∣ = ∣∣∣(1− √
a

xn

)(
xn−

√
a
)∣∣∣ ≤ 1 · |xn−

√
a |.

The last inequality holds because

xn =
1

2

(
xn−1 +

a

xn−1

)
≥ √

a for any n ≥ 2

(compare with problem 6.4.2).

6.4.5. The sequence zn has the same rate of convergence as the sequence

xn. This can be proven analogously to 6.4.4. The sequence yn converges

much slower.

5. Methods of series summation (4*)

Newton regarded the concepts of differentiation and integration not as his

main achievement, but as merely a natural language for writing the differ-

ential equations that express the laws of nature. Newton believed that his

fundamental contribution was the method of solving differential equations

using power series. We turn to this topic now.

(The expression “for any n” is often omitted.)

Let an ≥ 0. The number A is called the sum of the series associated

with the sequence {an} if

1) A ≥ a1 + · · ·+ an for any n, and
2) for any ε > 0 there exists n such that A < a1 + · · ·+ an + ε.
For most of the problems in this section, the definition given above is

sufficient and one does not need the following more general definition, where

it is no longer assumed that an ≥ 0: A is called the sum of the series {an}
if for any ε > 0 there exists N such that for any n > N the inequality

|a1 + · · ·+ an −A| < ε holds.

Notation: A =
∑∞

n=1 an, or simply A =
∑
an. If a series has a sum,

then the series is convergent ; otherwise it is divergent. The number An :=

a1 + · · ·+ an is called the nth partial sum of the series {an}.
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In this and the following sections we will not need a rigorous theory of

real numbers. (See, for example, the book [Zor15].) You may use with-

out proof only the algebraic properties of real numbers and the following

principle due to Weierstrass: The series {an} of positive terms converges

if its partial sums are bounded, i.e., there exists a number A with prop-

erty 1). (This principle can be understood by considering infinite decimal

expansions.)

In the following problems, equalities of series are understood in the sense

that if the right-hand side exists then the left-hand side also exists and is

equal to the right-hand side.

6.5.1. If an ≥ 0 and bn ≥ 0, then

(a)
∞∑
n=1

(an + bn) =
∞∑
n=1

an +
∞∑
n=1

bn; (b)
∞∑
n=1

λan = λ
∞∑
n=1

an;

(c)
∞∑
n=1

an = a1 + · · ·+ ak +
∞∑
n=1

ak+n.

6.5.2. Explicit calculation of partial sums. Find

(a)
∞∑
n=1

1
n(n+1) ; (b)

∞∑
n=1

1
n(n+2) ;

(c)
∞∑
n=1

1
(3n−1)(3n+2) ; (d)∗

∞∑
n=1

1
n(n+1)(n+2) ;

(e)∗
∞∑
n=1

2n+1
n(n+1)(n+2) ; (f)∗

∞∑
n=1

1
n(n+1)(n+2)...(n+k) .

The sum S =
∞∑
n=0

1
2n can be found using the equation 1 + S

2 = S once

we have proven that this sum exists.

6.5.3. Using equalities. Find (a)
∞∑
n=1

n
2n ; (b)∗

∞∑
n=1

n2

2n .

The sum
∞∑
n=1

n
2n can be found after proving the equality

1

2
+
1

4
+
1

4
+
1

8
+
1

8
+
1

8
+. . . =

(1
2
+
1

4
+
1

8
+. . .

)
+
(1
4
+
1

8
+. . .

)
+
(1
8
+. . .

)
+. . .

6.5.4. Regrouping terms.

(a) Find the sum 1+ 2x+3x2 +4x3 + . . . after determining for which x
the series converges.

(b) If an ≥ 0 and σ : {0, 1, 2, . . .} → {0, 1, 2, . . .} is a permutation, that

is, a one-to-one and onto mapping, then
∑
aσ(n) =

∑
an.

(c) Find
∞∑
n=k

n
2n .
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The sum
∞∑
n=1

n
2n−1 can be found after proving the equality

(
1+

1

2
+
1

4
+. . .

)(
1+

1

2
+
1

4
+. . .

)
= 1+

1

1 · 2+
1

2 · 1+
1

4 · 1+
1

2 · 2+
1

1 · 4+. . .

6.5.5. Multiplication of series.

(a) Find
∞∑
n=1

n(n+1)
2n .

(b) Prove the equality( 1

0!
− 1

1!
+

1

2!
− . . .+

(−1)n
n!

+ . . .
)( 1

0!
+

1

1!
+ · · ·+ 1

n!
+ . . .

)
= 1.

Be cautious: there are negative terms.

(c) Prove the equality( 1

0!
+

1

1!
+

1

2!
+ . . .+

1

n!
+ . . .

)2
=
(20
0!

+
21

1!
+ . . .+

2n

n!
+ . . .

)
.

(d) If an ≥ 0 and bn ≥ 0, then( ∞∑
n=0

an

)( ∞∑
n=0

bn

)
=

∞∑
n=0

(a0bn + a1bn−1 + . . .+ anb0).

The sum
∞∑
n=1

n
2n can be found using the equality

1
(
1− 1

2

)
+2
(1
2
− 1

4

)
+3
(1
4
− 1

8

)
+. . . = 1+

1

2
(2−1)+

1

4
(3−2)+

1

8
(4−3)+. . .

6.5.6. Abel’s summation formula.

(a)∗ Find
∞∑
n=1

cos

(
n+ 1

2

)
2n .

(b) Prove the equality

m∑
n=1

bn(an+1 − an) = am+1bm+1 − a1b1 −
m∑

n=1

an+1(bn+1 − bn).

What happens when m = 1?

(c) If the sequence {bn} is monotonic non-increasing and the sequence

{an} decreases monotonically to zero, then

∞∑
n=1

bn(an+1 − an) = −a1b1 −
∞∑
n=1

an+1(bn+1 − bn).

6.5.7. The sum of an absolutely convergent series, that is, a series for which
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∞∑
n=1

|an| converges, does not depend on a permutation of the terms of the

series.

6.5.8. One can rearrange the order of the terms in the sum 1− 1
2 +

1
3 − 1

4 +

. . .+ (−1)n+1 1
n + . . . so that the sum of the new series becomes equal to

(a) ∞; (b) 7.

6.5.9. Check whether an analogue of the statement of problem 6.5.5 (d)

holds

(a) without the condition that an, bn > 0;

(b) with the replacement of the condition an, bn > 0 by absolute conver-

gence.

6.5.10. Recomposition.

(a) Express z3 + 3z2 − 2z − 1 as a polynomial in y = z + 1.

(b) Find numbers an such that for any z with |z| < 1, we have 1
z2+2z+2

=
∞∑
n=1

anz
n.

6.5.11.* If you are familiar with derivatives, find
∞∑
n=1

nkxn, where |x| < 1

and k is an integer.

6.5.12.* The sum 1− 1
2 +

1
3 − 1

4 + . . . is equal to the area of the curvilinear

trapezoid bounded by the x-axis, the vertical lines x = 1 and x = 2, and

the hyperbola y = 1/x.
(For the definition of the area, see, for example, [Sko21, section “The

Dirichlet principle and its applications in geometry”].)

Hints

6.5.4. (b) Since
k∑

n=1
aσ(n) ≤

max{aσ(1),...,aσ(k)}∑
n=1

an for any n, we have
∑
aσ(n) ≤∑

an. Likewise,
∑
aσ(n) ≥

∑
an.

6.5.7. Use 6.5.4 (b) and the equality an,± := (an ± |an|)/2.

6.5.10. (b) Expand 1
z2+2z+2

= 1
(z+1)2+1

into a series in powers of z + 1 and

then rewrite it as a series in powers of z.

Suggestions, solutions, and answers

6.5.2. Answers: (a) 1; (b) 3/4; (c) 1/6; (d) 1/4; (e) 5/4; (f) 1/(k ·k!).
Hint. Expand into simple fractions.
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6.5.3. Answers: (a) 2; (b) 6.

6.5.4. Answers: (a) 1/(1− x)2 when 0 ≤ x < 1; diverges when x ≥ 1.

(c) (k + 1)/2k−1.

(a) Hint for those familiar with derivatives. Prove and use the equality( ∞∑
n=1

xn
)′

=
∞∑
n=1

nxn−1.

6.5.5. (a) Answer : 8.

6.5.6. (a) Answer :
cos 1

2
−2 cos 3

2
4 cos 1−5 .

6.5.10. (b) The first few terms are

1

2
− 1

2
z +

1

4
z2 − 1

8
z4 +

1

8
z5 − 1

16
z6

+
1

32
z8 − 1

32
z9 +

1

64
z10 − 1

128
z12 +

1

128
z13 + . . .

6.5.11. Prove and use the equality( ∞∑
n=1

nkxn
)′

=

∞∑
n=1

nk+1xn−1.

6. Examples of transcendental numbers

6.A. Introduction (1)

A number x is called transcendental if it is not a root of an equation atx
t +

at−1x
t−1 + · · · + a1x + a0 = 0 with integer coefficients at, at−1, . . . , a0 and

at �= 0.

The first explicit example of a transcendental number was given by

Joseph Liouville in 1835 (see Theorem 6.6.4 (a) and [CR96, Ch. 2, section

6]). In 1929, Kurt Mahler proved the transcendence of Mahler’s number; see
Theorem 6.6.7. This transcendence follows neither from the general theo-

rem of Liouville 6.6.4 (b) nor from the theorems of Thue, Siegel, and Roth

([CR96, Ch. 2, section 6], [Fel83]). A more general result was obtained in

[Mah29] (compare with [Gal80,Nis96]). However, the proof in [Mah29],

as well as that in [Nis96], is long and difficult.

In this section, we will present simple proofs of the transcendence of the

Liouville and Mahler numbers. The first of them is based on the elementary

version of Lagrange’s Mean Value Theorem 7.2.7 (c). Although it is known to

specialists, unfortunately more complicated proofs are usually presented in

classes. The second proof is based on the binary representation of numbers.

Apparently, it was not known until [Skoc] and [AS03, section 13.3, pp. 399–

401]. These proofs can be understood by high school students.
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Note that there is a simple set-theoretic proof of the existence of tran-

scendental numbers [CR96, Ch. 2, section 6]. It does not give an explicit

example of a transcendental number, although it gives an algorithm for con-

structing one in decimal notation.

A preliminary version of part of this section was presented by A.Kaibkha-

nov at the 2002 international conference of Intel ISEF (Louisville, USA) and

by I. Nikokoshev and A. Skopenkov at the Summer Conference of the Tour-

nament of Cities (Beloretsk, Russia). We thank V.Volkov, A.Galochkin,

D. Leshko, A. Pakharev, A.Rukhovich, and L. Shabanov for useful discus-

sions.

Before studying this section it is useful to solve the problems in Chapter

3, section 1.

6.B. Problems (3*)

6.6.1. The following numbers are irrational:

(a) e :=
∞∑
n=0

1
n! ; (b) λ :=

∞∑
n=0

2−n!; (c) μ :=
∞∑
n=0

2−2n .

The infinite sums used here are defined in Chapter 6, section 5.

6.6.2. None of the numbers e, λ, and μ is a root of a quadratic equation

with integer coefficients.

6.6.3. For any rational number p/q that is not a root of a polynomial f of

degree t with integer coefficients, the inequality |f(p/q)| ≥ q−t holds.

Theorem 6.6.4 (Liouville). (a) The number λ is transcendental.

(b) For any polynomial of degree t with rational coefficients and an

irrational root α, there exists C > 0 such that for any integers p and q, the

inequality

∣∣∣α− p
q

∣∣∣ > Cq−t holds.

6.6.5. (a) The number μ is not a root of a cubic equation with integer

coefficients.

(b) The equality μq =
∞∑
n=0

dn(q)2
−n holds, where dn(q) is the number

of ordered representations of n as the sum of q powers of 2 (not necessarily

distinct powers):

dn(q) = |{(w1, . . . , wq) ∈ Zq | n = 2w1 + · · ·+ 2wq and w1, . . . , wq > 0}|.
For example, d3(2) = 2, since 3 = 20 + 21 = 21 + 20. Define d0(0) := 1.

Lemma 6.6.6. The number dn(q) of ordered representations of the number

n as the sum of q powers of 2 does not exceed (q!)2.
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Theorem 6.6.7 (Mahler). The number μ is transcendental.

6.C. Proof of Liouville’s Theorem (2)

First we prove that the number e is irrational (that is, we solve prob-

lem 6.6.1 (a)). Suppose, to the contrary, that there exists a linear poly-

nomial f(x) = bx+ c with integer coefficients b and c, with b �= 0, for which

f(e) = 0. Let es =
s∑

n=0

1
n! . Since the equation f(x) = 0 has only one root,

we have f(es) �= 0. We get a contradiction from the following inequalities

for s = 2|b|:
1

s!
≤ |f(es)| = |f(e)− f(es)| = |b| · (e− es) <

2|b|
(s+ 1)!

.

Next, write λs =
s∑

n=0
2−n!.

We will prove that the Liouville number λ is irrational (that is, we

solve problem 6.6.1 (c).) Suppose, to the contrary, that there exists a linear

polynomial f(x) = bx + c with integer coefficients b and c, with b �= 0, for

which f(λ) = 0. Since the equation f(x) = 0 has only one root, f(λs) �= 0.

We get a contradiction from the following inequalities for s = |b|:
2−s! ≤ |f(λs)| = |f(λ)− f(λs)| = |b| · (λ− λs) < 2|b| · 2−(s+1)!.

The first inequality holds since f(λs) �= 0 can be represented as a fraction

with denominator 2s!. The latter inequality follows from

λ− λs < 2−(s+1)!
∞∑
n=0

2−n = 2 · 2−(s+1)!.

Next, we show that λ is not a root of a quadratic polynomial f(x) = ax2 +
bx+c with integer coefficients (that is, we solve problem 6.6.2 for λ; compare

with subsection 3.A). Suppose, to the contrary, that λ is a root of such an

equation. Since a quadratic equation has no more than two roots, we have

f(λs) �= 0 for sufficiently large s. Now for sufficiently large s we get a

contradiction from the following inequalities:

2−2s! ≤ |f(λs)| = |f(λ)− f(λs)| = (λ− λs) · |a(λ+ λs) + b|
< (2|a|λ+ |b|) · 2 · 2−(s+1)!.

The first inequality holds since f(λs) �= 0 can be represented as a fraction

with denominator 22s!. The second inequality is proved similarly to the

linear case above.

Similar arguments work for e but do not work for μ.

Proof of Liouville’s Theorem 6.6.4 (a). Suppose, to the contrary, that

λ is a root of an algebraic equation f(x) = atx
t+at−1x

t−1+· · ·+a1x+a0 = 0

with integer coefficients a0, . . . , at−1, at with at �= 0. Since such equation has
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only a finite number of roots, f(λs) �= 0 for sufficiently large s. Then for

sufficiently large s we get a contradiction with the following inequalities,

whose verification is similar to the quadratic and linear cases above:

2−ts! ≤ |f(λs)| = |f(λ)− f(λs)|

= (λ− λs) ·
∣∣∣∣∣∣
∑

0≤i<n≤t

anλ
n−1−iλis

∣∣∣∣∣∣ < C · 2−(s+1)!.

The first inequality holds because f(λs) �= 0 can be represented as a fraction

with denominator 2ts!. The second inequality is proved similarly to the case

of a linear polynomial. �

6.D. Simple proof of Mahler’s Theorem (3*)

Let us demonstrate the idea of the proof using the following example. We

prove that the base-10 number

ν =

∞∑
n=0

10−2n = 0.11010001000000010 . . .10

is not a root of a quadratic equation with integer coefficients. (Problem

6.6.2 for μ can be solved in the same way; consider the binary expansions

of μ and μ2.) Consider the decimal expansion of the number −bν − c for

integers b and c of the same sign (the case of different signs can be proved in

a similar way). Consider nonzero digits in this decimal expansion located far

enough from the decimal point. It is clear that they form “clusters” around

the positions numbered 2n, and each “cluster” represents the number b. For
example, for b = −17 we have the following:

17ν − c = . . . .87170017000000170 . . . 017 . . . .

However, in the base-10 expansion of

ν2 =

∞∑
k,l=0

10−2k−2l = 0.0121220 . . . 122020002000000012 . . .10

some nonzero digits are located near the (2k + 2l)th position, where k �= l.
But for sufficiently large k and l, the number −bν−c will have zeros in these

positions. Therefore ν2 �= −bν − c.

Proof of Mahler’s Theorem 6.6.7. Assume the converse: f(μ) := atμ
t+

at−1μ
t−1 + · · ·+ a1μ+ a0 = 0 for some integers at, at−1, . . . , a0 with at �= 0.

Expanding the brackets, we get

μq =

( ∞∑
n=0

2−2n

)q

=

∞∑
n=0

dn(q)2
−n,
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where dn(q) is the number of ordered representations of the number n as

the sum of q powers of 2 (not necessarily distinct):

dn(q) = |{(w1, . . . , wq) ∈ Zq | n = 2w1 + · · ·+ 2wq and w1, . . . , wq > 0}|.
We have

f(μ) =

∞∑
n=0

dn2
−n, where dn := atdn(t) + at−1dn(t− 1) + · · ·+ a0dn(0).

It is clear that dn(q) = 0 if and only if n has more than q ones in its binary

expansion. For each p, let
• k = k(p) := 2t+p;

• m = m(p) := 2p(2t − 1), the greatest number less than k such that

dm(t) �= 0;

• s = s(p) := 2p(2t − 1) − 2p−1, the greatest number less than m such

that ds(t) �= 0.

Then

{2sf(μ)} =

{ ∞∑
n=0

dn2
s−n

}
=

{
dm2s−m +

∞∑
n=k

dn2
s−n

}
.

This expression is not equal to zero because∣∣∣∣∣
∞∑
n=k

dn2
s−n

∣∣∣∣∣ (1)
< |dm|2s−m

(2)
< 1/2.

By Lemma 6.6.6, there exists D = D(f) such that |dn| ≤ D for each n. Thus

inequality (2) holds because |dm|2s−m ≤ D · 2−2p−1
< 1/2 for sufficiently

large p. Inequality (1) holds because for sufficiently large p we have∣∣∣∣∣
∞∑
n=k

dn2
s−n

∣∣∣∣∣ ≤ D

∞∑
n=k

2s−n = D · 2s+1−k = D · 2s−m+1−2p

< 2s−m ≤ |dm|2s−m.

The latter inequality follows from dm(t) �= 0 and dm(q) = 0 when q < t, so
dm = atdm(t) �= 0. �
Proof of Lemma 6.6.6. (This proof was proposed by V. Volkov.)

We proceed by induction on q. For q = 0 we have d0(0) = 1 ≤ 0!2. The

inductive step follows from the inequality

dn(q + 1) ≤ 1 + q2dn(q).

Let us prove this inequality. Consider sequences �w := (w1, . . . , wq+1) such

that n = 2w1 + 2w2 + · · · + 2wq+1 . There is no more than one sequence �w
with distinct terms. In each �w where not all terms are distinct, we replace

two equal powers of 2 with their sum (a higher power of 2). Thus we get a

new sequence f(�w) = �v := (v1, . . . , vq), for which n = 2v1 +2v2 + · · ·+2vq . It

is possible that the function f is not one-to-one. A sequence �w is obtained

from f(�w) by splitting one of the powers of 2 into two and inserting the
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obtained new power of 2 some place to the right of the original one. The

power of 2 for splitting can be selected in q ways. One can insert a new

power of 2 some place to the right of the original one in less than q ways.

Therefore, each sequence �v for which n = 2v1 + 2v2 + · · ·+ 2vq has no more

than q2 preimages under f . This proves the necessary inequality. �
The next problem is a good topic for research; see p. xviii. Parts (a),

(b), and (c) are similar to Mahler’s Theorem (6.6.7). The author does not

know the solutions of (d) and (e), but certainly they are within the reach of

a strong high school student (and may be known to specialists). Compare

with [KaS06, Generalization].

6.6.8. Determine whether the number
∞∑
n=0

an is transcendental, for

(a) an = 2−3n ;

(b) an = dn2
−2n for some bounded sequence dn > 0 of integers;

(c) an = 2−fn , where fn+2 = fn+1+fn with f0 = f1 = 1 is the Fibonacci

sequence;

(d)∗ an = 2−[1.1n];

(e)∗ an = n2−2n ;

(f)∗ an = 2n−2n ;

(g)∗ an = (−1)n2−2n .



Chapter 7

Functions

This chapter is almost independent of the rest of the book. Only simple

facts from it are used elsewhere.

In this chapter, unless otherwise specified, a polynomial is a polynomial

with real coefficients, and letters denote real numbers.

1. The graph and number of roots of a cubic polynomial

The author thanks M.Gorelov, A.Doledenok, M. Skopenkov, A. Sgibnev,

and an anonymous reviewer of Kvant magazine for useful discussions.

1.A. Introduction

This subsection provides an elementary proof of the criterion for the exis-

tence of three distinct real roots of a third-degree polynomial, which is based

on Fermat’s approach to the calculus of polynomials. This method uses a

rigorous concept of the derivative but avoids ε-δ arguments.

We show how to find the extrema of polynomials in an elementary way

and, thereby, how to find the number of their roots. More precisely, we

reduce the problem of finding extrema to the problem of finding roots.

To motivate the reader, we first give some results that can be obtained

by analyzing extrema and finding roots (Theorems 7.1.8–7.1.11). This will

show that it is possible to easily apply the results without delving into the

method of discovering and proving them. At this point the reader will be

interested in learning the method. Indeed, the main point of this subsection

is the method itself and not its applications.

We will demonstrate the general method using specific simple arguments.

It is more convenient for the reader who is not familiar with calculus to have

a direct elementary formulation and proof of the result, rather than deriving

the result from more general results preceded by unmotivated theory. If a

reader is interested in generalizations, this approach will motivate them to

study the theory and helps them to learn it.

Although we do not use the notion of derivative, our presentation il-

lustrates this concept with full rigor but without ε-δ notation. Therefore,

the following presentation can be useful in studying the fundamentals of

105
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calculus. Unfortunately it is not well known (compare with [Pon84]). For

further development of Fermat’s approach to polynomials, see sections 2

and 3. The development of the idea of “graphs of functions” is described

in [FT07,Gor10,Tab88]. For example, this idea can be applied to pqr -
lemmas as [DMSF].

The fascinating history of these discoveries is described, for example, in

[Yu70].

1.B. Problems

It is known that the graph of any quadratic polynomial has an axis of sym-

metry.

7.1.1. (a) The graph of any cubic polynomial has a center of symmetry.

(b) Find the coordinates of the center of symmetry of the graph of the

function y = −2x3 − 6x2 + 4.

(c) Is it true that the graph of any polynomial of fourth degree has an

axis of symmetry?

It is known that the quadratic equation ax2+bx+c = 0 has two solutions

when D > 0, one solution for D = 0, and no solutions for D < 0, where

D := b2 − 4ac. A method for finding the number of solutions of a cubic

equation without actually solving the equation is easy to derive directly (see

problem 7.1.4 below). In particular, to solve the following problems it is

not necessary to know formulas for the roots of cubic equations. Moreover,

solutions that do not use formulas for the roots of a cubic are easier to

derive than the formulas themselves. Compare with problems 7.1.5 and

7.2.2 below.

Here one can use the Intermediate Value Theorem (7.1.13) without proof.

7.1.2. How many real solutions do the following equations have?

(a) x3 + 2x+ 7 = 0; (b) x3 − 4x− 1 = 0.

7.1.3. (a) The equation x3 + x+ q = 0 has exactly one solution for any q.
(b) Under what condition on p and q does the equation x3 + px+ q = 0

have exactly two solutions?

(c) Express these two solutions in terms of p and q.

7.1.4. (a) Find the intervals where f(x) = x3 − 6x + 2 is increasing and

where it is decreasing.

(b) For the same function find the maximum and minimum values on

the interval [0, 3].
(c) For which q will x3 − x+ q = 0 have exactly one solution?
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(d) How can one determine the number of solutions to the equation

x3 + px+ q = 0? Your answer should be in terms of p and q.
(e) Likewise, how can one determine the number of solutions to each of

the equations ax3 + bx2 + cx+ d = 0 in terms of a, b, c, and d?

7.1.5. How can one determine the number of solutions to the equations

below? Your answers should be in terms of p and q.
(a) x4 + x+ q = 0; (b) x4 + px+ q = 0; (c) xn + px+ q = 0.

Hints

7.1.1. (a) First prove the statement for the trinomials ax3 + cx and ax3 +
cx+ d.

7.1.2. (a) Answer : 1. Let f(x) := x3 + 2x + 7. Since f(−2) < 0 and

f(1) > 0, the Intermediate Value Theorem (7.1.13) implies that there is a

root. Since f is monotone, there is only one root.

(b) Answer : 3. Let f(x) := x3 − 4x − 1. Since f(−2) < 0, f(−1) > 0,

f(0) < 0, and f(3) > 0, the Intermediate Value Theorem implies that there

are three roots.

7.1.4. (a) Consider the sign of
f(x1)−f(x2)

x1−x2
.

(c) See (a) and (b). Find the intervals where the function increases and

where it decreases. Find the points of local extrema and the function values

at these points.

(d) Reduce to (c) by the substitution y = kx.
(e) Reduce to (d) using a substitution.

7.1.4. (d) Answer : If p = q = 0 then there is one root; otherwise let

D :=
(
p
3

)3
+
(
q
2

)2
. If D > 0 there is one root, if D = 0 there are two roots,

and if D < 0 there are three roots.

7.1.5. (b) Answer : If p = q = 0 then there is one root; otherwise let

D :=
(
p
4

)4
+
(
q
3

)3
. If D > 0 there is one root, if D = 0 there are two roots,

and if D < 0 there are three roots.

1.C. Statements of the main results

The following are standard facts from the school curriculum.

Theorem 7.1.6. Let a and b be real numbers. Then the following conditions

are equivalent:

(1) There exist real numbers x and y such that a = x+ y and b = xy.
(2) The equation t2 − at+ b = 0 has a real root.

(3) 4b− a2 ≤ 0.
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Here is a closely related result: The quadratic equation t2 − at + b = 0

has two roots for D := a2 − 4b > 0, one root for D = 0, and no roots for

D < 0.

A function f is called strictly increasing on an interval if f(t1) > f(t2)
for any t1 > t2 in this interval. Strictly decreasing functions are defined a

similar way.

Theorem 7.1.7. Let a and b be real numbers. Then t2 − at+ b is strictly
decreasing on (−∞, a/2] and is strictly increasing on [a/2,+∞).

These theorems, as well as the formula for the roots of a quadratic

equation, are proved using the equality

t2 − at+ b =
(
t− a

2

)2
+

(
b− a2

4

)
.

In this section, we explore the notion of a derivative by examining the well-

known generalization of the above theorems to three numbers. (This gen-

eralization dates back to Fermat and possibly even earlier.) We will start

with special cases.

Theorem 7.1.8. Let b and c be real numbers. Then the following conditions

are equivalent:

(1) There exist real numbers x, y, and z such that 0 = x + y + z,
b = xy + yz + zx, and c = xyz.

(2) The equation t3+ bt− c = 0 has three real roots, taking into account

multiplicity.

(3) 4b3 + 27c2 ≤ 0.

Note that condition (3) obviously does not hold when b is greater than

0, and is equivalent to “b ≤ −3 3
√
c2/4” or “b ≤ 0 and |c| ≤ 2

√−b3/27.”
Theorem 7.1.9. Let b and c be real numbers, and let f(t) := t3 + bt− c.

• If b ≥ 0, then f is strictly increasing on (−∞,+∞).

• If b < 0, then f is strictly increasing on (−∞,−√−b/3], is strictly de-

creasing on [−√−b/3,√−b/3], and is strictly increasing on [
√−b/3,+∞).

Now we give the formulation of the general case. It is more cumbersome

but more useful. Also, it may not yet be obvious to the reader how the

general case can be reduced to the special case.

