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THE CAUCHY–SCHWARZ MASTER CLASS

This lively, problem-oriented text is designed to coach readers toward
mastery of the most fundamental mathematical inequalities. With the
Cauchy–Schwarz inequality as the initial guide, the reader is led through
a sequence of fascinating problems whose solutions are presented as they
might have been discovered — either by one of history’s famous mathe-
maticians or by the reader. The problems emphasize beauty and surprise,
but along the way readers will find systematic coverage of the geome-
try of squares, convexity, the ladder of power means, majorization, Schur
convexity, exponential sums, and the inequalities of Hölder, Hilbert, and
Hardy.

The text is accessible to anyone who knows calculus and who cares
about solving problems. It is well suited to self-study, directed study, or
as a supplement to courses in analysis, probability, and combinatorics.

J. Michael Steele is C. F. Koo Professor of Statistics at the Wharton
School, University of Pennsylvania. He is the author of more than
100 mathematical publications, including the books Probability Theory
and Combinatorial Optimization and Stochastic Calculus and Financial
Applications. He is also the founding editor of the Annals of Applied
Probability.
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Preface

In the fine arts, a master class is a small class where students and coaches
work together to support a high level of technical and creative excellence.
This book tries to capture the spirit of a master class while providing
coaching for readers who want to refine their skills as solvers of problems,
especially those problems dealing with mathematical inequalities.

The most important prerequisite for benefiting from this book is the
desire to master the craft of discovery and proof. The formal require-
ments are quite modest. Anyone with a solid course in calculus is well
prepared for almost everything to be found here, and perhaps half of the
material does not even require calculus. Nevertheless, the book develops
many results which are rarely seen, and even experienced readers are
likely to find material that is challenging and informative.

With the Cauchy–Schwarz inequality as the initial guide, the reader
is led through a sequence of interrelated problems whose solutions are
presented as they might have been discovered — either by one of his-
tory’s famous mathematicians or by the reader. The problems emphasize
beauty and surprise, but along the way one finds systematic coverage
of the geometry of squares, convexity, the ladder of power means, ma-
jorization, Schur convexity, exponential sums, and all of the so-called
classical inequalities, including those of Hölder, Hilbert, and Hardy.

To solve a problem is a very human undertaking, and more than a little
mystery remains about how we best guide ourselves to the discovery of
original solutions. Still, as George Pólya and others have taught us, there
are principles of problem solving. With practice and good coaching we
can all improve our skills. Just like singers, actors, or pianists, we have a
path toward a deeper mastery of our craft.
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1

Starting with Cauchy

Cauchy’s inequality for real numbers tells us that

a1b1 + a2b2 + · · · + anbn ≤
√
a2
1 + a2

2 + · · · + a2
n

√
b21 + b22 + · · · + b2n,

and there is no doubt that this is one of the most widely used and most
important inequalities in all of mathematics. A central aim of this course
— or master class — is to suggest a path to mastery of this inequality,
its many extensions, and its many applications — from the most basic
to the most sublime.

The Typical Plan

The typical chapter in this course is built around the solution of a
small set of challenge problems. Sometimes a challenge problem is drawn
from one of the world’s famous mathematical competitions, but more
often a problem is chosen because it illustrates a mathematical technique
of wide applicability.

Ironically, our first challenge problem is an exception. To be sure, the
problem hopes to offer honest coaching in techniques of importance, but
it is unusual in that it asks you to solve a problem that you are likely to
have seen before. Nevertheless, the challenge is sincere; almost everyone
finds some difficulty directing fresh thoughts toward a familiar problem.

Problem 1.1 Prove Cauchy’s inequality. Moreover, if you already know
a proof of Cauchy’s inequality, find another one!

Coaching for a Place to Start

How does one solve a problem in a fresh way? Obviously there cannot
be any universal method, but there are some hints that almost always
help. One of the best of these is to try to solve the problem by means
of a specific principle or specific technique.

Here, for example, one might insist on proving Cauchy’s inequality

1



2 Starting with Cauchy

just by algebra — or just by geometry, by trigonometry, or by calculus.
Miraculously enough, Cauchy’s inequality is wonderfully provable, and
each of these approaches can be brought to a successful conclusion.

A Principled Beginning

If one takes a dispassionate look at Cauchy’s inequality, there is an-
other principle that suggests itself. Any time one faces a valid propo-
sition that depends on an integer n, there is a reasonable chance that
mathematical induction will lead to a proof. Since none of the standard
texts in algebra or analysis gives such a proof of Cauchy’s inequality,
this principle also has the benefit of offering us a path to an “original”
proof — provided, of course, that we find any proof at all.

When we look at Cauchy’s inequality for n = 1, we see that the
inequality is trivially true. This is all we need to start our induction,
but it does not offer us any insight. If we hope to find a serious idea,
we need to consider n = 2 and, in this second case, Cauchy’s inequality
just says

(a1b1 + a2b2)2 ≤ (a2
1 + a2

2)(b
2
1 + b22). (1.1)

This is a simple assertion, and you may see at a glance why it is true.
Still, for the sake of argument, let us suppose that this inequality is not
so obvious. How then might one search systematically for a proof?

Plainly, there is nothing more systematic than simply expanding both
sides to find the equivalent inequality

a2
1b

2
1 + 2a1b1a2b2 + a2

2b
2
2 ≤ a2

1b
2
1 + a2

1b
2
2 + a2

2b
2
1 + a2

2b
2
2,

then, after we make the natural cancellations and collect terms to one
side, we see that inequality (1.1) is also equivalent to the assertion that

0 ≤ (a1b2)2 − 2(a1b2)(a2b1) + (a2b1)2. (1.2)

This equivalent inequality actually puts the solution of our problem
within reach. From the well-known factorization x2−2xy+y2 = (x−y)2
one finds

(a1b2)2 − 2(a1b2)(a2b1) + (a2b1)2 = (a1b2 − a2b1)2, (1.3)

and the nonnegativity of this term confirms the truth of inequality (1.2).
By our chain of equivalences, we find that inequality (1.1) is also true,
and thus we have proved Cauchy’s inequality for n = 2.

The Induction Step

Now that we have proved a nontrivial case of Cauchy’s inequality, we
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are ready to look at the induction step. If we let H(n) stand for the
hypothesis that Cauchy’s inequality is valid for n, we need to show that
H(2) and H(n) imply H(n+1). With this plan in mind, we do not need
long to think of first applying the hypothesis H(n) and then using H(2)
to stitch together the two remaining pieces. Specifically, we have

a1b1 + a2b2 + · · · + anbn + an+1bn+1

= (a1b1 + a2b2 + · · · + anbn) + an+1bn+1

≤ (a2
1 + a2

2 + · · · + a2
n)

1
2 (b21 + b22 + · · · + b2n)

1
2 + an+1bn+1

≤ (a2
1 + a2

2 + · · · + a2
n + a2

n+1)
1
2 (b21 + b22 + · · · + b2n + b2n+1)

1
2 ,

where in the first inequality we used the induction hypothesis H(n), and
in the second inequality we used H(2) in the form

αβ + an+1bn+1 ≤ (α2 + a2
n+1)

1
2 (β2 + b2n+1)

1
2

with the new variables

α = (a2
1 + a2

2 + · · · + a2
n)

1
2 and β = (b21 + b22 + · · · + b2n)

1
2 .

The only difficulty one might have finding this proof comes in the
last step where we needed to see how to use H(2). In this case the
difficulty was quite modest, yet it anticipates the nature of the challenge
one finds in more sophisticated problems. The actual application of
Cauchy’s inequality is never difficult; the challenge always comes from
seeing where Cauchy’s inequality should be applied and what one gains
from the application.

The Principle of Qualitative Inferences

Mathematical progress depends on the existence of a continuous stream
of new problems, yet the processes that generate such problems may
seem mysterious. To be sure, there is genuine mystery in any deeply
original problem, but most new problems evolve quite simply from well-
established principles. One of the most productive of these principles
calls on us to expand our understanding of a quantitative result by first
focusing on its qualitative inferences.

Almost any significant quantitative result will have some immediate
qualitative corollaries and, in many cases, these corollaries can be derived
independently, without recourse to the result that first brought them to
light. The alternative derivations we obtain this way often help us to see
the fundamental nature of our problem more clearly. Also, much more
often than one might guess, the qualitative approach even yields new
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quantitative results. The next challenge problem illustrates how these
vague principles can work in practice.

Problem 1.2 One of the most immediate qualitative inferences from
Cauchy’s inequality is the simple fact that

∞∑
k=1

a2
k <∞ and

∞∑
k=1

b2k <∞ imply that
∞∑

k=1

|akbk| <∞. (1.4)

Give a proof of this assertion that does not call on Cauchy’s inequality.

When we consider this challenge, we are quickly drawn to the realiza-
tion that we need to show that the product akbk is small when a2

k and
b2k are small. We could be sure of this inference if we could prove the
existence of a constant C such that

xy ≤ C(x2 + y2) for all real x, y.

Fortunately, as soon as one writes down this inequality, there is a good
chance of recognizing why it is true. In particular, one might draw the
link to the familiar factorization

0 ≤ (x− y)2 = x2 − 2xy + y2,

and this observation is all one needs to obtain the bound

xy ≤ 1
2
x2 +

1
2
y2 for all real x, y. (1.5)

Now, when we apply this inequality to x = |ak| and y = |bk| and then
sum over all k, we find the interesting additive inequality

∞∑
k=1

|akbk| ≤ 1
2

∞∑
k=1

a2
k +

1
2

∞∑
k=1

b2k. (1.6)

This bound gives us another way to see the truth of the qualitative
assertion (1.4) and, thus, it passes one important test. Still, there are
other tests to come.

A Test of Strength

Any time one meets a new inequality, one is almost duty bound to
test the strength of that inequality. Here that obligation boils down
to asking how close the new additive inequality comes to matching the
quantitative estimates that one finds from Cauchy’s inequality.

The additive bound (1.6) has two terms on the right-hand side, and
Cauchy’s inequality has just one. Thus, as a first step, we might look
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for a way to combine the two terms of the additive bound (1.6), and a
natural way to implement this idea is to normalize the sequences {ak}
and {bk} so that each of the right-hand sums is equal to one.

Thus, if neither of the sequences is made up of all zeros, we can intro-
duce new variables

âk = ak/

(∑
j

a2
j

) 1
2

and b̂k = bk/

(∑
j

b2j

) 1
2

,

which are normalized in the sense that
∞∑

k=1

â2
k =

∞∑
k=1

{
a2

k/

(∑
j

a2
j

)}
= 1

and
∞∑

k=1

b̂2k =
∞∑

k=1

{
b2k/

(∑
j

b2j

)}
= 1.

Now, when we apply inequality (1.6) to the sequences {âk} and {b̂k},
we obtain the simple-looking bound

∞∑
k=1

âk b̂k ≤ 1
2

∞∑
k=1

â2
k +

1
2

∞∑
k=1

b̂2k = 1

and, in terms of the original sequences {ak} and {bk}, we have

∞∑
k=1

{
ak/

(∑
j

a2
j

) 1
2
}{

bk/

(∑
j

b2j

) 1
2
}

≤ 1.

Finally, when we clear the denominators, we find our old friend Cauchy’s
inequality — though this time it also covers the case of possibly infinite
sequences:

∞∑
k=1

akbk ≤
( ∞∑

j=1

a2
j

) 1
2
( ∞∑

j=1

b2j

) 1
2

. (1.7)

The additive bound (1.6) led us to a proof of Cauchy’s inequality
which is quick, easy, and modestly entertaining, but it also connects to
a larger theme. Normalization gives us a systematic way to pass from
an additive inequality to a multiplicative inequality, and this is a trip
we will often need to make in the pages that follow.

Item in the Dock: The Case of Equality

One of the enduring principles that emerges from an examination
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of the ways that inequalities are developed and applied is that many
benefits flow from understanding when an inequality is sharp, or nearly
sharp. In most cases, this understanding pivots on the discovery of the
circumstances where equality can hold.

For Cauchy’s inequality this principle suggests that we should ask
ourselves about the relationship that must exist between the sequences
{ak} and {bk} in order for us to have

∞∑
k=1

akbk =
( ∞∑

k=1

a2
k

) 1
2
( ∞∑

k=1

b2k

) 1
2

. (1.8)

If we focus our attention on the nontrivial case where neither of the
sequences is identically zero and where both of the sums on the right-
hand side of the identity (1.8) are finite, then we see that each of the
steps we used in the derivation of the bound (1.7) can be reversed. Thus
one finds that the identity (1.8) implies the identity

∞∑
k=1

âk b̂k =
1
2

∞∑
k=1

â2
k +

1
2

∞∑
k=1

b̂2k = 1. (1.9)

By the two-term bound xy ≤ (x2 + y2)/2 , we also know that

âk b̂k ≤ 1
2
â2

k +
1
2
b̂2k for all k = 1, 2, . . . , (1.10)

and from these we see that if strict inequality were to hold for even one
value of k then we could not have the equality (1.9). This observation
tells us in turn that the case of equality (1.8) can hold for nonzero series
only when we have âk = b̂k for all k = 1, 2, . . .. By the definition of these
normalized values, we then see that

ak = λbk for all k = 1, 2, . . . , (1.11)

where the constant λ is given by the ratio

λ =
( ∞∑

j=1

a2
j

) 1
2
/( ∞∑

j=1

b2j

) 1
2

.

Here one should note that our argument was brutally straightforward,
and thus, our problem was not much of a challenge. Nevertheless, the
result still expresses a minor miracle; the one identity (1.8) has the
strength to imply an infinite number of identities, one for each value of
k = 1, 2, . . . in equation (1.11).
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Benefits of Good Notation

Sums such as those appearing in Cauchy’s inequality are just barely
manageable typographically and, as one starts to add further features,
they can become unwieldy. Thus, we often benefit from the introduction
of shorthand notation such as

〈a,b〉 =
n∑

j=1

ajbj (1.12)

where a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn). This shorthand now
permits us to write Cauchy’s inequality quite succinctly as

〈a,b〉 ≤ 〈a,a〉 1
2 〈b,b〉 1

2 . (1.13)

Parsimony is fine, but there are even deeper benefits to this notation
if one provides it with a more abstract interpretation. Specifically, if
V is a real vector space (such as R

d), then we say that a function on
V × V defined by the mapping (a,b) �→ 〈a,b〉 is an inner product and
we say that (V, 〈·, ·〉) is a real inner product space provided that the pair
(V, 〈·, ·〉) has the following five properties:

(i) 〈v,v〉 ≥ 0 for all v ∈ V,

(ii) 〈v,v〉 = 0 if and only if v = 0,
(iii) 〈αv,w〉 = α〈v,w〉 for all α ∈ R and all v,w ∈ V,

(iv) 〈u,v + w〉 = 〈u,v〉 + 〈u,w〉 for all u,v,w ∈ V , and finally,
(v) 〈v,w〉 = 〈w,v〉 for all v,w ∈ V.

One can easily check that the shorthand introduced by the sum (1.12)
has each of these properties, but there are many further examples of use-
ful inner products. For example, if we fix a set of positive real numbers
{wj : j = 1, 2, . . . , n} then we can just as easily define an inner product
on R

n with the weighted sums

〈a,b〉 =
n∑

j=1

ajbjwj (1.14)

and, with this definition, one can check just as before that 〈a,b〉 satisfies
all of the properties that one requires of an inner product. Moreover, this
example only reveals the tip of an iceberg; there are many useful inner
products, and they occur in a great variety of mathematical contexts.

An especially useful example of an inner product can be given by
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considering the set V = C[a, b] of real-valued continuous functions on
the bounded interval [a, b] and by defining 〈·, ·〉 on V by setting

〈f, g〉 =
∫ b

a

f(x)g(x) dx, (1.15)

or more generally, if w : [a, b] → R is a continuous function such that
w(x) > 0 for all x ∈ [a, b], then one can define an inner product on
C[a, b] by setting

〈f, g〉 =
∫ b

a

f(x)g(x)w(x) dx.

We will return to these examples shortly, but first there is an opportunity
that must be seized.

An Opportunistic Challenge

We now face one of those pleasing moments when good notation sug-
gests a good theorem. We introduced the idea of an inner product in
order to state the basic form (1.7) of Cauchy’s inequality in a simple
way, and now we find that our notation pulls us toward an interesting
conjecture: Can it be true that in every inner product space one has the
inequality 〈v,w〉 ≤ 〈v,v〉 1

2 〈w,w〉 1
2 ? This conjecture is indeed true, and

when framed more precisely, it provides our next challenge problem.

Problem 1.3 For any real inner product space (V, 〈·, ·〉), one has for all
v and w in V that

〈v,w〉 ≤ 〈v,v〉 1
2 〈w,w〉 1

2 ; (1.16)

moreover, for nonzero vectors v and w, one has

〈v,w〉 = 〈v,v〉 1
2 〈w,w〉 1

2 if and only if v = λw

for a nonzero constant λ.

As before, one may be tempted to respond to this challenge by just
rattling off a previously mastered textbook proof, but that temptation
should still be resisted. The challenge offered by Problem 1.3 is impor-
tant, and it deserves a fresh response — or, at least, a relatively fresh
response.

For example, it seems appropriate to ask if one might be able to use
some variation on the additive method which helped us prove the plain
vanilla version of Cauchy’s inequality. The argument began with the
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observation that (x− y)2 ≥ 0 implies xy ≤ x2/2 + y2/2, and one might
guess that an analogous idea could work again in the abstract case.

Here, of course, we need to use the defining properties of the inner
product, and, as we go down the list looking for an analog to (x−y)2 ≥ 0,
we are quite likely to hit on the idea of using property (i) in the form

〈v − w,v − w〉 ≥ 0.

Now, when we expand this inequality with the help of the other proper-
ties of the inner product 〈·, ·〉, we find that

〈v,w〉 ≤ 1
2
〈v,v〉 +

1
2
〈w,w〉. (1.17)

This is a perfect analog of the additive inequality that gave us our second
proof of the basic Cauchy inequality, and we face a classic situation where
all that remains is a “matter of technique.”

A Retraced Passage — Conversion of an Additive Bound

Here we are oddly lucky since we have developed only one technique
that is even remotely relevant — the normalization method for convert-
ing an additive inequality into one that is multiplicative. Normalization
means different things in different places, but, if we take our earlier anal-
ysis as our guide, what we want here is to replace v and w with related
terms that reduce the right side of the bound (1.17) to 1.

Since the inequality (1.16) holds trivially if either v or w is equal to
zero, we may assume without loss of generality that 〈v,v〉 and 〈w,w〉
are both nonzero, so the normalized variables

v̂ = v/〈v,v〉 1
2 and ŵ = w/〈w,w〉 1

2 (1.18)

are well defined. When we substitute these values for v and w in the
bound (1.17), we then find 〈v̂, ŵ〉 ≤ 1. In terms of the original variables
v and w, this tells us 〈v,w〉 ≤ 〈v,v〉 1

2 〈w,w〉 1
2 , just as we wanted to

show.
Finally, to resolve the condition for equality, we only need to exam-

ine our reasoning in reverse. If equality holds in the abstract Cauchy
inequality (1.16) for nonzero vectors v and w, then the normalized vari-
ables v̂ and ŵ are well defined. In terms of the normalized variables,
the equality of 〈v,w〉 and 〈v,v〉 1

2 〈w,w〉 1
2 tells us that 〈v̂, ŵ〉 = 1, and

this tells us in turn that 〈v̂− ŵ, v̂− ŵ〉 = 0 simply by expansion of the
inner product. From this we deduce that v̂− ŵ = 0; or, in other words,
v = λw where we set λ = 〈v,v〉 1

2 /〈w,w〉 1
2 .
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The Pace of Science — The Development of Extensions

Augustin-Louis Cauchy (1789–1857) published his famous inequality
in 1821 in the second of two notes on the theory of inequalities that
formed the final part of his book Cours d’Analyse Algébrique, a vol-
ume which was perhaps the world’s first rigorous calculus text. Oddly
enough, Cauchy did not use his inequality in his text, except in some
illustrative exercises. The first time Cauchy’s inequality was applied
in earnest by anyone was in 1829, when Cauchy used his inequality in
an investigation of Newton’s method for the calculation of the roots of
algebraic and transcendental equations. This eight-year gap provides
an interesting gauge of the pace of science; now, each month, there are
hundreds — perhaps thousands — of new scientific publications where
Cauchy’s inequality is applied in one way or another.

A great many of those applications depend on a natural analog of
Cauchy’s inequality where sums are replaced by integrals,

∫ b

a

f(x)g(x) dx ≤
(∫ b

a

f2(x) dx
) 1

2
(∫ b

a

g2(x) dx
) 1

2

. (1.19)

This bound first appeared in print in a Mémoire by Victor Yacovlevich
Bunyakovsky which was published by the Imperial Academy of Sciences
of St. Petersburg in 1859. Bunyakovsky (1804–1889) had studied in
Paris with Cauchy, and he was quite familiar with Cauchy’s work on
inequalities; so much so that by the time he came to write his Mémoire,
Bunyakovsky was content to refer to the classical form of Cauchy’s in-
equality for finite sums simply as well-known. Moreover, Bunyakovsky
did not dawdle over the limiting process; he took only a single line to
pass from Cauchy’s inequality for finite sums to his continuous analog
(1.19). By ironic coincidence, one finds that this analog is labelled as in-
equality (C) in Bunyakovsky’s Mémoire, almost as though Bunyakovsky
had Cauchy in mind.

Bunyakovsky’s Mémoire was written in French, but it does not seem
to have circulated widely in Western Europe. In particular, it does not
seem to have been known in Göttingen in 1885 when Hermann Amandus
Schwarz (1843–1921) was engaged in his fundamental work on the theory
of minimal surfaces.

In the course of this work, Schwarz had the need for a two-dimensional
integral analog of Cauchy’s inequality. In particular, he needed to show
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that if S ⊂ R
2 and f : S → R and g : S → R, then the double integrals

A =
∫∫

S

f2 dxdy, B =
∫∫

S

fg dxdy, C =
∫∫

S

g2 dxdy

must satisfy the inequality

|B| ≤
√
A ·

√
C, (1.20)

and Schwarz also needed to know that the inequality is strict unless the
functions f and g are proportional.

An approach to this result via Cauchy’s inequality would have been
problematical for several reasons, including the fact that the strictness
of a discrete inequality can be lost in the limiting passage to integrals.
Thus, Schwarz had to look for an alternative path, and, faced with
necessity, he discovered a proof whose charm has stood the test of time.

Schwarz based his proof on one striking observation. Specifically, he
noted that the real polynomial

p(t) =
∫∫

S

(
tf(x, y) + g(x, y)

)2

dxdy = At2 + 2Bt+ C

is always nonnegative, and, moreover, p(t) is strictly positive unless f
and g are proportional. The binomial formula then tells us that the
coefficients must satisfy B2 ≤ AC, and unless f and g are proportional,
one actually has the strict inequality B2 < AC. Thus, from a single
algebraic insight, Schwarz found everything that he needed to know.

Schwarz’s proof requires the wisdom to consider the polynomial p(t),
but, granted that step, the proof is lightning quick. Moreover, as one
finds from Exercise 1.11, Schwarz’s argument can be used almost without
change to prove the inner product form (1.16) of Cauchy’s inequality,
and even there Schwarz’s argument provides one with a quick under-
standing of the case of equality. Thus, there is little reason to wonder
why Schwarz’s argument has become a textbook favorite, even though
it does require one to pull a rabbit — or at least a polynomial — out of
a hat.

The Naming of Things — Especially Inequalities

In light of the clear historical precedence of Bunyakovsky’s work over
that of Schwarz, the common practice of referring to the bound (1.19) as
Schwarz’s inequality may seem unjust. Nevertheless, by modern stan-
dards, both Bunyakovsky and Schwarz might count themselves lucky to
have their names so closely associated with such a fundamental tool of
mathematical analysis. Except in unusual circumstances, one garners
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little credit nowadays for crafting a continuous analog to a discrete in-
equality, or vice versa. In fact, many modern problem solvers favor a
method of investigation where one rocks back and forth between dis-
crete and continuous analogs in search of the easiest approach to the
phenomena of interest.

Ultimately, one sees that inequalities get their names in a great variety
of ways. Sometimes the name is purely descriptive, such as one finds with
the triangle inequality which we will meet shortly. Perhaps more often,
an inequality is associated with the name of a mathematician, but even
then there is no hard-and-fast rule to govern that association. Sometimes
the inequality is named after the first finder, but other principles may
apply — such as the framer of the final form, or the provider of the best
known application.

If one were to insist on the consistent use of the rule of first finder, then
Hölder’s inequality would become Rogers’s inequality, Jensen’s inequal-
ity would become Hölder’s inequality, and only riotous confusion would
result. The most practical rule — and the one used here — is simply to
use the traditional names. Nevertheless, from time to time, it may be
scientifically informative to examine the roots of those traditions.

Exercises

Exercise 1.1 (The 1-Trick and the Splitting Trick)
Show that for each real sequence a1, a2, . . . , an one has

a1 + a2 + · · · + an ≤ √
n(a2

1 + a2
2 + · · · + a2

n)
1
2 (a)

and show that one also has
n∑

k=1

ak ≤
( n∑

k=1

|ak|2/3

) 1
2
( n∑

k=1

|ak|4/3

) 1
2

. (b)

The two tricks illustrated by this simple exercise will be our constant
companions throughout the course. We will meet them in almost count-
less variations, and sometimes their implications are remarkably subtle.

Exercise 1.2 (Products of Averages and Averages of Products)
Suppose that pj ≥ 0 for all j = 1, 2, . . . , n and p1 + p2 + · · · + pn = 1.

Show that if aj and bj are nonnegative real numbers that satisfy the
termwise bound 1 ≤ ajbj for all j = 1, 2, . . . , n, then one also has the
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aggregate bound for the averages,

1 ≤
{ n∑

j=1

pjaj

}{ n∑
j=1

pjbj

}
. (1.21)

This graceful bound is often applied with bj = 1/aj . It also has a subtle
complement which is developed much later in Exercise 5.8.

Exercise 1.3 (Why Not Three or More?)
Cauchy’s inequality provides an upper bound for a sum of pairwise

products, and a natural sense of confidence is all one needs to guess
that there are also upper bounds for the sums of products of three or
more terms. In this exercise you are invited to justify two prototypical
extensions. The first of these is definitely easy, and the second is not
much harder, provided that you do not give it more respect than it
deserves:

( n∑
k=1

akbkck

)4

≤
( n∑

k=1

a2
k

)2 n∑
k=1

b4k

n∑
k=1

c4k, (a)

( n∑
k=1

akbkck

)2

≤
n∑

k=1

a2
k

n∑
k=1

b2k

n∑
k=1

c2k. (b)

Exercise 1.4 (Some Help From Symmetry)
There are many situations where Cauchy’s inequality conspires with

symmetry to provide results that are visually stunning. Here are two
examples from a multitude of graceful possibilities.

(a) Show that for all positive x, y, z one has

S =
(

x+ y

x+ y + z

)1/2

+
(

x+ z

x+ y + z

)1/2

+
(

y + z

x+ y + z

)1/2

≤ 61/2.

(b) Show that for all positive x, y, z one has

x+ y + z ≤ 2
{

x2

y + z
+

y2

x+ z
+

z2

x+ y

}
.

Exercise 1.5 (A Crystallographic Inequality with a Message)
Recall that f(x) = cos(βx) satisfies the identity f2(x) = 1

2 (1+f(2x)),
and show that if pk ≥ 0 for 1 ≤ k ≤ n and p1 + p2 + · · · + pn = 1 then

g(x) =
n∑

k=1

pk cos(βkx) satisfies g2(x) ≤ 1
2
{
1 + g(2x)

}
.
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This is known as the Harker–Kasper inequality, and it has far-reaching
consequences in crystallography. For the theory of inequalities, there is
an additional message of importance; given any functional identity one
should at least consider the possibility of an analogous inequality for a
more extensive class of related functions, such as the class of mixtures
used here.

Exercise 1.6 (A Sum of Inversion Preserving Summands)
Suppose that pk > 0 for 1 ≤ k ≤ n and p1 + p2 + · · · + pn = 1. Show

that one has the bound
n∑

k=1

(
pk +

1
pk

)2

≥ n3 + 2n+ 1/n,

and determine necessary and sufficient conditions for equality to hold
here. We will see later (Exercise 13.6, p. 206), that there are analogous
results for powers other than 2.

Exercise 1.7 (Flexibility of Form)
Prove that for all real x, y, α and β one has

(5αx+ αy + βx+ 3βy)2

≤ (5α2 + 2αβ + 3β2)(5x2 + 2xy + 3y2). (1.22)

More precisely, show that the bound (1.22) is an immediate corollary
of the Cauchy–Schwarz inequality (1.16) provided that one designs a
special inner product 〈·, ·〉 for the job.

Exercise 1.8 (Doing the Sums)
The effective use of Cauchy’s inequality often depends on knowing

a convenient estimate for one of the bounding sums. Verify the four
following classic bounds for real sequences:

∞∑
k=0

akx
k ≤ 1√

1 − x2

( ∞∑
k=0

a2
k

) 1
2

for 0 ≤ x < 1, (a)

n∑
k=1

ak

k
<

√
2
( n∑

k=1

a2
k

) 1
2

, (b)

n∑
k=1

ak√
n+ k

< (log 2)
1
2

( n∑
k=1

a2
k

) 1
2

, and (c)



Starting with Cauchy 15

n∑
k=0

(
n

k

)
ak ≤

(
2n
n

) 1
2
( n∑

k=0

a2
k

) 1
2

. (d)

Exercise 1.9 (Beating the Obvious Bounds)
Many problems of mathematical analysis depend on the discovery of

bounds which are stronger than those one finds with the direct appli-
cation of Cauchy’s inequality. To illustrate the kind of opportunity one
might miss, show that for any real numbers aj , j = 1, 2 . . . , n, one has
the bound ∣∣∣∣ n∑

j=1

aj

∣∣∣∣2 +
∣∣∣∣ n∑

j=1

(−1)jaj

∣∣∣∣2 ≤ (n+ 2)
n∑

j=1

a2
j .

Here the direct application of Cauchy’s inequality gives a bound with
2n instead of the value n+ 2, so for large n one does better by a factor
of nearly two.

Exercise 1.10 (Schur’s Lemma — The R and C Bound)
Show that for each rectangular array {cjk : 1 ≤ j ≤ m, 1 ≤ k ≤ n},

and each pair of sequences {xj : 1 ≤ j ≤ m} and {yk : 1 ≤ k ≤ n}, we
have the bound∣∣∣∣ m∑

j=1

n∑
k=1

cjkxjyk

∣∣∣∣ ≤ √
RC

( m∑
j=1

|xj |2
)1/2( n∑

k=1

|yk|2
)1/2

(1.23)

where R and C are the row sum and column sum maxima defined by

R = max
j

n∑
k=1

|cjk| and C = max
k

m∑
j=1

|cjk|.

This bound is known as Schur’s Lemma, but, ironically, it may be the
second most famous result with that name. Nevertheless, this inequality
is surely the single most commonly used tool for bounding a quadratic
form. One should note in the extreme case when n = m, cjk = 0 j �= k,
and cjj = 1 for 1 ≤ j ≤ n, Schur’s Lemma simply recovers Cauchy’s
inequality.

Exercise 1.11 (Schwarz’s Argument in an Inner Product Space)
Let v and w be elements of the inner product space (V, 〈·, ·〉) and

consider the quadratic polynomial defined for t ∈ R by

p(t) = 〈v + tw,v + tw〉.
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Observe that this polynomial is nonnegative and use what you know
about the solution of the quadratic equation to prove the inner product
version (1.16) of Cauchy’s inequality. Also, examine the steps of your
proof to establish the conditions under which the case of equality can
apply. Thus, confirm that Schwarz’s argument (page 11) applies almost
without change to prove Cauchy’s inequality for a general inner product.

Exercise 1.12 (Example of a Self-generalization)
Let 〈·, ·〉 denote an inner product on the vector space V and suppose

that x1,x2, . . . ,xn and y1,y2, . . . ,yn are sequences of elements of V .
Prove that one has the following vector analog of Cauchy’s inequality:

n∑
j=1

〈xj ,yj〉 ≤
( n∑

j=1

〈xj ,xj〉
) 1

2
( n∑

j=1

〈yj ,yj〉
) 1

2

. (1.24)

Note that if one takes n = 1, then this bound simply recaptures the
Cauchy–Schwarz inequality for an inner product space, while, if one
keeps n general but specializes the vector space V to be R with the trivial
inner product 〈x,y〉 = xy, then the bound (1.24) simply recaptures the
plain vanilla Cauchy inequality.

Exercise 1.13 (Application of Cauchy’s Inequality to an Array)
Show that if {ajk : 1 ≤ j ≤ m, 1 ≤ k ≤ n} is an array of real numbers

then one has

m

m∑
j=1

( n∑
k=1

ajk

)2

+n
n∑

k=1

( m∑
j=1

ajk

)2

≤
( m∑

j=1

n∑
k=1

ajk

)2

+mn
m∑

j=1

n∑
k=1

a2
jk.

Moreover, show that equality holds here if and only if there exist αj and
βk such that ajk = αj + βk for all 1 ≤ j ≤ m and 1 ≤ k ≤ n.

Exercise 1.14 (A Cauchy Triple and Loomis–Whitney)
Here is a generalization of Cauchy’s inequality that has as a corollary

a discrete version of the Loomis–Whitney inequality, a result which in
the continuous case provides a bound on the volume of a set in terms
of the volumes of the projections of that set onto lower dimensional
subspaces. The discrete Loomis–Whitney inequality (1.26) was only
recently developed, and it has applications in information theory and
the theory of algorithms.

(a) Show that for any nonnegative aij , bjk, cki with 1 ≤ i, j, k ≤ n one
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Here we have a set A

with cardinality |A| = 27

with projections that satisfy

|Ax| = |Ay| = |Az| = 9.

Fig. 1.1. The discrete Loomis–Whitney inequality says that for any collection

A of points in R
3 one has |A| ≤ |Ax| 12 |Ay| 12 |Az| 12 . The cubic arrangement

indicated here suggests the canonical situation where one finds the case of
equality in the bound.

has the triple product inequality

n∑
i,j,k=1

a
1
2
ij b

1
2
jk c

1
2
ki ≤

{ n∑
i,j=1

aij

} 1
2
{ n∑

j,k=1

bjk

} 1
2
{ n∑

k,i=1

cki

} 1
2

. (1.25)

(b) Let A denote a finite set of points in Z
3 and let Ax, Ay, Az denote

the projections of A onto the corresponding coordinate planes that are
orthogonal to the x, y, or z-axes. Let |B| denote the cardinality of a set
B ⊂ Z

3 and show that the projections provide an upper bound on the
cardinality of A:

|A| ≤ |Ax| 12 |Ay| 12 |Az| 12 . (1.26)

Exercise 1.15 (An Application to Statistical Theory)
If p(k; θ) ≥ 0 for all k ∈ D and θ ∈ Θ and if∑

k∈D

p(k; θ) = 1 for all θ ∈ Θ, (1.27)

then for each θ ∈ Θ one can think of Mθ = {p(k; θ) : k ∈ D} as
specifying a probability model where p(k; θ) represents the probability
that we “observe k” when the parameter θ is the true “state of nature.”
If the function g : D → R satisfies∑

k∈D

g(k)p(k; θ) = θ for all θ ∈ Θ, (1.28)

then g is called an unbiased estimator of the parameter θ. Assuming
that D is finite and p(k; θ) is a differentiable function of θ, show that
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one has the lower bound∑
k∈D

(g(k) − θ)2p(k; θ) ≥ 1/I(θ) (1.29)

where I : Θ → R is defined by the sum

I(θ) =
∑
k∈D

{
pθ(k; θ)

/
p(k; θ)

}2

p(k; θ), (1.30)

where pθ(k; θ) = ∂p(k; θ)/∂θ. The quantity defined by the left side of
the bound (1.29) is called the variance of the unbiased estimator g, and
the quantity I(θ) is known as the Fisher information at θ of the model
Mθ. The inequality (1.29) is known as the Cramér–Rao lower bound,
and it has extensive applications in mathematical statistics.
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Cauchy’s Second Inequality:
The AM-GM Bound

Our initial discussion of Cauchy’s inequality pivoted on the application
of the elementary real variable inequality

xy ≤ x2

2
+
y2

2
for all x, y ∈ R, (2.1)

and one may rightly wonder how so much value can be drawn from a
bound which comes from the trivial observation that (x− y)2 ≥ 0. Is it
possible that the humble bound (2.1) has a deeper physical or geometric
interpretation that might reveal the reason for its effectiveness?

For nonnegative x and y, the direct term-by-term interpretation of
the inequality (2.1) simply says that the area of the rectangle with sides
x and y is never greater than the average of the areas of the two squares
with sides x and y, and although this interpretation is modestly interest-
ing, one can do much better with just a small change. If we first replace
x and y by their square roots, then the bound (2.1) gives us

4
√
xy < 2x+ 2y for all nonnegative x �= y, (2.2)

and this inequality has a much richer interpretation.
Specifically, suppose we consider the set of all rectangles with area A

and side lengths x and y. Since A = xy, the inequality (2.2) tells us that
a square with sides of length s =

√
xy must have the smallest perimeter

among all rectangles with area A. Equivalently, the inequality tells us
that among all rectangles with perimeter p, the square with side s = p/4
alone attains the maximal area.

Thus, the inequality (2.2) is nothing less than a rectangular version of
the famous isoperimetric property of the circle, which says that among
all planar regions with perimeter p, the circle of circumference p has the
largest area. We now see more clearly why xy ≤ x2/2 + y2/2 might be

19
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powerful; it is part of that great stream of results that links symmetry
and optimality.

From Squares to n-Cubes

One advantage that comes from the isoperimetric interpretation of
the bound

√
xy ≤ (x + y)/2 is the boost that it provides to our intu-

ition. Human beings are almost hardwired with a feeling for geometri-
cal truths, and one can easily conjecture many plausible analogs of the
bound

√
xy ≤ (x+ y)/2 in two, three, or more dimensions.

Perhaps the most natural of these analogs is the assertion that the
cube in R

3 has the largest volume among all boxes (i.e., rectangular
parallelepipeds) that have a given surface area. This intuitive result is
developed in Exercise 2.9, but our immediate goal is a somewhat different
generalization — one with a multitude of applications.

A box in R
n has 2n corners, and each of those corners is incident to

n edges of the box. If we let the lengths of those edges be a1, a2, . . . , an,
then the same isoperimetric intuition that we have used for squares and
cubes suggests that the n-cube with edge length S/n will have the largest
volume among all boxes for which a1 + a2 + · · · + an = S. The next
challenge problem offers an invitation to find an honest proof of this
intuitive claim. It also recasts this geometric conjecture in the more
common analytic language of arithmetic and geometric means.