Theorem 7.1.10. Let a, b, and c be real numbers. Then the following

conditions are equivalent:

(1) There exist real numbers x, y, and z such that

a = x+ y + z, b = xy + yz + zx, and c = xyz.
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(2) The equation t3 − at2 + bt − c = 0 has three real roots, taking into

account multiplicity.

(3) 4

(
b− a2

3

)3

+ 27

(
c− ab

3
+

2a3

27

)2

≤ 0.

This result is very useful. For example, [DMSF, problem 2] is a special

case of an equivalent version of condition (3) of Theorem 7.1.10, similar

to the version given after Theorem 7.1.8. For applications to elementary

inequalities, see [SB78, problems 12 and 32] and [Go09].

Theorem 7.1.11. Let a, b, and c be real numbers, and let f(t) := t3 −
at2 + bt− c.

• If 3b ≥ a2, then f is strictly increasing on (−∞,+∞).

• If 3b < a2, then f is strictly increasing on

(
−∞,

a− δ

3

]
, is strictly

decreasing on

[
a− δ

3
,
a+ δ

3

]
, and is strictly increasing on

[
a+ δ

3
,+∞

)
;

here δ =
√
a2 − 3b.

1.D. Proofs

Proof of the equivalence (1)⇔ (2) in Theorems 7.1.8 and 7.1.10.

By definition, the existence of three real roots (with multiplicity) of the

equation t3− at2 + bt− c = 0 means the existence of real numbers x, y, and
z for which

t3 − at2 + bt− c = (t− x)(t− y)(t− z)

(that is, the coefficients at the corresponding degrees in the two polynomials

are equal). This is equivalent to condition (1) by Vieta’s Theorem 3.6.5 (by

multiplying out the terms on the right-hand side). �

Reducing Theorem 7.1.10 to the special case of a = 0, that is to Theorem
7.1.8. Let u := t− a

3 . Then t = u+ a
3 , so

t3 − at2 + bt− c = u3 +

(
b− a2

3

)
u−

(
c− ab

3
+

2a3

27

)
.

Therefore, Theorem 7.1.10 follows from the special case of a = 0, that is,

from Theorem 7.1.8.

7.1.12. Reducing Theorem 7.1.11 to the special case of a = 0, that is, to

Theorem 7.1.9.

Proof of Theorem 7.1.9 for b ≥ 0. Since b ≥ 0, the function t3 + bt − c
is a sum of increasing functions (at least one of which is strictly increasing)

and hence is strictly increasing. �
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x

y

y
=
x
3
−
3
x

Figure 7.1. Graph of the function f(t) = t3 − 3t

Proof of the equivalence (2)⇔ (3) in Theorem 7.1.8 for b ≥ 0.

First, assume that the required roots exist. Since b ≥ 0, the function t3+bt−c
is strictly increasing, as it is the sum of increasing functions, one of which is

strictly increasing. Therefore the equation t3 + bt− c = 0 has no more than

one real root. This and the equation x + y + z = 0 imply x = y = z = 0.

Therefore 4b3+27c2 = 0. Now assume that 4b3+27c2 ≤ 0. Then b = c = 0,

so we can take x = y = z = 0. �
To show how to find intervals on which a function is increasing and de-

creasing for functions, we derive the equivalence (2)⇔ (3) in Theorem 7.1.8

for b < 0 from Theorem 7.1.9 for b < 0. After this, a simpler proof of

this equivalence, due to M.Gorelov, is given. For yet another proof of The-

orems 7.1.8 and 7.1.10, which involves using complex numbers and calcu-

lating the discriminant of a cubic polynomial in terms of its coefficients,

see [DMSF, section 2, problems 6–22]. Although this proof is longer than

each of these, it illustrates other important interesting ideas. Also, [Tab88]

presents a geometric interpretation (but not a proof) of these theorems.

Heuristic considerations for the derivation of Theorems 7.1.9 and 7.1.8

(not formally used in the proof).

The previous proof shows that to derive Theorem 7.1.8 it is necessary

to find out how many roots f(t) := t3 + bt − c has. And to do this you

need to find the local maxima and minima of f , that is, to establish Theo-

rem 7.1.9. The constant c doesn’t affect this. Figure 7.1 shows the graphs

of the function f(t) = t3 + bt for different b. It’s clear that
• if b ≥ 0, then f is increasing, and

• if b < 0, then f has a local maximum and a local minimum.

Let us show how to find the local maximum and local minimum for the

example where b = −3. (The general case can be reduced to it, which is done

below, or be derived in a similar fashion.) In other words, we will find the

local maximum and minimum of the function f(t) := t3− 3t. The condition
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that f is strictly increasing is equivalent to the condition ϕ(t1, t2) > 0 for

any distinct t1 and t2, where

(∗) ϕ(t1, t2) :=
f(t1)− f(t2)

t1 − t2
= t21 + t1t2 + t22 − 3.

If these conditions are satisfied for “sufficiently close” t1 and t2, then,
by transitivity, they are satisfied for all t1 and t2. In other words, we need

to examine the values of t1 and t2 where φ changes sign. Thus we come

to the conjecture that the boundary points of the intervals on which f is

monotone are the roots of the equation t2 + tt+ t2− 3 = 0. These roots are

equal to ±1. (These arguments are similar to those in [Ben88]. Looking at

a simple example before explaining the general method helps to make the

method easier to understand.)

Proof of Theorem 7.1.9 for b < 0. We can assume that c = 0. Setting

u := t
√−b/3, we can assume that b = −3. Define ϕ(t1, t2) by the formula

(*) for f(t) := t3 − 3t. Then ϕ(t1, t2) > 0 for any distinct t1, t2 ≥ 1.

Consequently, f(t) is strictly increasing on [1,+∞). The two other assertions

of the theorem are proved similarly. �

Proof of the equivalence (2)⇔ (3) in Theorem 7.1.8 for b < 0.

Setting u := t
√−b/3, we can assume that b = −3. Let f(t) := t3 − 3t − c.

We have −f(t) = c− t(t2 − 3), and therefore

f(−1)f(1) = (c+ 2 · 1)(c− 2 · 1) = c2 − 4 = (4b3 + 27c2)/27.

Thus, the inequality (3) is equivalent to the condition f(−1)f(1) ≤ 0.

Suppose that the required roots x, y, and z exist. Since −3 = b < 0,

the case of x = y = z is impossible. Therefore the equation f(t) = 0 has at

least two different real roots. Denote by t+ the larger of the numbers 2 and

1 + |c|. Then
t+ ≥ 1 + |c| > 1 and f(t+) > (1 + |c|)(22 − 3)− c > 0.

Similarly, it is proved that there exists t− < −1 such that f(t−) < 0. Since

the equation f(t) = 0 has at least two different real roots, using Theorem

7.1.9 for b = −3 we see that f(−1) and f(1) have different signs, that is,

f(−1)f(1) ≤ 0.

Now suppose that f(−1)f(1) ≤ 0. If f(−1)f(1) < 0, then reversing the

argument from the previous paragraph and using the Intermediate Value

Theorem 7.1.13 (see below), we see that the equation f(t) = 0 has three real

roots. We denote them by x, y, and z. If f(−1)f(1) = 0, then c2 − 4 = 0.

We set x = y = − sgn c and z = 2 sgn c, where sgnx = 1 if x > 0, −1 if

x < 0, and 0 if x = 0. (The reader probably guessed how to choose these

formulas.) �

Theorem 7.1.13 (Intermediate Value Theorem). Let f be a polynomial
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and let a < b. If f(a) > 0 > f(b), then there exists c ∈ (a, b) such that

f(c) = 0.

Sketch of another proof of the equivalence (2) ⇔ (3) in Theorem

7.1.8.(For the case b < 0 with an argument due to M.Gorelov.) First we

repeat the first paragraph of the previous proof: Setting u := t
√−b/3, we

can assume b = −3. Let f(t) := t3 − 3t− c.
Assume that the required roots x, y, and z exist. We assume that they

are all different from ±1 (this case can be considered separately). Then from

the equality −3 = xy + xz + yz = −x2 − xy − y2 it follows that on each

of the intervals (−∞, 1), (−1, 1), and (1,+∞) there is at most one root.

Therefore, each of the intervals contains exactly one root. Then from the

equality f(t) = (t− x)(t− y)(t− z) it follows that f(−1) > 0 and f(1) < 0.

Therefore, f(−1)f(1) < 0.

Now suppose that f(−1)f(1) ≤ 0. Then, by the Intermediate Value

Theorem, the equation f(t) = 0 has a root x ∈ [−1, 1]. Therefore we have

f(t) = f(t) − f(x) = (t − x)(t2 + xt + (x2 − 3)). We assume that x �= ±1
(this case can be considered separately). Since x ∈ (−1, 1), the discriminant

of the square trinomial t2 + xt+ (x2 − 3) (from t) is positive. Therefore, by
Theorem 7.1.6, the equation f(t) = 0 has two more roots y and z. �

7.1.14. (a) Prove Theorem 7.1.9.

(b) Find the largest intervals where f is strictly increasing or strictly

decreasing for f(t) = t4 − 4t and f(t) = t4 − 12t3 + 22t2 − 24t+ 10.

7.1.15. Any polynomial of odd degree has a root.

2. Introductory analysis of polynomials (2)

For a finite sequence b0, . . . , bk of nonzero numbers, an index i ∈ {1, . . . , k}
such that the numbers bi−1 and bi have different signs is called the change
of sign.

(For a finite sequence that contains zeros, its change of sign is the change

of sign in the sequence of nonzero members obtained from the given sequence

by removing all the zeros.)

7.2.1. (a) The number of positive solutions of ax2 + bx + c = 0 does not

exceed the number of changes of sign in the sequence a, b, c.
(b) The number of positive solutions of ax3 + bx2 + cx+ d = 0 does not

exceed the number of changes of sign in the sequence a, b, c, d.

7.2.2. (a) Descartes’ rule of signs. The number of positive solutions of



2. INTRODUCTORY ANALYSIS OF POLYNOMIALS (2) 113

the equation pnx
n + . . .+ p1x+ p0 = 0 does not exceed the number of sign

changes in the sequence p0, . . . , pn.
(b) Modify Descartes’ rule of signs to estimate the number of negative

roots of a given polynomial.

(c)∗ Modify Descartes’ rule of signs to estimate the number of roots of

a given polynomial in a given interval [a, b].
(d) The MacLaurin inequalities. For x1, . . . , xn > 0 define

Mk :=
k

√√√√ ∑
i1<...<ik

xi1 · . . . · xik(
n
k

) .

Note that M1 is the arithmetic mean and Mn is the geometric mean. Then

M1 ≥M2 ≥ . . . ≥Mn.

7.2.3. (a) For an even n, the polynomial
n∑

k=0

xk

k! does not have real roots,

and for an odd n it has exactly one real root.

(b) The minimum absolute value of the roots of the polynomial
n∑

k=0

xk

k!
tends to infinity as n→∞.

To solve these and many other problems, the following concept is needed.

The pre-derivative of a polynomial f is the polynomial Df (x, y) :=
f(y)−f(x)

y−x in two variables x and y. (Verify that this is indeed a polyno-

mial.)

The derivative of f is the polynomial f ′(x) := Df (x, x). A geometrical

interpretation is that the equation of the tangent line to the graph y = f(x)
of a polynomial function f at the point (a, f(a)) is given by y = f ′(a)(x −
a) + f(a). Formally, this can be understood as the definition of the tangent

line.

7.2.4. Provide precise formulations of the following assertions, and prove

them:

(a) (f + g)′ = f ′ + g′; (b) (af)′ = af ′; (c) (xn)′ = nxn−1;

(d) (pnx
n + . . .+ p1x+ p0)

′ = npnx
n−1 +(n− 1)pn−1x

n−2 + . . .+ p1 (for

n = 0 this expression is equal to 0).

(e) Leibniz’s rule. (fg)′ = f ′g + fg′.

7.2.5. (a) Lemma on the sign-preserving property of polynomials.

For any number a and polynomial g, if g(a) > 0 then there exists a positive

δ = δ(g, a) such that g(x) > 0 for any x ∈ (a− δ, a+ δ).
(b) Fermat’s Theorem. If a is a point of local minimum or maximum

of a polynomial f , then f ′(a) = 0.

(c) Is the converse of (b) true?
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(d) If a polynomial f is increasing (not necessarily strictly)1 on an in-

terval, then the derivative f ′ is non-negative on this interval.

(e) Is it true that if a polynomial f is strictly increasing on an interval,

then its derivative f ′ is positive on this interval?

7.2.6. (a) If the derivative of a polynomial is positive on an interval, then

the polynomial is strictly increasing on this interval.

(b) If the derivative of a polynomial is non-negative on an interval, then

the polynomial is increasing (not necessarily strictly) on this interval.

7.2.7. (a) Existence of extrema. Every polynomial is bounded on any

closed interval, and attains the maximum and minimum on this interval.

(b) Rolle’s Theorem. Between any two roots of a polynomial lies the

root of its derivative.

(c) Lagrange’s Mean Value Theorem. For any a �= b and a polyno-

mial f there exists c ∈ [a, b] such that f ′(c) = f(a)−f(b)
a−b .

Theorem 7.2.8 (Taylor’s formula). (a) For any a �= b and polynomial f
there exists c ∈ [a, b] such that

f(b) = f(a) +
f ′(a)

1!
(b− a) +

f ′′(c)

2!
(b− a)2.

(b) For any a �= b and polynomial f of degree n there exists c ∈ [a, b]
such that

f(b) = f(a) +
f ′(a)

1!
(b− a) +

f ′′(a)

2!
(b− a)2 + . . .

+
f (n−1)(a)

(n− 1)!
(b− a)n−1 +

f (n)(c)

n!
(b− a)n.

Hints

7.2.2. (a) Use induction on n and Rolle’s Theorem 7.2.7 (b).

Another method. Denote by d(f) the number of sign changes in the

sequence of coefficients of the polynomial f . Prove that d(f(x)(x − c)) ≥
d(f(x)) + 1 for any c > 0.

(c) Use Descartes’ rule of signs and start with b =∞.

7.2.4. (d) The statement follows from (a), (b), and (c).

1Editor’s note: If a non-constant polynomial is increasing (decreasing) on an interval,

it must be strictly increasing (decreasing). Constant functions are the only monotone but

not strictly monotone polynomials on an interval.
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7.2.5. (b) Assume to the contrary that f ′(a) �= 0. From (a) it follows that

there exists δ such that
f(a+h)−f(a)

h and f ′(a) have the same sign for any

h ∈ (−δ, δ).
(c) No. A counterexample is provided by f(x) = x3, a = 0.

7.2.6. (b) Apply Lagrange’s Theorem 7.2.7 (c). There is also a direct proof

which does not generalize to arbitrary continuous functions.

7.2.7. (a) Consider dividing the interval in half.

(b) See (a).

(c) See (b).

3. The number of roots of a polynomial (3*)

7.3.1. (a) If p(x) is a polynomial with complex coefficients, the roots of

p′(x) lie inside the convex hull of the roots of p(x). Compare with Rolle’s

Theorem 7.2.7 (b).

(b) The number of real roots of a polynomial p is equal to the number

of vertical asymptotes of the graph of the function y =
p′(x)
p(x) .

(c) Let p be a polynomial of degree n having n distinct real roots. Prove

that the solution set of the inequality
p′(x)
p(x) > 1 is the union of a finite number

of intervals, and find the sum of their lengths.

(International Mathematical Olympiad, 1988).
(d) If p(x) = (x− a1) · · · (x− an) then

p′(x)

p(x)
=

1

x− a1
+ . . .+

1

x− an
.

7.3.2.* Find the number of solutions to each equation (the answers will

depend on p, q, r, s, t).
(a) x4 − x2 + px+ q = 0; (b) x4 + x2 + px+ q = 0;

(c) x4 + px2 + qx+ r = 0; (d) px4 + qx3 + rx2 + sx+ t = 0.

The solutions of (c) and (d) show that finding the roots (without taking

into account the multiplicity) of an arbitrary fourth-degree polynomial can

be reduced to the cases (a) and (b). You should be able to work out specific

cases, but you will most likely not be able to solve the problem in general

without using the ideas below.

The following problems illustrate Sturm’s method for finding the number

of distinct real solutions (that is, the roots without multiplicities) of the

equation pnx
n + . . . + p1x + p0 = 0. Assertion 7.3.1 (b) suggests that it is

necessary to find the number of asymptotes of the graph of a function p′/p
without knowing the factorization of a polynomial p, i.e., its roots.
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A point x ∈ R is called a point of ascent of the function f if there

exists ε > 0 such that f(t) < f(x) for x − ε < t < x and f(t) > f(x) for

x < t < x+ ε.
A point x ∈ R is called a point of descent of the function f if there

exists ε > 0 such that f(t) > f(x) for x − ε < t < x and f(t) < f(x) for

x < t < x+ ε.
For example, for f(x) = x2 the point x = 1 is a point of ascent, x = −1

is a point of descent, and x = 0 is neither a point of ascent nor a point of

descent.

The algebraic number of preimages of a value y of the function is defined

to be a(f, y) := u − d, where u and d are the number of points of ascent

and descent, respectively, in the preimage of the point y (that is, the set of

x such that f(x) = y). It is understood that u and d must be finite.

For example, a(x2, 1) = 1− 1 = 0, a(x2, 0) = 0, and a(x2,−1) = 0.

7.3.3. The number of roots of a polynomial p is equal to −a(p′/p, y) for

sufficiently large y.

7.3.4. Find a(f, y) for
(a) f(x) = x3 − 3x+ 1 and y = −1;
(b) f(x) = x3 − 3x+ 1 and y = 100;

(c) f(x) = x3 − 3x+ 1 and y = 0;

(d) f(x) = x3 − 3x+ 1 and y = −100;
(e) f(x) = x4 + 2x3 − x2 + 4x+ 1 and y = −100;
(f) f(x) = 1/x and y = 5;

(g) f(x) = anx
n + . . .+ a1x+ a0 and sufficiently large y;

(h) f(x) = anx
n + . . .+ a1x+ a0 and arbitrary y.

7.3.5. (a) If p is a polynomial other than a constant, then for any a the

number of solutions to p(x) = a is finite.

(b) If f = p/q is a non-constant rational function (that is, the ratio of

polynomials p and q �= 0), then for any a the number of solutions to f(x) = a
is finite.

(c) If a is a root of a polynomial p, then there exist an integer k > 0 and

a polynomial g such that p = (x− a)kg and g(a) �= 0.

7.3.6. Let p = pnx
n + . . . + p1x + p0 and q = qmx

m + . . . + q1x + q0 be

polynomials without common non-constant factors and with pnqm �= 0. Let

f := p/q. If n < m we additionally assume that y �= 0, and if n = m we

assume that y �= pn/qm. Then a(f, y) does not depend on the choice of y;
thus we will denote it by a(f).

This fact can be used below.
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7.3.7. Find a(f) for
(a) f(x) = 1

x ; (b) f(x) = 1
x3−3x+1

; (c) f(x) = x+ 1
x ;

(d) f(x) = −x2 + 4x+ 1 + 1
x+2 ; (e) f(x) = x3−x2+5

x+2 ;

(f) f(x) = x+2
x3−x2+5

.

7.3.8. Let g, p, and q be nonzero polynomials with deg p > deg q. Then
(a) a(q/p) = −a(p/q); (b) a(g + q

p) = a(g) + a( qp).

7.3.9. Is it true that a(f +g) = a(f)+a(g) for any rational functions f and

g?

7.3.10. Construct an algorithm for finding the number of roots of the stated

type of a given polynomial p:
(a) all; (b) positive; (c) on a given interval; (d) counting multiplic-

ity.

A famous unsolved problem asks how to find the number of complex

roots of a polynomial (counting multiplicity) lying in the right half-plane.

Hints

7.3.1. (a, b, c). Use (d).

7.3.2. (c) Reduce to (a) and (b).

(d) Reduce to (c).

7.3.5. Use Bezout’s Theorem and its corollaries.

Suggestions, solutions, and answers

7.3.1. In the notation of problem 7.3.5 (c), we have
p′(x)
p(x) = k

x−a +
g′
g .

7.3.5. (a) Suppose that p(x) = a has infinitely many solutions. Then the

polynomial q(x) := p(x) − a has infinitely many roots, which means that

q(x) is identically equal to 0. Therefore p(x) is identically equal to a.

7.3.6. Use the Intermediate Value Theorem (7.1.13), plus the fact that a

non-constant rational function has a finite number of roots.

7.3.9. Answer : No.
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7.3.10. (a) Sturm’s Theorem. For a nonzero polynomial p, define nonzero
polynomials q1, . . . , qk such that

p′

p
=

1

q1 +
1

...+ 1
qk

.

For a polynomial g(x) = gnx
n + . . .+ g1x+ g0 with gn �= 0, define

a(g) :=

⎧⎪⎨
⎪⎩

0 for even n,

1 for odd n and gn > 0,

−1 for odd n and gn < 0.

The above definition of the number a(g) is equivalent to that given in

problem 7.3.6 in view of problem 7.3.4 (h).

The number N(p) of solutions to equation p(x) = 0 is equal to

a(q1)− a(q2) + . . .+ (−1)k+1a(qk).

The given definition of the number a(g) is equivalent to that given in prob-

lem 7.3.6 in view of the result of problem 7.3.4 (h).

(b) We can assume that p(a) �= 0. Then the number N+(p) of positive

roots is equal to N+(p) = N(p(x2))/2 = −a(xp′(x2)
p(x2)

)/2.

(c) The number of roots in the interval [a, b] is equal to N+(p(x− a))−
N+(p(x− b)).

(d) The number of roots of a polynomial p of degree n + 1, counting

multiplicity, is equal to

N(p) +N(gcd(p, p′)) +N(gcd(p, p′, p′′)) + . . .+N(gcd(p, p′, . . . , p(n))).

4. Estimations and inequalities (4*)
By V.A. Senderov

The concept of derivative used this section was defined for polynomials in

section 2; for the general case see, for example, the book [Zor15].

7.4.1. Compare (a) eπ and πe; (b)∗ 2π and π2; (c) log3 4 and log4 5;

(d) logn−1 n and logn(n+ 1) for n > 2;

(e) log3 4 · log3 6 · . . . · log3 80 and 2 log3 3 · log3 5 · . . . · log3 79;
(f) log3 5 and log4 6; (g) 10

√
11 and 11

√
10;

(h)∗ 6
√
7 and 7

√
6; (i) cot 5π

18 and 5π
18 .

7.4.2. Prove the following inequalities.

(a) x cosx < 0.62 for 0 < x < π/2;
(b) sin(π/18) > 0.17;

(c)
(
sinx
x

)3
> cosx for 0 < x < π/2;
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(d)∗ 1
sin2 x

≤ 1
x2 + 1− 4

π2 for 0 < x ≤ π/2;

(e) coscos
2 x x > sinsin

2 x x and coscos
4 x x < sinsin

4 x x for 0 < x < π/4;
(f) 2| sinn x− cosn x| ≤ 3| sinm x− cosm x| for 0 < x < π/2 and positive

integers n and m with n > m.

7.4.3. (a) Find all positive integer solutions to xy = yx.
(b) Find all real solutions to xy = yx.
(c)∗ For any integer a > 0, show that xy − yx = a has a finite number

of positive integer solutions.

Suggestions, solutions, and answers

7.4.1. (a) Taking logarithms of both sides, we see that it suffices to compare

the numbers lnπ/π and ln e/e. These are values of the function f(x) :=

lnx/x. Examining the derivative f ′(x) = (1 − lnx)/x2, we see that this

function increases on (0, e] and decreases on [e,+∞). Thus x = e is the

global maximum. Consequently, lnπ/π < ln e/e, so πe < eπ.

(e) We have log3 4 >
√

log3 3 · log3 5, . . . , log3 80 >
√

log3 79 · log3 81.
(i) Notice that 5π

18 >
17
20 .

7.4.2. (a) Note that x sin
(
π
2 − x

)
< x
(
π
2 − x

)
≤ π2

16 .

(b) Consider a cubic polynomial with integer coefficients, one of whose

roots is sin(π/18).

(c, d) Rewrite the inequality as x < sinx

cos
1
3 x

, or ϕ(x) := sinx cos−
1
3 x−x >

0. We have ϕ′(x) > 0 ⇔ 2t3 − 3t2 + 1 > 0, where t = cos
2
3 x. But

2t3 − 3t2 + 1 > 0 for 0 < t < 1.

5. Applications of compactness (4*)
By A.Ya.Kanel-Belov

This section contains harder problems with fewer hints. However, these are

interesting problems on an important topic and, as far as we know, have not

been published before for a general mathematical audience.

7.5.1. Warm-up problem involving a finite set. Start with a finite

string of zeros and ones. Replace any “10” substring with “0001.” Prove

that eventually there will be nothing to replace, i.e., the process will end.

7.5.2. The idea of compactness. (a) Assume that humankind lives for-

ever and the number of people in each generation is finite. Prove that there

is an infinite male chain of descendants.
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(b) In an infinite parliament, each member has no more than three ene-

mies. Prove that the parliament can be divided into chambers so that each

member will have no more than one enemy in their chamber.2

(c) It is known that any finite map on the plane can be properly colored

using 4 colors. Prove that an arbitrary (i.e., possibly infinite) map on the

plane can also be properly colored in 4 colors. (Countries can be regarded

as polygons. The coloring is called proper if any two countries sharing a

border are painted in distinct colors.)

7.5.3. For any M and k there is a sufficiently large v with the following

property: If all edges of a complete graph on v vertices are colored with M
colors, then there is a complete subgraph with k vertices, all of whose edges

are colored in one color.

7.5.4. From any infinite sequence of integers, it is possible to choose a

(infinite) subsequence such that each term is a multiple of the previous term

or no term is a multiple of any other term.

7.5.5. Consider an infinite set of points in the plane, no three of which lie

on a straight line. Then there is a convex figure whose boundary includes

infinitely many points from this set.

The ideas which are used to prove that certain algorithms eventually

stop often work along with the idea of compactness; indeed, these concepts

are related.

7.5.6. Does there exist an integer n such that any rational number between

0 and 1 can be represented as
n∑

i=1

1
ai
, where 0 < ai ∈ Z?

7.5.7. (a) All finite sequences consisting of zeros and ones are partitioned

into two disjoint classes: blue and red. Prove that any infinite sequence of

zeros and ones can be split, perhaps omitting the first few members, into

finite pieces, all of the same color.

(b) An infinite sequence of digits are recorded on a tape. Prove that

either one can remove from it 10 hundred-digit numbers, in descending order,

or some combination of digits is repeated 10 times in a row.

7.5.8. Let F : [0, 1] → [0, 1] be an increasing continuous function. Prove

2The finite parliament case is analyzed in the next volume of this text (section 13.5,

“Semi-invariants”). Challenge: Which statements in this section are true for infinite sets,

and which are not?
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that for any integer N > 0 the graph of the function can be covered with

N rectangles whose sides are parallel to the coordinate axes, such that the

area of each rectangle is equal to 1/N2.

7.5.9. Counterexamples in non-compact situations. Let F (x) be a

continuous function defined for x ≥ 0.

(a) Suppose that F (x+n)→ 0 as n→∞ for each x > 0. Is it necessarily

true that F (x)→ 0 as x→∞?

(b) Suppose that for any x > 0 the sequence {F (nx)} converges. Is it

necessarily true that the limit of F (x) as x→∞ exists?

See [AS16a, section 5.2] for other applications of compactness.

Suggestions, solutions, and answers

7.5.2. (a, b) See (c).

(c) Call a proper coloring P of the set of countries S infinitely extendable
if for any finite set S′, P extends to S ∪ S′. If the coloring is not infinitely

extendable, then there exists a finite set of nonextendability S′ such that P
does not extend to S ∪ S′.

If P is an infinitely extendable coloring of set S and C is a country, then

there exists an infinitely extendable coloring P ′ of the set S′ = S ∪ {C}
that extends P . Indeed, there are at most four proper colorings of the set

S′ extending P . If each of them is nonextendable, then the union of the

corresponding sets of nonextendability is the set of nonextendability for P .
The set of all countries is countable. Enumerate the countries as C1, . . . ,

Cn, . . . . By hypothesis, the coloring of the empty set is infinitely extendable,

and it can be sequentially extended to the infinitely extendable coloring of

the first n countries for any n. The union of all such colorings will give the

desired coloring for all the countries.