Problem 2.1 (Arithmetic Mean-Geometric Mean Inequality)
Show that for every sequence of nonnegative real numbers a1, a2, . . . , an

one has (
a1a2 · · · an

)1/n ≤ a1 + a2 + · · · + an

n
. (2.3)

From Conjecture to Confirmation

For n = 2, the inequality (2.3) follows directly from the elementary
bound

√
xy ≤ (x + y)/2 that we have just discussed. One then needs

just a small amount of luck to notice (as Cauchy did long ago) that the
same bound can be applied twice to obtain

(a1a2a3a4)
1
4 ≤ (a1a2)

1
2 + (a3a4)

1
2

2
≤ a1 + a2 + a3 + a4

4
. (2.4)

This inequality confirms the conjecture (2.3) when n = 4, and the new
bound (2.4) can be used again with

√
xy ≤ (x+ y)/2 to find that

(a1a2 · · · a8)
1
8 ≤ (a1a2a3a4)

1
4 + (a5a6a7a8)

1
4

2
≤ a1 + a2 + · · · + a8

8
,
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which confirms the conjecture (2.3) for n = 8.
Clearly, we are on a roll. Without missing a beat, one can repeat this

argument k times (or use induction) to deduce that

(a1a2 · · · a2k)1/2k ≤ (a1 + a2 + · · · + a2k)/2k for all k ≥ 1. (2.5)

The bottom line is that we have proved the target inequality for all
n = 2k, and all one needs now is just some way to fill the gaps between
the powers of two.

The natural plan is to take an n < 2k and to look for some way to use
the n numbers a1, a2, . . . , an to define a longer sequence α1, α2, . . . , α2k

to which we can apply the inequality (2.5). The discovery of an effective
choice for the values of the sequence {αi} may call for some exploration,
but one is not likely to need too long to hit on the idea of setting αi = ai

for 1 ≤ i ≤ n and setting

αi =
a1 + a2 + · · · + an

n
≡ A for n < i ≤ 2k;

in other words, we simply pad the original sequence {ai : 1 ≤ i ≤ n} with
enough copies of the average A to give us a sequence {αi : 1 ≤ i ≤ 2k}
that has length equal to 2k.

The average A is listed 2k − n times in the padded sequence {αi}, so,
when we apply inequality (2.5) to {αi}, we find{
a1a2 · · · an·A2k−n

}1/2k

≤ a1 + a2 + · · · + an + (2k − n)A
2k

=
2kA

2k
= A.

Now, if we clear the powers of A to the right-hand side, then we find

(a1a2 · · · an)1/2k ≤ An/2k

,

and, if we then raise both sides to the power 2k/n, we come precisely to
our target inequality,

(a1a2 · · · an)1/n ≤ a1 + a2 + · · · + an

n
. (2.6)

A Self-Generalizing Statement

The AM-GM inequality (2.6) has an instructive self-generalizing qual-
ity. Almost without help, it pulls itself up by the bootstraps to a new
result which covers cases that were left untouched by the original. Under
normal circumstances, this generalization might seem to be too easy to
qualify as a challenge problem, but the final result is so important the
problem easily clears the hurdle.
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Problem 2.2 (The AM-GM Inequality with Rational Weights)
Suppose that p1, p2, . . . , pn are nonnegative rational numbers that sum

to one, and show that for any nonnegative real numbers a1, a2, . . . , an

one has

ap1
1 a

p2
2 · · · apn

n ≤ p1a1 + p2a2 + · · · + pnan. (2.7)

Once one asks what role the rationality of the pj might play, the
solution presents itself soon enough. If we take an integer M so that for
each j we can write pj = kj/M for an integer kj , then one finds that the
ostensibly more general version (2.7) of the AM-GM follows from the
original version (2.3) of the AM-GM applied to a sequence of length M
with lots of repetition. One just takes the sequence with kj copies of aj

for each 1 ≤ j ≤ n and then applies the plain vanilla AM-GM inequality
(2.3); there is nothing more to it, or, at least there is nothing more if we
attend strictly to the stated problem.

Nevertheless, there is a further observation one can make. Once the
result (2.7) is established for rational values, the same inequality follows
for general values of pj “just by taking limits.” In detail, we first choose
a sequence of numbers pj(t), j = 1, 2, . . . , n and t = 1, 2, . . . for which
we have

pj(t) ≥ 0,
n∑

j=1

pj(t) = 1, and lim
t→∞ pj(t) = pj .

One then applies the bound (2.7) to the n-tuples ( p1(t), p2(t), . . . , pn(t) ),
and, finally, one lets n go to infinity to get the general result.

The technique of proving an inequality first for rationals and then
extending to reals is often useful, but it does have some drawbacks. For
example, the strictness of an inequality may be lost as one passes to a
limit so the technique may leave us without a clear understanding of
the case of equality. Sometimes this loss is unimportant, but for a tool
as fundamental as the general AM-GM inequality, the conditions for
equality are important. One would prefer a proof that handles all the
features of the inequality in a unified way, and there are several pleasing
alternatives to the method of rational approximation.

Pólya’s Dream and a Path of Rediscovery

The AM-GM inequality turns out to have a remarkable number of
proofs, and even though Cauchy’s proof via the imaginative leap-forward
fall-back induction is a priceless part of the world’s mathematical in-
heritance, some of the alternative proofs are just as well loved. One
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Fig. 2.1. The line y = 1 +x is tangent to the curve y = ex at the point x = 0,
and the line is below the curve for all x ∈ R. Thus, we have 1 + x ≤ ex for
all x ∈ R, and, moreover, the inequality is strict except when x = 0. Here
one should note that the y-axis has been scaled so that e is the unit; thus, the
divergence of the two functions is more rapid than the figure may suggest.

particularly charming proof is due to George Pólya who reported that
the proof came to him in a dream. In fact, when asked about his proof
years later Pólya replied that it was the best mathematics he had ever
dreamt.

Like Cauchy, Pólya begins his proof with a simple observation about a
nonnegative function, except Pólya calls on the function x �→ ex rather
than the function x �→ x2. The graph of y = ex in Figure 2.1 illustrates
the property of y = ex that is the key to Pólya’s proof; specifically, it
shows that the tangent line y = 1 + x runs below the curve y = ex, so
one has the bound

1 + x ≤ ex for all x ∈ R. (2.8)

Naturally, there are analytic proofs of this inequality; for example, Ex-
ercise 2.2 suggests a proof by induction, but the evidence of Figure 2.1
is all one needs to move to the next challenge.

Problem 2.3 (The General AM-GM Inequality)
Take the hint of exploiting the exponential bound, and discover Pólya’s

proof for yourself; that is, show that the inequality (2.8) implies that

ap1
1 a

p2
2 · · · apn

n ≤ p1a1 + p2a2 + · · · + pnan (2.9)

for nonnegative real numbers a1, a2, . . . , an and each sequence p1, p2, . . . , pn

of positive real numbers which sums to one.
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In the AM-GM inequality (2.9) the left-hand side contains a product
of terms, and the analytic inequality 1 + x ≤ ex stands ready to bound
such a product by the exponential of a sum. Moreover, there are two
ways to exploit this possibility; we could write the multiplicands ak in
the form 1+xk and then apply the analytic inequality (2.8), or we could
modify the inequality (2.8) so that its applies directly to the ak. In
practice, one would surely explore both ideas, but for the moment, we
will focus on the second plan.

If one makes the change of variables x �→ x− 1, then the exponential
bound (2.8) becomes

x ≤ ex−1 for all x ∈ R, (2.10)

and if we apply this bound to the multiplicands ak, k = 1, 2, . . ., we find

ak ≤ eak−1 and apk

k ≤ epkak−pk .

When we take the product we find that the geometric mean ap1
1 a

p2
2 · · · apn

n

is bounded above by

R(a1, a2, . . . , an) = exp
({ n∑

k=1

pkak

}
− 1
)
. (2.11)

We may be pleased to know that the geometric mean G = ap1
1 a

p2
2 · · · apn

n

is bounded byR, but we really cannot be too thrilled until we understand
how R compares with the arithmetic mean

A = p1a1 + p2a2 + · · · + pnan,

and this is where the problem gets interesting.

A Modest Paradox

When we ask ourselves about a possible relation between A and R,
one answer comes quickly. From the bound A ≤ eA−1 one sees that R
is also an upper bound on the arithmetic mean A, so, all in one package,
we have the double bound

max
{
ap1
1 a

p2
2 · · · apn

n , p1a1 + p2a2 + · · · + pnan

}
≤ exp

({ n∑
k=1

pkak

}
− 1
)
. (2.12)

This inequality inequality now presents us with a task which is at least
a bit paradoxical. Can it really be possible to establish an inequality
between two quantities when all one has is an upper bound on their
maximum?
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Meeting the Challenge

While we might be discouraged for a moment, we should not give
up too quickly. We should at least think long enough to notice that the
bound (2.12) does provide a relationship between A and G in the special
case when one of the two maximands on the left-hand side is equal to the
term on the right-hand side. Perhaps we can exploit this observation.

Once this is said, the familiar notion of normalization is likely to come
to mind. Thus, if we consider the new variables αk, k = 1, 2, . . . , n,
defined by the ratios

αk =
ak

A
where A = p1a1 + p2a2 + · · · + pnan,

and if we apply the bound (2.11) to these new variables, then we find(
a1

A

)p1
(
a2

A

)p2

· · ·
(
an

A

)pn

≤ exp
({ n∑

k=1

pk
ak

A

}
− 1
)

= 1.

After we clear the multiples of A to the right side and recall that one
has p1 + p2 + · · ·+ pn = 1, we see that the proof of the general AM-GM
inequality (2.9) is complete.

A First Look Back

When we look back on this proof of the AM-GM inequality (2.9),
one of the virtues that we find is that it offers us a convenient way to
identify the circumstances under which we can have equality; namely, if
we examine the first step we see that we have

ak

A
< e(ak/A)−1 unless

ak

A
= 1, (2.13)

and we always have
ak

A
≤ e(ak/A)−1,

so we see that one also has(
a1

A

)p1
(
a2

A

)p2

· · ·
(
an

A

)pn

< exp
({ n∑

k=1

pk
ak

A

}
− 1
)

= 1, (2.14)

unless ak = A for all k = 1, 2, . . . , n. In other words, we find that one
has equality in the AM-GM inequality (2.9) if and only if

a1 = a2 = · · · = an.

Looking back, we also see that the two lines (2.13) and (2.14) actually
contain a full proof of the general AM-GM inequality. One could even
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argue with good reason that the single line (2.13) is all the proof that
one really needs.

A Longer Look Back

This identification of the case of equality in the AM-GM bound may
appear to be only an act of convenient tidiness, but there is much more
to it. There is real power to be gained from understanding when an
inequality is most effective, and we have already seen two examples of
the energy that may be released by exploiting the case of equality.

When one compares the way that the AM-GM inequality was ex-
tracted from the bound 1+x ≤ ex with the way that Cauchy’s inequality
was extracted from the bound xy ≤ x2/2 + y2/2, one may be struck by
the effective role played by normalization — even though the normaliza-
tions were of quite different kinds. Is there some larger principle afoot
here, or is this just a minor coincidence?

There is more than one answer to this question, but an observation
that seems pertinent is that normalization often helps us focus the appli-
cation of an inequality on the point (or the region) where the inequality
is most effective. For example, in the derivation of the AM-GM inequal-
ity from the bound 1 + x ≤ ex, the normalizations let us focus in the
final step on the point x = 0, and this is precisely where 1 + x ≤ ex

is sharp. Similarly, in the last step of the proof of Cauchy’s inequality
for inner products, normalization essentially brought us to the case of
x = y = 1 in the two variable bound xy ≤ x2/2 + y2/2, and again this
is precisely where the bound is sharp.

These are not isolated examples. In fact, they are pointers to one of
the most prevalent themes in the theory of inequalities. Whenever we
hope to apply some underlying inequality to a new problem, the success
or failure of the application will often depend on our ability to recast
the problem so that the inequality is applied in one of those pleasing
circumstances where the inequality is sharp, or nearly sharp.

In the cases we have seen so far, normalization helped us reframe
our problems so that an underlying inequality could be applied more
efficiently, but sometimes one must go to greater lengths. The next
challenge problem recalls what may be one of the finest illustrations of
this fight in all of the mathematical literature; it has inspired generations
of mathematicians.
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Pólya’s Coaching and Carleman’s Inequality

In 1923, as the first step in a larger project, Torsten Carleman proved a
remarkable inequality which over time has come to serve as a benchmark
for many new ideas and methods. In 1926 George Pólya gave an elegant
proof of Carleman’s inequality that depended on little more than the
AM-GM inequality.

The secret behind Pólya’s proof was his reliance on the general prin-
ciple that one should try to use an inequality where it is most effective.
The next challenge problem invites you to explore Carleman’s inequality
and to see if with a few hints you might also discover Pólya’s proof.

Problem 2.4 (Carleman’s Inequality)
Show that for each sequence of positive real numbers a1, a2, . . . one has

the inequality
∞∑

k=1

(a1a2 · · · ak)1/k ≤ e

∞∑
k=1

ak, (2.15)

where e denotes the natural base 2.71828 . . . .

Our experience with the series version of Cauchy’s inequality suggests
that a useful way to approach a quantitative result such as the bound
(2.15) is to first consider a simpler qualitative problem such as showing

∞∑
k=1

ak <∞ ⇒
∞∑

k=1

(a1a2 · · · ak)1/k <∞. (2.16)

Here, in the natural course of events, one would apply the AM-GM
inequality to the summands on the right, do honest calculations, and
hope for good luck. This plan leads one to the bound

n∑
k=1

(a1a2 · · · ak)1/k ≤
n∑

k=1

1
k

k∑
j=1

aj =
n∑

j=1

aj

n∑
k=j

1
k
,

and — with no great surprise — we find that the plan does not work. As
n→ ∞ our upper bound diverges, and we find that the naive application
of the AM-GM inequality has left us empty-handed.

Naturally, this failure was to be expected since this challenge problem
is intended to illustrate the principle of maximal effectiveness whereby
we conspire to use our tools under precisely those circumstances when
they are at their best. Thus, to meet the real issue, we need to ask
ourselves why the AM-GM bound failed us and what we might do to
overcome that failure.
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Pursuit of a Principle

By the hypothesis on the left-hand side of the implication (2.16), the
sum a1 +a2 + · · · converges, and this modest fact may suggest the likely
source of our difficulties. Convergence implies that in any long block
a1, a2, . . . , an there must be terms that are “highly unequal,” and we
know that in such a case the AM-GM inequality can be highly inefficient.
Can we find some way to make our application of the AM-GM bound
more forceful? More precisely, can we direct our application of the AM-
GM bound toward some sequence with terms that are more nearly equal?

Since we know very little about the individual terms, we do not know
precisely what to do, but one may well not need long to think of mul-
tiplying each ak by some fudge factor ck which we can try to specify
more completely once we have a clear understanding of what is really
needed. Naturally, the vague aim here is to find values of ck so that the
sequence of products c1a1, c2a2, . . . will have terms that are more nearly
equal than the terms of our original sequence. Nevertheless, heuristic
considerations carry us only so far. Ultimately, honest calculation is our
only reliable guide.

Here we have the pleasant possibility of simply repeating our earlier
calculation while keeping our fingers crossed that the new fudge factors
will provide us with useful flexibility. Thus, if we just follow our nose
and calculate as before, we find

∞∑
k=1

(a1a2 · · · ak)1/k =
∞∑

k=1

(a1c1a2c2 · · · akck)1/k

(c1c2 · · · ck)1/k

≤
∞∑

k=1

a1c1 + a2c2 + · · · + akck
k(c1c2 · · · ck)1/k

=
∞∑

k=1

akck

∞∑
j=k

1
j(c1c2 · · · cj)1/j

, (2.17)

and here we should take a breath. From this formula we see that the
proof of the qualitative conjecture (2.16) will be complete if we can find
some choice of the factors ck, k = 1, 2, . . . such that the sums

sk = ck

∞∑
j=k

1
j(c1c2 · · · cj)1/j

k = 1, 2, . . . . (2.18)

form a bounded sequence.
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Necessity, Possibility, and Comfort

The hunt for a suitable choice of the ck can take various directions,
but, wherever our compass points, we eventually need to estimate the
sum sk. We should probably try to make this task as easy as possible,
and here we are perhaps lucky that there are only a few series with tail
sums that we can calculate. In fact, almost all of these come from the
telescoping identity

∞∑
j=k

{
1
bj

− 1
bj+1

}
=

1
bk

that holds for all real monotone sequences {bj : 1, 2, . . .} with bj → ∞.

Among the possibilities offered by this identity, the simplest choice is
surely given by

∞∑
j=k

1
j(j + 1)

=
∞∑

j=k

{
1
j
− 1
j + 1

}
=

1
k

(2.19)

and, when we compare the sums (2.18) and (2.19), we see that sk may
be put into the simplest form when we define the fudge factors by the
implicit recursion

(c1c2 · · · cj)1/j = j + 1 for j = 1, 2, . . . . (2.20)

This choice gives us a short formula for sk,

sk = ck

∞∑
j=k

1
j(c1c2 · · · cj)1/j

= ck

∞∑
j=k

1
j(j + 1)

=
ck
k
, (2.21)

and all we need now is to estimate the size of ck.

The End of the Trail

Fortunately, this estimation is not difficult. From the implicit recur-
sion (2.20) for cj applied twice we find that

c1c2 · · · cj−1 = jj−1 and c1c2 · · · cj = (j + 1)j ,

so division gives us the explicit formula

cj =
(j + 1)j

jj−1
= j

(
1 +

1
j

)j

.

From this formula and our original bound (2.17) we find
∞∑

k=1

(a1a2 · · · ak)1/k ≤
∞∑

k=1

(
1 +

1
k

)k

ak, (2.22)
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and this bound puts Carleman’s inequality (2.15) in our grasp. In fact,
the bound (2.22) is even a bit stronger than Carleman’s inequality since
setting x = 1/k in the familiar analytic bound 1 + x ≤ ex implies that(

1 + 1/k
)k
< e for all k = 1, 2, . . . .

Efficiency and the Case of Equality

There is more than a common dose of accidental elegance in Pólya’s
proof of Carleman’s inequality, and some care must be taken not to
lose track of the central idea. The insight to be savored is that there
are circumstances where one may greatly improve the effectiveness of
an inequality simply by restructuring the problem so that the inequal-
ity is applied in a situation that is close to the critical case of equality.
Pólya’s proof of Carleman’s inequality illustrates this idea with excep-
tional charm, but there are many straightforward situations where its
effect is just as great.

Who Was George Pólya?

George Pólya (1887–1985) was one of the most influential mathemati-
cians of the 20th century, but his most enduring legacy may be the
insight he passed on to us about teaching and learning. Pólya saw the
process of problem solving as a fundamental human activity — one filled
with excitement, creativity, and the love of life. He also thought hard
about how one might become a more effective solver of mathematical
problems and how one might coach others to do so.

Pólya summarized his thoughts in several books, the most famous
of which is How to Solve It. The central premise of Pólya’s text is
that one can often make progress on a mathematical problem by asking
certain general common sense questions. Many of Pólya’s questions may
seem obvious to a natural problem solver — or to anyone else — but,
nevertheless, the test of time suggests that they possess considerable
wisdom.

Some of the richest of Pólya’s suggestions may be repackaged as the
modestly paradoxical question: “What is the simplest problem that you
cannot solve?” Here, of course, the question presupposes that one al-
ready has some particular problem in mind, so this suggestion is perhaps
best understood as shorthand for a longer list of questions which would
include at least the following:

• “Can you solve your problem in a special case?”
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• “Can you relate your problem to a similar one where the answer is
already known?” and

• “Can you compute anything at all that is related to what you would
really like to compute?”

Every reader is encouraged to experiment with Pólya’s questions while
addressing the exercises. Perhaps no other discipline can contribute
more to one’s effectiveness as a solver of mathematical problems.