Remark. Using Zorn’s lemma, it is possible to prove the following gen-

eralization: If any finite subgraph of a graph can be properly colored with

k colors, then the entire graph can be properly colored with k colors.

Alternative solution (by B. Shoikhet). Enumerate the countries by inte-

gers. Enumerate the colors with the integers 1, 2, 3, 4. Encode the coloring

of the first n countries using the decimal fraction 0.a1a2 . . . an where ai is
the color of the ith country. Since the first n countries can be properly

colored, there exists a sequence of numbers {xn} ⊂ [0, 1] where xn encodes

the proper coloring of the first n countries. From any sequence of points in

an interval, it is possible to extract a convergent sequence. Let X be a limit

point of the sequence {xn}, that is, the limit of some subsequence. It is easy

to see that the decimal decomposition of X encodes a proper coloring of all

countries.
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7.5.8. In addition to the solution based on compactness, this problem has

an easy solution by induction, where we use the Intermediate Value Theorem

and consider transformations that are invariant with respect to dilations.



Chapter 8

Solving algebraic equations

Listeners are prepared to accept unstated (but hinted)
generalizations much more than they are able ...

to decode a precisely stated abstraction and to re-invent
the special cases that motivated it in the first place.

P. Halmos, How to talk mathematics.

1. Introduction and statement of results

1.A. What is this chapter about?

Famous theorems of Gauss, Ruffini, Abel, Galois, and Kronecker (8.1.5,

8.2.2, 8.1.12, 8.1.13, and 8.1.14), about the constructibility of regular poly-

gons and the insolvability of algebraic equations in radicals are classical

results of algebra which are also important in theoretical computer science.

The definitions of constructibility and solvability in radicals as well as

the statements of these theorems are given in subsections 1.B–1.D. We do

not give the history of these theorems but direct the interested reader to the

texts [Gin72,Gin76,Man63].

The main goal of this chapter is an exposition of deep algebraic ideas

(more precisely, of Galois theory) via simple and beautiful proofs of these

theorems (see 1.E). Our intended audience is anyone who appreciates this

type of exposition: high school and university students, teachers, and profes-

sional mathematicians. Remarkably, these proofs (subsection 2.E and sec-

tion 4) only require being able to prove irrationality (Chapter 3, section1),

to divide polynomials with a remainder (Chapter 3, section 3 and prob-

lems 3.4.3 and 3.4.4), to find roots of a complex number (problem 3.5.4),

to multiply permutations (Chapter 4, section 1), and to solve systems of

linear equations. For each individual proof, only some of these tools are

needed. In addition to the simplicity of these proofs, they also illustrate

several fundamental ideas of algebra (specifically, Galois theory).

Studying these proofs (even the initial arguments) helps one to better

understand notions of “irrationality,” “polynomials,” “complex numbers,”

“permutations,” and “linear algebra.” Even those who do not comprehend

a complete proof of the main results can gain a thorough understanding of

123
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these topics and can even solve research problems (see 1.E, [Edw09,Est,

Akh,Kog,Saf], and references therein).

Before proving the insolvability of algebraic equations, we consider a

general method for their solution: Lagrange’s resolvent method (section 2).

Indeed, the key idea of Abel and Galois is that if an equation is solvable in

radicals at all, then it is solvable by this method. This idea is formalized by

the Galois criterion 8.2.8 (a) for the solvability of an equation. Lagrange’s re-

solvents are used to construct algorithms to determine whether the equation

is solvable in radicals and to express roots in radicals for solvable equations.

For practical purposes, approximation methods for computing trigono-

metric functions and solving equations are more useful than precise formulas.

Besides, equations can be solved using transcendental functions (see Vieta’s

method in section 2 of Chapter 3 and in [PS97]; for further development

of these ideas see, e.g., [Sko10]). However, the problem of solvability in

radicals is interesting as a test problem in modern theories of symbolic com-

putation and computational complexity.

The proofs presented here are not assumed to be new. However, our

exposition contains much pedagogical novelty (see 1.E and 1.F). Unfortu-

nately these arguments are not well known. As a consequence, it is little

known that not only solving quadratic and cubic equations but also proving

the indicated theorems is more economical by not constructing and then

applying Galois theory (as is typically done in standard algebra textbooks,

like [Kho13,Kir]), but by proceeding directly (see references in 1.F), while

at the same time discovering and using the basic ideas of the theory.

Plan for the chapter. It is not necessary to read the sections sequen-

tially. For example, one can begin not with section 1 but by solving the

problems in sections 2 and 3, since most of them use the previous material

only for motivation. Readers can choose the sequence of study most con-

venient for them (or omit some parts altogether) on the basis of the plan

presented below.

Subsections 1.B–1.D contain formulations of the main results. The next

three subsections of section 1 are independent of the rest of the chapter

(i.e., they are not used in the rest of the chapter, so it is sufficient to read

1.B–1.D). Subsection 1.G discusses a reformulation of Gauss’s Theorem

(mentioned in 1.B).

Plans for sections 2–4 are given at the beginnings of these sections.

Proofs of the main results are given in 2.C, 2.E, and 4. Formally, they do

not depend on the problems leading to them (in sections 2 and 3).

Acknowledgments. We thank A.Ya.Belov, I. I. Bogdanov, G.R. Chel-

nokov, P.A.Dergach, A. S.Golovanov, A. L.Kanunnikov, V.A. Kleptsyn,

P.V.Kozlov, G.A.Merzon, A.A. Pakharev, V.V. Prasolov, A.D. Rukhovich,

L.M. Samoilov, L. E. Shabanov, V.V. Shuvalov, M.B. Skopenkov, E. B. Vin-

berg, V.V.Volkov, M.N.Vyalyi, and J. Zung for useful discussions.
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This chapter is based on lectures at the Moscow “Olympic” school, the

Summer Conference of the Tournament of Towns [ABG+,ECG+], and

the “Mathematical seminar” and “Olympiads and Mathematics”.

1.B. Constructibility (1)

Remark 8.1.1. It is known that

cos
2π
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2
, cos
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4
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√
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4
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√
3

2
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For which numbers n is cos 2π
n expressible by a similar formula? That

is, for which n can we compute cos 2π
n with a calculator that has only the

four arithmetic operations and the square root button?

A real number is called real constructible if it can be obtained, starting

with the number 1, from additions, subtractions, multiplications, divisions

by nonzero numbers, and taking square roots of positive numbers. In other

words, a real constructible number can be obtained on the calculator starting

with the display 1, according to Remark 8.1.1 above.

For example, the following real numbers are real constructible:

4
√
2 =

√√
2,

√
2
√
3,

√
2 +

√
3,

√
1 +

√
2, 1 +

√
3− 2

√
2,

1

1 +
√
2
.

Additionally, the values in 8.1.1 and 8.1.3 are real constructible.

The real constructibility of a number is equivalent to its constructibil-

ity with compass and straightedge. Therefore, the following results solve

the famous problems of antiquity about constructions with compass and

straightedge. We discuss this equivalence in subsection 1.G; however, it will

not be used later. The study of real constructibility is also important as a

trial problem for modern theories of symbolic computation and computa-

tional complexity; see, e.g., [Kog].

Theorem 8.1.2. The number
3
√
2 is not real constructible.

See the proof in subsection 4.D.

A more formal statement of the question in Remark 8.1.1 is: For which

numbers n is cos 2π
n real constructible?

8.1.3. The number cos 2π
n is real constructible for n = 15, 16, 20, 24, 60.

Lemma 8.1.4 (On multiplication of real numbers). (a) If cos 2π
n is real

constructible, then cos π
n is also real constructible.
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(b) If cos 2π
n and cos 2π

m are real constructible and n and m are relatively

prime, then cos 2π
mn is real constructible.

Theorem 8.1.5 (Gauss). The number cos 2π
n is real constructible if and

only if n = 2αp1 · · · pl, where for l ≥ 0 the factors p1, . . . , pl are distinct

primes of the form 22
s
+ 1.

The constructibility in the theorem is proved in subsections 2.C and 2.E

(or in subsection 2.F), and non-constructibility is proved in subsection 4.D.

Strictly speaking, Gauss’s Theorem does not give a full solution to the

problem of real constructibility of cos 2π
n since it is not known which numbers

of the form Fs := 22
s
+ 1 are prime.1 However, the theorem provides a fast

algorithm for determining constructibility.

Gauss’s Theorem implies the non-constructibility of the number cos 2π
9

(however, it is easier to prove this directly; see problem 8.3.14 (a)). This

implies the following result showing the impossibility of trisection of an

angle with compass and straightedge.

Theorem 8.1.6. There exists α (for example, α = 2π/3) such that cosα is

real constructible but cos(α/3) is not.

1.C. Insolvability in real radicals

A real number is called expressible by radicals if it can be obtained, starting

with 1, by finitely many operations of addition, subtraction, multiplication,

division by a nonzero rational number, and taking the nth root of a positive

number, where n is a positive integer. In other words, a real number a
is expressible in real radicals if some set containing this number can be

obtained starting from the set {1} and using the following operations. To a

given set M ⊂ R containing numbers x, y ∈M one can append the numbers

x+ y, x− y, xy, x/y if y �= 0,

and n
√
x for x > 0 and a positive integer n.

This definition can be reformulated in terms of a calculator similarly to

Remark 8.1.1. In standard terms we say that the number lies in some real

radical extension of the field Q if it is expressible in real radicals.

A number a is expressible in real radicals if and only if there exist

• positive integers s, k1, . . . , ks;

1If Fs is prime, it is called a Fermat prime. As of 2019, the only known Fermat primes

are F0 = 3, F1 = 5, F2 = 17, F3 = 257, and F4 = 65537.
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• real numbers f1, . . . , fs and polynomials p0, p1, . . . , ps with rational

coefficients of 0, 1, . . . , s variables respectively such that⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

fk11 = p0 (a constant),

fk22 = p1(f1),

. . .

fkss = ps−1(f1, . . . , fs−1),

a = ps(f1, . . . , fs).

Remark 8.1.7. (a) Any real root of a quadratic equation with rational

coefficients is expressible in real radicals.

(b) The equation x3 + x+ 1 = 0 has exactly one real root and this root

is expressible in real radicals (see section 2); see also problem 8.2.3 (c).

(c) The equation x4 + 4x− 1 = 0 has two real roots, both of which are

expressible in real radicals (problem 3.2.6 (b)); see also problem 8.2.5 (d).

(d) Any real constructible number (1.B) is expressible in real radicals.

(e) There exists a cubic polynomial with rational coefficients, none of

whose roots is expressible in real radicals (for example, x3 − 3x+ 1; this is

proven in part (f) below.)

(f) The number cos(2π/9) is not expressible in real radicals.

Indeed, apply the triple-angle formula 3.1.5 (e) for cosine. We see that

the numbers cos(2π/9), cos(8π/9), and cos(14π/9) are the roots of the equa-
tion 8y3−6y+1 = 0. By Theorem 8.1.8 none of these numbers is expressible

in real radicals.

(g) The trisection of an angle is impossible in real radicals. That is, there

exists a number α (for example, α = 2π/3) such that the number cosα is

expressible in real radicals and the number cos(α/3) is not expressible in

real radicals. (This follows from part (f).)

Theorem 8.1.8 (Solvability in real radicals). For a cubic polynomial with

rational coefficients the following conditions are equivalent:

(i) the polynomial has either at least one rational root or exactly one

real root;

(ii) the polynomial has a root which is expressible in real radicals;

(iii) all real roots of the polynomial are expressible in real radicals.

The uniqueness of the real root of the “shortened” equation x3+px+q =
0 is equivalent to the following condition: p = q = 0 or (p/3)3 + (q/2)2 > 0;

see problem 7.1.4 (d).

Clearly, (ii)⇔(iii) (this follows from Remark 8.1.7 (a)). The solvability

in Theorem 8.1.8 (i.e., (i)⇒ (ii)) can be proved by del Ferro method (see

theorems given in the hints for problems 3.2.4 and 7.1.4 (d)); for another

proof see 2.B.

The insolvability in Theorem 8.1.8 (i.e., (ii)⇒ (i)) has a more compli-

cated proof, see 4.E.
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It is easier to prove the analogous result on insolvability in polynomials;
see 3.F and 4.B.

Remark 8.1.9. From the insolvability in Theorem 8.1.8, it follows easily

that for any n ≥ 3 there exists a polynomial of degree n, one of whose roots
is not expressible in real radicals. It is more difficult to prove an analogue

of this statement with the words “one of the roots” replaced by “none of

the roots”; see Theorem 8.1.10 below. At the same time, the roots of some
equations of high degrees (for example, x5 = 2) may well be expressible in

real radicals (see 2.E).

A polynomial with coefficients in a set F is called irreducible over F if it

cannot be decomposed into a product of polynomials of smaller degree with

coefficients in F .

Theorem 8.1.10. If a polynomial of prime odd degree with rational coef-

ficients is irreducible over Q and has more than one real root, then none of

its roots are expressible in real radicals.

This is a real analogue of Kronecker’s Theorem 8.1.14. The proof is

given in 4.H.

Conjecture 8.1.11.* (a) Every real root of a polynomial of fourth degree

with rational coefficients that is irreducible over Q is expressible in real

radicals if and only if at least one root of its cubic resolvent (defined after

problem 3.2.6 (b) is expressible in real radicals (cf. problem 8.3.13 (d)).

(b) If cos 2π
n is expressible in real radicals, then it is real constructible

(cf. Gauss’s Theorem 8.1.5 on constructibility of regular polygons).

Perhaps the validity of these conjectures is known to specialists. Con-

jecture 8.1.11 (b) (and the answer to problem 8.3.3 with a proof sketch) was

communicated by A.A.Kanunnikov. The reader may try to prove these

conjectures after studying sections 3 and 4.

1.D. Insolvability in complex radicals (2)

Now we consider equations involving complex numbers. It turns out that a

cubic equation (for example, x3 − 3x + 1 = 0) that is not solvable in real

radicals can be solved in complex radicals.

A complex number z is called expressible in radicals if it can be obtained,

starting with 1, by finitely many operations of addition, subtraction, mul-

tiplication, division by a nonzero number, and taking the nth root, where

n is a positive integer. In other words, a complex number is expressible in

radicals if some set containing this number can be obtained starting from

the set {1} and using the following operations.
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To a given set M ⊂ C containing numbers x, y ∈M one can add

x+ y, x− y, xy, x/y if y �= 0,

and any number r ∈ C such that rn = x for some integer n > 0.

This definition can be reformulated in terms of calculators similar to

Remark 8.1.1. True, the calculator will be unusual: it works with complex

numbers and, when the n
√

button is pressed, outputs all n nth roots. In

conventional terminology, we say that z lies in a radical extension of the

field Q.

For example, any (complex) root of a quadratic equation with rational

coefficients is expressible in radicals. Similar assertions hold for equations

of the third and fourth degrees. (These assertions can be proved by the del
Ferro and Ferrari methods; see the theorems given in the hints for problems

3.2.4 and 3.2.7; for another proof see 2.B.2) However, similar assertions for

equations of higher degrees do not hold.

Theorem 8.1.12 (Galois). There exists a fifth-degree polynomial with ra-

tional coefficients (for example, x5−4x+2), none of whose roots is expressible

in radicals.

The famous problem of solvability in radicals was solved by the weaker

Ruffini–Abel theorems that were proved a little earlier. Ruffini’s Theorem

8.2.2 has a more complicated statement, but it leads to the proof of the

Galois Theorem. The precise statement of Abel’s Theorem is even more

complicated and is not presented here (cf. [Skod, Remark 7]). An easier

way to study the solvability problem is to prove (in 4.F) Theorem 8.1.13.

This theorem is weaker than the Galois Theorem 8.1.12 and has a simpler

proof. For X ⊂ C, a complex number a is called X-expressible in radicals
if a can be computed, starting with the set X ∪ {1}, with finitely many

operations of addition, subtraction, multiplication, division, and taking nth
roots.

Theorem 8.1.13. There exist a0, a1, a2, a3, a4 ∈ C such that no root of the

equation x5+ a4x
4+ . . .+ a1x+ a0 = 0 is {1, a0, a1, a2, a3, a4}-expressible in

radicals.

A similar result (with similar proof) holds for equations of any degree

n ≥ 5. The stronger Galois Theorem 8.1.12 is a consequence of the following

result.

Theorem 8.1.14 (Kronecker). If a polynomial with rational coefficients is

irreducible over Q, has prime degree, has more than one real root, and has

at least one non-real root, then the polynomial has no roots expressible in

radicals.

2For an estimate on the number of required roots, see 3.I, 3.A, and [ABG+].
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This theorem is interesting and nontrivial even for polynomials of degree

5. It is proved in 4.G. For the proof, the following generalization of Gauss’s

Theorem 8.1.5 is needed. Let

εq := cos(2π/q) + i sin(2π/q).

Theorem 8.1.15 (Gauss; lowering degree). (a) If q is a prime, then the

number εq can be expressed in radicals using only roots of degree q − 1.

(b) For every q the number εq can be expressed in radicals using only

rth roots, with r < q.

Part (a) is proved similarly to the proof of constructibility in Gauss’s

Theorem (2.E and 2.F). Part (b) follows from (a) by induction on q. (The

induction base is obvious. If q = ab for some integers a and b with 0 < a, b <
q, then the inductive step follows from εq = a

√
εb. If q is a prime, then the

inductive step follows by (a).)

The complex analogue of Remark 8.1.9 for n ≥ 5 and Kronecker’s The-

orem 8.1.14 instead of Theorem 8.1.10 is valid. Moreover, the proof of

Theorem 8.1.13 can be easily adapted to equations of any degree n ≥ 5.

Theorem 8.1.16. For an−1, . . . , a0 ∈ Q there exists an algorithm for de-

ciding whether all roots of the equation xn + an−1x
n−1 + . . .+ a1x+ a0 = 0

are expressible in radicals.

Theorem 8.1.16 can be proved using the Galois solvability criterion

8.2.8 (a) and an estimate 8.3.53 (b) of the number of operations.

1.E. What is special about our proofs

The proofs given here are much simpler and shorter than those presented in

standard algebra textbooks. Here we mean a proof from scratch, and not

a derivation of the result using previously developed theory. A comparison

with proofs from less standard popular literature is given in 1.F.

This simplicity is due to the fact that, unlike most textbooks, the proofs

given here do not use the term “Galois group” or even the term “group.”

Despite the absence of these terms, the ideas of the given proofs are the

starting point for Galois theory and constructive Galois theory [Edw09].

Our proof of solvability is based on the Lagrange resolvent method. The

proofs of insolvability use ideas of symmetry and conjugation. (A more

formal description of the latter is the idea of an automorphism of a field ;
cf. [Vag80] for a wonderful exposition.)

The main ideas are presented via “olympiad” examples using the sim-

plest special cases, free from technical details, and keeping terminology to

a minimum. Although the main results concern equations of higher degree,

our ideas are demonstrated using quadratic and cubic equations. Insolvabil-

ity is proved initially under the condition that the root was extracted only
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once (in 3.A, 3.C, and 3.D). Consequently, the key examples involve ratio-

nal numbers (not arbitrary fields or even field extensions over the rationals).

These basic ideas (conjugations, fields, and others) are contained in lemmas

about calculators, linear independence, and conjugation (sections 3 and 4).

To prove Gauss’s insolvability theorem 8.1.5, the degree of the polynomial
is used (instead of the degree of the field extension). Before proving in-

solvability (8.1.12, 8.1.13, and 8.1.14) we prove insolvability in polynomials

(Ruffini’s theorems 8.2.2 and 8.4.4), as well as insolvability by real radicals
of cubic equations (Theorem 8.1.8). Important ideas of proofs are explicitly

emphasized as lemmas that are clearly formulated in simple language (on

preservation of even symmetry (8.3.43 and 8.4.5), on powers of 2 (8.4.7),

and on rationalization (8.4.13)).

This makes the proofs of insolvability more accessible by introducing

interesting, clearly specified intermediate steps. In addition, this leads the

reader to the assumption that the arguments here can be developed into a

theory (Galois theory!), with many applications.

We show how one can find the presented proofs. Approaches to them

are outlined in the form of problems in 2.D and 3. For the tradition of

studying material via problems, see p. xvi. Although it is not easy to find
proofs, it is possible to present them succinctly (see 2.E and 4). Skipping

technical details is an important part of verification of the proof.

Many of these problems are good research topics for high school and

junior university students in algebra, combinatorics, and computer science;

see section 4. Examples of students’ papers can be found in [Saf,Akh,Kog].

Good research problems include 8.2.7, 8.2.8, 8.3.3, 8.1.8, 8.1.10, 8.2.7, 8.2.11,

8.3.5, 8.3.9 (h), 8.3.17 (e), 8.3.19 (b), 8.3.21 (d), 8.3.25, 8.3.28, 8.3.32, 8.3.33,

8.3.34, 8.3.37, 8.2.2, 8.3.40, 8.3.45, and 8.3.51–8.3.53.

1.F. Historical comments

The proof of constructibility in Gauss’s Theorem 8.1.5 is obtained from

[Edw97, Ch. 24] after some simplification (we circumvent the use of Lemma

2; see the paragraph before problem 8.2.13 for details). It is simpler than the

proof in [KS08]. An elementary proof of constructibility for n = 17 is given,

for example, in [BK13,Che34,Gin72,Pra07a,Pos14,PS97,Kol01] and

in [Dör13, Ch. 37] (wherein sometimes explicit formulas are given, either

with proof of the assertions about the signs in front of the radicals, as

in [Dör13, Ch. 37] and [Saf], or without a proof [BK13]). The general

approach is outlined in [Gau,Gin72], where the clarity of proof is hampered

a little by exposition of a general theory instead of proving a concrete result.

The approach in [Kir77] provides an answer to the question of “why,” and

it would be interesting to develop it into a full proof.

The proof of non-constructibility in Gauss’s Theorem 8.1.5 is similar to

[Dör13, Supplement to Chapters 35–37]. It is simpler than the proof in

[KS08].
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We do not know whether a short direct proof of Theorems 8.1.8 and

8.1.10 on insolvability in real radicals has been published. The proof of

Ruffini’s Theorem (8.2.2 and 8.4.4) follows the proof given in the excellent

book [Kol01]. We could not make out the proof presented there until we

rediscovered it, explicitly stating the lemma on the preservation of even

symmetry (8.3.43 and 8.4.5). The proof of Theorem 8.1.13 follows the proof

given in [PS97]. We were able to verify the correctness of the ideas proposed

there only after rewriting the proof and explicitly stating the rationalization

lemma 8.4.13. Another proof of Abel’s Theorem is given in [Ale04], [FT07,

Lecture 5], and [Sko11].3 The proof of Kronecker’s Theorem 8.1.14 is based

on the remarkable article [Tik03] and on the books [Dör13, Ch. 25] and

[Pra07a, Supplement 8] (here the inaccuracies are corrected; see footnotes

13 and 16).

Other elementary expositions are given, for example, in [Ber10,Bro,

Had78,Vin80,Kan,L,Pes04,Ros95,Sti94]. Note that the proofs in some

of these sources are incomplete; see [Skod, Discussion].

The above elementary expositions were more useful to us (in spite of the

drawbacks mentioned) than formal expositions (in standard textbooks pre-

senting the theory) which start with several hundreds of pages of definitions

and results whose role in the proof of the insolvability theorem is not clear

at the point of their statements.

1.G. Constructions with compass and straightedge (1)

8.1.17. (a) Prove that starting with segments of lengths x and y it is pos-

sible to construct a segment of length

√
3xy + y 4

√
xy3 with compass and

straightedge.

(b) Prove that starting with segments of lengths a, b, and c it is possible

to construct segments of length a+ b, a− b, ab/c, and
√
ab.

It follows from 8.1.17 (b) that if a segment of length 1 is given on a

plane, then a segment of a real constructible length can be constructed with

compass and straightedge. This simple result was already known to ancient

Greeks. It turns out that the converse is also true.

Theorem 8.1.18 (Fundamental theorem on constructibility). If a segment

of length a can be constructed with compass and straightedge, then the

number a is real constructible.

3The proof in [Ale04] is presented in a shorter and simpler way in [FT07, Lecture
5] and [Sko11]. A large part of [Ale04] contains theory not required to prove the Abel–

Ruffini Theorem. However, the author of [Ale04] succeeded in avoiding unmotivated

exposition of the most complicated part of the theory.
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This simple result (which was proved only in the 19th century) shows

that the non-constructibility of the number cos(2π/n) implies the non-

constructibility of a regular n-gon with compass and straightedge. To prove

this result, we can consider all possible cases of the appearance of new objects

(points, lines, circles) and show that the coordinates of all points constructed

and the coefficients of the equations of all lines and circles drawn are real

constructible. The reader will be able to complete the details independently

or find them in [Kol01,CR96,Man63,Pra07a].

Hints

8.1.17. (a) It suffices, by applying (b), to construct segments of lengths

z1 =
√
xy, z2 =

√
yz1, z3 = 3x+ z2, and z =

√
yz3.

(b) Here is how to build a segment of length
√
ab. The height of a right

triangle dropped to the hypotenuse is the geometric mean of the lengths of

the segments into which it divides the hypotenuse. Therefore, if we are given

segments with lengths a and b, by constructing a semicircle with diameter

a + b and finding its intersection with a straight line perpendicular to the

diameter and dividing the diameter into segments of length a and b, we get

a segment of length
√
ab.

2. Solving equations: Lagrange’s resolvent method

We will demonstrate Lagrange’s resolvent method with the simplest exam-

ples in 2.B. Its application to the proof of Gauss’s constructibility theorem

8.1.5 is illustrated with examples and problems in 2.D. Constructibility is

proved in 2.C and 2.E. In 2.C we prove a simpler part of the proof which

does not use Lagrange resolvents. This section does not depend on previous

ones. Material from 2.F is not used further.

See 1.B and 1.D for the definitions of real constructibility and express-

ibility in radicals. In this section equality signs involving a polynomial f (or

fj) mean equality of polynomials coefficientwise. Recall the notation

εq := cos(2π/q) + i sin(2π/q).

2.A. Definition of expressibility in radicals of a polynomial (1)

Let a and b be the roots of the quadratic equation x2 − (a + b)x + ab = 0.

The formulas

(a− b)2 = (a+ b)2 − 4ab and a =
a+ b+ (a− b)

2

show that a root, a, of a quadratic equation is expressible in radicals using the
coefficients a+b and ab of the equation. A rigorous definition of expressibility

in radicals is given below.

Denote the elementary symmetric polynomials by

σ1(x1, . . . , xn) := x1 + . . .+ xn, . . . , σn(x1, . . . , xn) = x1 · . . . · xn.
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If the number n and the arguments x1, . . . , xn are clear from the context,

we omit them from the notation.

A polynomial p ∈ C[x1, . . . , xn] is called expressible by (complex) radicals
if one can add p to the collection {σ1, . . . , σn} ∪ C of polynomials by a

sequence of the following operations:

• add the sum or the product of polynomials which are already in the

collection;

• if some polynomial in the collection equals fk for some f ∈ C[x1, . . . ,
xn] and some integer k > 1, then add f to the collection.

Remark 8.2.1. (a) For example, if a collection contains x2+2y and x−y3,
then one may apply operations of the first type and add to the collection

the polynomial

−5(x2 + 2y)2 + 3(x2 + 2y)(x− y3)6.

If a collection already contains x2 − 2xy + y2, then one may apply the

operation of the second type and add x− y (or y − x).
(b) If we use only operations of the first type above, we can construct any

polynomial with complex coefficients using polynomials which are already

available.

(c) By Vieta’s Theorem 3.6.5, σ1, . . . , σn are the coefficients of the poly-

nomial

tn − σ1t
n−1 + . . .+ (−1)n−1σn−1t+ (−1)nσn ∈ C[x1, . . . , xn][t]

with roots x1, . . . , xn. Therefore, the expressibility in radicals of the poly-

nomial x1 is equivalent to the expressibility (in the above sense) of its root

x1 in terms of the coefficients of this polynomial.

(d) The polynomial x1 is expressible in radicals if and only if there exist

• positive integers s, k1, . . . , ks;
• polynomials f1, . . . , fs in n variables and polynomials p0, p1, . . . , ps in

n, n+1, . . . , n+ s variables respectively, with complex coefficients such that⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

fk11 = p0(σ1, . . . , σn),

fk22 = p1(σ1, . . . , σn, f1),

. . .

fkss = ps−1(σ1, . . . , σn, f1, . . . , fs−1),

x1 = ps(σ1, . . . , σn, f1, . . . , fs).

Here we omit the variables (x1, . . . , xn) in the polynomials σ1, . . . , sigman
and f1, . . . , fs.

Theorem 8.2.2 (Ruffini). For every integer n ≥ 5 the polynomial x1 is not

expressible by radicals.

The proof shows that, in fact, the polynomial x1x2+x2x3+x3x4+x4x5+
x5x1 is not expressible in radicals for n = 5.
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2.B. Solution of equations of low degrees (2)

8.2.3. Which of the following polynomials are expressible in radicals for

n = 3?

(a) (x− y)(y − z)(z − x); (b) x9y + y9z + z9x; (c) x.

To solve problem 8.2.3 and the following problems, one can use the

Fundamental Theorem on Symmetric Polynomials 3.6.3. Hints for part (c)

are problems 8.2.4 (a) and 8.2.6 (c).

8.2.4. A polynomial f ∈ C[u1, u2, . . . , un] is called cyclically symmetric if

f(u1, u2, . . . , un) = f(u2, u3, . . . , un−1, un, u1).
(a) Find at least one pair of numbers α, β ∈ C such that the polynomial

(u + vα + wβ)3 is cyclically symmetric but the polynomial u + vα + wβ is

not.

(b) Express x1x3+x3x5+x5x7+x7x9+x9x1 with finitely many applica-

tions of addition, subtraction, mulitiplication, division, and extracting roots,

starting with several cyclically symmetric polynomials in x1, x2, . . . , x10.

8.2.5. Which of the following polynomials are expressible in radicals for

n = 4?

(a) (x− y)(x− z)(x− t)(y − z)(y − t)(z − t);
(b) xy + zt; (c) x+ y − z − t; (d) x.

8.2.6. Solve the following systems of equations (x, y, z, t are unknowns;

a, b, c, d are given constants):

(a)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x+ y + z + t = a,

x+ y − z − t = b,

x− y + z − t = c,

x− y − z + t = d;

(b)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x+ y + z + t = a,

x+ iy − z − it = b,

x− y + z − t = c,

x− iy − z + it = d;

(c)

⎧⎪⎨
⎪⎩

x+ y + z = a,

x+ ε3y + ε23z = b,

x+ ε23y + ε3z = c.

The expressions in problem 8.2.6 are called Lagrange resolvents. They

are “better” than roots because they are “more symmetric” in the following

sense.

Solution of a cubic equation using Lagrange resolvents (solution of prob-

lem 8.2.3 (c)). To find the roots for x, y, and z of a cubic equation, it

suffices to find expressions a, b, and c from problem 8.2.6 (c). Notice that
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the del Ferro method from problem 3.2.2 leads us to the same expressions.

By Vieta’s Theorem 3.6.5, a = a(x, y, z) is a coefficient of the equation.

Under the substitution x↔ y, the polynomial b = b(x, y, z) goes to ε3c, and
c = c(x, y, z) goes to ε23b (check this!). Therefore, the polynomials bc and

b3 + c3 are invariant under this substitution. Similarly, they are invariant

with respect to the substitution z ↔ y. Therefore the polynomials bc and

b3 + c3 are symmetric, i.e., they do not change under any permutation of

variables. From the Fundamental Theorem on Symmetric Polynomials (see,

e.g., 3.6.3 (d)) and Vieta’s Theorem 3.6.5 we see that the polynomials bc and
b3 + c3 in x, y, and z can be represented as polynomials in the coefficients

of the equation. Hence we can obtain b3 and c3 by solving certain quadratic

equations. After that we obtain b and c.

Solution of an equation of fourth degree using Lagrange resolvents (solu-

tion to problem 8.2.5 (d)). To find the roots x, y, z, and t of an equation of

degree four, it is enough to find expressions for a, b, c, and d from problem

8.2.6 (a). By Vieta’s Theorem 3.6.5, a is a coefficient of the fourth-degree

equation. The transposition x ↔ y interchanges the polynomials c2 and

d2 but does not change b2. The cyclic permutation x → y → z → t → x
interchanges the polynomials b2 and d2 but does not change c2. Therefore

the polynomials b2, c2, and d2 are permuted for every permutation of the

variables x, y, z, and t. Hence their Vieta polynomials, i.e.,

b2 + c2 + d2, b2c2 + b2d2 + c2d2, b2c2d2,

are symmetric. Consequently, these polynomials (in x, y, and z) can be

represented as polynomials in the coefficients of the equation. Finally, by

solving a cubic equation, we can get b2, c2, and d2. Then it is easy to obtain

b, c, and d.

Ruffini’s Theorem 8.2.2 shows that the Lagrange resolvent method pre-

sented above for solving equations of degrees 3 and 4 (problems 8.2.3 (c) and

8.2.5 (d)) does not work for degree 5. Guess why!

Denote by Σq the set of permutations of the set {1, 2, . . . , q}. For a

permutation α ∈ Σq write

�uα := (uα(1), . . . , uα(q)).

Define the Lagrange resolvent by

t(u1, . . . , uq) := εqu1 + ε2qu2 + . . .+ εqquq.

Define the Galois resolvent by

Q(u1, . . . , uq, y) :=
∏
α∈Σq

(y − t(�uα)) ∈ Q[εq][u1, . . . , uq, y].

8.2.7. (a) We have Q(εqu1, . . . , εquq, y) = Q(u1, . . . , uq, y).
(b) For some RQ ∈ Q[εq][u1, . . . , uq, z], Q(u1, . . . , uq, y) = RQ(u1, . . . ,

uq, y
q).
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(c) If x1, . . . , xq ∈ C are the roots of a polynomial f ∈ Q[x] of degree q,
then Q(x1, . . . , xq, y) ∈ Q[εq][y] and even Q(x1, . . . , xq, y) ∈ Q[y].

The polynomial RQ(x1, . . . , xq, z) ∈ Q[z] is called the resolvent polyno-
mial for f .

(d)∗ All the roots of the resolvent polynomial for f(x) = x5 + 15x+ 44

(and, therefore, all the roots of f) are expressible in radicals.

Using (a version of) the Galois solvability criterion 8.2.8 (a) below, one

can prove that for a, b ∈ Q all roots of the polynomial x5 + ax + b are
expressible in radicals if and only if either the polynomial is reducible or

a =
15± 20c

c2 + 1
and b =

44∓ 8c

c2 + 1
for some c ∈ Q, c ≥ 0; see [PS97, Ch. 6,

section 7, Theorem 1].

8.2.8. (a)∗ Galois solvability criterion (conjecture).

For every an−1, . . . , a0 ∈ Q, all the roots of the equation A(x) := xn +

an−1x
n−1 + . . .+ a1x+ a0 = 0 are expressible in radicals if and only if one

can obtain, starting from {A}, a set of polynomials of degree one over Q by

using the following operations:

• (factorization) if one of our polynomials equals P1P2 for some non-

constant P1, P2 ∈ Q[x], then replace P1P2 by P1 and P2;

• (extracting a root) if one of our polynomials equals P (xq) for some

P ∈ Q[x], then replace P (xq) by P (x);
• (taking the Galois resolvent) replace one of our polynomials P by

the polynomial Q(y1, . . . , yq, y) where y1, . . . , yq are all the roots of P . (By

problem 8.2.7 (c), Q(y1, . . . , yq, y) ∈ Q[y].)
(b) Prove the “if” part of criterion (a).

(c)∗ State and prove the real analogue of criterion (a).

(d)∗ State and prove the analogue of criterion (a) for equations that are

solvable using one radical; cf. [Akh,ABG+].

(e)∗ Does the analogue of (a) hold for every an−1, . . . , a0 ∈ C with “ex-

pressible in radicals” replaced by “expressible in radicals from {1, an−1, . . . ,
a0}”?

The proof of the “only if” part of criterion (a) is presumably similar to

Theorem 8.1.13; see also the Galois Theorem 8.1.12 and subsection 3.I. I

would be grateful if an expert in algebra could confirm that criterion (a) is

correct (and is equivalent to the Galois solvability criterion in its standard

textbook formulation), or describe the required changes. (I asked experts in

July 2017, but so far have received no answer.)

Suggestions, solutions, and answers

8.2.3. (a) The polynomial (x− y)2(y− z)2(z−x)2 is symmetric. (One may

also reduce (a) to (b).)
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(b) Set

M = x9y + y9z + z9x and N = y9x+ x9z + z9y.

Then M + N and MN are symmetric polynomials. Therefore they are

polynomials in elementary symmetric polynomials σ1, σ2, σ3. (An explicit

expression is given in [ABG+].) Thus, M can be expressed once we know

M +N and MN ; see the beginning of 2.A.

8.2.4. (a) One possible answer is u+ vε3 + wε23.
(b) Set

M = x1x3 + x3x5 + x5x7 + x7x9 + x9x1 and

N = x2x4 + x4x6 + x6x8 + x8x10 + x10x2,

and proceed similarly to problem 8.2.3 (b).

8.2.5. (a) The square (x − y)2(x − z)2(x − t)2(y − z)2(y − t)2(z − t)2 is

symmetric; cf. problem 8.2.3 (a).

(b) Set

M = xy + zt, N = xz + yt, K = xt+ yz.

By 8.2.3 (c), M can be expressed in radicals using the polynomials

M +N +K, MN +MK +NK, MNK.

Proceeding similarly to problems 8.2.3 (c) and 8.2.5 (d), we see that these

polynomials are symmetric. Thus M = xy + zt is expressible in radicals.

(c) Set

M = (x+ y − z − t)2, N = (x+ z − y − t)2, K = (x+ t− y − z)2

and repeat the solution of (b) to obtain M = (x + y − z − t)2. Then it is

easy to obtain x+ y − z − t.
Alternative solution. We have

(x+ y− z− t)2 = (x2 + y2 + z2 + t2) + 2(xy+ tz)− 2(xt+ yz)− 2(xz+ yt).

The first summand is symmetric and the other summands are expressible in

radicals by (b). Thus x+ y − z − t is expressible in radicals.

8.2.6. Repeatedly use the identities 1 + ε+ ε2 = 0 and 1 + i+ i2 + i3 = 0.

8.2.7. Here we show the solution for q = 5.

(a) We have

t(ε5�uα) = t(uα(5), uα(1), uα(2), uα(3), uα(4)) = t(�uα◦(54321)).

Hence

Q(ε5u1, . . . , ε5u5, y) =
∏
α∈Σ5

(y − t(ε5�uα))

=
∏
α∈Σ5

(y − t(�uα◦(54321)) = Q(u1, . . . , u5, y).
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Here

• (54321) ∈ Σ5 is the cycle that sends 5 to 4, 4 to 3, . . . , 1 to 5;

• the last equality holds because when α ranges through Σ5, so too does

α ◦ (54321).
(b) There exists a homogeneous polynomial Pk ∈ Q[ε5][u1, . . . , u5] (of

“degree” 120− k) such that the coefficient of yk in Q is Pk(u1, . . . , u5), i.e.,

Q(u1, . . . , u5, y) =
120∑
k=0

Pk(u1, . . . , u5)y
k.

By (a) and homogeneity we have

Pk(u1, . . . , u5) = Pk(ε5u1, . . . ε5u5) = ε−k
5 Pk(u1, . . . , u5).

If k is not divisible by 5, we obtain Pk(u1, . . . , u5) = 0 as required.

(c) The polynomial Q(u1, . . . , u5, y) is symmetric in u1, . . . , u5. Thus all
the coefficients (Pk in (b)) of the corresponding polynomial fromQ[ε5, u1, . . . ,
u5][y] are symmetric in u1, . . . , u5. Now Q(x1, . . . , x5, y) ∈ Q[ε5][y] by the

Fundamental Theorem on Symmetric Polynomials 3.6.3(d), Vieta’s Theorem

3.6.5, and the fact that all coefficients of f are rational.

The assertion that Q(x1, . . . , x5, y) ∈ Q[y] is proved similarly to the

rationality lemmas 8.3.18 (f), 8.3.22 (d), and 8.4.17.

8.2.8. (b) Use Lagrange resolvents.

2.C. A reformulation of the constructibility in Gauss’s Theorem

(2)

A complex number is called complex constructible if it can be obtained,

starting with 1, by finitely many operations of addition, subtraction, mul-

tiplication, division by a nonzero number, and taking square roots. More

precisely, a complex number z is called constructible if some set of complex

numbers containing z can be obtained from the one-element set {1} using

the following operations:

To a given set M and x, y ∈M one can add

• x+ y, xy, and x/y for y �= 0;

• any number r ∈ C such that r2 = x.

8.2.9. The number cos 2π
n is real constructible if and only if the number

εn := cos(2π/n) + i sin(2π/n) is complex constructible.

Lemma 8.2.10 (Complexification). A complex number is complex con-

structible if and only if its real and imaginary parts are real constructible.
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It follows from this lemma that a real number is complex constructible

if and only if it is real constructible.4 Therefore, it suffices to prove Gauss’s

theorem 8.1.5 with “real constructibility” replaced by “complex constructibil-

ity”.

8.2.11.* Is the number e {e+ πi}-expressible in radicals? (Recall the defi-

nition preceding Theorem 8.1.13. You may use without proof the fact that

e and π are not expressible in radicals.)

Suggestions, solutions, and answers

8.2.9. The statement follows from

εn = cos
2π

n
+ i sin

2π

n
= cos

2π

n
+

√
− sin2

2π

n
= cos

2π

n
+

√
cos2

2π

n
− 1,

cos
2π

n
=
εn + ε−1

n

2
, and sin

2π

n
=
εn − ε−1

n

2

or from Lemma 8.2.10.

8.2.10. The “if” part is clear. In order to prove the “only if” part, write√
a+ bi = u + vi and express u and v in terms of a and b using the four

arithmetic operations and the square root operation.

2.D. Idea of the proof of constructibility in Gauss’s Theorem (2)

8.2.12. (a) The number ε5 is constructible.

(b) The number ε7 can be obtained, starting from 1, by finitely many

operations of addition, subtraction, multiplication, division by a nonzero

number, and taking complex square and cube roots of complex numbers.

(c)∗ Prove (b) under the additional restriction that each type of root

operation occurs only once (one instance of taking a square root and one

instance of taking a cube root).

(d) The number ε11 is expressible in radicals including only square and

fifth roots.

(e) The number ε17 is constructible.

4Note that our definition of constructibility does not include the functions Re and Im.

It is possible to “realize” them by showing that if you can obtain the complex number z,
then you can obtain z. However, this will only prove the complex constructibility of the real

and imaginary parts, but not their real constructibility. To prove the real constructibilty

you need to extract the complex root using real roots. This is only possible for square

roots. If in the definition of constructibility and real constructibility we were to allow the

extraction of cube roots only, then the analogue of the complexification lemma would be

incorrect. Indeed, ε9 ∈ { 3
√

3
√
1} is expressible in radicals if we allow cube roots, but cos 2π

9

is not expressible in real radicals; see Remark 8.1.7 (f).
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Parts (a), (b), and (c) can be solved directly (for clues to (b, c) see the

hints for problem 8.3.14 (b)). For (d) and (e) you will need a new idea,

outlined in 2.B and below. Instead of working with a set of roots, it is more

convenient to work with the Lagrange resolvents defined in 2.B.

Sketch of the proof of the constructibility of ε := ε5. First note that

T0 := ε+ ε2 + ε4 + ε8 = −1.
We begin by proving the constructibility of

T2 := ε− ε2 + ε4 − ε8.

If we substitute ε2 for ε, then T2 goes to −T2. Thus, T 2
2 is invariant

under this substitution. Therefore T 2
2 will not change after repeating this

substitution—in other words, after replacing ε with ε4 or with ε8 = ε3. So,
for any k, the number T 2

2 will not change if we replace ε with εk.
Expand the brackets in the product T 2

2 = T2 · T2 and replace ε5 with 1.

We get the equality

T 2
2 = a0 + a1ε+ a2ε

2 + a3ε
3 + a4ε

4 for some ak ∈ Z.

Since T 2
2 does not change when ε is replaced by εk, we have a1 = a2 = a3 =

a4. Therefore T
2
2 = a0 − a1 ∈ Z, implying that T2 is constructible.

Let

T1 := ε+ iε2 − ε4 − iε8 and T3 := ε− iε2 − ε4 + iε8.

Then T0 + T1 + T2 + T3 = 4ε. Thus it suffices to prove that T1 and T3 are

constructible. We will prove this for T1; the proof for T3 is similar. If we

replace ε by ε2, then T1 goes to −iT1. Thus, T 4
1 does not change under this

substitution. Similarly, T 4
1 will not change after repeating the substitution,

i.e., after replacing ε with ε4 or ε8 = ε3. So, for any k, the number T 4
1 does

not change when ε is replaced with εk.
As above, we get

T 4
1 = a0 + a1ε+ a2ε

2 + a3ε
3 + a4ε

4 for some ak ∈ Z+ iZ.

Since T 4
1 does not change when ε is replaced by εk, we see that a1 = a2 =

a3 = a4. Therefore T
4
1 = a0−a1 ∈ Z+iZ. It follows that T1 is constructible.

�
In the above arguments, we had to conclude that a1 = a2 = a3 = a4

and define carefully what “replacing ε with ε2 ” means. The proof for the

general case is difficult; the reader can find an example of such arguments

in [Edw97, Ch. 24]. Instead, we slightly modify our proof; rather than

working with numbers, we will work with polynomials and take their values

at ε. Two polynomials with complex coefficients are said to be congruent
modulo the polynomial p if their difference is divisible by p (in C[x]).

8.2.13. Let T1(x) := x+ ix2 − x4 − ix8. Then
(a) iT1(x

2) ≡ T1(x) mod (x5 − 1);
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(b) T 4
1 (x

2) ≡ T 4
1 (x) mod (x5 − 1);

(c) T 4
1 (x

k) ≡ T 4
1 (x) mod (x5 − 1) for any k.

A proof of constructibility of ε := ε5. Define the polynomial T1(x) :=

x + ix2 − x4 − ix8. Define polynomials T0(x), T2(x), and T3(x) similarly

following the definitions of the numbers T0, T2, and T3 in the arguments on

the previous page. As above, (T0+T1+T2+T3)(ε) = 4ε. Therefore it suffices

to prove the constructibility of each of the numbers Tr(ε) for r = 1, 2, 3. We

have

iT1(x
2) ≡

x5−1
T1(x) =⇒ T 4

1 (x
2) ≡

x5−1
T 4
1 (x)

=⇒ T 4
1 (x

k) ≡
x5−1

T 4
1 (x) for any k.

Consider the polynomial a0 + a1x+ a2x
2 + a3x

3 + a4x
4 with coefficients

in Z+ iZ congruent to T 4
1 (x) modulo x5 − 1.

Then a1 = a2 = a3 = a4. Therefore T 4
1 (ε) = a0 − a1 ∈ Z + iZ. Thus

T1(ε) is constructible.
5 Similarly T2(ε) and T3(ε) are also constructible. �

8.2.14. (a) Let

β := ε6 =
1 + i

√
3

2
and T (x) := x+βx3+β2x9+β3x27+β4x81+β5x243.

Prove that T (x) ≡ βT (x3) mod (x7 − 1).

(b) Let

β := ε10 and T (x) := x+ βx2 + β2x4 + β3x8 + β4x16 + . . .+ β9x512.

Prove that T (x) ≡ βT (x2) mod (x11 − 1).

The solutions of problems 8.2.12 (d, e) and 8.2.14 are similar to the proof

of the constructibility of ε5. For details see 2.E.

2.E. Proof of the constructibility in Gauss’s Theorem (3)

Note that formally the proof we gave is independent of 2.D, and from 2.C

we only used the complexification lemma 8.2.10.

Lemma 8.2.15 (Multiplication). (a) If εn is constructible, then ε2n is con-

structible.

(b) If εm and εn are constructible and m and n are relatively prime,

then εmn is constructible.

5Here is another proof suggested by M.Yagudin:

T 4
1 (ε) = a0 + a1ε+ a2ε

2
+ a3ε

3
+ a4ε

4
= a0 + a1ε

2
+ a2ε

4
+ a3ε+ a4ε

3

= a0 + a1ε
3
+ a2ε+ a3ε

4
+ a4ε

2
= a0 + a1ε

4
+ a2ε

3
+ a3ε

2
+ a4ε.

Summing these expressions, we get 4T 4
1 (ε) = a0 − a1 − a2 − a3 − a4 ∈ Z+ iZ.
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Proof. This follows from the formulas ε2n ∈ {√εn} and εmn = εxmε
y
n, where

x and y are integers such that mx+ ny = 1. �

In problem 8.2.12 (a), we used the difference in the remainders upon

dividing the numbers 2, 22, 23, and 24 by 5. In problems 8.2.12 (d, e) and

8.2.14 (a) we used similar properties of the numbers 2 and 11, 6 and 17, and

3 and 7. For the general case, the following generalization is needed.

Theorem 8.2.16 (Primitive roots). For every prime p there exists an inte-

ger g such that the residues modulo p of g1, g2, g3, . . . , gp−1 are all distinct.

Sketch of proof for the case p = 2m + 1 (the only case used by Gauss’s

Theorem). If there are no primitive roots, then the congruence x2
m−1 ≡

1 mod p has p− 1 = 2m > 2m−1 solutions. This contradicts Bezout’s Theo-

rem. For a complete proof, see section 5 in Chapter 2.

Proof of constructibility in Gauss’s Theorem 8.1.5. By the complex-

ification and multiplication lemmas (Lemmas 8.2.10 and 8.2.15), it suffices

to prove that εn is constructible for any prime n = 22
s
+1. Since n−1 = 2m,

the multiplication lemma 8.2.15 shows that β := εn−1 is constructible. De-

fine

Z[β] := {a0 + a1β + a2β
2 + . . .+ an−2β

n−2 | a0, . . . , an−2 ∈ Z}.
Let g be a primitive root modulo n. For r = 0, 1, 2, . . . , n− 2, define

Tr(x) := x+ βrxg + β2rxg
2
+ . . .+ β(n−2)rxg

n−2 ∈ Z[β][x].

Then (T0+T1+. . .+Tn−2)(ε) = (n−1)ε. Furthermore, T0(ε) = −1. Therefore
it suffices to prove the constructibility of each Tr(ε), r = 1, 2, . . . , n− 2. We

have

βrTr(x
g) ≡

xn−1
Tr(x) =⇒ Tn−1

r (xg) ≡
xn−1

Tn−1
r (x)

=⇒ Tn−1
r (xk) ≡

xn−1
Tn−1
r (x) for any k.

Consider the polynomial x+ a2x
2 + . . .+ an−1x

n−1 with coefficients in Z[β]
that is congruent to Tn−1

r (x) modulo xn − 1. Then a1 = a2 = . . . = an−1.

Therefore Tn−1
r (ε) = a0−a1 ∈ Z[β], which implies that Tr(ε) is constructible.

�

2.F. Efficient proofs of constructibility (4*)

Here are alternative proofs, due to Gauss, of constructibility and the degree-

reducing theorem (8.1.15 (a)). They are more complicated than those given

in 2.E, but provide faster computational algorithms (cf. [BK13,Saf,Kog]).

An “efficient” constructibility proof for n = 5. It suffices to prove that

ε := ε5 is constructible. Since it is difficult to immediately express ε in
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radicals, we shall first prove that certain polynomials of ε are constructible.

We have 1 + ε+ ε2 + ε3 + ε4 = 0. Hence

(ε+ ε4)(ε2 + ε3) = ε+ ε2 + ε3 + ε4 = −1.
Define

T0 := ε+ ε4 and T1 := ε2 + ε3.

Then T0 and T1 are roots of the equation t2 + t− 1 = 0 by Vieta’s Theorem

3.6.5. Hence these numbers are constructible. Likewise, since ε · ε4 = 1, the

numbers ε and ε4 are roots of the equation t2 − T0t + 1 = 0, so ε (and ε4)
are constructible. �

Sketch of the proof of the degree-lowering theorem 8.1.15 (a). (For n−1 =

2m we obtain an idea of the proof of constructibility in the Gauss Theorem

8.1.5.) Factor n−1 into primes q1q2 · · · qs. First, it would be nice to partition

the sum

εn + ε2n + . . .+ εn−1
n = −1

into q1 terms T0, T1, . . . , Tq1−1 that are expressible in radicals (in other

words, cleverly group the roots of the equation 1+x+x2+ . . .+xn−1 = 0).

Then we would partition each Tk into q2 terms Tk,0, Tk,1, . . . , Tk,q2−1 that

are expressible in radicals, etc., until we get T1, . . . , 1
︸ ︷︷ ︸

s

= εn.

However, finding these clever groupings of the numbers 1, εn, ε
2
n, . . . , ε

n−1
n

is not a trivial task.

8.2.17. Partition

(a) ε7, ε
2
7, . . . , ε

6
7 into 2 groups of 3 elements;

(b) ε11, ε
2
11, . . . , ε

10
11 into 2 groups of 5 elements;

(c) ε13, ε
2
13, . . . , ε

12
13 into 2 groups of 6 elements

so that each group has a constructible sum.

The primitive root theorem 8.2.16 allows one to encode nonzero residues

modulo the prime n using residues modulo n−1. Namely, choosing a primi-

tive root g, we associate a residue k modulo n−1 with the nonzero remainder

upon dividing gk by n. This encoding was actually used in the groupings

constructed above for n = 5 and in problem 8.2.17.

We now sketch an “efficient” proof of constructibility in Gauss’s The-

orem 8.1.5. It suffices to prove the constructibilty of ε := εn for a prime

n = 2m + 1 ≥ 5. Up until problem 8.2.21 we assume that n satisfies this

condition. Let g be a primitive root modulo n. For n = 5 we partitioned

into terms of the form εk, where the k’s are even and odd powers of the

primitive root g respectively (that is, quadratic residues and nonresidues

modulo n). Generalizing, we define

T0 := εg
2
+ εg

4
+ εg

6
+ · · ·+ εg

2m

and T1 := εg
1
+ εg

3
+ εg

5
+ · · ·+ εg

2m−1
.

We now show that T0 and T1 are constructible. As before, T0 + T1 = −1.
Therefore it suffices to check that the product T0T1 is an integer.
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8.2.18. Prove the following equalities.

(a) T0T1 =
2m∑
s=0

εsNs, where Ns is the number of solutions (in residues

modulo 2m−1) of the congruence g2k + g2l+1 ≡ s (mod n), that is, the num-

ber of ways to represent a residue modulo n as the sum u + v, where εu is

a term in the sum T0 and εv is a term in the sum T1:

Ns = {(b, c) ∈ Z2
2m | b ≡ 0, c ≡ 1 mod 2, gb + gc ≡ s mod n};

(b) N0 = 0;

(c) Ns = Ngs when s �= 0; i.e., the congruence g2k + g2l+1 ≡ s mod n
has as many solutions (k, l) (in residues modulo 2m) as does the congruence

g2k + g2l+1 ≡ gs mod n;
(d) N1 = N2 = . . . = N2m ;

(e) T0T1 = −n−1
4 = −2m−2.

8.2.19. Find the number of representations of the residue of 2017 modulo

p := 109 + 9 as the sum of a quadratic residue modulo p and a quadratic

nonresidue modulo p. (Your answer should be an integer, not a formula or

an algorithm. You may use without proof the fact that p is prime.)

Now it is clear how to continue the proof; for the next groupings we will

use congruences modulo 4, etc.

8.2.20. (a) The congruence 4k+g4l+2 ≡ 1 mod n has as many solutions (k, l)
(in residues modulo 2m−2) as does the congruence g4k + g4l+2 ≡ g2 mod n.