Exercises

Exercise 2.1 (More from Leap-forward Fall-back Induction)
Cauchy’s leap-forward, fall-back induction can be used to prove more

than just the AM-GM inequality; in particular, it can be used to show
that Cauchy’s inequality for n = 2 implies the general result. For exam-
ple, by Cauchy’s inequality for n = 2 applied twice, one has

a1b1 + a2b2 + a3b3 + a4b4

= {a1b1 + a2b2} + {a3b3 + a4b4}
≤ (a2

1 + a2
2)

1
2 (b21 + b22)

1
2 + (a2

3 + a2
4)

1
2 (b23 + b24)

1
2

≤ (a2
1 + a2

2 + a2
3 + a2

4)
1
2 (b21 + b22 + b23 + b24)

1
2 ,

which is Cauchy’s inequality for n = 4. Extend this argument to obtain
Cauchy’s inequality for all n = 2k and consequently for all n. This may
be the method by which Cauchy discovered his famous inequality, even
though in his textbook he chose to present a different proof.

Exercise 2.2 (Bernoulli and the Exponential Bound)
Pólya’s proof of the AM-GM inequality used the analytic bound

1 + x ≤ ex for all x ∈ R, (2.23)

which is closely related to an inequality of Jacob Bernoulli (1654–1705),

1 + nx ≤ (1 + x)n for all x ∈ [−1,∞) and all n = 1, 2, . . . . (2.24)

Prove Bernoulli’s inequality (2.24) by induction and show how it may
be used to prove that 1 + x ≤ ex for all x ∈ R. Finally, by calculus or
by other means, prove one of the more general versions of Bernoulli’s
inequality suggested by Figure 2.2; for example, prove that

1 + px ≤ (1 + x)p for all x ≥ −1 and all p ≥ 1. (2.25)
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Fig. 2.2. The graph of y = (1 + x)p suggests a variety of relationships, each
of which depends on the range of x and the size of p. Perhaps the most useful
of these is Bernoulli’s inequality (2.25) where one has p ≥ 1 and x ∈ [−1,∞).

Exercise 2.3 (Bounds by Pure Powers)
In the day-to-day work of mathematical analysis, one often uses the

AM-GM inequality to bound a product or a sum of products by a simpler
sum of pure powers. Show that for positive x, y, α, and β one has

xαyβ ≤ α

α+ β
xα+β +

β

α+ β
yα+β , (2.26)

and, for a typical corollary, show that one also has the more timely
bound x2004y + xy2004 ≤ x2005 + y2005.

Exercise 2.4 (A Canadian Challenge)
Participants in the 2002 Canadian Math Olympiad were asked to

prove the bound

a+ b+ c ≤ a3

bc
+
b3

ac
+
c3

ab

and to determine when equality can hold. Can you meet the challenge?

Exercise 2.5 (A Bound Between Differences)
Show that for nonnegative x and y and integer n one has

n(x− y)(xy)(n−1)/2 ≤ xn − yn. (2.27)
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The Geometry of the
Geometric Mean

Fig. 2.3. The AM-GM inequality as Euclid could have imagined it. The circle
has radius (a+ b)/2 and the triangle’s height h cannot be larger. Therefore if

one proves that h =
√
ab one has a geometric proof of the AM-GM for n = 2.

Exercise 2.6 (Geometry of the Geometric Mean)
There is indeed some geometry behind the definition of the geomet-

ric mean. The key relations were known to Euclid, although there is
no evidence that Euclid specifically considered any inequalities. By ap-
pealing to the geometry of Figure 2.3 prove that h =

√
ab and thereby

automatically deduce that
√
ab ≤ (a+ b)/2.

Exercise 2.7 (One Bounded Product Implies Another)
Show that for nonnegative x, y, and z one has the implication

1 ≤ xyx =⇒ 8 ≤ (1 + x)(1 + y)(1 + z). (2.28)

Can you also propose a generalization?

Exercise 2.8 (Optimality Principles for Products and Sums)
Given positive {ak : 1 ≤ k ≤ n} and positive c and d, we consider the

maximization problem P1,

max{x1x2 · · ·xn : a1x1 + a2x2 + · · · + anxn = c},
and the minimization problem P2,

min{a1x1 + a2x2 + · · · + anxn : x1x2 · · ·xn = d}.
Show that for both of these problems the condition for optimality is given
by the relation

a1x1 = a2x2 = · · · = anxn. (2.29)

These optimization principles are extremely productive, and they can
provide useful guidance even when they do not exactly apply.
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Exercise 2.9 (An Isoperimetric Inequality for the 3-Cube)

Show that among all boxes with a given surface area, the cube has
the largest volume. Since a box with edge lengths a,b, and c has surface
area A = 2ab+ 2ac+ 2bc and since a cube with surface area A has edge
length (A/6)1/2, the analytical task is to show

abc ≤ (A/6)3/2

and to confirm that equality holds if and only if a = b = c.

Exercise 2.10 (Åkerberg’s Refinement)

Show that for any nonnegative real numbers a1, a2, . . . , an and n ≥ 2
one has the bound

an

{
a1 + a2 + · · · + an−1

n− 1

}n−1

≤
{
a1 + a2 + · · · + an

n

}n

. (2.30)

In a way, this relation is a refinement of the AM-GM inequality since the
AM-GM inequality follow immediately by iteration of the bound (2.30).
To prove the recurrence (2.30), one might first show that

y(n− yn−1) = ny − yn ≤ n− 1 for all y ≥ 0.

The key is then to make a wise choice of y.

Exercise 2.11 (Superadditivity of the Geometric Mean)

Show that for nonnegative ak and bk, 1 ≤ k ≤ n, one has( n∏
k=1

ak

)1/n

+
( n∏

k=1

bk

)1/n

≤
( n∏

k=1

(ak + bk)
)1/n

. (2.31)

This inequality of H. Minkowski asserts that the geometric mean is a su-
peradditive function of its vector of arguments. Show that this inequality
follows from the AM-GM inequality and determine the circumstances
under which one can have equality.

For a generic hint, consider the possibility of dividing both sides by
the quantity on the right side. Surprisingly often one finds that an
inequality may become more evident if it is placed in a “standard form”
which asserts that a given algebraic quantity is bounded by one.
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Fig. 2.4. The curve y = x/ex−1 helps us measure the extent to which the
individual terms of the averages must be squeezed together when the two
sides of the AM-GM bound have a ratio that is close to one. For example, if
we have y ≥ 0.99, then we must have 0.694 ≤ x ≤ 1.149.

Exercise 2.12 (On Approximate Equality in the AM-GM Bound)

If the nonnegative real numbers a1, a2, . . . , an are all approximately
equal to a constant λ, then it is easy to check that both the arithmetic
mean A and the geometric mean G are approximately equal. There are
several ways to frame a converse to this observation, and this exercise
considers an elegant method first proposed by George Pólya.

Show that if one has the inequality

0 <
A−G

A
= ε < 1, (2.32)

then one has the bound

ρ0 ≤ ak

A
≤ ρ1 for all k = 1, 2, . . . , n, (2.33)

where ρ0 ∈ (0, 1] and ρ1 ∈ [1,∞) are two the roots of the equation
x

ex−1
= (1 − ε)n. (2.34)

As Figure 2.4 suggests, one key to this result is the observation that
the map x �→ x/ex−1 is monotone increasing on [0, 1] and monotone
decreasing on [1,∞).
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Any n points inside the
complex right half plane
are contained in a symmetric
cone with central angle 2ψ
with 0 ≤ ψ < π.

Fig. 2.5. The complex analog of the AM-GM inequality provides a nontrivial
bound on the product |z1z2 · · · zn|1/n provided that zj , j = 1, 2, . . . , n are in
the interior of the right half-plane. The quality of the bound depends on the
central angle of the cone that contains the points.

Exercise 2.13 (An AM-GM Inequality for Complex Numbers)
Consider a set S of n complex numbers z1, z2, . . . , zn for which the

polar forms zj = ρje
iθj satisfy the constraints

0 ≤ ρj <∞ and 0 ≤ |θj | < ψ < π/2, 1 ≤ j ≤ n.

As one sees in Figure 2.5, the spread in the arguments of the zj ∈ S is
bounded by 2ψ. Show that for such numbers one has the bound(

cosψ
)|z1z2 · · · zn|1/n ≤ 1

n
|z1 + z2 + · · · + zn|. (2.35)

Here one should note that if the zj , j = 1, 2, . . . , n are all real numbers,
then one can take ψ = 0, in which case the bound (2.35) recaptures the
usual AM-GM inequality.

Exercise 2.14 (A Leap-Forward Fall-Back Tour de Force)
One can use Cauchy’s leap-forward fall-back method of induction to

prove that for all nonnegative x1, x2,. . . ,xm and for all integer powers
n = 1, 2, . . . one has the bound{

x1 + x2 + · · · + xm

m

}n

≤ xn
1 + xn

2 + · · · + xn
m

m
. (2.36)

This is a special case of the power mean inequality which we develop
at length in Chapter 8, but here the focus is on mastery of technique.
This exercise leads to one of the more sustained applications of Cauchy’s
method that one is likely to meet.
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Lagrange’s Identity
and Minkowski’s Conjecture

The inductive proof of Cauchy’s inequality used the polynomial identity

(a2
1 + a2

2)(b
2
1 + b22) = (a1b1 + a2b2)2 + (a1b2 − a2b1)2, (3.1)

but that proof made no attempt to exploit this formula to the fullest.
In particular, we completely ignored the term (a1b2 − a2b1)2 except for
noting that it must be nonnegative. To be sure, any inequality must
strike a compromise between precision and simplicity, but no one wants
to be wasteful. Thus, we face a natural question: Can one extract any
useful information from the castaway term?

One can hardly doubt that the term (a1b2 − a2b1)2 captures some
information. At a minimum, it provides an explicit measure of the dif-
ference between the squares of the two sides of Cauchy’s inequality, so
perhaps it can provide a useful way to measure the defect that one incurs
with each application of Cauchy’s inequality.

The basic factorization (3.1) also tells us that for n = 2 one has
equality in Cauchy’s inequality exactly when (a1b2 − a2b1)2 = 0; so,
assuming that (b1, b2) �= (0, 0), we see that we have equality if and only
if (a1, a2) and (b1, b2) are proportional in the sense that

a1 = λb1 and a2 = λb2 for some real λ.

This observation has far-reaching consequences, and the first challenge
problem invites one to prove an analogous characterization of the case
of equality for the n-dimensional Cauchy inequality.

Problem 3.1 (On Equality in Cauchy’s Bound)
Show that if (b1, b2, . . . , bn) �= 0 then equality holds in Cauchy’s in-

equality if and only if there is a constant λ such that ai = λbi for all
i = 1, 2, . . . , n. Also, as before, if you already know a proof of this fact,
you are invited to find a new one.

37
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Passage to a More General Identity

Since the identity (3.1) provides a quick solution to Problem 3.1 when
n = 2, one way to try to solve the problem in general is to look for a
suitable extension of the identity (3.1) to n dimensions. Thus, if we in-
troduce the quadratic polynomial Qn = Qn(a1, a2, . . . , an; b1, b2, . . . , bn)
that is given by the difference of the squares of the two sides of Cauchy’s
inequality, then Qn equals

(a2
1 + a2

2 + · · · + a2
n)(b21 + b22 + · · · + b2n) − (a1b1 + a2b2 + · · · + anbn)2,

and Qn measures the “defect” in Cauchy’s inequality in n dimensions,
just like Q2 = (a1b2− b1a2)2 measures the defect in two dimensions. We
have already seen that Q2 can be written as the square of a polynomial,
and now the challenge is to see if there is an analogous representation
of Qn as a square, or possibly as a sum of squares.

If we simply expand Qn, then we find that it can be written as

Qn =
n∑

i=1

n∑
j=1

a2
i b

2
j −

n∑
i=1

n∑
j=1

aibiajbj . (3.2)

As it sits, this formula may not immediately suggest any way to make
further progress. We could use a nice hint, and even though there is no
hint that always helps, there is a general principle that often provides
useful guidance: pursue symmetry.

Symmetry as a Hint

In practical terms, the suggestion to pursue symmetry just means that
we should try to write our identity in a way that makes any symmetry
as clear as possible. Here, the symmetry between i and j in the second
double sum is forceful and clear, yet the symmetrical role of i and j in
first double sum is not quite as evident. To be sure, symmetry is there,
and we can make it stand out better if we rewrite Qn in the form

Qn =
1
2

n∑
i=1

n∑
j=1

(a2
i b

2
j + a2

jb
2
i ) −

n∑
i=1

n∑
j=1

aibiajbj . (3.3)

Now both double sums display transparent symmetry in i and j, and
the new representation does suggest how to make progress; it almost
screams for us to bring the two double sums together, and once this is
done, one quickly finds the factorization

Qn =
1
2

n∑
i=1

n∑
j=1

{
a2

i b
2
j − 2aibjajbi + a2

jb
2
i

}
=

1
2

n∑
i=1

n∑
j=1

(aibj − ajbi)2.
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The whole story now fits into a single, informative, self-verifying line
known as Lagrange’s Identity :( n∑

i=1

aibi

)2

=
n∑

i=1

a2
i

n∑
i=1

b2i −
1
2

n∑
i=1

n∑
j=1

(aibj − ajbi)2. (3.4)

Our path to this identity was motivated by our desire to understand
the nonnegative polynomial Qn, but, once the identity (3.4) is written
down, it is easily verified just by multiplication. Thus, we meet one of
the paradoxes of polynomial identities.

One should note that Cauchy’s inequality is an immediate corollary of
Lagrange’s identity, and, indeed, the proof that Cauchy chose to include
in his 1821 textbook was based on just this observation. Here, we went
in search of what became Lagrange’s identity (3.4) because we hoped it
might lead to a clear understanding of the case of equality in Cauchy’s
inequality. Along the way, we happened to find an independent proof of
Cauchy’s inequality, but we still need to close the loop on our challenge
problem.

Equality and a Gauge of Proportionality

If (b1, b2, . . . , bn) �= 0, then there exist some bk �= 0, and if equality
holds in Cauchy’s inequality, then all of the terms on the right-hand side
of Lagrange’s identity (3.4) must be identically zero. If we consider just
the terms that contain bk, then we find

aibk = akbi for all 1 ≤ i ≤ n,

and, if we take λ = ak/bk, then we also have

ai = λbi for all 1 ≤ i ≤ n.

That is, Lagrange’s identity tells us that for nonzero sequences one can
have equality in Cauchy’s inequality if and only if the two sequences are
proportional. Thus we have a complete and precise answer to our first
challenge problem.

This analysis of the case of equality underscores that the symmetric
form

Qn =
1
2

n∑
i=1

n∑
j=1

(aibj − ajbi)2

has two useful interpretations. We introduced it originally as a measure
of the difference between the two sides of Cauchy’s inequality, but we
see now that it is also a measure of the extent to which the two vectors
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(a1, a2, . . . , an) and (b1, b2, . . . , bn) are proportional. Moreover, Qn is
such a natural measure of proportionality that one can well imagine a
feasible course of history where the measure Qn appears on the scene
before Cauchy’s inequality is conceived. This modest inversion of history
has several benefits; in particular, it lead one to a notable inequality of
E.A. Milne which is described in Exercise 3.8.

Roots and Branches of Lagrange’s Identity

Joseph Louis de Lagrange (1736–1813) developed the case n = 3 of
the identity (3.4) in 1773 in the midst of an investigation of the geom-
etry of pyramids. The study focused on questions in three-dimensional
space, and Lagrange did not mention that the corresponding results for
n = 2 were well known, even to the mathematicians of antiquity. In
particular, the two-dimensional version of the identity (3.4) was known
to the Alexandrian Greek mathematician Diophantus, or, at least one
can draw that inference from a problem that Diophantus included in his
textbook Arithmetica, a volume whose provenance can only be traced
to sometime between 50 A.D. and 300 A.D.

Lagrange and his respected predecessor Pierre de Fermat (1601–1665)
were quite familiar with the writings of Diophantus. In fact, much
of what we know today of Fermat’s discoveries comes to us from the
marginal comments that Fermat made in his copy of the Bachet trans-
lation of Diophantus’s Arithmetica. In just such a note, Fermat asserted
that for n ≥ 3 the equation xn + yn = zn has no solution in positive
integers, and he also wrote “I have discovered a truly remarkable proof
which this margin is too small to contain.”

As all the world knows now, this assertion eventually came to be
known as Fermat’s Last Theorem, or, more aptly, Fermat’s conjecture;
and for more than three centuries, the conjecture eluded the best efforts
of history’s finest mathematicians. The world was shocked — and at
least partly incredulous — when in 1993 Andrew Wiles announced that
he had proved Fermat’s conjecture. Nevertheless, within a year or so the
proof outlined by Wiles had been checked by the leading experts, and it
was acknowledged that Wiles had done the deed that many considered
to be beyond human possibility.

Perspective on a General Method

Our derivation of Lagrange’s identity began with a polynomial that
we knew to be nonnegative, and we then relied on elementary algebra
and good fortune to show that the polynomial could be written as a sum
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of squares. The resulting identity did not need long to reveal its power.
In particular, it quickly provided an independent proof of Cauchy’s in-
equality and a transparent explanation for the necessary and sufficient
conditions for equality.

This experience even suggests an interesting way to search for new,
useful, polynomial identities. We just take any polynomial that we know
to be nonnegative, and we then look for a representation of that poly-
nomial as a sum of squares. If our experience with Lagrange’s identity
provides a reliable guide, the resulting polynomial identity should have
a fair chance of being interesting and informative.

There is only one problem with this plan — we do not know any
systematic way to write a nonnegative polynomial as a sum of squares.
In fact, we do not even know if such a representation is always possible,
and this observation brings us to our second challenge problem.

Problem 3.2 Can one always write a nonnegative polynomial as a sum
of squares? That is, if the real polynomial P (x1, x2, . . . , xn) satisfies

P (x1, x2, . . . , xn) ≥ 0 for all (x1, x2, . . . , xn) ∈ R
n,

can one find a set of s real polynomials Qk(x1, x2, . . . , xn), 1 ≤ k ≤ s,

such that

P (x1, x2, . . . , xn) = Q2
1 +Q2

2 + · · · +Q2
s ?

This problem turns out to be wonderfully rich. It leads to work that
is deeper and more wide ranging than our earlier problems, and, even
now, it continues to inspire new research.

A Definitive Answer — In a Special Case

As usual, one does well to look for motivation by examining some
simple cases. Here the first case that is not completely trivial occurs
when n = 1 and the polynomial P (x) is simply a quadratic ax2 + bx+ c

with a �= 0. Now, if we recall the method of completing the square that
one uses to derive the binomial formula, we then see that P (x) can be
written as

P (x) = ax2 + bx+ c = a

(
x+

b

2a

)2

+
4ac− b2

4a
, (3.5)

and this representation very nearly answers our question. We only need
to check that the last two summands may be written as the squares of
real polynomials.

If we consider large values of x, we see that P (x) ≥ 0 implies that
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a > 0, and if we take x0 = −b/2a, then from the sum (3.5) we see that
P (x0) ≥ 0 implies 4ac− b2 ≥ 0. The bottom line is that both terms on
the right-hand side of the identity (3.5) are nonnegative, so P (x) can be
written as Q2

1 +Q2
2 where Q1 and Q2 are real polynomials which we can

write explicitly as

Q1(x) = a
1
2

(
x+

b

2a

)
and Q2(x) =

√
b2 − 4ac
2
√
a

.

This solves our problem for quadratic polynomials of one variable, and
even though the solution is simple, it is not trivial. In particular, the
identity (3.5) has some nice corollaries. For example, it shows that P (x)
is minimized when x = −b/2a and that the minimum value of P (x)
is equal to (4ac − b2)/4a — two useful facts that are more commonly
obtained by calculus.