(b) Define

T00 := εg
4
+εg

8
+εg

12
+· · ·+εg2

m

and T01 := εg
2
+εg

6
+εg

10
+· · ·+εg2

m−2
.

Prove that T00T01 = sT0 + tT1 for some integers s and t.
(c) Define

T11 := εg
1
+εg

5
+εg

9
+· · ·+εg2

m−3
and T10 := εg

3
+εg

7
+εg

11
+· · ·+εg2

m−1
.

Prove that T10T11 = uT0 + vT1 for some integers u and v.

An “efficient” proof of constructibility in Gauss’s Theorem 8.1.5. It suf-

fices to prove the constructibility of ε := εn for a prime n = 2m+1. Let aj ∈
Z2 = {0, 1} for each j ∈ {0, 1, 2, . . . ,m−1}. For each j ∈ {0, 1, 2, . . . ,m−1}
define

aj . . . a1a0 := a0 + 2a1 + 22a2 + . . .+ aj2
j ,

i.e., the binary representation. It is important to note that this binary

representation can start with zeros.
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Let g be a primitive root modulo n. For A ∈ Zk
2 let

TA :=
∑

0≤b≤n−1, b≡A mod 2k

εg
b
.

Using induction on k, we prove that for any k and A ∈ Zk
2, the number TA is

constructible. Then for k = m we obtain the constructibility of T0 . . . 0︸ ︷︷ ︸
m

= ε.

The base case k = 0 follows from T∅ = −1, where the subscript denotes

not the empty set but the vector of length zero. For the inductive step,

suppose that for some k the statement is true. Take any A ∈ Zk
2. Then

TA = T0A + T1A.
6 Furthermore,

T0AT1A =

n−1∑
s=0

Nsε
s (∗)
= N0 +

2j−1∑
c=0

∑
0≤b≤n−1,

b≡c mod 2j

Ngbε
gb = N0 +

∑
C∈Zk

2

N
gC
TC .

Here Ns (which depends on A) is the number of ways to express the residue

s modulo n as the sum k+ l, where εk is a term in the sum of T0A and εl is
a term in the sum of T1A:

Ns =
{
(b0, b1) ∈ Z2

n−1

∣∣∣b0 ≡
2k+1

A, b1 ≡
2k+1

2k +A, gb0 + gb1 ≡
n
s
}
.

The congruence gb0+ g
b1 ≡

n
s can be multiplied by g2j (similarly to the case

involving T0 and T1 above), yielding gb
′
1 + gb′0 = d2

j
s where

b′0 = b1 + 2k ≡
2k+1

A, b′1 = b0 + 2j ≡
2k+1

2k +A.

Since we can multiply by inverses as well, Ns = N
g2

k
s
, which implies the

equality (∗). Therefore T0A and T1A are constructible.

6The end of this paragraph can be replaced by the following slightly more complicated

reasoning, which is better suited to obtaining a generalization of Gauss’s degree-lowering

theorem 8.1.15 (a). Instead of T0AT1A, consider

(T0A − T1A)
2
=

( ∑
Bl∈Z

m−k
2

(−1)
lεg

BlA
)2

=

1,n−1∑
l=0,s=0

Ns,l(−1)
lεs

(∗∗)
=

1∑
l=0

(−1)
l

(
N0,l +

∑
C∈Z

k
2

N
gC ,l

TC

)
.

Here Ns,l (depending on A) is the number of ordered solutions l1, l2 ∈ Z2, B1, B2 ∈
Zm−k−1

2 to the system of congruences{
l1 + l2 ≡ l mod 2,

gB1l1A + gB2l2A ≡ s mod n.

Clearly, Ns,l = N
g2

k
s,l
, which implies equality (∗∗).
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8.2.21. Find explicit formulas for the following numbers, using only square,

cube, and fifth roots:

(a) ε7; (b) ε13 + ε313 + ε913; (c) ε13; (d) ε11.

An “efficient” constructibility proof of the degree-lowering theorem 8.1.15

(a). Let q1q2 · · · qm be the prime factorization of n − 1 into not necessarily

distinct primes. Let

ai ∈ {0, 1, 2, . . . , qi+1 − 1} for each i ∈ {0, 1, 2, . . . ,m− 1}.
Define

am−1 · · · a1a0 := a0 + a1q1 + a2q1q2 + . . .+ am−1q1q2 · · · qm−1,

i.e., the “variable base” representation. As above, note that this may start

with zero “digits.” Define

[k, l] := Zqk × . . .× Zql

to be a set of arrays of k − l + 1 “digits” that can be in the representation

am−1 · · · a1a0 from the kth “digit” from the right to the lth “digit” from the

right (where a0 is considered to be the first digit from the right). Let g be

a primitive root modulo n, and let ε = εn. For A ∈ [k, l] we write

TA :=
∑

B∈[m,k+1]

εg
BA
.

By induction on k we will demonstrate how to express TA in radicals

for any k and A ∈ [l, k]. Thus, for k = m we will obtain an expression for

T0 . . . 0︸ ︷︷ ︸
m

= ε in radicals.

The base case k = 0 follows from T∅ = −1. For the inductive step, let

q := qk+1 and β := εq. For any r = 0, 1, 2, . . . , q − 1 and A ∈ [k, l], define

T
(r)
A := T0A + βrT1A + β2rT2A + . . .+ β(q−1)rT(q−1)A.

Then

T
(0)
A = TA and qTlA = β−lT

(0)
A + β−2lT

(1)
A + . . .+ β−(q−1)lT

(q−1)
A .

For any r = 0, 1, 2, . . . , q − 1 and A ∈ [k, l], we have

(T
(r)
A )q =

( ∑
Bl∈[m,k+1]

βlrεg
BlA

)q
=

q−1,n−1∑
l=0,s=0

N|s,l|ε
sβl

(∗∗∗)
=

q−1∑
l=0

βl
(
N|0,l| +

∑
C∈[k,1]

N|gC ,l|TC

)
.
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Here Ns,l (which depends on A) is the number of ordered solutions l1, l2, . . . ,
lq ∈ Zq, B1, B2, . . . , Bq ∈ [m, k + 2] to the system of congruences{

r(l1 + l2 + . . .+ lq) ≡ l mod q,

gB1l1A + gB2l2A + . . .+ gBqlqA ≡ s mod n.

Clearly, Ns,l = Ngq1q2...qks,l, implying (∗∗). Thus TlA is expressible in radicals.

Suggestions, solutions, and answers

8.2.17. (a) Let ε := ε7. Obtain the expressions

T0 := ε3
0
+ ε3

2
+ ε3

4
and T1 := ε3 + ε3

3
+ ε3

5
.

An “inefficient” proof of expressibility in radicals. The quantity T0T1
is a polynomial in ε with integer coefficients of degree less than 7 (more

precisely, it is the value at x = ε of some polynomial in x (modulo x7 − 1)

with integer coefficients). The substitution ε → ε3 interchanges T0 and T1
and leaves T0T1 unchanged. Hence the coefficient of a polynomial at εs

is equal to its coefficient at ε3s. Since 3 is a primitive root modulo 7, all

the coefficients of the polynomial, except for the constant term, are equal.

From this and from ε+ ε2 + . . .+ ε6 = −1 it follows that T0T1 is an integer.

Therefore T0 and T1 are expressible in radicals.

An “efficient” proof of expressibility in radicals. We have

T0T1 =

6∑
s=0

Nsε
s,

where Ns is the number of solutions (n,m) ∈ Z2
3 of the congruence 32n +

32m+1 ≡ s mod 7. It is clear that N0 + N1 + N2 + . . . + N6 = 9. It is

easy to verify that Ns = N3s. Therefore N1 = N2 = . . . = N6. Since

30 + 31 �≡ 0 mod 7, we have N0 �= 9. It follows that N0 = 3 and N1 = 1, so

T0T1 = 3− 1 = 2. Thus {T0, T1} =
{

−1−
√
7i

2 , −1+
√
7i

2

}
.

(c) Define ε := ε13,

T0 := ε+ ε3 + ε4 + ε12 + ε9 + ε10, and T1 := ε2 + ε5 + ε6 + ε7 + ε8 + ε11.

Then T0 + T1 = −1 and T0T1 = −3. Thus

{T0, T1} =
{−1−√

13

2
,
−1 +√

13

2

}
.

Estimating the value of T (for example, by a careful examination or by

looking at the regular 13-gon), we get T1 + 1 < 0. Thus T1 = −1−
√
13

2 and

T0 =
−1+

√
13

2 .
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8.2.18. (b) We have gk + gl ≡ 0 mod n if and only if k− l ≡ 2m−1 mod 2m.

(c) Multiplying any representation gb + gc ≡ s mod n by g, we get a

representation gc
′
+ gb

′ ≡ gs mod n where b′ = c + 1 ≡ 0 mod 2 and c′ =
b+ 1 ≡ 1 mod 2. Thereby Ngs = Ns for all s.

(d) Since g is a primitive root, it follows from (c) that all Ns for s �= 0

are equal.

(e) In view of (a, b, c, d) we have T0T1 = N0 −N1 ∈ Z.

8.2.21. (a) Let ε := ε7. Having calculated T0 and T1 in problem 8.2.17

above, we can obtain ε. Define

β := ε3 and T01 := ε3
0
+ βε3

2
+ β2ε3

4
.

An “inefficient” proof of expressibility. Note that T 3
01 is a polynomial in

ε with coefficients in Z[β] of degree less than 7. The substitution ε → ε3
2

leaves T 3
01 unchanged. Thus the coefficient εs of this polynomial is equal to

the coefficient at ε3
2s. Since 3 is a primitive root modulo 7, coefficients of

the polynomial at powers of 32n are equal and coefficients of the polynomial

at powers of 32n+1 are also equal. It follows that T 3
01 can be expressed using

cube roots of numbers from Z[β, T0, T1]. Thus T01 is expressible.

An “efficient” proof of expressibility. We have

T 3
01 =

7∑
s=1

2∑
l=0

Ns,lε
sβl,

where Ns,l is the number of solutions (l1, l2, l3) ∈ Z3
3 of the system of con-

gruences {
l1 + l2 + l3 ≡ l mod 3,

32l1 + 32l2 + 32l3 ≡ s mod 7.

It is clear that
7∑

s=1

2∑
l=0

Ns,l = 27. It is easy to check that Ns,l = N32s,l.

Therefore N1,l = N2,l = N4,l and N3,l = N5,l = N6,l. Thus T
3
01 = u+ vT0 +

wT1 for some u, v, w ∈ Z[β]. These are easy to find.

Last hint. Similarly, T02 := ε3
1
+ βε3

3
+ β2ε3

5
is expressible. Thus

ε = T0+T01+T02
3 is expressible.

3. Problems on insolvabilty in radicals

In this section we use simple examples to illustrate the ideas of the proofs of

the theorems on insolvability from section 1. This section is independent of

the previous one. Moreover, it is almost independent of section 1 since most

of the problems presented here concern the non-representability of numbers

in various forms and do not use the definitions and formulations from section

1. Non-representability, although very natural, is not trivial to prove!
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The problems in subsections 3.A–3.B lead to Theorem 8.1.2 and to the

non-constructibility in Gauss’s Theorem 8.1.5 (subsection 4.D). The prob-

lems from 3.A–3.D lead to the insolvability in real radicals from Theorem

8.1.8 (subsection 4.E), to Theorem 8.1.10 (subsection 4.H), and to Kro-

necker’s Theorem 8.1.14 (subsection 4.G). The problems in 3.A–3.G lead

to Theorem 8.1.13 and the insolvability in criteria 8.2.8 (a) (subsections 4.C

and 4.F). The problems of this entire section, including subsection 3.I, lead

to Theorem 8.1.16.

Subsections 3.A–3.D develop the idea of conjugation, and subsections

3.E–3.I develop the idea of symmetry. Note that in section 3 these ideas are

revealed in the reverse order (since, in contrast to the first steps, the final

realization of the idea of conjugation is more complicated than the idea of

symmetry).

In this section, the term “polynomial” is shorthand for “polynomial with

rational coefficients.” Complex numbers v1, . . . , vn ∈ C are called linearly
dependent over Q if there exist numbers λ1, . . . , λn ∈ Q, not all equal to

zero, for which λ1v1 + . . .+ λnvn = 0. Recall that

εq := cos(2π/q) + i sin(2π/q).

3.A. Representability using only one square root (1–2)

Before attempting to solve the problems of this subsection, it is useful to

work through the problems in section 1.

8.3.1. Can the following numbers be represented as a+
√
b with a, b ∈ Q?

(a)
√

3 + 2
√
2; (b) 1

7+5
√
2
; (c)

3
√

7 + 5
√
2; (d)

3
√
2;

(e)
√
2 +

3
√
2; (f)

√
2 +

√
2; (g)

√
2 +

√
3 +

√
5.

Problems 8.3.1 and 8.3.3 are interesting in connection with insolvability

in radicals because we need to come up with a polynomial whose roots

are not radicals, and the numbers from problems 8.3.1 are the roots of

polynomials (which ones?). See also 6.6.2.

Lemma 8.3.2 (Extension). Let α be a number obtained, starting with

1, by finitely many operations of addition, subtraction, multiplication, and

division by a nonzero number and exactly one operation of taking the square

root of a positive number. Then α is of the form α = a±√b for some a, b ∈ Q

with b > 0.

8.3.3.* For which n can cos(2π/n) be represented in the form a+
√
b where

a, b ∈ Q?

Start with the cases n = 16, 24, 20, 15, 9, 7, 17, 25.
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(The answer to this question is needed in the study of outer billiards.
Compare with problem 3.1.7 (a), Remark 8.1.1, statement 8.1.3, and Theo-

rems 3.8.5 and 8.1.5.)

Lemma 8.3.4. Assume that r ∈ R−Q and r2 ∈ Q.

(a) Irreducibility. The polynomial x2 − r2 is irreducible over Q.

(b) Linear independence. If a, b ∈ Q and a+ br = 0, then a = b = 0.

(c) If r is a root of a polynomial, then this polynomial is divisible by x2−
r2.

(d) Conjugation. If r is a root of a polynomial, then −r is also a root

of this polynomial.

(e) Conjugation. If a, b ∈ Q and a polynomial has a root a+ br, then
a− br is also a root of this polynomial.

(f) If a, b ∈ Q and a cubic polynomial has a root a + br, then this

polynomial has a rational root.

Theorem 8.3.5. If a polynomial of degree at least 3 is irreducible over Q,

then none of its roots has the form a±√
b with a, b ∈ Q.

Theorem 8.3.5 and Lemma 8.3.2 imply that if a polynomial of degree
at least 3 is irreducible over Q, then none of its roots is expressible in real
radicals by extracting just one square root. The complex analogue of this

statement is also true. This is our first step towards the theorems on insolv-

ability in section 1. Similar general statements for higher-degree polynomials

will be obtained below (formulate them yourself).

8.3.6. (a) Solve x6 − 2x4 − 12x3 − 2x2 + 1 = 0.

(b) The number cos(2π/7) is a root of the polynomial obtained from the

function x3 + x2 + x + 1 + x−1 + x−2 + x−3 by Zhukovsky’s substitution

z = 1
2(x+ 1

x).

8.3.7. Is the polynomial x5 − 4x3 + 6x2 + 4x+ 2 reducible

(a) over Z? (b) over Q?

8.3.8. (a) For each q = 5, 7, 11, 9, 25, 15, 16, 20 find a polynomial that is

irreducible over Q and has a root equal to εq := cos(2π/q) + i sin(2π/q).
(b) Same question with cos(2π/q) instead of εq.

First hints

8.3.2. It would be sufficient to show that the set of all numbers of the form

a ±√
b, a, b ∈ Q, is closed under addition, subtraction, multiplication, and

division. However, this is obviously false: (1 +
√
2) + (1 +

√
3) cannot be

represented as a±√
b where a, b ∈ Q (prove it!).
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8.3.4. (a) If the polynomial x2 − r2 factors over Q, then it has a rational

root. This is a contradiction.

(b) If b �= 0, then r = −a/b ∈ Q, which is impossible. Hence b = 0, and

thus a = 0.

(c) Consider the remainder upon dividing our polynomial by x2 − r2:7

P (x) = (x2 − r2)Q(x) +mx+ n.

Substitute x = r. By the linear independence lemma (see (b)) the remainder

is zero.

(d) By (c), if R2 = r2, then R is a root of the polynomial.

Sketch of alternative solution. The mapping u �→ u of the set Q[r] :=
{a+ br : a, b ∈ Q} into itself is well-defined by the formula a+ br := a− br.
In addition, u+ v = u+ v and u · v = u · v for any u, v ∈ Q[

√
2].

(e) Let P be the given polynomial, and set G(t) := P (a + bt). Then

G(r) = 0. Hence by (d) we obtain G(−r) = 0.

(f) If b = 0, the assertion is proved. Otherwise, by (e), the polynomial

has the roots a±br. These roots are distinct. Hence the third root is rational

by Vieta’s Theorem 3.6.5.

Suggestions, solutions, and answers

8.3.1. Answers: (a, b, c) Yes; (d, e, f, g) No.

(a, c) We have
√

3 + 2
√
2 =

3
√
7 + 5

√
2 = 1 +

√
2.

(b) We have
1

7 + 5
√
2
=

7− 5
√
2

72 − 2 · 52 = −7 + 5
√
2.

(d) Assume that
3
√
2 can be represented in this form. Then

2 = (
3
√
2)3 = (a3 + 3ab) + (3a2 + b)

√
b.

Since 3a2 + b �= 0, we have
√
b ∈ Q. Thus

3
√
2 ∈ Q, which is a contradiction.

Compare with problem 3.1.1 (h). The other proofs are similar to the

proof of Theorem 8.3.5.

Yet another solution. Suppose that
3
√
2 is representable. Then

1 = 1,
3
√
2 = a+ b

√
2,

3
√
4 = a′ + b′

√
2

for some rational numbers a, b, a′, and b′. The vectors (1, 0), (a, b), and
(a′, b′) are linearly dependent with rational coefficients, that is, there exist

λ0, λ1, and λ2, not all equal to zero, for which λ0(1, 0)+λ1(a, b)+λ2(a
′, b′) =

0. Then λ0 + λ1
3
√
2 + λ2

3
√
4 = 0, which contradicts the linear independence

lemma 8.3.18 (b).

(e) Sketch of the first solution. It is easier to prove a stronger assertion:

3
√
2 �= a+ p

√
b+ q

√
c+ r

√
bc for any a, b, c, p, q, r ∈ Q.

7This is equivalent to “plugging in” x2 = r2.
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It suffices to show that
3
√
2 �= u + v

√
c for any u, v, c ∈ Q[

√
b] := {x +

y
√
b : x, y ∈ Q}. The idea of our proof is that numbers from Q[

√
b] (with

fixed b) are “as good as” rational numbers. That is, the sum, the difference,

the product, and the quotient of numbers from Q[
√
b] are also numbers from

Q[
√
b] (or, in more advanced language, Q[

√
b] is a field). Then we can prove

the assertion similarly to (d) (cf. problem 8.3.10 (a)).

Sketch of the second solution. Assume that
√
2+

3
√
2 = a+

√
b for some

a, b ∈ Q. This number is a root of the polynomial P (x) = ((x−√2)3−2)((x+√
2)3−2) with rational coefficients. By 3.1.1 (h),

√
2+

3
√
2 �∈ Q. Hence

√
b �∈

Q. By the conjugation lemma 8.3.4 (e) for r =
√
b we have P (a−√

b) = 0.

Since
√
b �∈ Q, the roots a ± √

b are distinct. The polynomial P has only

two real roots, namely
√
2 +

3
√
2 and −√2 +

3
√
2. Thus a+

√
b =

√
2 +

3
√
2

and a−√
b = −√2 +

3
√
2. Therefore

3
√
2 = a ∈ Q. This is a contradiction.

(f) The roots of the polynomial P (x) = (x2−2)2−2 are four numbers of

the form ±
√

2±√
2, where the signs need not agree. All these numbers are

irrational. By Theorem 8.3.5, it is sufficient to prove that the polynomial P
cannot be written as a product of two quadratic polynomials with rational

coefficients. This irreducibility follows from the fact that the product of any

two roots of P is irrational.

Sketch of another proof of irreducibility. By Gauss’s lemma 8.4.10, it

suffices to show that the polynomial does not decompose into a product of

two quadratic trinomials with integer coefficients. Suppose the contrary. We

can assume that the leading coefficients of these trinomials are both equal

to 1. Since P (0) = 2, the constant term of one of the trinomials is even, and

that of the other one is not. Then x4 = (x2 +mx)(x2 + nx+ 1) ∈ Z2[x] for
some m,n ∈ Z2. Comparing the coefficients at x and x2, we obtain m = 0

and 0 = 1, a contradiction. (Compare with the Eisenstein irreducibility

criterion 8.4.9.)

(g) Use the hint for 3.1.1 (j).

8.3.2. Let α be a number obtained, starting with 1, using addition, sub-

traction, multiplication, division, and exactly one operation of taking the

square root. Let this square root operation be
√
c, where c ∈ Q. Then α

can be written as x = a1+a2
√
c with a1, a2 ∈ Q. Indeed, the set of numbers

of such form is closed under all arithmetic operations; for division this can

be proved using the formula (a1 + a2
√
c)(a1 − a2

√
c) = a21 − a22c. The proof

follows since a1 + a2
√
c = a1 + b

√
a22c. See also Lemma 8.4.6 (a).

8.3.3. Answer : The number is representable if and only if n ∈ {1, 2, 3, 4, 5, 6,
8, 10, 12}. Or, equivalently, ϕ(n) ∈ {1, 2, 4}. For n ∈ {15, 16, 20, 24}, see
problem 8.1.3.

The case of n = 9: Suppose that cos(2π/9) is representable in this form.

By formula 3.1.5 (e) for the cosine of a triple angle, cos(2π/9) is a root of
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the cubic equation 4x3 − 3x = −1
2 . By Lemma 8.3.4 (f) this equation must

have a rational root, a contradiction.

Another proof is analogous to Theorem 8.3.5.

The case of n = 7: (Here we follow I. Braude-Zolotarev.) The equality

cos(2π/7) + cos(4π/7) + cos(6π/7) + . . .+ cos(14π/7) = 0

implies that cos(2π/7)+cos(4π/7)+cos(6π/7) = −1/2. Applying the formu-

las cos 2α = 2 cos2 α−1 and cos 3α = 4 cos3 α−3 cosα (see problem 3.1.5 (a,

e)), we find that cos(2π/7) is a root of the equation 8t3 + 4t2 − 4t− 1 = 0.

Substituting u = 2t, we get u3 + u2 − 2u − 1 = 0. This equation

has no rational roots. Hence the same holds for 8t3 + 4t2 − 4t − 1 = 0.

Thus the polynomial 8t3 + 4t2 − 4t − 1 = 0 is irreducible over Q, and non-

representability follows from Lemma 8.3.4 (f).

Instead of explicitly writing out the cubic equation with root cos(2π/7),
one can see that the numbers cos(4π/7) and cos(6π/7) are also its roots.

As in problem 3.1.4 (f) these numbers are irrational. Therefore, this cubic

polynomial is irreducible over Q.

Hint for alternative solution. Prove that ε7 is not constructible by ex-

tracting only three square roots; compare with problems 8.3.9 and 8.3.14 (b).

8.3.5. Assume to the contrary that the given polynomial P has a root

x0 = a ± √
b, where

√
b �∈ Q. By the conjugation lemma 8.3.4 (e), the

number x1 = a ∓ √
b is also a root of P . Since

√
b �∈ Q, we have b �= 0.

Then x0 �= x1. Therefore P is divisible by (x−a)2− b. Since degP > 2, the

polynomial P factors, a contradiction.

8.3.8. Answers: (5) x4 + x3 + x2 + x+ 1; (7) x6 + x5 + . . .+ x+ 1;

(11) x10+x9+ . . .+x+1; (9) x6+x3+1; (25) x20+x15+x10+x5+1;

(15) (x15 − 1)(x− 1)/(x5 − 1)(x3 − 1); (16) x8 + 1.

(5) To prove irreducibility, apply the Eisenstein irreducibility criterion

8.4.9 to the polynomial p(x+ 1) = ((x+ 1)5 − 1)/x and use Gauss’s lemma

8.4.10.

3.B. Multiple square root extractions (3*)

Here we develop ideas from subsection 3.A that are used to prove incon-

structibility and insolvability.

8.3.9. Are there rational numbers a, b, c, d for which
3
√
2 is equal to

(a) a+ b 4
√
2 + c

√
2 + d 4

√
8; (b)

a+
√
b

c+
√
b
; (c) a+

√
b+

√
c;

(d) a+
√
b+

√
c; (e) a+

√
b+

√
c+

√
d ?
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Lemma 8.3.10 (Linear independence). (a) If a+ b 4
√
2+ c

√
2+d 4

√
8 = 0 for

some a, b, c, d ∈ Q, then a = b = c = d = 0.

(b) If a+ b 4
√
2+ c

√
2+d 4

√
8 = 0 for some a, b, c, d ∈ Q[i]:={x+ iy : x, y ∈

Q}, then a = b = c = d = 0.

Lemma 8.3.11 (Conjugation). (a) If
4
√
2 is a root of a polynomial, then

the following numbers are also roots of this polynomial: − 4
√
2, i 4

√
2, −i 4

√
2.

(b) If a, b, c, d ∈ Q and a polynomial has the root x0 := a+ b 4
√
2+ c

√
2+

d 4
√
8, then the following numbers are also roots of this polynomial:

x2 := a− b
4
√
2 + c

√
2− d

4
√
8,

x1 := a− c
√
2 + i

4
√
2(b− d

√
2),

x3 := a− c
√
2− i

4
√
2(b− d

√
2).

(c) If a polynomial has the root
√
2+

√
3, then each of the four numbers

±√2±√
3 is a root of this polynomial.

Recall that definitions of real constructibility and constructibility are

given in 1.B and 2.C respectively.8

8.3.12. If we remove the operation of division from the definition of con-

structibility but allow the use of all rational numbers, we get an equivalent

definition.

Now you should be able to prove Theorem 8.1.2.

Hint. See the tower of extensions lemma 8.4.1 (a). For details see 4.D.

Theorem 8.3.13. (a) Some (or, equivalently, each) root of a cubic poly-

nomial is constructible if and only if one of the roots of this polynomial is

rational.

(b)∗ Some (or, equivalently, each) root of a fourth-degree polynomial is

constructible if and only if its cubic resolvent (defined in the hint for problem

3.2.6 (b)) has a rational root.

8.3.14. The following numbers are not real constructible:

(a) cos(2π/9);
(b) cos(2π/7);
(c)∗ cos(2π/11).

8Editor’s note: Here and in what follows complex constructible numbers will be called

simply constructible.
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8.3.15. Find a polynomial irreducible over Q with root

(a)
√
2 +

√
3; (b)

√
4 + 2

√
3; (c)

√
2 +

√
3 +

√
5;

(d)
√
1 +

√
3; (e)

√
2 +
√

2 +
√
5.

8.3.16. (a) If a polynomial P is irreducible over Q[
√
2] := {x+ y√2 : x, y ∈

Q} and has a root of the form a+
√
b where a, b ∈ Q[

√
2], then degP ∈ {1, 2}.

(b) If a polynomial P is irreducible over Q and has a root of the form

a+
√
b+

√
c where a, b, c ∈ Q, then degP ∈ {1, 2, 4}.

(c) If a polynomial P is irreducible over Q and has a root of the form√
a+

√
b+

√
c where a, b, c ∈ Q, then degP ∈ {1, 2, 4, 8}.

(d) If a polynomial P is irreducible over Q and has a constructible root,

then degP is a power of 2.

The proofs are similar to those of problems 8.3.15 (d, e). See the proof

of 8.4.7 for details.

Suggestions, solutions, and answers

8.3.9. Answers: No. See 8.3.1 (e, g).

(a) First solution. Suppose it is expressible in the given form. By the

conjugation lemma 8.3.11 (b), the polynomial x3 − 2 has roots x0 and x2
introduced in the statement of the lemma. Since neither of them is rational,

the equality b = d = 0 is impossible. So, by the linear independence lemma

8.3.10 (a), these roots are distinct, a contradiction.

Second solution. Suppose to the contrary that it is expressible in the

given form. By the conjugation lemma 8.3.11 (b), the polynomial x3 − 2

has the roots x1, x2, x3, x4 introduced in the statement of the lemma. Since

none of them is rational, these roots are pairwise distinct, a contradiction.

(b) Multiply by the conjugate.

8.3.10. (a) First solution. Rewrite the condition in the form (a + c
√
2) +

(b + d
√
2)

4
√
2 = 0. Since b + d

√
2 �= 0, we have − 4

√
2 = a+c

√
2

b+d
√
2
= A + B

√
2

for some A,B ∈ Q. Squaring yields A2 + 2B2 = 0, a contradiction.

Second solution. Considering the complex roots of the polynomial v4−2,

we see that it is irreducible over Q. Therefore it cannot have a common root

with the polynomial a+ bx+ cx2 + dx3, which is of at most third degree.

(b) Prove the assertion separately for the real and imaginary parts.

8.3.11. (a) Divide the polynomial by x4 − 2 and consider its remainder.

After substituting x =
4
√
2, the linear independence lemma 8.3.10 (a) implies

that the remainder is zero. Therefore, if r2 = 2, then a+ br+ cr2 + dr3 is a

root of the original polynomial.
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(b) Substitute x = a + bt + ct2 + dt3 into the polynomial and use part

(a).

8.3.12. The assertion can be proved similarly to Lemma 8.4.1 (a).

8.3.13. (a) The “if” part is easy. To prove “only if,” we suppose to the con-

trary that at least one root is constructible. Then for each constructible root

z there exists an extension tower as asserted by Lemma 8.4.1 (a). We can

assume that z ∈ Fs − Fs−1. Take the root s with minimal s = s(z) (among

all constructible roots z). Conversely, assume that the cubic equation does

not have rational roots. Then s ≥ 2. Let F := Fs−1. Then

z = a+ b
√
m for some a, b,m ∈ F, m > 0,

√
m �∈ F, b �= 0.

By the conjugation lemma 8.4.8 (a), z := a − b
√
m is also a root of the

equation. Since b �= 0, we have a − b
√
m �= a + b

√
m. Let u be the third

root of the equation (maybe u ∈ {z, z}). By Vieta’s Theorem 3.6.5,

Q � u+ z + z = u+ (a+ b
√
m) + (a− b

√
m) = u+ 2a.

Therefore u ∈ F . Thus, for the root u, there exist extension towers of lower

height than those for z. This is a contradiction.

8.3.14. (a) See 8.3.13 (a).

(b) Let ε := ε7. Since ε �= 1, ε is a root of the 6th-degree equation

ε6 + ε5 + ε4 + ε3 + ε2 + ε + 1 = 0. Below is one way to solve nth-degree
polynomial equations that have equal coefficients at the kth and (n − k)th
degrees.

Divide both parts of the equation by ε3, and make the substitution

t := ε+ ε−1; then

ε2 + ε−2 = t2 − 2 and ε3 + ε−3 = t(ε2 + ε−2 − 1),

leading to

t(t2 − 3) + (t2 − 2) + t+ 1 = t3 + t2 − 2t− 1 = 0.

By the rational roots theorem, there are no rational roots. By Theorem

8.3.13 (a), t = ε + ε−1 is not constructible, which implies that ε is also

non-constructible (why?).

8.3.15. Answers:
(a) P (x) := ((x−√

3)2 − 2)((x+
√
3)2 − 2) = (x2 + 1)2 − 12x2;

(b) (x2 − 3)2 − 1; (c) P (x−√
5)P (x+

√
5);

(d) (x2 − 1)2 − 3; (e) ((x2 − 2)2 − 2)2 − 5.

(a) To prove irreducibility, use the conjugation lemma, which implies

that each of the four numbers ±√2±√3 is a root of the desired polynomial.

Then prove and use the fact that
√
3 �∈ Q[

√
2].

(b) Note that
√
4 + 2

√
3 = 1 +

√
3.
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(c) The proof is similar to that of (a). Prove and use the fact that√
5 �∈ Q[

√
2][
√
3]. Similarly to problem 8.3.9, it follows from the statement

that if the polynomial x2− 5 has the root a+ b
√
3 where a, b ∈ Q[

√
2], then

it also has the root a− b
√
3.

(d) Similarly to (a) (or similarly to the following), the monic (leading

coefficient is 1) irreducible polynomial with root
√

1 +
√
3 and coefficients

in Q[
√
3] is x2 − 1 − √

3. Therefore any irreducible polynomial P with

coefficients in Q and root
√
1 +

√
3 is divisible by x2 − 1 − √

3 in Q[
√
3].

Applying conjugation with respect to Q ⊂ Q[
√
3], we conclude that P over

Q[
√
3] is divisible by x2 − 1 +

√
3. Since the polynomials x2 − 2 −√

3 and

x2−2+
√
3 are coprime in Q[

√
3], P over Q[

√
3] is divisible by their product.

(e) Verify that x2 = 2 +
√
5 has no root in Q[

√
5]:

If the equation x2 = 2 +
√

2 +
√
5 were solvable in Q[

√
2 +

√
5], then

conjugation in Q[
√
2 +

√
5] = Q[

√
5,
√
2 +

√
5] with respect to Q[

√
5] would

yield x2 = 2 −
√

2 +
√
5 < 0. This contradiction proves that the equation

x2 = 2 +
√
2 +

√
5 has no roots in Q[

√
2 +

√
5].

Similarly to (d), we see that the given irreducible polynomial with root√
2 +
√

2 +
√
5 and coefficients in Q[

√
2 +

√
5] is equal to x2−2−

√
2 +

√
5.

In Q[
√
5] it is equal to (x2 − 2)2 − 2−√

5.

In Q it is equal to ((x2 − 2)2 − 2)2 − 5.

3.C. Representing a number using only one cube root (2)

Here we develop the ideas from 3.A (in a different direction than in 3.B).

8.3.17. Which of the following numbers can be represented in the form

a+ b 3
√
2 + c 3

√
4 with a, b, c ∈ Q?

(a)
√
3; (b) 1

1+5 3√2+ 3√4
; (c) cos(2π/9); (d)

5
√
3; (e)

3
√
3;

(f) the largest real root of x3 − 4x+ 2 = 0;

(g)∗ the unique real root of x3 − 6x− 6 = 0;

(h)∗ the unique real root of x3 − 9x− 12 = 0.

Lemma 8.3.18. Assume that r ∈ R−Q and r3 ∈ Q.

(a) Irreducibility. The polynomial x3 − r3 is irreducible over Q.

(b) Linear independence. If a + br + cr2 = 0 with a, b, c ∈ Q, then

a = b = c = 0.

(b′) Linear independence over Q[ε3]. If

k, �,m ∈ Q[ε3] := {u+ vε3 : u, v ∈ Q}
and k + �r +mr2 = 0, then k = � = m = 0.

(c) If r is a root of a polynomial, then this polynomial is divisible by

x3 − r3.
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(d) Conjugation. If r is a root of a polynomial, then the numbers ε3r
and ε23r are also its roots.

(e) Conjugation. If a, b, c ∈ Q and a polynomial has root x0 := a +

br + cr2, then the numbers

x1 := a+ bε3r + cε23r
2 and x2 := a+ bε23r + cε3r

2

are also its roots.

(f) Rationality. If a, b, c ∈ Q, then a+ br+ cr2 is a root of some cubic

polynomial.

Theorem 8.3.19. If a polynomial is irreducible over Q and has a root

a+ br + cr2 for some r ∈ R−Q and a, b, c, r3 ∈ Q, then this polynomial is

cubic and has exactly one real root.

Lemma 8.3.20 (Extension). A number expressible in real radicals with only

one extraction of a cube root can be represented in the form a + br + cr2

where r ∈ R and a, b, c, r3 ∈ Q.

Suggestions, solutions, and answers

8.3.17. Answers: (a, c, d, e, f, h) No; (b, g) Yes.

Let r := 3
√
2.

(a) Assume that
√
3 is representable in this form.

First solution. Then

3 = (a2 + 4bc) + (2ab+ 2c2)
3
√
2 + (2ac+ b2)

3
√
4.

Since the polynomial x3 − 2 has no rational roots, it is irreducible over Q.

Thus, 2ab+2c2 = 2ac+b2 = 0 (cf. 8.3.18 (b)). So we have b3 = −2abc = 2c3.
Hence either b = c = 0 or

3
√
2 = b/c. Both cases are impossible.

Second solution. Let P (x) := x2 − 3. By the conjugation lemma

8.3.18 (e), P has three roots x0, x1, x2 as defined in the statement of the

lemma. Since none of them is rational, the equality b = c = 0 does not hold.

By the linear independence lemma over Q[ε3] 8.3.18 (b
′), the three roots are

distinct, a contradiction.

(b) We have (1 + 5
3
√
2 +

3
√
4)(3 +

3
√
2− 8

3
√
4) = −75. (This equality can

be easily obtained by the undetermined coefficients method or by applying

the Euclidean algorithm to x3−2 and x2+5x+1; see the solution to 8.3.20.)

Therefore,

1

1 + 5
3
√
2 +

3
√
4
= − 1

25
− 1

75
· 3
√
2 +

8

75
· ( 3
√
2)2.

(c) Assume that cos(2π/9) is representable in this form. This number is

a root of the equation 4x3−3x = −1
2 . Its other two real roots are cos(8π/9)

and cos(4π/9).
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First solution. From the conjugation lemma 8.3.18 (e), the polynomial

8x3 − 6x− 1 has a root a+ brε3 + cr2ε23. Since it is real, its imaginary part

is equal to zero. Thus, br − cr2 = 0. Since r �∈ Q, we have b = c = 0, which

contradicts the fact that 8x3 − 6x− 1 has no rational roots.

Second solution. Following the second solution to (a), note that P (x) :=
8x3 − 6x − 1 has three distinct roots x0, x1, x2. Since ε3 = ε23, we have

x2 = x1. Thus, x1 and x2 cannot be both real and distinct, a contradiction.

(d) Assume that
5
√
3 is representable in this form. By the rationality

lemma 8.3.18 (f),
5
√
3 is a root of a cubic polynomial. This contradicts the

irreducibility of the polynomial x5 − 3 over Q.

(e) As with (a) and (c), by the conjugation lemma 8.3.18 (e), it follows

that the polynomial x3− 3 has three roots x0, x1, x2 as defined in the state-

ment of the lemma. Thus, (a + br + cr2)εs3 = a + brε3 + cr2ε23 for some

s ∈ {1, 2}. By the linear independence lemma over Q[ε3] 8.3.18 (b
′), we

conclude that a = 0 and bc = 0. Hence either
3
√
3 = br or

3
√
3 = cr2, a

contradiction.

(f) See (c).

(g) One root of this equation is
3
√
2 +

3
√
4.

(h) The only real root of this equation is
3
√
3 +

3
√
9. Assume that this

number is representable in the required form. Repeat the second solution of

(a) for P (x) := x3 − 9x− 12. We obtain that x0, x1, x2 are all roots of P .
On the other hand, by the theorem formulated in the solution to 3.2.4 (b),

all roots of this equation are

y0 :=
3
√
3 +

3
√
9, y1 :=

3
√
3ε3 +

3
√
9ε23, y2 :=

3
√
3ε23 +

3
√
9ε3.

Since the equation has exactly one real root, we must have x0 = y0. Then

either x1 = y1 and x2 = y2, or x2 = y1 and x1 = y2.
Define R(x) := 3

√
3x+ 3

√
9x2 and S(x) := a+ brx+ cr2x2 or S(x) := a+

brx2+ cr2x in the first and second cases, respectively. Then the polynomial

R(x) − S(x) has three distinct roots 1, ε3, and ε23. But the degree of this

polynomial is at most 2. Thus R = S, and either
3
√
3 = br or

3
√
3 = cr2, a

contradiction.

8.3.18. (a) Suppose that x3− r3 is reducible over Q. Then it has a rational

root, a contradiction.

(b) Assume not. Divide x3−r3 by a+bx+cx2 and consider the remainder.

By (a), the remainder is nonzero. Both x3− r3 and a+ bx+ cx2 have a root

x = r. Hence the remainder has the root x = r. Thus, the remainder has

an irrational root. This is impossible because the remainder has degree 1.

(b′) Consider the real and imaginary parts separately.

Remark. This assertion is equivalent to the irreducibility of x3− r3 over

Q[ε3]. If x
3−r3 is irreducible over Q[ε3], then k+lx+mx

2 ∈ Q[ε3][x] cannot
have the root r. If x3 − r3 factors over Q[ε3], then an examination of the

factors implies the linear dependence of 1, r, r2 over Q[ε3].
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(c) Divide x3−r3 and consider the remainder. Taking x = r and applying

the linear independence lemma 8.3.18 (b), we see that the remainder is zero.

(d) By (c), if R3 = r3, then R is a root of the polynomial.

(e) Let P be the given polynomial, and set G(t) := P (a+bt+ct2). Then
G(r) = 0. Hence by (d) we have G(rε3) = 0 = G(rε23).

(f) First solution. Taking x = y + a, we see that it suffices to prove the

assertion for a = 0. Note that t = br+ cr2 satisfies t3 = b3r3+ c3r6+3bcr3t.
In other words, since u3 + v3 +w3 − 3uvw is divisible by u+ v +w (see

problem 3.2.3 (a), the number a+ br + cr2 is a root of the polynomial

(x− a)3 − 3bcr3(x− a)− b3r3 − c3r6.

Second solution. Let x0 := a + br + cr2. Expand the numbers xk0,
k = 0, 1, 2, 3, as polynomials in r:

xk0 = ak + bkr + ckr
2.

It suffices to find numbers λ0, λ1, λ2, λ3 ∈ Q, not all zero, such that λ0 +
λ1x0+λ2x

2
0+λ3x

3
0 = 0. These numbers must satisfy the system of equations⎧⎪⎨

⎪⎩
λ0a0 + . . .+ λ3a3 = 0,

λ0b0 + . . .+ λ3b3 = 0,

λ0c0 + . . .+ λ3c3 = 0.

It is known that a homogeneous (i.e., with zeros on the right-hand sides)

system of linear equations with rational coefficients where the number of

equations is smaller than the number of variables has a nontrivial rational

solution. Hence, the required numbers exist.

The resulting polynomial has degree three by Lemma 8.3.18 (e, b′).
Third solution. Let A(x) := a+ bx+ cx2. The product (x−A(t0))(x−

A(t1))(x−A(t2)) is a symmetric polynomial in t0, t1, t2. Hence this product
is a polynomial in x and the elementary symmetric polynomials in t0, t1, t2.
The values of these elementary symmetric polynomials at tk = rεk3 (k =

0, 1, 2) are the coefficients of the polynomial x3 − r3 and hence are rational.

So the product above is the required polynomial.

8.3.19. By the rationality lemma 8.3.18 (f) there exists a cubic polynomial

having a+br+cr2 as a root. Since the given polynomial P is irreducible over

Q and has the same root, we conclude that degP ≤ 3. By the conjugation

lemma 8.3.18 (e), P has three roots x0, x1, x2 as defined in the statement of

the lemma. Since P is irreducible over Q, none of its roots is rational. So

the equality b = c = 0 is impossible. By the linear independence lemma

over Q[ε3] 8.3.18 (b
′), x0, x1, x2 are distinct. Hence degP = 3.

Since εk3 = ε−k
3 , we have x2 = x1. Thus x2 and x1 cannot be real and

distinct. So x2, x1 ∈ C− R, implying that P has a unique real root.
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8.3.20. Assume that after extracting a cube root we obtain r. If |r| ∈ Q,

the statement is trivial. If |r| �∈ Q, then the polynomial x3−r3 is irreducible
over Q.

It suffices to prove that 1
a+br+cr2

= h(r) for some polynomial h. By the

irreducibility lemma, the polynomial x3 − r3 is irreducible over Q. Hence

it is coprime with a+ bx+ cx2. Therefore, there exist polynomials g and h
such that h(x)(a + bx + cx2) + g(x)(x3 − r3) = 1. Then h is the required

polynomial.

3.D. Representing a number using only one root of prime order

(3*)

This subsection expands upon the ideas of 3.C.

8.3.21. Which of the following numbers can be represented in the form

a0 + a1
7
√
2 + a2

7
√
22 + · · ·+ a6

7
√
26

with a0, a1, a2, . . . , a6 ∈ Q?

(a)
√
3; (b) cos 2π

21 ; (c)
11
√
3; (d)

7
√
3;

(e) a root of the polynomial x7 − 4x+ 2.

Answers: None. The arguments are similar to those used in 8.3.17. Use

the lemmas stated below.

Lemma 8.3.22. Let q be a prime number and let r ∈ R−Q such that rq ∈
Q.

(a) Irreducibility. The polynomial xq − rq is irreducible over Q.

(b) Linear independence. If r is a root of a polynomial A of degree

less than q, then A = 0.

(c) Conjugation. If r is a root of a polynomial, then all the numbers

rεkq , k = 1, 2, 3, . . . , q − 1, are also roots of this polynomial.

(d) Rationality. If A is a polynomial, then the number A(r) is a root

of some nonzero polynomial of degree at most q.

8.3.23. Define

Q[εq] := {a0 + a1εq + a2ε
2
q + . . .+ aq−2ε

q−2
q : a0, . . . , aq−2 ∈ Q}.

Let q be a prime number and let r ∈ C−Q[εq] such that rq ∈ Q[εq].
(a) Prove that xq − rq is irreducible over Q[εq].
(b, c) Prove the analogues of (b, c) in the lemma above for polynomials

with coefficients in Q[εq].

Lemma 8.3.24.* Let q be a prime number and let r ∈ R−Q such that rq ∈
Q.
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(a) Irreducibility over Q[εq]. The polynomial xq − rq is irreducible

over Q[εq].
(b) Linear independence over Q[εq]. If A is a polynomial of degree

less than q with coefficients in Q[εq] and A(r) = 0, then A = 0.

Theorem 8.3.25. Suppose that a polynomial B is irreducible over Q and

has an irrational root A(r), where A is a polynomial and r ∈ R is such that

rq ∈ Q for some prime q. Then B has degree q and, if q �= 2, has no other

real roots.

The proof is analogous to the proofs of Theorems 8.3.5 and 8.3.19 and

to the solutions of 8.3.21 (a, b, c). Apply the conjugation lemma 8.3.22 (c),

the rationality lemma 8.3.22 (d), and the linear independence lemma over

Q[εq] 8.3.24 (b).
Note that the analogue of Theorem 8.3.25 fails if we replace the condition

that q is a prime by the condition r2, . . . , rq−1 �∈ Q. (For example, let q = 6

and r = 6
√
2.) Then the number A(r) = r3 is a root of x2 − 2.

Lemma 8.3.26 (Extension). If a number is expressible in real radicals with

only one root extraction, then it equals A(r) for some r ∈ R, q ∈ Z with

rq ∈ Q, and A ∈ Q[x].

The proof is similar to the proof of the extension lemma 8.3.20.

8.3.27. (a–d) Prove the analogues of the assertions in 8.3.22 with Q re-

placed by any set F ⊂ R which is closed under the operations of addition,

subtraction, multiplication, and division by a nonzero number (and with

polynomials over Q replaced by polynomials over F ).

Suggestions, solutions, and answers

8.3.21. Set r := 7
√
2 and A(x) := a0 + a1x+ a2x

2 + . . .+ a6x
6.

(a) Assume that
√
3 is representable in this form. By the conjugation

lemma 8.3.22 (c), the polynomial x2−3 has roots A(rεk7) for k = 0, 1, 2, . . . , 6.
Since this polynomial has no rational roots, the linear independence lemma

over Q[εq] 8.3.24 (b) implies that these roots are distinct, a contradiction.

(b) Assume that cos 2π
21 is representable in this form.

First solution. Similarly to (a), the given polynomial P has pairwise

distinct roots xk := A(rεk7) for k = 0, 1, 2, . . . , 6. Since P (0) > 0, P (1) < 0,

and P (2) > 0, P has a real root xk distinct from x0. Since εk7 = ε−k
7 , we

have xk = xk = x7−k, a contradiction.

Second solution. Define P to be the polynomial such that cos 7x =

P (cosx) (see 3.1.6(a)). The roots of the polynomial 2P (x) + 1 are real
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numbers yk = cos
2(3k + 1)π

21
with k = 0, . . . , 6. One of them, namely

y2 = −1/2, is rational.
Next, we prove that y0 is irrational. If it is not, the equality ε221 −

2y0ε21 + 1 = 0 implies that ε21 = a + i
√
b for some a, b ∈ Q. Then the

number ε7 = ε321 also has this form. But ε7 is a root of the irreducible9

polynomial 1+x+ · · ·+x6, which contradicts the analogue of Theorem 8.3.5

for numbers of the form a+ i
√
b.

Consequently, y0 is an irrational root of the sixth-degree polynomial
2P (x)+1
2x+1 . The conjugation lemma 8.3.22 (c) and linear independence lemma

over Q[εq] 8.3.24 (b) imply that this polynomial has seven distinct roots,

which is impossible.

(c) Assume that
11
√
3 is representable in this form. Then by the ra-

tionality lemma 8.3.22 (d), there exists a nonzero polynomial of degree at

most 7 having
11
√
3 as a root. This contradicts the irreducibility of the

polynomial x11 − 3 over Q.

(d) Assume that
7
√
3 is representable in this form. Similarly to (a), all

complex roots of the polynomial x7 − 3 are A(rεk7) for k = 0, 1, 2, . . . , 6.
Therefore, A(r)εs7 = A(rε7) for some s ∈ {1, 2, 3, 4, 5, 6}. By the linear

independence lemma over Q[εq] 8.3.24 (b), we have ak = 0 for every k �= s.

Therefore,
7
√
3 = asr

s, a contradiction.

(e) Assume that one of the roots is representable in this form. The given

polynomial P has no rational roots. The conjugation lemma 8.3.22 (c) and

linear independence lemma over Q[εq] 8.3.24 (b) imply that P has pairwise

distinct roots xk := A(rεk7) for k = 0, 1, 2, . . . , 6. Since P (0) > 0, P (1) < 0,

and P (2) > 0, the polynomial P has a real root xk distinct from x0. From

the equality εk7 = ε−k
7 it follows that xk = xk = x7−k, a contradiction.

8.3.22. (a) All roots of the polynomial xq − rq are r, rεq, rε
2
q , . . . , rε

q−1
q .

Assume that xq − rq is reducible over Q, which means that there is a poly-

nomial with rational coefficients of degree k < q which divides it. The value

of the constant term of this polynomial is rational and equals the product

of the absolute values of k of the roots, 0 < k < q. Therefore, rk ∈ Q.

Since q is prime, we have kx + qy = 1 for some integers x and y. Thus,

r = (rk)x(rq)y ∈ Q. This is a contradiction.

(b) Assume not. Consider the polynomial A(x) of lowest degree for

which the statement is false. Let R(x) be the remainder when xq − rq is

divided by A(x). Then degR < degA, R(r) = 0, and R(x) �= 0 by (a). This

contradicts the choice of A.

9The irreducibility of the polynomial g(x) = 1 + x + . . . + x6 can be proved, e.g.,

by applying the Eisenstein criterion 8.4.9 to the polynomial g(x + 1). However, in this

particular case it suffices to prove that g has no divisors of degree 1 or 2 with rational

coefficients.
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(c) The solution is analogous to the solutions of 8.3.4 (c, d), 8.3.18 (d),

and 8.3.11 (a). Use (b).

(d) The proofs repeat the second and third proofs of the rationality

lemma 8.3.18 (f). It is only necessary to replace 3 by q and 2 by q − 1

throughout the proofs (for example, in the second line of the second proof

put k = 0, 1, 2, . . . , q). Compare with the proof of the decomposition lemma

in 4.G.

8.3.23. (a) Assume that the polynomial can be factored over Q[εq]. The

constant term of any of these factors lies in Q[εq] and equals ±rkεmq for some

m. Then rk ∈ Q[εq]. Following the proof of Lemma 8.3.22 (a) we see that

r ∈ Q[εq], a contradiction.

Parts (b, c) are deduced from (a) analogously to 8.3.22 (b, c).

8.3.24. (a) Suppose that the polynomial is reducible. Following the proof

of irreducibility over Q[εq], Lemma 8.3.23 (a), we have r ∈ Q[εq]. Thus,

r2, r3, . . . , rq−1 ∈ Q[εq].
Now we show that r is a root of a polynomial of degree at most q −

1, which will contradict the irreducibility of xq − rq over Q. Expand the

numbers rk as polynomials in εq for k = 0, 1, . . . , q − 1:

rk = ak,0 + ak,1εq + . . .+ ak,q−2ε
q−2
q .

It suffices to find numbers λ0, λ1, . . . , λq−1 ∈ Q, not all of them zero, such

that

λ0a0,m + . . .+ λq−1aq−1,m = 0 for every m = 0, 1, . . . , q − 2.

Such numbers exist analogously to the corresponding assertion in the second

proof of the rationality lemma 8.3.18 (f). (In other words, take an array of

size q× (q−1) formed by the rational numbers akl. By several operations of

adding a row multiplied by a rational number to another row, one can get

an array containing a zero row.)

Part (b) follows from (a).

8.3.25. Assume not. Let P be the given polynomial. The assumption

q < degP contradicts the rationality lemma 8.3.22 (d). If q ≥ degP , then
by the conjugation lemma 8.3.22 (c) and the linear independence lemma over

Q[εq] 8.3.24 (b), the polynomial P has pairwise distinct roots xk = A(rεkq )
for k = 0, 1, . . . , q− 1. If q > degP we get a contradiction. If q = degP the

conditions q �= 2 and xk = xq−k �= xk imply the uniqueness of the real root.

3.E. There is only one way to solve a quadratic equation (2)

In this and the following subsections, equality signs involving polynomials

f (or fj) mean equality of polynomials coefficientwise.
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The systems of equations studied here and in the following subsection

arise when solving equations in radicals (“using one radical”); see Remark

8.2.1 (d).

8.3.28. (a, b) Solve the following systems of equations, where f(x, y), p(u, v),
and q(u, v, w) are polynomials with real coefficients.

(a)

{
f2(x, y) = p(x+ y, xy),

x = q (x+ y, xy, f(x, y)) .

(b)

{
fk(x, y) = p(x+ y, xy),

x = q (x+ y, xy, f(x, y)) ,
where k > 1 is an integer.

(c, d∗) Solve analogues of (a, b) where f is not a polynomial but a

function f : R2 → R. (The function f is not assumed to be continuous.)

The system of equations from 8.3.28 (a) is satisfied, for example, by the

polynomials

f(x, y) = x− y, p(u, v) = u2 − 4v, and q(u, v, w) =
u+ w

2
.

Below, we assume that f, g ∈ R[x, y].

8.3.29. (a) Lemma. If fg = 0, then f = 0 or g = 0.

Warning. There exist functions F,G : R→ R such that FG = 0, F �= 0,

and G �= 0. Furthermore, there exist two distinct polynomials (in two

variables) which are equal at an infinite set of points. Do not use without

proof the fact that if the values of polynomials in two variables are equal at

each point, then the polynomials are equal.

(b) If f2 = g2, then f = g or f = −g.
(c) If f2 + fg + g2 = 0, then f = 0 or g = 0.

(d) If f3 = g3, then f = g.
(e) If f5 = g5, then f = g.
(f) f5 − g5 = (f − g)(f − ε5g)(f − ε25g)(f − ε35g)(f − ε45g).

To prove the assertions 8.3.28 (b, d), the following notions and lemma

are useful.

A polynomial f in two variables x and y is called symmetric if f(x, y) =
f(y, x) and antisymmetric if f(x, y) = −f(y, x).

8.3.30. (a) Lemma. If f ∈ R[x, y] is a polynomial with real coefficients

in two variables such that f2 is symmetric, then f is either symmetric or

antisymmetric.

(b) Lemma. If f ∈ R[x, y] is such that f2k+1 is symmetric, then f is

symmetric.