Exploiting What We Know

The simplest nontrivial case of Lagrange’s identity is

(a2
1 + a2

2)(b
2
1 + b22) = (a1b1 + a2b2)2 + (a1b2 − a2b1)2,

and, since polynomials may be substituted for the reals in this formula,
we find that it provides us with a powerful fact: the set of polynomials
that can be written as the sum of squares of two polynomials is closed
under multiplication. That is, if P (x) = Q(x)R(x) where Q(x) and R(x)
have the representations

Q(x) = Q2
1(x) +Q2

2(x) and R(x) = R2
1(x) +R2

2(x),

then P (x) also has a representation as a sum of two squares. More
precisely, if we have

P (x) = Q(x)R(x) =
(
Q2

1(x) +Q2
2(x)

)(
R2

1(x) +R2
2(x)

)
,

then P (x) can also be written as{
Q1(x)R1(x) +Q2(x)R2(x)

}2+
{
Q1(x)R2(x) −Q2(x)R1(x)

}2
. (3.6)

This identity suggests that induction may be of help. We have already
seen that a nonnegative polynomial of degree two can be written as a
sum of squares, so an inductive proof has no trouble getting started.
We should then be able to use the representation (3.6) to complete the
induction, once we understand how nonnegative polynomials can be fac-
tored.
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Factorization of Nonnegative Polynomials

Two cases now present themselves; either P (x) has a real root, or it
does not. When P (x) has a real root r with multiplicity m, we can write

P (x) = (x− r)mR(x) where R(r) �= 0,

so, if we set x = r+ ε, then we have P (r+ ε) = εmR(r+ ε). Also, by the
continuity of R, there is a δ such that R(r+ ε) has the same sign for all
ε with |ε| ≤ δ. Since P (x) is always nonnegative, we then see that εm

has the same sign for all |ε| ≤ δ, so m must be even. If we set m = 2k,
we see that

P (x) = Q2(x)R(x) where Q(x) = (x− r)k,

and, from this representation, we see that R(x) is also a nonnegative
polynomial. Thus, we have found a useful factorization for the case
when P (x) has a real root.

Now, suppose that P (x) has no real roots. By the fundamental theo-
rem of algebra, there is a complex root r, and since

0 = P (r) implies 0 = P (r) = P (r̄),

we see that the complex conjugate r̄ is also a root of P . Thus, P has
the factorization

P (x) = (x− r)(x− r̄)R(x) = Q(x)R(x).

The real polynomial Q(x) = (x − r)(x − r̄) is positive for large x, and
it has no real zeros, so it must be positive for all real x. By assump-
tion, P (x) is nonnegative, so we see that R(x) is also nonnegative. Thus,
again we find that any nonnegative polynomial P (x) with degree greater
than two can be written as the product of two nonconstant, nonnega-
tive polynomials. By induction, we therefore find that any nonnegative
polynomial in one variable can be written as the sum of the squares of
two real polynomials.

One Variable Down — Only N Variables to Go

Our success with polynomials of one variable naturally encourages us
to consider nonnegative polynomials in two or more variables. Unfortu-
nately, the gap between the a one variable problem and a two variable
problem sometimes turns out to be wider than the Grand Canyon.

For polynomials in two variables, the zero sets {(x, y) : P (x, y) = 0}
are no longer simple discrete sets of points. Now they can take on a
bewildering variety of geometrical shapes that almost defy classification.



44 Lagrange’s Identity and Minkowski’s Conjecture

After some exploration, we may even come to believe that there might
exist nonnegative polynomials of two variables that cannot be written
as the sum of squares of real polynomials. This is precisely what the
great mathematician Hermann Minkowski first suggested, and, if we are
to give full measure to the challenge problem, we will need to prove
Minkowski’s conjecture.

The Strange Power of Limited Possibilities

There is an element of hubris to taking up a problem that defeated
Minkowski, but there are times when hubris pays off. Ironically, there are
even times when we can draw strength from the fact that we have very
few ideas to try. Here, for example, we know so few ways to construct
nonnegative polynomials that we have little to lose from seeing where
those ways might lead. Most of the time, such explorations just help
us understand a problem more deeply, but once in a while, a fresh,
elementary approach to a difficult problem can lead to a striking success.

What Are Our Options?

How can we construct a nonnegative polynomial? Polynomials that
are given to us as sums of squares of real polynomials are always nonneg-
ative, but such polynomials cannot help us with Minkowski’s conjecture.
We might also consider the nonnegative polynomials that one finds by
squaring both sides of Cauchy’s inequality and taking the difference, but
Lagrange’s identity tells us that this construction is also doomed. Fi-
nally, we might consider those polynomials that the AM-GM inequality
tells us must be nonnegative. For the moment this is our only feasible
idea, so it obviously deserves a serious try.

The AM-GM Plan

We found earlier that nonnegative real numbers a1, a2, . . . , an must
satisfy the AM-GM inequality

(a1a2 · · · an)1/n ≤ a1 + a2 + · · · + an

n
, (3.7)

and we can use this inequality to construct a vast collection of non-
negative polynomials. Nevertheless, if we do not want to get lost in
complicated examples, we need to limit our search to the very simplest
cases. Here, the simplest choice for nonnegative a1 and a2 are a1 = x2

and a2 = y2; so, if we want to make the product a1a2a3 as simple as
possible, we can take a3 = 1/x2y2 so that a1a2a3 just equals one. The
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AM-GM inequality then tells us that

1 ≤ 1
3
(x2 + y2 + 1/x2y2)

and, after the natural simplifications, we see that the polynomial

P (x, y) = x4y2 + x2y4 − 3x2y2 + 1

is nonnegative for all choices of real x and y; thus, we find our first
serious candidate for such a polynomial that cannot be written in the
form

P (x, y) = Q2
1(x, y) +Q2

2(x, y) + · · · +Q2
s(x, y) (3.8)

for some integer s. Now we only need to find some way to argue that the
representation (3.8) is indeed impossible. We only have elementary tools
at our disposal, but these may well suffice. Even a modest exploration
shows that the representation (3.8) is quite confining.

For example, we first note that our candidate polynomial P (x, y) has
degree six, so none of the polynomials Qk can have degree greater than
three. Moreover, when we specialize by taking y = 0, we find

1 = P (x, 0) = Q2
1(x, 0) +Q2

2(x, 0) + · · · +Q2
s(x, 0),

while by taking x = 0, we find

1 = P (0, y) = Q2
1(0, y) +Q2

2(0, y) + · · · +Q2
s(0, y),

so both of the univariate polynomials Q2
k(x, 0) and Q2

k(0, y) must be
bounded. From this observation and the fact that each polynomial
Qk(x, y) has degree not greater than three, we see that they must be of
the form

Qk(x, y) = ak + bkxy + ckx
2y + dkxy

2 (3.9)

for some constants ak, bk, ck, and dk.
Minkowski’s conjecture is now on the ropes; we just need to land a

knock-out punch. When we look back at our candidate P (x, y), we see
the striking feature that all of its coefficients are nonnegative except for
the coefficient of x2y2 which is equal to −3. This observation suggests
that we should see what one can say about the possible values of the
coefficient of x2y2 in the sum Q2

1(x, y) +Q2
2(x, y) + · · · +Q2

s(x, y).
Here we have some genuine luck. By the explicit form (3.9) of the

terms Qk(x, y), 1 ≤ k ≤ s, we can easily check that the coefficient
of x2y2 in the polynomial Q2

1(x, y) + Q2
2(x, y) + · · · + Q2

s(x, y) is just
b21 + b22 + · · · + b2s. Since this sum is nonnegative, it cannot equal −3,
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and, consequently, the nonnegative polynomial P (x, y) cannot be writ-
ten as a sum of squares of real polynomials. Remarkably enough, the
AM-GM inequality has guided us successfully to a proof of Minkowski’s
conjecture.

Some Perspective on Minkowski’s Conjecture

We motivated Minkowski’s conjecture by our exploration of Lagrange’s
identity, and we proved Minkowski’s conjecture by making good use of
the AM-GM inequality. This is a logical and instructive path. Never-
theless, it strays a long way from the historical record, and it may leave
the wrong impression.

While it is not precisely clear what led Minkowski to his conjecture, he
was most likely concerned at first with number theoretic results such as
the classic theorem of Lagrange which asserts that every natural number
may be written as the sum of four or fewer perfect squares. In any
event, Minkowski brought his conjecture to David Hilbert, and in 1888,
Hilbert published a proof of the existence of nonnegative polynomials
that cannot be written as a sum of the squares of real polynomials.
Hilbert’s proof was long, subtle, and indirect.

The first explicit example of a nonnegative polynomial that cannot be
written as the sum of the squares of real polynomials was given in 1967,
almost eighty years after Hilbert proved the existence of such polynomi-
als. The explicit example was discovered by T.S. Motzkin, and he used
precisely the same AM-GM technique described here.

Hilbert’s 17th Problem

In 1900, David Hilbert gave an address in Paris to the second Inter-
national Congress of Mathematicians which many regard as the most
important mathematical address of all time. In his lecture, Hilbert de-
scribed 23 problems which he believed to be worth the attention of the
world’s mathematicians at the dawn of the 20th century. The prob-
lems were wisely chosen, and they have had a profound influence on the
development of mathematics over the past one hundred years.

The 17th problem on Hilbert’s great list is a direct descendant of
Minkowski’s conjecture, and in this problem Hilbert asked if every non-
negative polynomial in n variables must have a representation as a sum
of squares of ratios of polynomials. This modification of Minkowski’s
problem makes all the difference, and Hilbert’s question was answered
affirmatively in 1927 by Emil Artin. Artin’s solution of Hilbert’s 17th
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problem is now widely considered to be one of the crown jewels of mod-
ern algebra.

Exercises

Exercise 3.1 (A Trigonometric Path to Discovery)
One only needs multiplication to verify the identity of Diophantus,

(a1b1 + a2b2)2 = (a2
1 + a2

2)(b
2
1 + b22) − (a1b2 − a2b1)2, (3.10)

yet multiplication does not suggest how such an identity might have
been discovered. Take the more inventive path suggested by Figure 3.1
and show that the identity of Diophantus is a consequence of the most
the famous theorem of all, the one universally attributed to Pythagoras
(circa 497 B.C.).

The classic identity

1 = cos2(α+ β) + sin2(α+ β)

permits one to deduce that

(a2
1 + a2

2)(b
2
1 + b22) equals

(a1b1 + a2b2)
2 + (a1b2 − a2b1)

2.

Fig. 3.1. In the right light, the identity (3.10) of Diophantus and the theorem
of Pythagoras can be seen to be fraternal twins, though one is algebraic and
the other geometric.

Exercise 3.2 (Brahmagupta’s Identity)
Brahmagupta (circa 600 A.D.) established an identity which shows

that for any integer D the product of two numbers which can be written
in the form a2 −Db2 with a, b ∈ Z must be an integer of the same form.
More precisely, Brahmagupta’s identity says

(a2 −Db2)(α2 −Dβ2) = (aα+Dβ)2 −D(aβ + αb)2.

(a) Prove Brahmagupta’s identity by evaluating the product

(a+ b
√
D)(a− b

√
D)(α+ β

√
D)(α− β

√
D)
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in two different ways. Incidentally, the computation is probably more
interesting than you might guess.

(b) Can you modify the pattern used to prove Brahmagupta’s identity
to give another proof of the identity (3.10) of Diophantus?

Exercise 3.3 (A Continuous Analogue of Lagrange’s Identity)
Formulate and prove a continuous analogue of Lagrange’s identity.

Next, show that your identity implies Schwarz’s inequality and finally use
your identity to derive a necessary and sufficient condition for equality
to hold.

Exercise 3.4 (A Cauchy Interpolation)
Show for 0 ≤ x ≤ 1 and for any pair of real vectors (a1, a2, . . . , an)

and (b1, b2, . . . , bn) that the quantity{ n∑
j=1

ajbj + 2x
n∑

1≤j<k≤n

ajbk

}2

is bounded above by the product{ n∑
j=1

a2
j + 2x

n∑
1≤j<k≤n

ajak

}{ n∑
j=1

b2j + 2x
n∑

1≤j<k≤n

bjbk

}
. (3.11)

The charm of this bound is that for x = 0 it reduces to Cauchy’s in-
equality and for x = 1 it reduces to the algebraic identity{

(a1 + a2 + · · · + an)(b1 + b2 + · · · + bn)
}2

= (a1 + a2 + · · · + an)2(b1 + b2 + · · · + bn)2.

Thus, we have an inequality that interpolates between two known results.

Exercise 3.5 (Monotonicity and a Ratio Bound)
Show that if f : [0, 1] → (0,∞) is nonincreasing, then one has∫ 1

0
xf2(x) dx∫ 1

0
xf(x) dx

≤
∫ 1

0
f2(x) dx∫ 1

0
f(x) dx

. (3.12)

As a hint, one might consider the possibility of proving a Lagrange
type identity by beginning with a double integral on [0, 1]× [0, 1] whose
integrand is guaranteed to be positive by our monotonicity hypothesis.
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Exercise 3.6 (Monotonicity of the Product Defect)
Show that for a pair of monotone sequences 0 ≤ a1 ≤ a2 ≤ · · · and

0 ≤ b1 ≤ b2 ≤ · · · the quantities defined by

Dn = n

n∑
j=1

ajbj −
n∑

j=1

aj

n∑
j=1

bj for n = 1, 2, . . . (3.13)

are also monotone nondecreasing. Specifically, show that for each integer
n = 0, 1, . . . one has Dn ≤ Dn+1.

Exercise 3.7 (The Four-Letter Identity via Polarization)
For any real numbers aj , bj , sj and tj , 1 ≤ j ≤ n, there is an identity

due independently to Binet and Cauchy which states that
n∑

j=1

ajsj

n∑
j=1

bjtj −
n∑

j=1

ajbj

n∑
j=1

sjtj =
∑

1≤j<k≤n

(ajbk − bjak)(sjtk − sktj).

This generalizes Lagrange’s identity, as one can check by setting sj = bj
and tj = aj , but it is much more informative to know that the Cauchy–
Binet identity may be obtained as a corollary of the much simpler result
of Lagrange.

In fact, the passage is quite straightforward, provided one knows how
to exploit the polarization transformation

f(u) �→ 1
4
{
f(u+ v) − f(u− v)}.

This transformation carries the function u �→ u2 into the two-variable
function (u, v) �→ uv, and it is devilishly effective at morphing identities
with squares into new ones where the squares are replaced by products.

To see how this works, check that the four-variable identity follows
from the two-variable Lagrange identity after two sequential polariza-
tions. To keep your calculation tidy, you may want to use the shorthand∣∣∣∣α β

γ δ

∣∣∣∣ ≡ αδ − βγ (3.14)

and the easily verified identity that follows from the definition (3.14),∣∣∣∣α+ α′ β

γ + γ′ δ

∣∣∣∣ = ∣∣∣∣α β

γ δ

∣∣∣∣+ ∣∣∣∣α′ β

γ′ δ

∣∣∣∣ . (3.15)

This shorthand recalls the notation for the determinant of a two-by-two
matrix, but to solve this problem one does not need to know more about
determinants than the two self-evident relations (3.14) and (3.15).
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Exercise 3.8 (Milne and Gauges of Proportionality)
We have seen that the form

Q =
1
2

n∑
i=1

n∑
j=1

(aibj − ajbi)2

provides a natural measure of proportionality for the pair of vectors
(a1, a2, . . . , an) and (b1, b2, . . . , bn), but one can think of other measures
of proportionality that are just as reasonable. For example, if we restrict
our attention to vectors of positive terms, then one might equally well
use the self-normalized sum

R =
1
2

n∑
i=1

n∑
j=1

(aibj − ajbi)2

(ai + bi)(aj + bj)
. (3.16)

Develop an identity containing R that will permit you to prove the
inequality of E.A. Milne:{ n∑

j=1

(aj + bj)
}{ n∑

j=1

ajbj
(aj + bj)

}
≤
{ n∑

j=1

aj

}{ n∑
j=1

bj

}
. (3.17)

Next, use your identity to show that one has equality in the bound
(3.17) if and only if the vectors (a1, a2, . . . , an) and (b1, b2, . . . , bn) are
proportional. Incidentally, the bound (3.17) was introduced by Milne
in 1925 to help explain the biases inherent in certain measurements of
stellar radiation.
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John von Neumann once said, “In mathematics you don’t understand
things, you just get used to them.” The notion of n-dimensional space
is now an early entrant in the mathematical curriculum, and few of us
view it as particularly mysterious; nevertheless, for generations before
ours this was not always the case. To be sure, our experience with the
Pythagorean theorem in R

2 and R
3 is easily extrapolated to suggest

that for two points x = (x1, x2, . . . , xd) and y = (y1, y2, . . . , yd) in R
d

the distance ρ(x,y) between x and y should be given by

ρ(x,y) =
√

(y1 − x1)2 + (y2 − x2)2 + · · · + (yd − xd)2, (4.1)

but, despite the familiarity of this formula, it still keeps some secrets.
In particular, many of us may be willing to admit to some uncertainty
whether it is best viewed as a theorem or as a definition.

With proper preparation, either point of view may be supported, al-
though the path of least resistance is surely to take the formula for
ρ(x,y) as the definition of the Euclidean distance in R

d. Nevertheless,
there is a Faustian element to this bargain.

First, this definition makes the Pythagorean theorem into a bland
triviality, and we may be saddened to see our much-proved friend treated
so shabbily. Second, we need to check that this definition of distance
in R

d meets the minimal standards that one demands of a distance
function; in particular, we need to check that ρ satisfies the so-called
triangle inequality, although, by a bit of luck, Cauchy’s inequality will
help us with this task. Third, and finally, we need to test the limits on
our intuition. Our experience with R

2 and R
3 is a powerful guide, yet

it can also mislead us, and one does well to develop a skeptical attitude
about what is obvious and what is not.

Even though it may be a bit like having dessert before having dinner,
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In R
2, one places a unit circle in

each quadrant of the square [−2, 2]2.

A non-overlapping circle of maximal

radius is then centered at the origin.

Fig. 4.1. This arrangement of 5 = 22 + 1 circles in [−2, 2]2 has a natural
generalization to an arrangement of 2d + 1 spheres in [−2, 2]d. This general
arrangement then provokes a question which a practical person might find
perplexing — or even silly. Does the central sphere stay inside the box [−2, 2]d

for all values of d?

we will begin with the third task. This time the problem that guides us
is framed with the help of the arrangement of circles illustrated in Figure
4.1. This simple arrangement of 5 = 22 + 1 circles is not rich enough to
suggest any serious questions, but it has a d-dimensional analog which
puts our intuition to the test.

On an Arrangement in R
d

Consider the arrangement where for each of the 2d points denoted
by e = (e1, e2, . . . , ed) with ek = 1 or ek = −1 for all 1 ≤ k ≤ d, we
have a sphere Se with unit radius and center e. Each of these spheres
is contained in the cube [−2, 2]d and, to complete the picture, we place
a sphere S(d) at the origin that has the largest possible radius subject
to the constraint that S(d) does not intersect the interior of any of the
initial collection of 2d unit spheres. We then ask ourselves a question
which no normal, sensible person would ever think of asking.

Problem 4.1 (Thinking Outside the Box)

Is the central sphere S(d) contained in the cube [−2, 2]d for all d ≥ 2?

Just posing this question provides a warning that we should not trust
our intuition here. If we rely purely on our visual imagination, it may
even seem silly to suggest that S(d) might somehow expand beyond the
box [−2, 2]d. Nevertheless, our visual imagination is largely rooted in
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our experience with R
2 and R

3, and this intuition can easily fail us in
R

d, d ≥ 4. Instead, computation must be our guide.
Here we first note that for each of the 2d outside spheres the corre-

sponding center point e has distance
√
d from the origin. Next, since

each outside sphere has radius 1, we see by subtraction that the radius of
the central sphere S(d) is equal to

√
d−1. Thus, we find that for d ≥ 10

one has
√
d−1 > 2, and, yes, indeed, the central sphere actually extends

beyond the box [−2, 2]d. In fact, as d → ∞ the fraction of the volume
of the sphere that is inside the box even goes to zero exponentially fast.

Refining Intuition — Facing Limitations

When one shares this example with friends, there is usually a brief mo-
ment of awe, but sooner or later someone says, “Why should we regard
this as surprising? Just look how far away the point e = (e1, e2, . . . , ed)
is from the origin! Is it really any wonder that . . . .”. Such observations
illustrate how quickly (and almost subconsciously) we refine our intu-
ition after some experience with calculations. Nevertheless, if we accept
such remarks at face value, it is easy to become overly complacent about
the very real limitations on our physical intuition.

Ultimately, we may do best to take a hint from pilots who train them-
selves to fly safely through clouds by relying on instruments rather than
physical sensations. When we work on problems in R

d, d ≥ 4, we benefit
greatly from the analogy with R

2 and R
3, but at the end of the day, we

must rely on computation rather than visual imagination.

Meeting the Minimal Requirements

The example of Figure 4.1 reminds us that intuition is fallible, but
even our computations need guidance. One way to seek help is to force
our problem into its simplest possible form, while striving to retain its
essential character. Thus, a complex model is often boiled down to a
simpler abstract model where we rely on a small set of rules, or axioms,
to help us express the minimal demands that must be met. In this way
one hopes to remove the influence of an overly active imagination, while
still retaining a modicum of control.

Our next challenge is to see how the Euclidean distance (4.1) might
pass through such a logical sieve. Thus, for a moment, we consider an
arbitrary set S and a function ρ : S×S → R that has the four following
properties:

(i) ρ(x,y) ≥ 0 for all x,y in S,
(ii) ρ(x,y) = 0 if and only if x = y,
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(iii) ρ(x,y) = ρ(y,x) for all x,y in S, and
(iv) ρ(x,y) ≤ ρ(x, z) + ρ(z,y) for all x,y and z in S.

These properties are intended to reflect the rock-bottom minimal re-
quirements that ρ(·, ·) must meet for us to be willing to think of ρ(x,y)
as the distance from x to y in S. A pair (S, ρ) with these properties
is called a metric space, and such spaces provide the simplest possible
setting for the study of problems that depend only on the notion of
distance.

When we look at the Euclidean distance ρ defined by the formula
(4.1), we see at a glance that properties (i)–(iii) are met. It is perhaps
less evident that property (iv) is also satisfied, but the next challenge
problem invites one to confirm this fact. The challenge is easily met,
yet along the way we will find a simple relationship between the triangle
inequality and Cauchy’s inequality that puts Cauchy’s inequality on a
new footing. Ironically, the axiomatic approach to Euclidean distance
adds greatly to the intuitive mastery of Cauchy’s inequality.

Problem 4.2 (Triangle Inequality for Euclidean Distance)
Show that the function ρ : R

d × R
d → R defined by

ρ(x,y) =
√

(y1 − x1)2 + (y2 − x2)2 + · · · + (yd − xd)2 (4.2)

satisfies the triangle inequality

ρ(x,y) ≤ ρ(x, z) + ρ(z,y) for all x,y and z in R
d. (4.3)

To solve this problem, we first note from the definition (4.2) of ρ that
one has the translation property that ρ(x + w,y + w) = ρ(x,y) for all
w ∈ R

d; thus, to prove the triangle inequality (4.3), it suffices to show
that for all u and v in R

d one has

ρ(0,u + v) ≤ ρ(0,u) + ρ(u,u + v) = ρ(0,u) + ρ(0,v). (4.4)

By squaring this inequality and applying the definition (4.2), we see that
the target inequality (4.3) is also equivalent to

d∑
j=1

(uj + vj)2 ≤
d∑

j=1

u2
j + 2

{ d∑
j=1

u2
j

}1/2{ d∑
j=1

v2
j

}1/2

+
d∑

j=1

v2
j ,

and this in turn may be simplified to the equivalent bound

d∑
j=1

ujvj ≤
{ d∑

j=1

u2
j

}1/2{ d∑
j=1

v2
j

}1/2

.
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Thus, in the end, one finds that the triangle inequality for the Euclidean
distance is equivalent to Cauchy’s inequality.

Some Notation and a Modest Generalization

The definition (4.2) of ρ can be written quite briefly with help from the
standard inner product 〈u,v〉 = u1v2 +u2v2 + · · ·+udvd, and, instead of
(4.2), one can simply write ρ(x,y) = 〈y − x,y − x〉 1

2 . This observation
suggests a generalization of the Euclidean distance that turns out to
have far reaching consequences.

To keep the logic of the generalization organized in a straight line, we
begin with a formal definition. If V is a real vector space, such as R

d,
we say that the function from V to R

+ defined by the mapping v �→ ‖v‖
is a norm on V provided that it satisfies the following properties:

(i) ‖v‖ = 0 if and only if v = 0,
(ii) ‖αv‖ = |α|‖v‖ for all α ∈ R, and
(iii) ‖u + v‖ ≤ ‖u‖ + ‖v‖ for all u and v in V .

Also, if V is a vector space and ‖ · ‖ is a norm on V , then the couple
(V, ‖ · ‖) is called a normed linear space. The arguments of the preced-
ing section can now be repeated to establish two related, but logically
independent, observations:

(I). If (V, 〈·, ·〉) is an inner product space, then ‖v‖ = 〈v,v〉 1
2 defines a

norm on V . Thus, to each inner product space (V, 〈·, ·〉) we can associate
a natural normed linear space (V, ‖ · ‖).
(II). If (V, ‖ · ‖) is a normed linear space, then ρ(x,y) = ‖x− y‖ defines
a metric on V . Thus, to each normed linear space we can associate a
natural metric space (V, ρ(·, ·)).

Here one should note that the three notions of an inner product space,
a normed linear space, and a metric space are notions of strictly increas-
ing generality. The space S with just two points x and y where ρ is
defined by setting ρ(x,x) = ρ(y,y) = 0 and ρ(x,y) = 1 is a metric
space, but it certainly is not an inner product space — the set S is not
even a vector space. Later, in Chapter 9, we will also meet normed linear
spaces that are not inner product spaces.

How Much Intuition?

According to an old (and possibly apocryphal) story, during one of
his lectures David Hilbert once wrote a line on the blackboard and said,
“It is obvious that . . . ,” but then Hilbert paused and thought for a
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moment. He then became noticeably perplexed, and he even left the
room, returning only after an awkward passage of time. When Hilbert
resumed his lecture, he began by saying “It is obvious that . . . .”

One of the tasks we assign ourselves as students of mathematics is to
sort out for ourselves what is obvious and what is not. Oddly enough,
this is not always an easy task. In particular, if we ask ourselves if the
triangle inequality is obvious in R

d for d ≥ 4, we may face a situation
which is similar to the one that perplexed Hilbert.

The very young child who takes the diagonal across the park shows an
intuitive understanding of the essential truth of the triangle inequality in
R

2. Moreover, anyone with some experience with R
d understands that

if we ask a question about the relationship of three points in R
d, d ≥ 3,

then we are “really” posing a problem in the two-dimensional plane that
contains those points. These observations support the assertion that the
triangle inequality in R

d is obvious.
The triangle inequality is indeed true in R

d, so one cannot easily refute
the claim of someone who says that it is flatly obvious. Nevertheless,
algebra can be relied upon in ways that geometry cannot, and we already
know from the example of Figure 4.1 that our experience with R

3 can be
misleading, or at least temporarily misleading. Sometimes questions are
better than answers and, for the moment at least, we will let the issue of
the obviousness of the triangle inequality remain a part of our continuing
conversation. A more pressing issue is to understand the distance from
a point to a line.

A Closest Point Problem

For any point x �= 0 in R
d there is a unique line L through x and the

origin 0 ∈ R
d, and one can write this line explicitly as L = {tx : t ∈ R}.

The closest point problem is the task of determining the point on L that
is closest to a given point v ∈ R

d. By what may seem at first to be
very good luck, there is an explicit formula for this closest point that
one may write neatly with help from the standard the inner product
〈v,x〉 = v1w1 + v2w2 + · · · + vnwn.

Problem 4.3 (Projection Formula)

For each v and each x �= 0 in R
d, let P (v) denote the point on the

line L = {tx : t ∈ R} that is closest to v. Show that one has

P (v) = x
〈x,v〉
〈x,x〉 . (4.5)
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The point P (v) ∈ L is called the projection of v on L, and the formula
(4.5) for P (v) has many important applications in statistics and engi-
neering, as well as in mathematics. Anyone who is already familiar with
a proof of this formula should rise to this challenge by looking for a new
proof. In fact, the projection formula (4.5) is wonderfully provable, and
successful derivations may be obtained by calculus, by algebra, or even
by direct arguments which require nothing more than a clever guess and
Cauchy’s inequality.

A Logical Choice

The proof by algebra is completely elementary and relatively uncom-
mon, so it seems like a logical choice for us. To find the value of t ∈ R

that minimizes ρ(v, tx), we can just as easily try to minimize its square

ρ2(v, tx) = 〈v − tx,v − tx〉,

which has the benefit of being a quadratic polynomial in t. If we look
back on our earlier experience with such polynomials, then we will surely
think of completing the square, and by doing so we find

〈v − tx,v − tx〉 = 〈v,v〉 − 2t〈v,x〉 + t2〈x,x〉

= 〈x,x〉
(
t2 − 2t

〈v,x〉
〈x,x〉 +

〈v,v〉
〈x,x〉

)
= 〈x,x〉

{(
t− 〈v,x〉

〈x,x〉
)2

+
〈v,v〉
〈x,x〉 −

〈v,x〉2
〈x,x〉2

}
.

Thus, in the end, we see that ρ2(v, tx) has the nice representation

〈x,x〉
{(

t− 〈v,x〉
〈x,x〉

)2

+
〈v,v〉〈x,x〉 − 〈v,x〉2

〈x,x〉2
}
. (4.6)

From this formula we see at a glance that ρ(v, tx) is minimized when we
take t = 〈v,x〉/〈x,x〉, and since this coincides exactly with the asser-
tion of projection formula (4.5), the solution of the challenge problem is
complete.

An Accidental Corollary — Cauchy–Schwarz Again

If we set t = 〈v,x〉/〈x,x〉 in the formula (4.6), then we find that

min
t∈R

ρ2(v, tx) =
〈v,v〉〈x,x〉 − 〈v,x〉2

〈x,x〉 (4.7)

and, since the left-hand side is obviously nonnegative, we discover that
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Fig. 4.2. The closest point on the line L to the point to v ∈ R
d is the point

P (v). It is called the projection of v onto L, and either by calculus, or by
completing of the square, or by direct arguments using Cauchy’s inequality,
one can show that P (v) = x〈x,v〉/〈x,x〉. One way to characterize the pro-
jection P (v) is that it is the unique element of L such that r = v − P (v) is
orthogonal to the vector x which determines the line L.

our calculation has provided a small unanticipated bonus. The numer-
ator on the right-hand side of the identity (4.7) must also be positive,
and this observation gives us yet another proof of the Cauchy–Schwarz
inequality.

There are even two further benefits to the formula (4.7). First, it
gives us a geometrical interpretation of the defect 〈v,v〉〈x,x〉 − 〈v,x〉2.
Second, it tells us at a glance that one has 〈v,v〉〈x,x〉 = 〈v,x〉2, if and
only if v is an element of the line L = {tx : t ∈ R}, which is a simple
geometric interpretation of our earlier characterization of the case of
equality.

How to Guess the Projection Formula

Two elements x and y of an inner product space (V, 〈·, ·〉) are said to be
orthogonal if 〈x,y〉 = 0, and one can check without difficulty that if 〈·, ·〉
is the standard inner product on R

2 or R
3, then this modestly abstract

notion of orthogonality corresponds to the traditional notion of orthog-
onality, or perpendicularity, which one meets in Euclidean geometry. If
we combine this abstract definition with our intuitive understanding of
R

2, then, almost without calculation, we can derive a convincing guess
for a formula for the projection P (v).

For example, in Figure 4.2 our geometric intuition suggests that it is
“obvious” (that tricky word again!) that if we want to choose t such
that P (v) is the closest point to v on L, then we need to choose t so
that the line from P (v) to v should be orthogonal to the line L. In



On Geometry and Sums of Squares 59

symbols, this means that we should choose t such that

〈x,v − tv〉 = 0 or t = 〈x,v〉/〈x,x〉.
We already know this is the value of t which yields the projection formula
(4.5), so — this time at least — our intuition has given us good guidance.

If we are so inclined, we can even turn this guess into a proof. Specif-
ically, we can use Cauchy’s inequality to prove that this guess for t is
actually the optimal choice. Such an argument provides us with a sec-
ond, logically independent, derivation of the projection formula. This
would be an instructive exercise, but, it seems better to move directly
to a harder challenge.

Reflections and Products of Linear Forms

The projection formula and the closest point problem provide us with
important new perspectives, but eventually one has to ask how these
help us with our main task of discovering and proving useful inequalities.
The next challenge problem clears this hurdle by suggesting an elegant
bound which might be hard to discover (or to prove) without guidance
from the geometry of R

n.

Problem 4.4 (A Bound for the Product of Two Linear Forms)
Show that for all real uj, vj, and xj, 1 ≤ j ≤ n, one has the following

upper bound for a product of two linear forms:
n∑

j=1

ujxj

n∑
j=1

vjxj ≤ 1
2
{ n∑

j=1

ujvj +
( n∑

j=1

u2
j

)1/2( n∑
j=1

v2
j

)1/2} n∑
j=1

x2
j . (4.8)

The charm of this inequality is that it leverages the presence of two
sums to obtain a bound that is sharper than the inequality which one
would obtain from two applications of Cauchy’s inequality to the individ-
ual multiplicands. In fact, when 〈u,v〉 ≤ 0 the new bound does better by
at least a factor of one-half, and, even if the vectors u = (u1, u2, . . . , un)
and v = (v1, v2, . . . , vn) are proportional, the bound (4.8) is not worse
than the one provided by Cauchy’s inequality. Thus, the new inequality
(4.8) provides us with a win-win situation whenever we need to estimate
the product of two sums.

Foundations for a Proof

This time we will take an indirect approach to our problem and, at
first, we will only try to deepen our understanding of the geometry
of projection on a line. We begin by noting that Figure 4.2 strongly
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suggests that the projection P onto the line L = {tx : t ∈ R}, must
satisfy the bound

‖P (v)‖ ≤ ‖v‖ for all v ∈ R
d (4.9)

and, moreover, one even expects strict inequality here unless v ∈ L.
In fact, the proof of the bound (4.9) is quite easy since the projection
formula (4.5) and Cauchy’s inequality give us

‖P (v)‖ =
∥∥∥∥x 〈x,v〉

〈x,x〉
∥∥∥∥ =

1
‖x‖ |〈x,v〉| ≤ ‖v‖.

From Projection to Reflection

We also face a similar situation when we consider the reflection of the
point v through the line L, say as illustrated by Figure 4.3. Formally,
the reflection of the point v in the line L is the point R(v) defined by
the formula R(v) = 2P (v) − v. In some ways, the reflection R(v) is an
even more natural object than the projection P (v). In particular, one
can guess from Figure 4.2 that the mapping R : V → V has the pleasing
length preserving property

‖R(v)‖ = ‖v‖ for all v ∈ R
d. (4.10)

One can prove this identity by a direct calculation with the projection
formula, but that calculation is most neatly organized if we first observe
some general properties of P . In particular, we have the nice formula

〈P (v), P (v)〉 =
〈 〈x,v〉x

‖x‖2
,
〈x,v〉x
‖x‖2

〉
=

〈x,v〉2
‖x‖2

,

while at the same time we also have

〈P (v),v〉 =
〈 〈x,v〉x

‖x‖2
,v
〉

=
〈x,v〉2
‖x‖2

,

so we may combine these observations to obtain

〈P (v), P (v)〉 = 〈P (v),v〉.
This useful identity now provides a quick confirmation of the length-
preserving (or isometry) property of the reflection R; we just expand
the inner product and simplify to find

‖R(v)‖2 = 〈2P (v) − v, 2P (v) − v〉
= 4〈P (v), P (v)〉 − 4〈P (v),v〉 + 〈v,v〉
= 〈v,v〉.
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Fig. 4.3. When the point v is reflected in the line L one obtains a new point
R(v) which is the same distance from the origin as v. More formally, the
reflection of v is the point R(v) defined by the formula R(v) = 2P (v) − v.
One can then use the projection formula for P to prove that ||R(v)|| = ||v||.

Return to the Challenge

The geometry of the reflection through the line L = {tx : t ∈ R}
is easily understood, but sometimes the associated algebra can offer a
pleasant surprise. For example, the isometry property of the reflection
R and the Cauchy–Schwarz inequality can be combined to provide an
almost immediate solution of our challenge problem.

From the Cauchy–Schwarz inequality and the isometry property of
the reflection R we have the bound

〈R(u),v〉 ≤ ‖R(u)‖‖v‖ ≤ ‖u‖‖v‖, (4.11)

while on the other hand, the definition of R and the projection formula
give us the identity

〈R(u),v〉 = 〈2P (u) − u,v〉 = 2〈P (u),v〉 − 〈u,v〉

= 2
〈 〈x,u〉x

‖x‖2
,v
〉
− 〈u,v〉

=
2

‖x‖2
〈x,u〉〈x,v〉 − 〈u,v〉.

Thus, from Cauchy–Schwarz and the isometry bound (4.11) we have

2
‖x‖2

〈x,u〉〈x,v〉 − 〈u,v〉 ≤ ‖u‖‖v‖,

and this may be arranged more naturally as

〈x,u〉〈x,v〉 ≤ 1
2
(〈u,v〉 + ‖u‖‖v‖)‖x‖2. (4.12)

If we now interpret these inner products as the standard inner products
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on R
n, then we see that the bound (4.12) is precisely the inequality (4.8)

of the challenge problem.
Thus, almost by accident, we find that the geometry of reflection has

brought us to a new and informative refinement of Cauchy’s inequal-
ity. Such accidents are common, and they form a thread from which
Scheherazade could spin a thousand tales, all with the name symme-
try and its applications. We will revisit this theme, but first we seek a
different kind of contribution from a different kind of geometry.

The Light Cone Inequality

The preceding examples suggested how Euclidean geometry helps to
deepen our understanding of the theory of inequalities, but the tradi-
tional geometry of Euclid is not the only one that helps in this way.
Other geometries, or geometric models, can do their part.

One especially attractive example calls on the famous space-time ge-
ometry of Einstein and Minkowski. The physical background of this
model is not needed here, but, for motivation, it is useful to recall one
fundamental principle of special relativity: no information of any kind
can travel faster than the speed of light.

If we scale space so that the speed of light is 1, this principle tells
implies that each point x = (t;x1, x2, . . . , xd) of time and space where
one can have knowledge of an event that takes place at the origin at
time 0 must satisfy the bound√

x2
1 + x2

2 + · · · + x2
d ≤ t. (4.13)

The set C of all such points in R
+×R

d is called Minkowski’s light cone,
and it is illustrated in Figure 4.4.