(c) If f ∈ R[x, y] is antisymmetric, then there exists a symmetric poly-

nomial a ∈ R[x, y] such that f = (x− y)a.
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Lemma 8.3.29 (a) is useful for proving the above assertions, as well as

other problems.

8.3.31. Which of the statements in 8.3.29 and 8.3.30 can be generalized to

polynomials with complex coefficients?

Next, we develop a generalization of assertion 8.3.28, for an arbitrary

number of steps in the definition of the expressibility in radicals.

8.3.32. A rational function is a “formal ratio of polynomials,” i.e., a pair

f/g := (f, g) of polynomials with g �= 0, subject to the equivalence f/g ∼
f ′/g′ when fg′ = f ′g. The polynomial f is identified with the pair (f, 1).
Denote by R(u1, . . . , un) the set of all rational functions with real coefficients

in variables u1, . . . , un.
(a) Define the sum and the product of rational functions. Are they

well-defined? Check this!

(b) Consider the system of equations described in Remark 8.2.1 (d) for

n = 2, where fj and pj are rational functions (not necessarily polynomials).

Assume that the system is minimal. This means that there exists no system

with a smaller s, and that fkj is not a rational function of x + y, xy, and
f1, . . . , fj−1 for any j = 1, . . . , s and k < kj . Then s = 1, k1 = 2, and there

exists a rational function a ∈ R(u, v) such that

f1(x, y) = (x− y)a(x+ y, xy).

(c)∗ State and prove the analogue of (a) where the rational functions

f1, . . . ,
fs are replaced by functions R2 → R (although p0, . . . , ps are still rational

functions) and the equalities for rational functions are replaced by equalities

for functions defined on R2.

8.3.33. (Challenge.) There is only one way to solve a cubic equation. (To

solve this problem subsections 3.A and 3.C would be useful.)

Suggestions, solutions, and answers

8.3.28. (a) We will prove that there exists α ∈ R such that f(x, y) =

α(x−y). Since the polynomial f2 = p is symmetric, we can assume that the

polynomial q is linear in the third variable, i.e., q(u, v, w) = a(u, v)+b(u, v)w
for some a, b ∈ R[u, v] (otherwise we can change q while preserving f and

p). Then we have x = a(x+ y, xy) + b(x+ y, xy)f(x, y).
This yields pb2 = f2b2 = (x− a)2 = (y − a)2. By Lemma 8.3.29 (b), we

have x− a = a− y, since x− a = y − a is impossible. Hence a = (x+ y)/2,
which implies that (x − y)2 = 4f2b2 = 4pb2. If the polynomial p = f2 is

constant, the polynomial b = ±(x − y)/2
√
p is not symmetric. Therefore p
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is not constant. Thus b is constant. Hence 2x = 2q = x+ y + 2bf , so b �= 0

and f = α(x− y) for α = 1/2b.
(b) We will prove that k is even and that there exists α ∈ R such that

f(x, y) = α(x− y). We can use induction on k with the application of part

(a) and the generalization of Lemmas 8.3.29 (b, e) and 8.3.30. If k is odd,

from Lemma 8.3.30 (b) we get that f is symmetric. This contradicts the

equality x = q(x + y, xy, f(x, y)). If k = 4, then f2 is either symmetric or

antisymmetric. The first case reduces to (a). The second leads to f2(x, y)+
f2(y, x) = 0. The even-k case is similar.

(c) Similarly to part (a) we get x = a + bf . Therefore, f is a rational

function. The rest of the solution is analogous to (a).

8.3.29. (a) Define the leading term of a polynomial so that the leading term

of the product is equal to the product of the leading terms of the factors.

(b) This follows from part (a).

(c) We have f2 + fg + g2 =
(
f +

g
2

)2
+ 3

4g
2 = (f − ε3g)(f − ε23g).

(d) This follows from part (c).

(e) This follows from part (f).

(f) Prove and apply Bezout’s Theorem for polynomials in u with coeffi-

cients in R[v].

8.3.30. (a) Since f2 is symmetric, we have f(x, y)2 = f(y, x)2. By 8.3.29 (b),

we have f(x, y) = ±f(y, x).
(b) See 8.3.29 (c, e).

(c) See the hint for 8.3.29 (f).

8.3.31. Answer: 8.3.29 (a, b, f), 8.3.30 (a, b, c).

3.F. Insolvability “in real polynomials” (2)

In this subsection we often omit the arguments (x, y, z) of polynomials.

8.3.34. There are no polynomials f(x, y, z), p(u, v, w), and q(u, v, w, τ) with
real coefficients such that{

f(x, y, z)k = p
(
σ1(x, y, z), σ2(x, y, z), σ3(x, y, z)

)
,

x = q
(
σ1(x, y, z), σ2(x, y, z), σ3(x, y, z), f(x, y, z)

)
(a) for k = 1; (b) for k = 3; (c) for k = 2;

(d) for any integer k > 0.

For the proof, the following definition and statement are useful. A poly-

nomial f ∈ R[x, y, z] is called cyclically symmetric if f(x, y, z) = f(y, z, x).
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8.3.35. If f ∈ R[x, y, z] and the polynomial

(a) f3; (b) f2

is cyclically symmetric, then f is cyclically symmetric.

Remark 8.3.36 (Cf. solution of problem 8.2.3 (c)). There are no polyno-

mials

f1(x, y, z), f2(x, y, z), p0(u, v, w), p1(u, v, w, τ1), p2(u, v, w, τ1, τ2)

with real coefficients such that⎧⎪⎨
⎪⎩
f21 = p0(σ1, σ2, σ3),

f32 = p1(σ1, σ2, σ3, f1),

x = p2(σ1, σ2, σ3, f1, f2).

A generalization of Remark 8.3.36 to an arbitrary number of steps can

be formalized by the definition of expressibility in real radicals, which is

obtained from its complex analogue (2.B) by replacing complex coefficients

with real coefficients.

The formulas at the beginning of 2.A show that x is expressible in real

radicals for n = 2. The solution of problem 8.2.3 (a, b) shows that both of

the polynomials

(x− y)(y − z)(z − x) and x9y + y9z + z9x

are expressible in real radicals for n = 3.

Theorem 8.3.37. The polynomial x is not expressible in real radicals for

n = 3.

Theorem 8.3.37 is yet another formalization of the fact that a root of
a general cubic equation is not expressible in real radicals in terms of its
coefficients; see Remark 8.1.7 (e). Theorem 8.3.37 is implied by the following

lemma.

Lemma 8.3.38 (Preservation of cyclic symmetry). If q > 0 is an integer,

f ∈ R[x, y, z], and the polynomial f q is cyclically symmetric, then f is

cyclically symmetric.

This lemma (in a more general form) will be proved in 4.B.

8.3.39. Which of the statements in this subsection have true analogues for

polynomials with complex coefficients?
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Suggestions, solutions, and answers

8.3.37. For n = 3, the set of polynomials expressible in real radicals is

contained in the set of cyclically symmetric polynomials. This statement

can be proved by induction on the number of operations in the definition of

expressibility in radicals. The inductive step follows from Lemma 8.3.38 on

the preservation of cyclic symmetry. Since the polynomial x is not cyclically

symmetric, it is not expressible in real radicals.

8.3.38. The proof can be found in 4.B.

8.3.39. Answer: 8.3.34 (a, b, c, d), 8.3.35 (b), 8.3.38 for all q which are not

divisible by 3.

3.G. Insolvability “in polynomials” (3)

The definition of expressibility in radicals for a polynomial was given on page

133. Formally, Ruffini’s Theorem 8.2.2 follows from Lemma 8.3.43, whose

formulation is the most interesting and difficult task. In order to do this,

we prove the following simple facts. (Clearly, the polynomial x is not a

polynomial of x+ y and xy.)

8.3.40. The polynomial x1 is not expressible in radicals in such a way that

the second operation in the definition of expressibility is applied only for

(a) k = 2 (hint: see problem 8.3.39); (b) k = 3.

8.3.41. Which of the following assertions are true for f ∈ C[x1, . . . , x5]?
(a) If f3 is cyclically symmetric, then f is cyclically symmetric.

(b) If f5 is cyclically symmetric, then f is cyclically symmetric.

(c) If f3 is symmetric, then f is symmetric.

(d) If f2 is symmetric, then f is symmetric.

A 3-cycle is a permutation of an n-element set which moves 3 elements

cyclically and does not change the positions of any other elements. A polyno-

mial f ∈ C[x1, . . . , xn] is even-symmetric if for any 3-cycle α the polynomials

f(x1, x2, . . . , xn) and f(xα(1), xα(2), . . . , xα(n)) are equal.

8.3.42. (a) Find a cyclically symmetric polynomial that is not even-symmet-

ric.

(b) Let us assume that a permutation does not change the polynomial

from the solution to problem 8.3.41 (d). Then this permutation can be

represented as a composition of 3-cycles.

Lemma 8.3.43 (Preservation of even symmetry). If q > 0 is an integer,
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f ∈ C[x1, . . . , x5], and the polynomial f q is even-symmetric, then f is even-

symmetric.

8.3.44. Suppose f ∈ C[x1, . . . , xn] is a polynomial.

(a) If the polynomial f7 is even-symmetric, then f is even-symmetric.

(b) If n ≥ 5 and the polynomial f3 is even-symmetric, then f is even-

symmetric.

(c) If n ≥ 5, then any 3-cycle on an n-element set can be written as

a product of permutations of the form (ab)(cd) where a, b, c, and d are

pairwise distinct (i.e., as a product of compositions of transpositions with

disjoint supports).

Lemma 8.3.43 follows from 8.3.44 (a, b) (and from the obvious general-

ization of (a)). (b) follows from (c). For details, see 4.C.

8.3.45. The definition of rational expressibility in real (complex) radicals is

analogous to the definition of expressibility in radicals. Polynomials are re-

placed by rational functions (with appropriate coefficients; see the definition

in problem 8.3.32). Is the polynomial x1 rationally expressible by

(a) real radicals for n = 3?

(b) (complex) radicals for n = 5?

Suggestions, solutions, and answers

8.3.40. (b) Use the analogue of problem 8.3.41 (c) for n = 3.

8.3.41. Answer: (c) true; (a, b, d) false.
(a) See 8.2.4 (a).

(b) Consider the polynomial x1 + ε5x2 + ε25x3 + ε35x4 + ε45x5.
(d) Consider the polynomial

∏
i<j

(xi − xj).

(c) Since f3 is symmetric, we have

f3(x1, x2, x3, x4, x5) = f3(x2, x1, x3, x4, x5).

Taking cube roots yields

f(x1, x2, x3, x4, x5) = εq3f(x2, x1, x3, x4, x5) = ε2q3 f(x1, x2, x3, x4, x5).

Thus ε2q3 = 1, so εq3 = 1. Similarly, f(�x) = f(�xα) for any permutation

α exchanging two elements from the set {x1, x2, x3, x4, x5}. Therefore f is

symmetric.

8.3.42. (a) x1x2 + x2x3 + x3x4 + x4x5 + x5x1.
(b) First prove that if a permutation maps the polynomial of problem

8.3.41 (d) to itself, then the permutation is even. This implies that the
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permutation can be represented as a composition of 3-cycles; see Chapter 4,

section 2.

8.3.43. See the discussion of Ruffini’s Theorem 8.4.4.

8.3.44. (c) Let a, b, c, d, and e be five distinct elements of the given set.

Then (abc) = (ac)(de)(ab)(de).

8.3.45. Answer: (a, b) No.

Lemmas 8.3.38 on preserving cyclic symmetry and 8.3.43 on preserving

even symmetry also hold for rational functions; see 8.4.4. After that, we use

the ideas in the solution to 8.3.37.

3.H. Insolvability in complex numbers (4*)

8.3.46. (a) Let x, y, r ∈ R, p, g ∈ Q[u, v], and p1 ∈ Q[u, v, w] be such that

g(x, y) �∈ Q(x+ y, xy) and{
r2 = p(x+ y, xy),

g(x, y) = p1(x+ y, xy, r)

(cf. problem 8.3.28 (c)). Then r ∈ Q(x, y).

(b) Let x, y, r ∈ R, p ∈ Q[
√
2][u, v], g ∈ Q[u, v], and p1 ∈ Q[

√
2][u, v, w]

be such that g(x, y) �∈ Q(x+ y, xy,
√
2) and the equations of (a) hold. Then

there exist ρ ∈ Q(x, y), π ∈ Q[
√
2][u, v], and π1 ∈ Q[

√
2][u, v, w] such that

the equations of (a) hold with r, p, and p1 replaced by ρ, π, and π1.

(c) Rationalization lemma. Let x, y, r ∈ R and let F ⊂ R be a field

containing x + y, xy, r2 but not r. If F (r) ∩ Q(x, y) �⊂ F , then there exists

ρ ∈ Q(x, y) such that ρ2 ∈ F and F (ρ) = F (r).

8.3.47. Let aj = σj(x1, x2, x3), j = 1, 2, 3.
(a) Let x1, x2, x3, r ∈ R, p, g ∈ Q[u1, u2, u3] and p1 ∈ Q[u1, u2, u3, v] be

such that g(x1, x2, x3) �∈ Q(a1, a2, a3) and{
r2 = p(a1, a2, a3),

g(x1, x2, x3) = p1(a1, a2, a3, r).

Then r ∈ Q(x1, x2, x3).

(b) Rationalization lemma. Let x1, x2, x3, r ∈ R and let F ⊂ R be

a field containing a1, a2, and a3, r
2 but not r. If F (r) ∩ Q(x1, x2, x3) �⊂ F ,

then there exists ρ ∈ Q(x1, x2, x3) such that ρ2 ∈ F and F (ρ) = F (r).
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(c) Proposition. If x1, x2, x3 ∈ R and x1 is {a1, a2, a3}-expressible by

quadratic real radicals, then x1 is {a1, a2, a3}-expressible by quadratic real

radicals so that every radical is in Q(x1, x2, x3).

8.3.48. (a) Let x, y, r ∈ C, p ∈ Q[u, v], and p1 ∈ Q[u, v, w] be such that{
r3 = p(x+ y, xy),

x = p1(x+ y, xy, r)

(cf. problem 8.3.28 (d) for k = 3). Then r ∈ Q[ε3](x, y).
(b) Same as (a), but with x = p1(x + y, xy, r) replaced by g(x, y) =

p1(x+ y, xy, r) for some g ∈ Q[u, v] such that g(x, y) �∈ Q(x+ y, xy).
(c) Rationalization lemma. Let x, y, r ∈ C and let F ⊂ C be a field

containing x+ y, xy, ε3, and r
3 but not r. If F (r)∩Q(x, y) �⊂ F , then there

exists ρ ∈ Q(x, y) such that ρ3 ∈ F and F (ρ) = F (r).
(d) Rationalization lemma. Same as (c) with x and y replaced by x1,

. . . , xn and with x+y and xy replaced by σ1(x1, . . . , xn), . . . , σn(x1, . . . , xn).
(e) Rationalization lemma. Same as (d) with r3 and ρ3 replaced by

rq and ρq for a prime q and with ε3 replaced by εq.
(f) Proposition. If

x1, . . . , xn ∈ C, M := {σ1(x1, . . . , xn), . . . , σn(x1, . . . , xn), }

and x1 is M -expressible in radicals, then x1 is M -expressible in radicals so

that every radical is in
∞⋃
q=3

Q[εq](x1, . . . , xn).

8.3.49. There exist numbers x, y ∈ R such that if p ∈ Q[u, v] and p(x, y) =
0, then p = 0.

Such numbers are called algebraically independent over Q.

3.I. Expressibility with a given number of radicals (4*)

Definitions of the expressibility in radicals for a number and a polynomial

are given in 1.D and 2.A, respectively.

8.3.50. The roots of cubic and quartic equations with rational coefficients

are expressible in radicals with root extraction made only

(a) twice, with one cube root and one square root for cubic equations;

(b) four times, with one cube root and three square roots for quartic

equations.

(“Once” means “used once in an algorithm.” For example, in the algo-

rithm u := 3
√
a, v := u+ u, the cube root is extracted once.)
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8.3.51. The roots of a cubic equation (as polynomials) are not expressible

in radicals with extraction of only

(a) one root;

(b) square roots;

(c) cube roots;

(d)∗ “single-level” roots, i.e., roots of non-radical expressions.

8.3.52. Are the roots of a 4th-degree equation (as polynomials) expressible

in radicals with extraction of only

(a) square roots; (b) cube roots;

(c) two roots; (d) three roots?

8.3.53. If the roots of an equation of nth degree with rational coefficients

are radical, then they are radical with extraction of no more than

(a) five roots for n = 5; (b) n log2 n roots for any n.

To solve these problems we need the following simple elements of Galois

theory. Define Zq := {1, εq, ε2q , . . . , εq−1
q }. Recall that Sn is the set of all

permutations of a set of n elements. A subset of Sn is called a subgroup if

it is closed under composition and taking inverses. For a subgroup G ⊂ Sn
and an integer q, a map G→ Zq is called a homomorphism (or character) if
it maps compositions into products, i.e., if χ(αβ) = χ(α)χ(β).

8.3.54. (a) If q > 0 is an integer, f is a nonzero polynomial, and f q is even-
symmetric, then for any even permutation α there exists a unique character

χf (α) ∈ Zq such that f(xα(1), xα(2), . . . , xα(n)) = ε
χf (α)
q f(x1, x2, . . . , xn).

(b) The map χf : An → Zq from the set An of all even permutations

constructed in (a) is a homomorphism.

8.3.55. Does there exist a prime q and a non-constant homomorphism

(a) A3 → Zq? (b) A4 → Zq?

In the proof of Lemma 8.3.43 on the preservation of even symmetry,

it was actually proved that for an integer n ≥ 5 and a prime q, every

homomorphism χ : An → Zq must map each permutation to 1.

8.3.56. (a) Do there exist an integer q and an injective (one-to-one) homo-

morphism S3 → Zq?

(b) Do there exist integers p and q and homomorphisms χ : S4 → Zq

and ϕ : χ−1(1)→ Zp with the second one being injective?
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8.3.57. (a) Do there exist integers p and q and homomorphisms χ : S4 → Zq

and ϕ : χ−1(1)→ Zp with the second one being injective?

(b) Do there exist integers p, q, and r and homomorphisms χ : S4 → Zq,

ϕ : χ−1(1)→ Zp, and γ : ϕ−1(1)→ Zr with the last one being injective?

(c) Does there exist a chain of four homomorphisms analogous to (b)?

8.3.58. (a) For any polynomial f(x1, x2, . . . , xn), the set

stf := {α ∈ Sn | f(xα(1), xα(2), . . . , xα(n)) = f(x1, x2, . . . , xn)}
is a subgroup of Sn.

(b) List all subgroups of S3. Which of them can be preimages of the

identity element under the homomorphism S3 → Zq for some q?
(c) List all subgroups in S4. Which of them can be preimages of the

identity element under the homomorphism S4 → Zq for some q?

The estimation 8.3.53 can be obtained from the arguments in the proof

of Ruffini’s Theorem 8.2.2. The idea is that the “symmetry subgroup” stf
of Sn cannot be changed more than log2(n!) < n log2 n times.

4. Proofs of insolvability in radicals

Formally, to understand this section, it is enough to read subsections 1.B–

1.D (although we sometimes refer to section 3 for some details of the proofs

below, and we use Gauss’s degree-lowering theorem (8.1.15) in subsection 4.G

below). The beginning of section 3 lists which statements are helpful to un-

derstand this section.

Guide to this section. Subsection 4.A is used throughout. Otherwise,

the subsections are formally independent of one another with the following

exceptions:

Subsection 4.G uses Lemma 8.4.14. Theorem 8.4.4 is used in subsec-

tion 4.F. Subsection 4.G is needed for subsection 4.H.

Nevertheless, it is useful to read the subsections in the following order:

4.B before 4.C, 4.D before 4.E before either 4.F or 4.G.

The outline of the ideas are provided by statements of the lemmas in each

subsection.

4.A. Fields and their extensions (2)

If F ⊂ C, r ∈ C, and rq ∈ F for some positive integer q, then define

F [r] := {a0 + a1r + a2r
2 + · · ·+ aq−1r

q−1 | a0, . . . , aq−1 ∈ F}.
Definitions of constructibility, real constructibility, expressibility in radicals,

and real expressibility in radicals are given in 2.C, 1.B, 1.D, and 1.C, re-

spectively.
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Lemma 8.4.1 (Tower of extensions). (a) A number x ∈ C is constructible

if and only if there exist r1, . . . , rs−1 ∈ C such that

Q = F1 ⊂ F2 ⊂ F3 ⊂ . . . ⊂ Fs−1 ⊂ Fs � x,
where r2k ∈ Fk, rk �∈ Fk, and Fk+1 = Fk[rk] for every k = 1, . . . , s− 1.

(b) A number x ∈ C is expressible in radicals if and only if there exist

r1, . . . , rs−1 ∈ C and primes q1, . . . , qs−1 such that

Q = F1 ⊂ F2 ⊂ F3 ⊂ . . . ⊂ Fs−1 ⊂ Fs � x,
where rqkk ∈ Fk, rk �∈ Fk, and Fk+1 = Fk[rk] for every k = 1, . . . , s− 1.

Such a sequence is called a tower of (quadratic or radical) extensions.
This lemma is proved by induction on the number of operations required

to obtain the given number, similar to previous lemmas in section 3. An

analogue of this lemma for real constructibility and radicality is valid and

is proved similarly.

The concept of a field will help us to think about this natural but some-

what cumbersome lemma. A field is a subset of C which is closed under ad-

dition, subtraction, multiplication, and division by a nonzero number. The

conventional name is “number field” (the technical term “field” in mathe-

matics refers to a more general object). This notion is useful because the

Polynomial Remainder Theorem holds for polynomials with coefficients in a

field. We use the standard notation F [u1, . . . , un] and F (u1, . . . , un) for the
sets of polynomials and rational functions (i.e., formal ratios of polynomi-

als) with coefficients in a field F . Equality signs involving polynomials or

rational functions P , f , or fj mean coefficientwise equality of polynomials

or rational functions.

Recall the notation

εq := cos(2π/q) + i sin(2π/q) and �y := (y1, . . . , yn).

4.B. Insolvability “in real polynomials” (3)

Here we prove Theorem 8.4.2, the real version of Ruffini’s Theorem 8.4.4

below. Define an extension of a field F ⊂ C by r1, . . . , rs ∈ C as

F (r1, . . . , rs) := {P (r1, . . . , rs) | P ∈ F (u1, . . . , us)}.
Define a radical extension F [r1, . . . , rs] of a field F ⊂ C inductively by

F [r1, . . . , rs] := F [r1, . . . , rs−1][rs], where we assume that for every j =

1, . . . , s there is an integer qj such that r
qj
j ∈ F [r1, . . . , rj−1].

Theorem 8.4.2. There exist a0, a1, a2 ∈ R such that the equation x3 +

a2x
2 + a1x+ a0 = 0 has three real roots x1, x2, x3, none of which lies in any

radical extension of Q(a0, a1, a2) contained in Q(x1, x2, x3).

A rational function P ∈ R(u1, u2, u3) is said to be cyclically symmetric
if P (u1, u2, u3) = P (u2, u3, u1) (cf. Remark 8.1.7 (e).)
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Lemma 8.4.3 (Preservation of cyclic symmetry). If P is a rational function

of three variables with coefficients in R and P q is cyclically symmetric for

some integer q, then P is cyclically symmetric.

Proof. Let R(x1, x2, x3) := P (x2, x3, x1). Since P
q is cyclically symmetric,

we have P q = Rq.

If q is odd, we obtain P = R (similar to problem 8.3.29), so P is cyclically

symmetric.

Otherwise, if q is even, then P = R or P = −R. When P = R we obtain

that P is cyclically symmetric. When P = −R we have

P (x1, x2, x3) = −P (x2, x3, x1) = P (x3, x1, x2) = −P (x1, x2, x3).
Thus P = 0, so P is cyclically symmetric again. �
Proof of Theorem 8.4.2. The numbers x1, . . . , xn ∈ R are called alge-
braically independent over Q if P (x1, . . . , xn) �= 0 for every nonzero polyno-

mial P with coefficients in Q. By induction we show that for any n there are
n algebraically independent numbers x1, . . . , xn over Q. The inductive step

follows because R is uncountable, whereas the set of real roots of polynomials

with coefficients in Q(x1, . . . , xn−1) is countable.

Denote the coefficients of the monic polynomial with roots x1, x2, x3 by

a2 := −(x1 + x2 + x3), a1 = x1x2 + x2x3 + x1x3, a0 = −x1x2x3.
Assume to the contrary that there is a radical extension Q(a0, a1, a2)[r1, . . . ,
rs] which both contains x1 and is contained in Q(x1, x2, x3). Using Lemma

8.4.3, by induction on j we see that rj is the value at (x1, x2, x3) of an even-

symmetric rational function for every j = 1, . . . , s. As x1 ∈ Q(a0, a1, a2)[r1,
. . . , rs], we see that x1 is also the value at (x1, x2, x3) of an even-symmetric

rational function P0. Since x1, x2, x3 are algebraically independent over Q,

we have P0(u1, u2, u3)=u1. This is not even-symmetric because P0(u2, u3, u1)
= u2 �= u1, which is a contradiction. �

4.C. Insolvability “in polynomials” (3)

Here we prove Ruffini’s Theorem in the following form, used by Theorem

8.1.13 (cf. Ruffini’s Theorem 8.2.2). Extensions and radical extensions were

defined at the beginning of 4.B. Define

Qε :=

∞⋃
q=3

Q(ε3, ε4, . . . , εq)

and

Qε(�a) := Qε(a0, a1, a2, a3, a4).

Theorem 8.4.4 (Ruffini). There exist a0, a1, a2, a3, a4 ∈ C such that no

root of the equation x5+a4x
4+ . . .+a1x+a0 = 0 is contained in any radical
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extension of Qε(�a) contained in Qε(�x), where x1, . . . , x5 are the roots of the

equation.

In order to understand the main idea, one can replace Qε by Q and

Qε(�x) by Q[�x] (in the statement and proof).

For a permutation α write

�uα := (uα(1), . . . , uα(n)).

A rational function P ∈ C(�u) is even-symmetric if P (�u) = P (�u(abc)) for

every cycle (abc) of length three.10

Lemma 8.4.5 (Preserving symmetry after root extractions). If P is a ratio-

nal function of five variables with coefficients in C and P q is even-symmetric

for some integer q, then P is even-symmetric.

Proof. We may assume that q is a prime and P �= 0.

Let {a, b, c, d, e} = {1, . . . , 5}.
First assume that q �= 3. Since P q(�u) = P q(�u(abc)), we have

q−1∏
j=0

(P (�u)− εjqP (�u(abc))) = 0.

Since P is a nonzero rational function, there exists j = j(abc) ∈ Z such that

P (�u) = εjqP (�u(abc)).

Then

P (�u) = εjqP (�u(abc)) = ε2jq P (�u(abc)2) = ε3jq P (�u).

Hence j is divisible by q, i.e., P (�u) = P (�u(abc)).
For q = 3 let σ := (ab)(de) = (abe)(bed). Then analogously 0 ≡

j(σ2) ≡ 2j(σ) (mod 3). Hence j(σ) ≡ 0 (mod 3); i.e., P (�u) = P (�uσ).
Analogously, P (�u) = P (�u(ac)(de)). Since (ab)(de)(ac)(de) = (abc), we have

P (�u) = P (�u(abc)). �

Proof of Ruffini’s Theorem 8.4.4. The quantities x1, . . . , xn ∈ C are

said to be algebraically independent over Qε if P (�x) �= 0 for every nonzero

polynomial P with coefficients in Qε. By induction on n there are n al-
gebraically independent numbers x1, . . . , xn over Qε. The inductive step

follows because C is uncountable while the set of roots of polynomials with

coefficients in Qε(x1, . . . , xn−1) is countable.

Denote the coefficients of the monic polynomial with roots x1, . . . , x5 by

a4 := −(x1 + . . .+ x5), . . . , a0 = −x1 · . . . · x5.
10A permutation is even if it is a composition of an even number of transpositions.