The only further notion that we need is the Lorentz product, which is
the bilinear form defined for pairs of elements x = (t;x1, x2, . . . , xd) and
y = (u; y1, y2, . . . , yd) in the light cone C by the formula

[x,y] = tu− x1y1 − x2y2 − · · · − xdyd. (4.14)

This quadratic form was introduced by the Dutch physicist Hendrick
Antoon Lorentz (1853–1928), who used it to simplify some of the formu-
las of special relativity, but for us the interesting feature of the Lorentz
product is its relationship to the Cauchy–Schwarz inequality. It turns
out that the Lorentz product satisfies an inequality which has a su-
perficial resemblance to the Cauchy–Schwarz inequality, except for one
remarkable twist — the inequality is exactly reversed !
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Fig. 4.4. Minkowski’s light cone C is the region of space-time R
+× R

d where
one can have knowledge of an event that takes place at the origin at time zero.
Here time is scaled so that the speed of light is equal to one.

Problem 4.5 (Light Cone Inequality)
Show that if x and y are points of R

+× R
d that are elements of the

light cone C defined in Figure 4.4, then the Lorentz product satisfies the
inequality

[x,x]
1
2 [y,y]

1
2 ≤ [x,y]. (4.15)

Show, moreover, that if x = (t;x1, x2, . . . , xn) and y = (u; y1, y2, . . . , yn)
then the inequality (4.15) is strict unless uxj = tyj for all 1 ≤ j ≤ d.

Development of a Plan

If the Cauchy–Schwarz Master Class were to have a final exam, then
the light cone inequality would provide fertile ground for the develop-
ment of good problems. One can prove the light cone inequality with
almost any reasonable tool — induction, the AM-GM inequality, or even
a Lagrange-type identity will do the job. Here we will explore a lazy and
devious route, precisely the kind favored by most mathematicians.

Since our goal is to prove a reversal of the Cauchy–Schwarz inequality,
a pleasantly outrageous plan would be to look for some way to invert the
famous polynomial argument of Schwarz (say, as described in Chapter 1,
on page 11). In Schwarz’s argument, one constructs a quadratic polyno-
mial, makes an observation about its roots, and then draws a conclusion
about the coefficients of the polynomial. That is just what we will try
here — with some necessary changes. After all, we want a different con-
clusion about the coefficients, so we need to make a different observation
about the roots.

In imitation of Schwarz’s argument, we introduce the quadratic poly-
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Fig. 4.5. Schwarz’s proof of the Cauchy–Schwarz inequality exploited the
bound on the coefficients of a polynomial without real roots; in contrast,
Minkowski’s light cone inequality cone exploits the information that one gets
from knowing a quadratic polynomial has two real roots.

nomial

p(λ) = [x − λy,x − λy] = [x,x] − 2λ[x,y] + λ2[y,y] (4.16)

= (t− λu)2 −
d∑

j=1

(xj − λyj)2, (4.17)

and we immediately address ourselves to understanding its roots. To
side-step trivialities, we first note that if t = 0 then our assumption that
x = (t;x1, x2, . . . , xd) ∈ C tells us that x = 0. In this case, the light
cone inequality (4.15) is trivially true, so, without loss of generality, we
can assume that t �= 0.

Next, for space-time vectors x and y in C one sees from Cauchy’s in-
equality and the definition of the light cone that the spatial components
(x1, x2, . . . , xn) and (y1, y2, . . . , yn) must satisfy the bound

n∑
k=1

xkyk ≤
( n∑

k=1

x2
k

) 1
2
( n∑

k=1

y2
k

) 1
2

≤ tu.

In the language of the Lorentz product, this says [x,y] ≥ 0, and as a
consequence we see that the light cone inequality is trivially true when-
ever [x,x] = 0 or [y,y] = 0. Thus, without loss of generality, we can
assume both of these Lorentz products are nonzero.

Now, we are ready for the main argument. For u �= 0, we may then
take λ0 = t/u, and the first sum of the expanded polynomial (4.17)
vanishes. We then see that either (i) uxj = tyj for all 1 ≤ j ≤ d or
else we have (ii) p(λ0) < 0. In the first situation, we have the case of
equality which was suggested by the challenge problem, so to complete
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the solution we just need to confirm that in the second situation we have
required strict inequality.

Since we have assumed that [y,y] > 0, we see from the product form
(4.16) that p(λ) → ∞ as λ→ ∞ or λ→ −∞ and we know that p(λ0) < 0
so the equation p(λ) = Aλ2 + 2Bλ+ C = 0 must have two distinct real
roots. The binomial formula for the quadratic equation then tells us that
AC < B. When we identify the coefficients of p(λ) from its product form
(4.16) we find A = [x,x], B = [x,y], and C = [y,y], so AC < B gives
us the strict inequality [x,x][y,y] < [x,y]2, which we hoped to show.

Complex Inner Product Spaces

If V is a complex vector space, such as C
d or the set of complex valued

continuous functions on [0, 1], then we say that a function on V × V

defined by the mapping (a,b) �→ 〈a,b〉 ∈ C is an complex inner product
and we say that (V, 〈·, ·〉) is a complex inner product space provided
that the pair (V, 〈·, ·〉) has five basic properties. The first four of these
perfectly parallel those required of a real inner product space:

(i) 〈v,v〉 ≥ 0 for all v ∈ V,

(ii) 〈v,v〉 = 0 if and only if v = 0

(iii) 〈αv,w〉 = α〈v,w〉 for all α ∈ C and v,w ∈ V,

(iv) 〈u,v + w〉 = 〈u,v〉 + 〈u,w〉 for all u,v and w ∈ V ,

but the fifth property requires a modest change; specifically, for a com-
plex inner product space we assume that

(v) 〈v,w〉 = 〈w,v〉 for all v,w ∈ V .

Problem 4.6 (Cauchy–Schwarz for a Complex Inner Product)

Show that in a complex inner product space
(
V, 〈·, ·〉) one has

|〈v,w〉| ≤ 〈v,v〉 1
2 〈w,w〉 1

2 . (4.18)

Furthermore, show that v �= 0 then one has equality in the bound (4.18)
if and only if w = λv for some λ ∈ C.

A Natural Plan and a New Obstacle

A natural plan for proving the Cauchy–Schwarz inequality for a com-
plex inner product space is to mimic the proof for a real inner product
space while paying attention to any changes which may be required by
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the new “property (v).” Thus, we compute

0 ≤ 〈v − w,v − w〉 = 〈v,v〉 + 〈w,w〉 − 〈v,w〉 − 〈w,v〉
= 〈v,v〉 + 〈w,w〉 − {〈v,w〉 + 〈v,w〉}
= 〈v,v〉 + 〈w,w〉 − 2Re 〈v,w〉,

and we deduce that

Re 〈v,w〉 ≤ 1
2
〈v,v〉 +

1
2
〈w,w〉, (4.19)

where we have strict inequality unless v = w.
The additive bound (4.19) must be converted to one that is multi-

plicative. If we call on the familiar normalization method and introduce

v̂ = v/〈v,v〉 1
2 and ŵ = w/〈w,w〉 1

2 ,

then arithmetic brings us quickly to the bound

Re 〈v,w〉 ≤ 〈v,v〉 1
2 〈w,w〉 1

2 . (4.20)

Unfortunately, this starts to look worrisome. We hoped to obtain a
bound on |〈v,w〉| but we have only found bound on Re 〈v,w〉, a term
which may be arbitrarily smaller than |〈v,w〉|. Is it possible that this
approach has failed?

Saved by a Self-improvement

The saving grace of inequality (4.20) is that it is of the self-improving
kind. If we exploit its generality appropriately, we can derive an appar-
ently stronger inequality.

If we write 〈v,w〉 = ρeiθ with ρ > 0 and if we set ṽ = e−iθv, then the
properties of the complex inner product give us the identities

〈ṽ, ṽ〉 = 〈v,v〉 and 〈ṽ,w〉 = Re 〈ṽ,w〉 = |〈v,w〉|,
so the real part bound (4.20) for the pair ṽ and w gives us

|〈v,w〉| = Re 〈ṽ,w〉 ≤ 〈ṽ, ṽ〉 1
2 〈w,w〉 1

2 = 〈v,v〉 1
2 〈w,w〉 1

2 .

The outside terms yield the complex Cauchy–Schwarz inequality in the
precisely the form we expected, so the bound (4.20) was strong enough
after all.

The Trick of “Making It Real”

In this argument, we faced an inequality which was made more compli-
cated because of the presence of a real part. This is a common difficulty,
and it is often addressed by the trick used here: one pre-multiplies by
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a well-chosen complex number in order to guarantee that some critical
quantity will be real. This is one of the most widely used maneuvers
in the theory of complex inequalities, and it should never be far out of
mind.

Finally, to complete the solution of the challenge problem, we should
confirm the alleged necessary and sufficient conditions for equality. Here
it is honestly easy to retrace the steps of our argument to confirm the
stated conditions, but, as we will discuss later (page 138), such backtrack
arguments are not always trouble free. For the standard complex inner
product one also has another option which is perhaps more satisfying;
one can simply use the complex Lagrange identity (4.23) as suggested
by Exercise 4.4.

Exercises

Exercise 4.1 (Triangle Inequality “Pot Shots”)
The triangle inequality in R

d may seem obvious, but some of its con-
sequences can be puzzling when they are presented out of context. Here,
the next three exercises are not at all hard, but you might ask yourself,
“Would these have been so easy yesterday?”

(a) Show for nonnegative x, y, z that

(x+ y + z)
√

2 ≤
√
x2 + y2 +

√
y2 + z2 +

√
x2 + z2.

(b) Show for 0 < x ≤ y ≤ z that√
y2 + z2 ≤ x

√
2 +

√
(y − x)2 + (z − x)2.

(c) Show for positive x, y, z that

2
√

3 ≤
√
x2 + y2 + z2 +

√
x−2 + y−2 + z−2.

This list can be continued almost without limit, yet there is really only
one theme: any time you see a sum of square roots in an inequality,
you should give at least a moment’s thought to the possibility that the
triangle inequality may help.

Exercise 4.2 (The Geometry of “Steepest Ascent”)
If f : R

n → R is a differentiable function, then one often hears that
the gradient

∇f(x) =
(
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

)
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Fig. 4.6. By calculus, or by completing the square, one finds that the quadratic
polynomial P (t) = 〈v − tw,v − tw〉 takes it minimum at t0 = 〈v,w〉/〈w,w〉.
The nonnegativity of h is enough to prove Cauchy’s inequality for the nth
time, but geometry adds details which can be critical.

points in the direction of steepest ascent of f provided that ∇f �= 0. In
longhand, this says for any unit vector u one has the bound

d

dt
f(x + tu)

∣∣∣∣
t=0

≤ d

dt
f(x + tv)

∣∣∣∣
t=0

(4.21)

where v = ∇f(x)/‖∇f(x)‖. Prove this inequality and show that it is
strict unless u = v.

Exercise 4.3 (Cauchy via Another Identity)
Lagrange’s identity is not the only formula that gives an instant proof

of Cauchy’s inequality. Check that in any real inner product space the
difference 〈v,v〉〈w,w〉 − 〈v,w〉2 can be written as

〈w,w〉
{〈

v − 〈w,v〉
〈w,w〉w, v − 〈w,v〉

〈w,w〉w
〉}

, (4.22)

and explain why this also implies the general Cauchy–Schwarz inequality.
Incidentally, one does not need a flash of algebraic insight to discover

the representation (4.22). As Figure 4.6 suggests, this formula cannot
remain hidden for long once we ask ourselves about minimization of the
polynomial P (t) = 〈v − tw,v − tw〉.

Exercise 4.4 (Lagrange’s Identity for Complex Numbers)
Prove that for complex ak and bk, 1 ≤ k ≤ n, one has

n∑
k=1

|ak|2
n∑

k=1

|bk|2 −
∣∣∣∣ n∑

k=1

ak bk

∣∣∣∣2 =
∑
1≤j<k≤n

∑∣∣ājbk − ak b̄j
∣∣2, (4.23)

and show that this identity yields the complex Cauchy inequality as
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Fig. 4.7. Ptolemy’s inequality and the condition for equality.

well as the necessary and sufficient conditions for equality. Here one
should note that this identity does not follow from direct substitution
of complex numbers into the Lagrange’s identity for real numbers; those
pesky absolute values get in the way. A slightly more sophisticated
approach is required.

Exercise 4.5 (A Vector-Scalar Melange)
Consider real weights pj > 0, j = 1, 2, . . . , n, arbitrary real numbers

αj , j = 1, 2, . . . , n, and an inner product space (V, 〈·, ·〉). Find an analog
of Lagrange’s identity which suffices to prove that one has the inequality∥∥∥∥ n∑

j=1

pjαjxj

∥∥∥∥2

≤
n∑

j=1

pjα
2
j

n∑
k=1

pk‖xk‖2 (4.24)

for all xk, 1 ≤ k ≤ n, in V . Also, check that your identity implies that
equality holds if and only if we have αjxk = αkxj for all 1 ≤ j, k ≤ n.

Exercise 4.6 (Ptolemy’s Inequality)
Ptolemy may be best known for founding a theory of planetary motion

which was overturned by Copernicus, but parts of Ptolemy’s legacy have
stood the test of time. Among these, Ptolemy has a namesake inequality
which even today is a workhorse of the theory of geometric inequalities.
Ptolemy’s inequality asserts that in a convex quadrilateral “the product
of the diagonals is bounded by the sum of the products of the opposite
sides,” or, in the notation of Figure 4.7,

pq ≤ ac+ bd. (4.25)

Prove this inequality and show that equality holds if and only if the four
vertices A,B,C,D are all on the circumference of a circle.
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Exercise 4.7 (Representations of Complex Inner Products)

(a) If 〈·, ·〉 is a complex inner product and if α ∈ C and αN = 1 but
α2 �= 1, then show that one has the representation

〈x, y〉 =
1
N

N−1∑
n=0

∥∥x+ αn y
∥∥2
αn (4.26)

where, as usual, ‖w‖ = 〈w,w〉1/2.

(b) Similarly show that for any complex inner product one has

〈x, y〉 =
1
2π

∫ π

−π

∥∥x+ eiθ y
∥∥2
eiθ dθ. (4.27)

One benefit of identities such as these is that they may help us convert
facts for ‖ · ‖ into facts for 〈·, ·〉 or vice-versa. One can say that these
are “just” variants of the polarization identity, but there are times when
they are just the variant one needs.

Exercise 4.8 (A Concrete Model of an Abstract Space)

If x1,x2, . . . ,xn are linearly independent elements of the (real or com-
plex) inner product space (V, 〈·, ·〉), we define a new sequence e1, e2, . . . , en

by setting e1 = x1/‖x1‖ and by applying the two-part recursion

zk = xk −
k−1∑
j=1

〈xk, ej〉ej and ek =
zk

‖zk‖ (4.28)

for k = 2, 3, . . . , n. This algorithm is known as the Gram–Schmidt pro-
cess, and it provides a systematic tool for reducing questions in an inner
product space to questions for real or complex numbers. In this exercise
we develop the most basic properties of this process, and in the next
four exercises we show how these properties are used in practice.

(a) Show that {ek : 1 ≤ k ≤ n} is an orthonormal sequence in the
sense that for all 1 ≤ j, k ≤ n one has

〈ej , ek〉 =

{
1 if j = k

0 if j �= k.

(b) Show that {xk : 1 ≤ k ≤ n} and {ek : 1 ≤ k ≤ n} satisfy the
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triangular system of linear relations

x1 = 〈x1, e1〉e1

x2 = 〈x2, e1〉e1 + 〈x2, e2〉e2

· · · = · · ·
xn = 〈xn, e1〉e1 + 〈xn, e2〉e2 + · · · + 〈xn, en〉en.

Exercise 4.9 (Gram–Schmidt Implies Cauchy–Schwarz)
Apply the Gram–Schmidt process to the two term sequence {x,y} and

show that it reduces the inequality |〈x,y〉| ≤ 〈x,x〉 1
2 〈y,y〉 1

2 to a bound
that is obvious. Thus, the Gram–Schmidt process gives an automatic
proof of the Cauchy–Schwarz inequality.

Exercise 4.10 (Gram–Schmidt Implies Bessel)
If {yk : 1 ≤ k ≤ n} is an orthonormal sequence from a (real or

complex) inner product space (V, 〈·, ·〉), then Bessel’s inequality asserts
that

n∑
k=1

|〈x,yk〉|2 ≤ 〈x,x〉 for all x ∈ V. (4.29)

Show that the Gram–Schmidt process yields a semi-automatic proof of
Bessel’s inequality. Incidentally, one should also note that the case n = 1
of Bessel’s inequality is equivalent to the Cauchy–Schwarz inequality.

Exercise 4.11 (Gram–Schmidt and Products of Linear Forms)
Use the Gram–Schmidt process for the three-term sequence {x,y, z}

to show that in a real inner product space one has

〈x,y〉〈x, z〉 ≤ 1
2
(〈y, z〉 + ‖y‖‖z‖)‖x‖2, (4.30)

a bound which we used earlier (page 61) to illustrate the use of isometries
and projections.

Exercise 4.12 (A Gram–Schmidt Finale)
Show that if x,y, z are elements of a (real or complex) inner product

space V and if ‖x‖ = ‖y‖ = ‖z‖ = 1, then one has the inequality

|〈x,x〉〈y, z〉 − 〈x,y〉〈x, z〉|
≤ {〈x,x〉2 − |〈x,y〉|2}{〈x,x〉2 − |〈x, z〉|2} (4.31)
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and the inequality

〈x,x〉2( |〈y, z〉|2 + |〈y,x〉|2 + |〈x, z〉|2 )
≤ 〈x,x〉4 + 〈x,x〉〈z,y〉〈y,x〉〈x, z〉

+ 〈x,x〉〈y, z〉〈x,y〉〈z,x〉. (4.32)

At first glance, these bounds may seem intimidating, but after one uses
the Gram–Schmidt process to strip away the inner products, they are
just like the kind of bounds we have met many times before.

Exercise 4.13 (Equivalence of Isometry and Orthonormality)
This exercise shows how an important algebraic identity can be proved

with help from the condition for equality in the Cauchy–Schwarz bound.
The task is to show that if the n× n matrix A preserves the Euclidean
length of each v in R

n then its columns are orthonormal. In the useful
shorthand of matrix algebra, one needs to show

‖Av‖ = ‖v‖ for all v ∈ R
d ⇐⇒ ATA = I,

where I is the identity matrix, AT is the transpose of A, and ‖v‖ is the
Euclidean length of v.

As a hint, one might first show that ‖AT v‖ ≤ ‖v‖; that is, one might
show that the transpose AT does not increase length. One can then
argue that if Cauchy–Schwarz inequality is applied to the inner product
〈v, ATAv〉 then equality actually holds.
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Consequences of Order

One of the natural questions that accompanies any inequality is the
possibility that it admits a converse of one sort or another. When we
pose this question for Cauchy’s inequality, we find a challenge problem
that is definitely worth our attention. It not only leads to results that
are useful in their own right, but it also puts us on the path of one
of the most fundamental principles in the theory of inequalities — the
systematic exploitation of order relationships.

Problem 5.1 (The Hunt for a Cauchy Converse)
Determine the circumstances which suffice for nonnegative real num-

bers ak, bk, k = 1, 2, . . . , n to satisfy an inequality of the type( n∑
k=1

a2
k

) 1
2
( n∑

k=1

b2k

) 1
2

≤ ρ

n∑
k=1

akbk (5.1)

for a given constant ρ.

Orientation

Part of the challenge here is that the problem is not fully framed —
there are circumstances and conditions that remain to be determined.
Nevertheless, uncertainty is an inevitable part of research, and practice
with modestly ambiguous problems can be particularly valuable.

In such situations, one almost always begins with some experimenta-
tion, and since the case n = 1 is trivial, the simplest case worth study
is given by taking the vectors (1, a) and (1, b) with a > 0 and b > 0. In
this case, the two sides of the conjectured Cauchy converse (5.1) relate
the quantities

(1 + a2)
1
2 (1 + b2)

1
2 and 1 + ab,

73
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and this calculation already suggests a useful inference. If a and b are
chosen so that the product ab is held constant while a → ∞, then
one finds that the right-hand expression is bounded, but the left-hand
expression is unbounded. This observation shows in essence that for a
given fixed value of ρ ≥ 1 the conjecture (5.1) cannot hold unless the
ratios ak/bk are required to be bounded from above and below.