Being even-symmetric is equivalent to P (�u) = P (�uα) for every even permutation α of

{1, . . . , n}. Indeed, any even permutation is a composition of permutations of the form

(ab)(bc) = (abc) and (ab)(cd) = (abc)(bcd).
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Assume to the contrary that there is a radical extension Qε(�a)[r1, . . . , rs]
which both contains x1 and is contained in Qε(�x). Using Lemma 8.4.5, by

induction on j we see that rj is the value at �x of an even-symmetric rational

function for every j = 1, . . . , s. Since x1 ∈ Qε(�a)[r1, . . . , rs], we see that

x1 is also the value at �x of an even-symmetric rational function P0. Since

x1, . . . , x5 are algebraically independent over Qε, we have P0(u1, . . . , u5) =
u1. This is not even-symmetric because the cycle (123) carries u1 to u2 �= u1,
so we have a contradiction. �

4.D. Non-constructibility in Gauss’s Theorem (3*)

Theorem 8.1.2 (asserting the non-constructibility of
3
√
2) follows from the

real analogue of the tower of extensions lemma 8.4.1 (a) and the following

result.

Lemma 8.4.6. Let F ⊂ R be a field and let r ∈ R− F such that r2 ∈ F .
(a) Then F [r] is a field.

(b) If
3
√
2 �∈ F , then 3

√
2 �∈ F [r].

Proof. (a) It is necessary to prove that F [r] is closed under addition, sub-

traction, multiplication, and division by a nonzero number. This is trivial

for all operations except division, for which the statement holds because

1

a+ br
=

a

a2 − b2r2
− b

a2 − b2r2
r.

(b) Suppose to the contrary that
3
√
2 ∈ F [r]. Then

3
√
2 = a + br for some

a, b ∈ F . We get

2 = (
3
√
2)3 = (a3 + 3ab2r2) + (3a2b+ b3r2)r.

Since
3
√
2 �∈ F , we have b �= 0 and r �∈ F . In particular, r �= 0. Therefore

3a2 + b2r2 > 0. Since 2 ∈ Q ⊂ F we have r ∈ F , a contradiction. �
Now we prove Gauss’s non-constructibility result in 8.1.5.

Lemma 8.4.7 (Powers of 2). If a polynomial with rational coefficients is

irreducible over Q and has a constructible root, then the degree of the poly-

nomial is a power of 2.

This lemma is implied by the tower of extensions lemma 8.4.1 (a) and

part (b) of the following lemma. The proof of (a) is left to the reader as an

exercise.

Lemma 8.4.8 (Conjugation). Let F ⊂ C be a field and let r ∈ C−F such

that r2 ∈ F .
(a) Define the conjugation map F [r]→ F [r] by the formula x+ yr:=x−

yr. This map is well-defined and we have z + w = z + w and zw = z · w.
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(b) If polynomials P ∈ F [x] and Q ∈ F [r][x] have a common root and are

irreducible over F and over F [r], respectively, then degP ∈ {degQ, 2 degQ}.
Proof. (b) By the complex analogue of Lemma 8.4.6 (a), F [r] is a field. Con-
sider divisibility, irreducibility, and GCDs in F [r], unless otherwise stated.

Since P and Q have a common root and Q is irreducible, P is divisible by

Q. By (a) P = P is divisible by Q. Since Q is irreducible and divisible by

D := gcd(Q,Q), it follows that either D = Q or D = 1.

If D = Q, then from D = D we obtain Q = D ∈ F [x]. Since P is

irreducible over F , we obtain P = Q.

If D = 1, then P is divisible by M := QQ. Since M = M , we have

M ∈ F [x]. Since P is irreducible over F , we obtain P =M . Hence degP =

2degQ. �

Lemma 8.4.9 (Eisenstein’s criterion). Let p be a prime. If the leading

coefficient of a polynomial with integer coefficients is not divisible by p, the
other coefficients are divisible by p, and the constant term is not divisible

by p2, then this polynomial is irreducible over Z.

Lemma 8.4.10 (Gauss’s lemma). If a polynomial with integer coefficients

is irreducible over Z, then it is irreducible over Q.

Both Eisenstein’s criterion and Gauss’s lemma are easily proved by pass-

ing to polynomials with coefficients in Zp. (For Gauss’s lemma, consider the

factorization P = P1P2 of the given polynomial P over Q, take n1 and n2
such that the polynomials n1P1 and n2P2 both have integer coefficients, and

consider a prime divisor p of n1n2. For the Eisenstein criterion, see the

solution to problem 8.3.1 (f).)

Proof of non-constructibility in Gauss’s Theorem 8.1.5. Since εn =

εknk, the constructibility of εnk implies the constructibility of εn. Hence it

suffices to prove that εn is not constructible for

(a) n being a prime not of the form 2m + 1, and

(b) n = p2, the square of a prime.

The non-constructibility of εn follows by Lemma 8.4.7 (on powers of 2)

for the root εn of the polynomial

• P (x) := xn−1 + xn−2 + · · ·+ x+ 1 for case (a) and

• P (x) := xp(p−1) + xp(p−2) + · · ·+ xp + 1 for case (b).

The irreducibility of these polynomials over Q follows from their irre-

ducibility over Z and Gauss’s lemma 8.4.10. The irreducibility of these

polynomials P (x) over Z follows from irreducibility of P (x + 1) over Z.

The latter is a consequence of Eisenstein’s criterion, using the congruence

(a+ b)p ≡ ap + bp mod p. �
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4.E. Insolvability “in real numbers”

The implication (ii)⇒(i) in Theorem 8.1.8 follows from the real analogue of

the tower of extensions lemma 8.4.1 (b) and part (a) of the following.

Lemma 8.4.11. Let q be a prime, F ⊂ R a field and r ∈ R−F with rq ∈ F .
(a) If a polynomial with coefficients in F is of degree 3 and has three

real roots, none of which lies in F , then none of the roots lies in F [r].
(b) Irreducibility. The polynomial tq − rq is irreducible over F [εq].
(c) Linear independence. If P (r) = 0 for some polynomial P ∈

F [εq][t] of degree less than q, then P = 0.

(d) Conjugation. If P ∈ F [εq][t] and P (r) = 0, then P (rεkq ) = 0 for

every k = 0, 1, . . . , q − 1.

Proof of (b). Suppose to the contrary that the polynomial tq − rq factors

over F [εq], that is, has a proper divisor P ∈ F [εq][t]. The roots of tq−rq are
r, rεq, rε

2
q , . . . , rε

q−1
q . The constant term of P is the product of k of these

roots. Then rk ∈ F [εq]. Since q is prime, kx + qy = 1 for some integers x

and y. Then r = (rk)x(rq)y ∈ F [εq].
Therefore11 r2, r3, . . . , rq−1 ∈ F [εq]. Consider a q × (q − 1) matrix with

entries akl ∈ F formed by representations of numbers rk in powers of εq:

rk =

q−2∑
l=0

aklε
l
q, 0 ≤ k ≤ q − 1.

Using additions and multiplications by numbers in F , we can obtain a matrix

with a zero row.

Hence there is a nonzero polynomial Q ∈ F [t] of degree less than q
with the root r. Then gcd(tq − rq, Q) has a root r and degree k with

0 < k ≤ degQ < q. So the polynomial tq − rq is reducible over F .
Therefore we see that r ∈ F , a contradiction. �
Part (c) is similar to (b).

Proof of (c). Since P (r) = 0, the remainder on division of P by tq − rq

assumes value 0 at r.
Since the degree of this remainder is less than q, by (c) this remainder

is zero. Thus P is divisible by tq − rq. For every j = 0, 1, . . . , q − 1, since

(rεjq)k = rk, we obtain P (rεjq) = 0. �
Proof of (a). Suppose to the contrary that a root x0 of the polynomial A
lies in F [r]. Since x0 is in F [r] and rq ∈ F , x0 = H(r) for some polynomial

H with coefficients in F of degree greater than 0 and less than q. Apply (d)

to P (t) := A(H(t)). Since A(H(r)) = 0, we see that H(rεkq ) is the root of

A for every k = 0, 1, . . . , q − 1. If H(rεkq ) = H(rεlq) for some k and l with

11Using the fact that dimension is well-defined, the above can be rewritten as

dimF F [r] ≤ dimF F [εq] ≤ q − 1.
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0 ≤ k < l ≤ q − 1, then by (c) we have degH = 0, which is a contradiction.

Thus the numbers H(rεkq ), 0 ≤ k ≤ q − 1, are distinct roots of A. So q ≤ 3.

If q = 2, then by Vieta’s Theorem (3.6.5), the remaining root of A lies in

F , a contradiction. Hence q = 3. Since ε3 = ε23, we have H(rε3) = H(rε23).
Since the last two numbers are distinct, neither of them is real. �

4.F. Insolvability “in numbers” (4*)

Theorem 8.1.13 follows from the Ruffini Theorem 8.4.4 and the Abel–Ruffini

Theorem 8.4.12.

Theorem 8.4.12 (Abel–Ruffini). Let a0, . . . , an−1 ∈ C be such that the

equation xn+ an−1x
n−1+ . . .+ a1x+ a0 = 0 has n distinct roots x1, . . . , xn.

If there exists a radical extension Qε(�a) = F0 ⊂ . . . ⊂ Fs such that x1 ∈ Fs,

then there exists a radical extension Qε(�a) = Q0 ⊂ . . . ⊂ Qt such that

x1 ∈ Qt ⊂ Qε(�x).
12

The proof of Theorem 8.4.12 does not use permutations or the assump-

tion that n ≥ 5. We construct Q1, . . . , Qt inductively using the lemma

below, which asserts that if F [r] contains more (values of) rational func-

tions of x1, . . . , xn with coefficients in Qε than does F , then we may assume

that r itself is such an “excess” rational function.

Lemma 8.4.13 (Rationalization). Let x1, . . . , x5, r ∈ C, let q be a prime,

and let F ⊂ C be a field containing the elementary symmetric polynomials

of x1, . . . , x5 and also εq and rq, but not r. If F [r] ∩Qε(�x) �⊂ F , then there

exists ρ ∈ Qε(�x) such that ρq ∈ F and F [ρ] = F [r].

Proof. By assumption, there is a rational function U ∈ Qε(�u) satisfying

U(�x) ∈ F [r]− F . Hence

U(�x) = P (r) = p0 + p1r + . . .+ pq−1r
q−1

for some polynomial P ∈ F [z] of degree less than q. Since P (r) �∈ F , there
exists l such that 0 < l < q with nonzero coefficient pl ∈ F of zl in P . We

have

ρ := plr
l =

P (r) + ε−l
q P (rεq) + ε−2l

q P (rε2q) + · · ·+ ε
(1−k)l
q P (rεq−1

q )

q
.

Define the resolution polynomial Q(t) :=
∏

α∈S5

(t−U(�xα)), where S5 is the set

of all permutations of {1, . . . , 5}. Since U(�x) = P (r), we have Q(P (r)) = 0.

The coefficients of Q as a polynomial of t are symmetric in x1, . . . , x5. Since
F contains elementary symmetric polynomials of x1, . . . , x5, it follows that
Q(t) ∈ F [t]. Thus Q(P (z)) ∈ F [z]. Take any j = 1, . . . , q − 1. Then by

12Here “x1 ∈ Qt ⊂ Qε(�x)” can be replaced by “Qt = Fs ∩ Qε(�x)”. The proof is

analogous.
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the conjugation lemma 8.4.14 (c), Q(P (rεjq)) = 0. Thus P (rεjq) = U(�xα) for
some permutation α = αj . Since εq ∈ F , the above formula for ρ shows that

ρ ∈ Qε(�x).
We have ρq = pql (r

q)l ∈ F and ρ = plr
l ∈ F [r]. Since q is a prime and

l is not divisible by q, there exist integers a and b such that aq + bl = 1.

By the irreducibility lemma 8.4.14 (a), F [r] is a field. Then r = (rq)a(rl)b =

(rq)aρbp−b
l ∈ F [ρ]. Hence F [r] = F [ρ]. �

Lemma 8.4.14. Let q be a prime, r ∈ C a number, and F ⊂ C a field

containing εq and rq but not r.
(a) Irreducibility. The polynomial tq − rq ∈ F [t] is irreducible over

F .13

(b) Linear independence. If P (r) = 0 for some polynomial P ∈ F [t]
of degree less than q, then P = 0.

(c) Conjugation. If Q ∈ F [t] is a polynomial and Q(r) = 0, then

Q(rεjq) = 0 for j = 1, . . . , q − 1.

Proof of (a). The roots of the polynomial tq−rq are r, rεq, rε2q , . . . , rεq−1
q .

Then the constant term of a factor of tq − rq is the product of some m of

these roots. Since εq ∈ F , we obtain rm ∈ F . For a proper factor, if it

existed, 0 < m < q. Since q is a prime, qa+mb = 1 for some integers a and

b. Then r = (rq)a(rm)b ∈ F , which is a contradiction. �
Parts (b) and (c) are deduced from (a) similarly to Lemma 8.4.11.

Proof of the Abel–Ruffini Theorem 8.4.12. We may assume that all

the degrees of the root extractions are prime numbers, i.e., Fj = Fj−1(rj)

for some rj ∈ C such that r
kj
j ∈ Fj−1 for some prime kj . Let us prove the

modified statement by induction on s. The base case s = 0 is obvious. Let

us prove the inductive step.14

Take the smallest s for which there is a radical extension Qε(�a) = F0 ⊂
. . . ⊂ Fs � x1 such that all the k1, . . . , ks are prime powers. Call an integer

j ∈ {1, . . . , s} interesting if Fj ∩ Qε(�x) �⊂ Fj−1. By the minimality of the

number s, it is interesting. Take the largestm ≤ s for which there is a radical

extension as above such that m − 1 is not interesting but m,m + 1, . . . , s
are.

13 The analogue of the irreducibility lemma without the condition “εq ∈ F” is false

for q > 2, F = R, and r = εq. For example, the condition “εq ∈ F” is omitted in the

wonderful book [Pra07a, pp. 580–581]. Let us explain this subtle point in more detail. In

[Pra07a] the statement “q = p” on p. 581 (for p = 2) means the following: if a quadratic

polynomial f is irreducible over a field F containing i but factors over F [ q
√
a] for some

a ∈ F and prime q, then q = 2. This is incorrect for f(x) = x2 + x+ 1, q = 3, a = 1, and

F = Q[i]. The error in the proof in [Pra07a] is in the previous sentence: (the correct)

Theorem 1 on p. 572 cannot be applied, since perhaps a = bq for some b ∈ F (although
q
√
a 
∈ F ).

14This proof is due to I. Gaiday-Turlov and A. Lvov. Like everything in this book, it

could have been known earlier.
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If m = 1, then by the rationalization lemma 8.4.13 we can for j =

1, 2, . . . , s consecutively replace rj by ρj so that Qε(�a, ρ1, . . . , ρj) = Fj . For

j = s we obtain the required radical extension.

Now assume that m > 1. Since m is interesting, by the rationalization

lemma 8.4.13 there is ρ ∈ Qε(�x) such that Fm = Fm−1(ρ). For the prime km
we have ρkm ∈ Fm−1. Since m−1 is not interesting, we have Fm−1∩Qε(�x) ⊂
Fm−2. Hence ρ

km ∈ Fm−2. Thus Fm−2(ρ) is a radical extension of Fm−2 and

Fm−2(ρ, rm−1) = Fm−2(rm−1, ρ) = Fm−1(ρ) = Fm. So replacement of rm−1

and rm by ρ and rm−1 gives a radical extension of F0 with the same s such

that each field except Fm−2(ρ) coincides with the corresponding field among

F0, . . . , Fs. For the new extension, m is not interesting but m+1, . . . , s are.
Since m < s, this contradicts the maximality of m. �

4.G. Kronecker’s Theorem (4*)

Kronecker’s Theorem 8.1.14 (and, thus, the Galois Theorem 8.1.12) follows

from the consolidation lemma 8.4.15 and Lemma 8.4.16 (a) below.

For a prime q, a field F ⊂ C, and a number r ∈ C−F such that rq ∈ F ,
an extension F [r] of F is called normal if εq ∈ F .

Lemma 8.4.15 (Consolidation). If a number x ∈ C is expressible in radi-

cals, then there is a tower of normal extensions (from Lemma 8.4.1 (b)) such

that for every k = 1, 2, . . . , s− 1 either rk ∈ R or |rk|2 ∈ Fk.

Lemma 8.4.16. Let q be a prime, F ⊂ C a field, and r ∈ C− F such that

rq, εq ∈ F .
(a) Suppose that either r ∈ R or |r|2 ∈ F , and let G ∈ F [t] be a

polynomial of prime degree with more than one real root and at least one

non-real root. If G is irreducible over F , then G is irreducible over F [r].
(b) Parametric conjugation. If P ∈ F [x, t] and P (x, r) = 0 as a

polynomial in x, then P (x, rεkq ) = 0 as a polynomial in x for every k =

0, 1, . . . , q − 1.

Proof of (b). We can replace the polynomial P with its remainder upon di-

vision by tq−rq. Therefore, we can assume that degt P < q. In this case, the

statement is obtained by applying the linear independence lemma 8.4.14 (b)

to the coefficients. �

Lemma 8.4.17 (Rationality). Let F ⊂ C be a field, q an integer, r ∈ C

with rq ∈ F , and H ∈ F [x, t]. Then H(x, r)H(x, εqr) · · ·H(x, εq−1
q r) ∈ F [x].

Proof (I. I. Bogdanov). The product H(x, x0)H(x, x1) · · ·H(x, xq−1) is a

symmetric polynomial in x0, x1, . . . , xq−1. Thus, it is a polynomial in x
and in elementary symmetric polynomials in x0, x1, . . . , xq−1. The values of
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these elementary symmetric polynomials for xk = rεkq , k = 0, 1, . . . , q − 1,

are equal to the coefficients of xq − rq and are members of F .15 �

Proof of Lemma 8.4.16. (a) (We will consider divisibility and irreducibil-

ity in F [r] unless otherwise stated.) Suppose to the contrary that G is re-

ducible. Then G has an irreducible divisor in F [r][x]. This divisor is the

value H(x, r) of a polynomial H ∈ F [x, t] of degree more than 0 and less

than q in t, and of degree less than degG in x. So H(x, r) is irreducible

and G(x) = H(x, r)H1(x, r) for some polynomial H1 ∈ F [x, t]. Let ε := εq.
Apply part (b) to P (x, t) := G(x) − H(x, t)H1(x, t). We see that G(x) is

divisible by the polynomial H(x, rεk) for each k = 0, 1, . . . , q − 1.

If H(x, rεk) factors for some k = 0, 1, . . . , q − 1, then H(x, rεk) =

H2(x, r)H3(x, r) for some polynomials H2, H3 ∈ F [x, t]. Apply (b) to P (x, t)
:= H(x, tεk)−H2(x, t)H3(x, t). This implies that H(x, r) factors, a contra-

diction. So H(x, rεk) is irreducible for every k = 0, 1, . . . , q − 1.

By the linear independence lemma 8.4.14 (b), the polynomials H(x, rεk)
for k = 0, 1, . . . , q − 1 are distinct. Hence G is divisible by their product.

The rationality lemma 8.4.17 asserts that the coefficients of this product lie

in F . From this and the irreducibility of G over F , it follows that G equals

this product up to a constant multiple a ∈ F . Thus degG = q degxH. Since

degG is a prime and degxH < degG, we have degxH = 1 (and degG = q).
So there exist h0, . . . , hq−1 ∈ F such that the roots of G are

xk := h0 + h1rε
k + . . .+ hq−1rε

k(q−1), k = 0, 1, . . . , q − 1.

The property xk ∈ R is equivalent to xk = xk. Note that εkq = ε−k
q .

If r ∈ R, then by the linear independence lemma we have that for every

k = 0, 1, . . . , q − 1 the condition xk = xk is equivalent to hsε
2sk = hs for

every s = 0, 1, . . . , q − 1.

Hence xk ∈ R for at most one k. If r �∈ R, then |r|2 ∈ F . Then

rs = |r|2s
rq r

qs, where
|r|2s
rq ∈ F . Hence the linear independence lemma implies

that for every k = 0, 1, . . . , q − 1 the condition xk = xk is equivalent to

h0 = h0 and hs = hq−s
|r|2q−2s

rq for every s = 1, 2, . . . , q − 1.

These equations do not depend on k. Therefore if one of the numbers

x0, . . . , xq−1 is real, then they are all real, which is a contradiction.16 �
15Another proof. By the linear independence lemma 8.4.14 (b), this product can be

uniquely represented in the form

a0(x) + a1(x)r + . . .+ aq−1(x)r
q−1

for some ak ∈ F [x].

The product is invariant under the substitution r → rε, which is well-defined by the linear

independence lemma. Using this lemma again, we see that ak(x) = ak(x)ε
k ∈ F [x] for

every k = 1, 2, . . . , q − 1. Hence ak(x) = 0 for every k = 1, 2, . . . , q − 1. Thus the product

equals a0(x) ∈ F [x].
16 The two cases to be investigated at the end of this proof are slightly different from

the cases analyzed at the end of the proof in the article [Tik03]. The beginning of the

second column on p. 14 in [Tik03] actually uses the fact that ρ ∈ R, but this is not true

without additional results, such as the condensation lemma 8.4.15.
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Proof of the consolidation lemma 8.4.15. Let us show by downward

induction on q that from an arbitrary tower of extensions one can obtain
a tower of extensions for which εqk ∈ Fk for every k = 1, 2, . . . , s − 1 such
that qk > q. Then for q = 1 we obtain a tower of normal extensions. The

base case is q = maxk qk; in this case there is nothing to prove. To prove

the inductive step, consider the least k such that qk = q. If such a k does

not exist, then the inductive step is obvious: Paste “between” Fk−1 and Fk,

“getting εq by extracting only roots of degree less than q” obtained from

Gauss’s degree-lowering theorem 8.1.15, increasing “by necessity” the fields

Fk, . . . , Fs. More precisely, consider the tower

Fk−1 ⊂ G1 ⊂ G2 ⊂ . . . ⊂ Gm ⊂ Fk−1[εq]

from Gauss’s degree-lowering theorem 8.1.15. Replace the subtower Fk−1 ⊂
Fk ⊂ . . . ⊂ Fs with the subtower

Fk−1 ⊂ G1 ⊂ G2 ⊂ . . . ⊂ Gm ⊂ Fk−1[εq] ⊂ Fk[εq] ⊂ . . . ⊂ Fs[εq].

Then, whenever possible, replace every extraction of a root of a composite

degree ab by extraction of roots of ath and bth degrees. The condition

“εqk ∈ Fk for every k = 1, 2, . . . , s − 1 such that qk ≥ q” is preserved,

because if εab ∈ Fk, then εa ∈ Fk and εb ∈ Fk. In the new subtower, replace

the repeated copies of the same field by a single field. The inductive step is

proved.

Let us show by downward induction on l that from an arbitrary tower
of normal extensions one can obtain a tower of normal extensions such that
for every k ≤ s− l,

F k = Fk and either rk ∈ R or |rk|2 ∈ Fk.

Then for l = 0 we obtain the lemma. The base case is l = s − 1, for which

there is nothing to prove. Let us prove the inductive step. (If rk ∈ R, then

the inductive step is obvious, but the following argument also works.) Since

Fk = Fk and rqkk ∈ Fk, we obtain |rk|2qk = rqkk r
qk
k ∈ Fk. So Fk[|rk|2] =

Fk[
qk
√|rk|2qk ], where we choose the real value of the root. Replace the

subtower Fk ⊂ Fk+1 ⊂ . . . ⊂ Fs by the subtower

Fk ⊂ Fk[|rk|2] ⊂ Fk[rk, rk] = Fk+1[rk] ⊂ . . . ⊂ Fs[rk].

Clearly, normality is preserved under this substitution. In the new subtower,

replace repeated copies of the same field by one field. After that, apply the

inductive hypothesis. The inductive step is proved. �

Remark 8.4.18. (a) The difference between the proofs of Lemmas 8.4.16 (a)

and 8.4.11 (a) lies in

• “complexification”—rq and the coefficients of the polynomial H may

be complex;



4. PROOFS OF INSOLVABILITY IN RADICALS 187

• the necessity to prove the existence of a root in F [r] of a polynomial

irreducible over F and reducible over F [r] (or to assume that the polyno-

mial has a root in F [r] and does not have a root in F , and to prove its

irreducibility over F , which is less convenient).

(b) Kronecker’s Theorem 8.1.14 can be proved using Lemma 8.4.20 (on

the equivalence of irreducibility over F and over F [εq]). Then there is no

need to require normality in the consolidation lemma 8.4.15 using Gauss’s

degree-lowering theorem 8.1.15. The details are similar to the proof of the

real analogue 8.1.10 of Kronecker’s Theorem; see 4.H. But to prove this

analogue, requiring normality in the consolidation lemma (instead of using

Lemma 8.4.20), is not possible.

4.H. The real analogue of Kronecker’s Theorem (4*)

Theorem 8.1.10 is implied by the tower of extensions lemma 8.4.1 (b) and

the following.

Lemma 8.4.19. Let q be a prime, F ⊂ R a field and r ∈ R−F with rq ∈ F .
(a) If a polynomial G ∈ F [t] of prime degree has more than one real root

and is irreducible over F , then G is irreducible over F [r].
(b) Parametric conjugation. If P ∈ F [x, t] and P (x, r) = 0 as a

polynomial in x, then P (x, rεkq ) = 0 as a polynomial in x for k = 0, 1, . . . ,
q − 1.

Part (a) is interesting even for F = Q (although insolvability with a

single root extraction can be proved without it) and is true even for F ⊂ C.

The proof of (b) is similar to the proof of Lemma 8.4.16 (a). Instead of

Lemma 8.4.14 (b), we apply Lemma 8.4.11 (c). Note that Lemma 8.4.11 (c)

is implied by Lemma 8.4.14 (b) and the following.

Lemma 8.4.20. If a polynomial of prime degree p is irreducible over the

field F ⊂ C and is reducible over F [εq] for some q, then q > p.

Proof of Lemma 8.4.19 (a). Following the proof of Lemma 8.4.16 (a), we

repeat the first three paragraphs with the replacement of F with F [εq] (and
therefore F [r] with F [εq][r]). In the third paragraph, since G is divisible

by the product, degG ≥ q. From that and from Lemma 8.4.20, it follows

that G is irreducible over F [εq]. Finally, consider the case r ∈ R and do not

consider the case r �∈ R. �

It remains to prove Lemma 8.4.20.

Lemma 8.4.21. For α, β ∈ C and a field F ⊂ C, define [α : β] to be the

degree of a polynomial irreducible over F [β] with root α, if such a polynomial
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exists, and let [α : β] = ∞ if it does not. Then [α : 1][β : α] = [β : 1][α : β]
for any α, β ∈ C.

Proof (sketch). We have already seen that irreducibility is connected with

linear independence. This motivates the following approach. For fields K ⊂
L define the dimension dimK L of a field L over a field K to be the smallest

s for which there exist s elements l1, . . . , ls ∈ L such that for any l ∈ L
there exist k1, . . . , ks ∈ K such that l = k1l1 + . . . + ksls. For example,

dimQ Q[
5
√
3] = 5.

The lemma is a consequence of the following two statements. The proofs

are left to the reader as exercises.

(a) If α ∈ C is a root of a polynomial P that is irreducible over the

number field F , then dimF F [α] = degP .
(b) For any fields K ⊂ L ⊂M we have dimK M = dimLM ·dimK L. �

Proof of Lemma 8.4.20. Let β ∈ C be any root of the given polynomial.

Lemma 8.4.21 implies [εq : 1][β : εq] = [β : 1][εq : β]. Since the polynomial

is irreducible over F , we have [β : 1] = p. Since the polynomial is reducible

over F [εq], [β : εq] < p. We have [εq : 1] < q. Since p is prime, [εq : 1] is

divisible by p. Therefore, q > p. �

8.4.22. Is cos(2π/n) expressible in real radicals for

(a) n = 11; (b)∗ n = 13?
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