Thus, we come to a more refined point of view, and we see that it is
natural to conjecture that a bound of the type (5.1) will hold provided
that the summands satisfy the ratio constraint

m ≤ ak

bk
≤M for all k = 1, 2, . . . n, (5.2)

for some constants 0 < m ≤ M < ∞. In this new interpretation of the
conjecture (5.1), one naturally permits ρ to depend on the values of m
and M , though we would hope to show that ρ can be chosen so that
it does not have any further dependence on the individual summands
ak and bk. Now, the puzzle is to find a way to exploit the betweenness
bounds (5.2).

Exploitation of Betweenness

When we look at our unknown (the conjectured inequality) and then
look at the given (the betweenness bounds), we may have the lucky
idea of hunting for clues in our earlier proofs of Cauchy’s inequality. In
particular, if we recall the proof that took (a − b)2 ≥ 0 as its depar-
ture point, we might start to suspect that an analogous idea could help
here. Is there some way to obtain a useful quadratic bound from the
betweenness relation (5.2)?

Once the question is put so bluntly, one does not need long to notice
that the two-sided bound (5.2) gives us a cheap quadratic bound(

M − ak

bk

)(
ak

bk
−m

)
≥ 0. (5.3)

Although one cannot tell immediately if this observation will help, the
analogy with the earlier success of the trivial bound (a−b)2 ≥ 0 provides
ground for optimism.

At a minimum, we should have the confidence needed to unwrap the
bound (5.3) to find the equivalent inequality

a2
k + (mM) b2k ≤ (m+M) akbk for all k = 1, 2, . . . , n. (5.4)

Now we seem to be in luck; we have found a bound on a sum of squares
by a product, and this is precisely what a converse to Cauchy’s inequality
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requires. The eventual role to be played by M and m is still uncertain,
but the scent of progress is in the air.

The bounds (5.4) call out to be summed over 1 ≤ k ≤ n, and, upon
summing, the factors mM and m+M come out neatly to give us

n∑
k=1

a2
k + (mM)

n∑
k=1

b2k ≤ (m+M)
n∑

k=1

akbk, (5.5)

which is a fine additive bound. Thus, we face a problem of a kind we
have met before — we need to convert an additive bound to one that is
multiplicative.

Passage to a Product

If we cling to our earlier pattern, we might now be tempted to intro-
duce normalized variables âk and b̂k, but this time normalization runs
into trouble. The problem is that the inequality (5.5) may be applied
to âk and b̂k only if they satisfy the ratio bound m ≤ âk/b̂k ≤ M, and
these constraints rule out the natural candidates for the normalizations
âk and b̂k. We need a new idea for passing to a product.

Conceivably, one might get stuck here, but help is close at hand pro-
vided that we pause to ask clearly what is needed — which is just a
lower bound for a sum of two expressions by a product of their square
roots. Once this is said, one can hardly fail to think of using the AM-
GM inequality, and when it is applied to the additive bound (5.5), one
finds ( n∑

k=1

a2
k

) 1
2
(
mM

n∑
k=1

b2k

) 1
2

≤ 1
2

{ n∑
k=1

a2
k + (mM)

n∑
k=1

b2k

}

≤ 1
2

{
(m+M)

n∑
k=1

akbk

}
.

Now, with just a little rearranging, we come to the inequality that com-
pletes our quest. Thus, if we set

A = (m+M)/2 and G =
√
mM, (5.6)

then, for all nonnegative ak, bk, k = 1, 2, . . . , n with

0 < m ≤ ak/bk ≤M <∞,

we find the we have established the bound( n∑
k=1

a2
k

) 1
2
( n∑

k=1

b2k

) 1
2

≤ A

G

n∑
k=1

akbk; (5.7)
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thus, in the end, one sees that there is indeed a natural converse to
Cauchy’s inequality.

On the Conversion of Information

When one looks back on the proof of the converse Cauchy inequality
(5.7), one may be struck by how quickly progress followed once the two
order relationships, m ≤ ak/bk and ak/bk ≤ M , were put together to
build the simple quadratic inequality (M − ak/bk)(ak/bk −m) ≥ 0. In
the context of a single example, this could just be a lucky accident, but
something deeper is afoot.

In fact, the device of order-to-quadratic conversion is remarkably ver-
satile tool with a wide range of applications. The next few challenge
problems illustrate some of these that are of independent interest.

Monotonicity and Chebyshev’s “Order Inequality”

One way to put a large collection of order relationships at your fin-
gertips is to focus your attention on monotone sequences and monotone
functions. This suggestion is so natural that it might not stir high hopes,
but in fact it does lead to an important result with many applications,
especially in probability and statistics.

The result is due to Pafnuty Lvovich Chebyshev (1821–1894) who
apparently had his first exposure to probability theory from our earlier
acquaintance Victor Yacovlevich Bunyakovsky. Probability theory was
one of those hot new mathematical topics which Bunyakovsky brought
back to St. Petersburg when he returned from his student days studying
with Cauchy in Paris. Another topic was the theory of complex variables
which we will engage a bit later.

Problem 5.2 (Chebyshev’s Order Inequality)
Suppose that f : R → R and g : R → R are nondecreasing and

suppose pj ≥ 0, j = 1, 2, . . . , n, satisfy p1 + p2 + · · · + pn = 1. Show
that for any nondecreasing sequence x1 ≤ x2 ≤ · · · ≤ xn one has the
inequality { n∑

k=1

f(xk)pk

}{ n∑
k=1

g(xk)pk

}
≤

n∑
k=1

f(xk)g(xk)pk. (5.8)

Connections to Probability and Statistics

The inequality (5.8) is easily understood without relying on its connec-
tion to probability theory, and it has many applications in other areas of
mathematics. Nevertheless, the probabilistic interpretation of the bound
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(5.8) is particularly compelling. In the language of probability, it says
that if X is a random variable for which one has P (X = xk) = pk for
k = 1, 2, . . . , n then

E[f(X)]E[g(X)] ≤ E[f(X)g(X)], (5.9)

where, as usual, P stands for probability and E stands for the mathe-
matical expectation. In other words, if random variables Y and Z may
be written as nondecreasing functions of a single random variable X,
then Y and Z must be nonnegatively correlated. Without Chebyshev’s
inequality, the intuition that is commonly attached to the statistical
notion of correlation would stand on shaky ground.

Incidentally, there is another inequality due to Chebyshev that is even
more important in probability theory; it tells us that for any random
variable X with a finite mean µ = E(X) one has the bound

P (|X − µ| ≥ λ) ≤ 1
λ2
E
(|X − µ|2). (5.10)

The proof of this bound is almost trivial, especially with the hint offered
in Exercise 5.11, but it is such a day-to-day workhorse in probability
theory that Chebyshev’s order (5.9) inequality is often jokingly called
Chebyshev’s other inequality.

A Proof from Our Pocket

Chebyshev’s inequality (5.8) is quadratic, and the hypotheses provide
order information, so, even if one were to meet Chebyshev’s inequality
(5.8) in a dark alley, the order-to-quadratic conversion is likely to come
to mind. Here the monotonicity of f and g give us the quadratic bound

0 ≤ {f(xk) − f(xj)
}{
g(xk) − g(xj)

}
,

and this may be expanded in turn to give

f(xk)g(xj) + f(xj)g(xk) ≤ f(xj)g(xj) + f(xk)g(xk). (5.11)

From this point, we only need to bring the pj ’s into the picture and
meekly agree to take whatever arithmetic gives us.

Thus, when we multiply the bound (5.11) by pjpk and sum over 1 ≤
j ≤ n and 1 ≤ k ≤ n, we find that the left-hand sum gives us

n∑
j,k=1

{
f(xk)g(xj) + f(xj)g(xk)

}
pjpk = 2

{ n∑
k=1

f(xk)pk

}{ n∑
k=1

g(xk)pk

}
,
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while the right-hand sum gives us
n∑

j,k=1

{
f(xj)g(xj) + f(xk)g(xk)

}
pjpk = 2

{ n∑
k=1

f(xk)g(xk)pk

}
.

Thus, the bound between the summands (5.11) does indeed yield the
proof of Chebyshev’s inequality.

Order, Facility, and Subtlety

The proof of Chebyshev’s inequality leads us to a couple of observa-
tions. First, there are occasions when the application of the order-to-
quadratic conversion is an automatic, straightforward affair. Even so,
the conversion has led to some remarkable results, including the versa-
tile rearrangement inequality which is developed in our next challenge
problem. The rearrangement inequality is not much harder to prove
than Chebyshev’s inequality, but some of its consequences are simply
stunning. Here, and subsequently, we let [n] denote the set {1, 2, . . . , n},
and we recall that a permutation of [n] is just a one-to-one mapping
from [n] into [n].

Problem 5.3 (The Rearrangement Inequality)
Show that for each pair of ordered real sequences

−∞ < a1 ≤ a2 ≤ · · · ≤ an <∞ and −∞ < b1 ≤ b2 ≤ · · · ≤ bn <∞
and for each permutation σ : [n] → [n], one has

n∑
k=1

akbn−k+1 ≤
n∑

k=1

akbσ(k) ≤
n∑

k=1

akbk. (5.12)

Automatic — But Still Effective

This problem offers us a hypothesis that provides order relations and
asks us for a conclusion that is quadratic. This familiar combination
may tempt one to just to dive in, but sometimes it pays to be patient.
After all, the statement of the rearrangement inequality is a bit involved,
and one probably does well to first consider the simplest case n = 2.

In this case, the order-to-quadratic conversion reminds us that

a1 ≤ a2 and b1 ≤ b2 imply 0 ≤ (a2 − a1)(b2 − b1),

and when this is unwrapped, we find

a1b2 + a2b1 ≤ a1b1 + a2b2,
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which is precisely the rearrangement inequality (5.12) for n = 2. Nothing
could be easier than this warm-up case; the issue now is to see if a similar
idea can be used to deal with the more general sums

S(σ) =
n∑

k=1

akbσ(k).

Inversions and Their Removal

If σ is not the identity permutation, then there must exist some pair
j < k such that σ(k) < σ(j). Such a pair is called an inversion, and
the observation that one draws from the case n = 2 is that if we switch
the values of σ(k) and σ(j), then the value of the associated sum will
increase — or, at least not decrease. To make this idea formal, we first
introduce a new permutation τ by the recipe

τ(i) =


σ(i) if i �= j and i �= k

σ(j) if i = k

σ(k) if i = j

(5.13)

which is illustrated in Figure 5.1. By the definition of τ and by factor-
ization, we then find

S(τ) − S(σ) = ajbτ(j) + akbτ(k) − ajbσ(j) − akbσ(k)

= ajbτ(j) + akbτ(k) − ajbτ(k) − akbτ(j)

= (ak − aj)(bτ(k) − bτ(j)) ≥ 0.

Thus, the transformation σ �→ τ achieves two goals; first, it increases S,
so S(σ) ≤ S(τ), and second, the number of inversions of τ is forced to
be strictly fewer than the number of inversions of the permutation σ.

Repeating the Process — Closing the Loop

A permutation has at most n(n − 1)/2 inversions and only the iden-
tity permutation has no inversions, so there exists a finite sequence of
inversion removing transformations that move in sequence from σ to the
identity. If we denote these by σ = σ0, σ1, . . . , σm where σm is the iden-
tity and m ≤ n(n− 1)/2, then, by applying the bound S(σj−1) ≤ S(σj)
for j = 1, 2, . . . ,m, we find

S(σ) ≤
n∑

k=1

akbk.

This completes the proof of the upper half of the rearrangement inequal-
ity (5.12).
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bτ(1)

bσ(1)

a1

bτ(2)

bσ(2)

a2

bτ(j)

bσ(j)

aj

bτ(k)

bσ(k)

ak

bτ(n−1)

bσ(n−1)

an−1ak

bτ(n)

bσ(n)

an

· · · · · · · · ·

· · · · · · · · ·
Fig. 5.1. An interchange operation converts the permutation σ to a permu-
tation τ . By design, the new permutation τ has fewer inversions than σ; by
calculation, one also finds that S(σ) ≤ S(τ).

The easy way to get the lower half is then to notice that it is an
immediate consequence of the upper half. Thus, if we consider b′1 =
−bn, b′2 = −bn−1, . . . , b

′
n = −b1 we see that

b′1 ≤ b′2 ≤ · · · ≤ b′n

and, by the upper half of the rearrangement inequality (5.12) applied to
the sequence b′1, b

′
2, . . . , b

′
n we get the lower half of the inequality (5.12)

for the sequence b1, b2, . . . , bn.

Looking Back — Testing New Probes

The statement of the rearrangement inequality is exceptionally natu-
ral, and it does not provide us with any obvious loose ends. We might
look back on it many times and never think of any useful variations
of either its statement or its proof. Nevertheless, such variations can
always be found; one just needs to use the right probes.

Obviously, no single probe, or even any set of probes, can lead with
certainty to a useful variation of a given result, but there are a few
generic questions that are almost always worth our time. One of the
best of these asks: “Is there a nonlinear version of this result?”

Here, to make sense of this question, we first need to notice that the
rearrangement inequality is a statement about sums of linear functions
of the ordered n-tuples

{bn−k+1}1≤k≤n, {bσ(k)}1≤k≤n and {bk}1≤k≤n,

where the “linear functions” are simply the n mappings given by

x �→ akx k = 1, 2, . . . , n.

Such simple linear maps are usually not worth naming, but here we have
a higher purpose in mind. In particular, with this identification behind
us, we may not need long to think of some ways that the monotonicity
condition ak ≤ ak+1 might be re-expressed.



Consequences of Order 81

Several variations of the rearrangement inequality may come to mind,
and our next challenge problem explores one of the simplest of these.
It was first studied by A. Vince, and it has several informative conse-
quences.

Problem 5.4 (A Nonlinear Rearrangement Inequality)
Let f1, f2, . . . , fn be functions from the interval I into R such that

fk+1(x) − fk(x) is nondecreasing for all 1 ≤ k ≤ n. (5.14)

Let b1 ≤ b2 ≤ · · · ≤ bn be an ordered sequence of elements of I, and
show that for each permutation σ : [n] → [n], one has the bound

n∑
k=1

fk(bn−k+1) ≤
n∑

k=1

fk(bσ(k)) ≤
n∑

k=1

fk(bk). (5.15)

Testing the Waters

This problem is intended to generalize the rearrangement inequality,
and we see immediately that it does when we identify fk(x) with the
map x �→ akx. To be sure, there are far more interesting nonlinear
examples which one can find after even a little experimentation.

For instance, one might take a1 ≤ a2 ≤ · · · ≤ an and consider the
functions x �→ log(ak + x). Here one finds

log(ak+1 + x) − log(ak + x) = log
(

(ak+1 + x)
(ak + x)

)
,

and if we set r(x) = (ak+1 + x)/(ak + x), then direct calculation gives

r′(x) =
ak − ak+1

(ak + x)2
≤ 0,

so, if we take

fk(x) = − log(ak + x) for k = 1, 2, . . . , n,

then condition (5.14) is satisfied. Thus, by Vince’s inequality and expo-
nentiation one finds that for each permutation σ : [n] → [n] that

n∏
k=1

(ak + bk) ≤
n∏

k=1

(ak + bσ(k)) ≤
n∏

k=1

(ak + bn−k+1). (5.16)

This interesting product bound (5.16) shows that there is power in
Vince’s inequality, though in this particular case the bound was known
earlier. Still, we see that a proof of Vince’s inequality will be worth our
time — even if only because of the corollary (5.16).
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Recycling an Algorithmic Proof

If we generalize our earlier sums and write

S(σ) =
n∑

k=1

fk(bσ(k)),

then we already know from the definition (5.13) and discussion of the
inversion decreasing transformation σ �→ τ that we only need to show

S(σ) ≤ S(τ).

Now, almost as before, we calculate the difference

S(τ) − S(σ) = fj(bτ(j)) + fk(bτ(k)) − fj(bσ(j)) − fk(bσ(k))

= fj(bτ(j)) + fk(bτ(k)) − fj(bτ(k)) − fk(bτ(j))

= {fk(bτ(k)) − fj(bτ(k))} − {fk(bτ(j)) − fj(bτ(j))} ≥ 0,

and this time the last inequality comes from bτ(j) ≤ bτ(k) and our hy-
pothesis that fk(x) − fj(x) is a nondecreasing function of x ∈ I. From
this relation, one then sees that no further change is needed in our earlier
arguments, and the proof of the nonlinear version of the rearrangement
inequality is complete.

Exercises

Exercise 5.1 (Baseball and Cauchy’s Third Inequality)
In the remarkable Note II of 1821 where Cauchy proved both his

namesake inequality and the fundamental AM-GM bound, one finds a
third inequality which is not as notable nor as deep but which is still
handy from time to time. The inequality asserts that for any positive
real numbers h1, h2, . . . , hn and b1, b2, . . . , bn one has the ratio bounds

m = min
1≤j≤n

hj

bj
≤ h1 + h2 + · · · + hn

b1 + b2 + · · · + bn
≤ max

1≤j≤n

hj

bj
= M. (5.17)

Sports enthusiasts may imagine, as Cauchy never would, that bj denotes
the number of times a baseball player j goes to bat, and hj denotes the
number of times he gets a hit. The inequality confirms the intuitive fact
that the batting average of a team is never worse than that of its worst
hitter and never better than that of its best hitter.

Prove the inequality (5.17) and put it to honest mathematical use by
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proving that for any polynomial P (x) = c0 + c1x + c2x
2 + · · · + cnx

n

with positive coefficients one has the monotonicity relation

0 < x ≤ y =⇒
(
x

y

)n

≤ P (x)
P (y)

≤ 1.

Exercise 5.2 (Betweenness and an Inductive Proof of AM-GM)
One can build an inductive proof of the basic AM-GM inequality

(2.3) by exploiting the conversion of an order relation to a quadratic
bound. To get started, first consider 0 < a1 ≤ a2 ≤ · · · ≤ an, set
A = (a1 + a2 + · · · + an)/n, and then show that one has

a1an/A ≤ a1 + an −A.

Now, complete the induction step of the AM-GM proof by considering
the n− 1 element set S = {a2, a3, . . . , an−1} ∪ {a1 + an −A}.

Exercise 5.3 (Cauchy–Schwarz and the Cross-Term Defect)
If u and v are elements of the real inner product space V for which

on has the upper bounds

〈u,u〉 ≤ A2 and 〈v,v〉 ≤ B2,

then Cauchy’s inequality tells us 〈u,v〉 ≤ AB. Show that one then also
has a lower bound on the cross-term difference AB − 〈u,v〉, namely,{

A2 − 〈u,u〉
} 1

2
{
B2 − 〈v,v〉

} 1
2

≤ AB − 〈u,v〉. (5.18)

Exercise 5.4 (A Remarkable Inequality of I. Schur)
Show that for all values of x, y, z ≥ 0, one has for all α ≥ 0 that

xα(x− y)(x− z) + yα(y − x)(y − z) + zα(z − x)(x− y) ≥ 0. (5.19)

Moreover, show that one has equality here if and only if one has either
x = y = x or two of the variables are equal and the third is zero.

Schur’s inequality can sometimes saves the day in problems where the
AM-GM inequality looks like the natural tool, yet it comes up short.
Sometimes the two-pronged condition for equality also provides a clue
that Schur’s inequality may be of help.

Exercise 5.5 (The Pólya–Szegő Converse Restructured)
The converse Cauchy inequality (5.7) is expressed with the aid of

bounds on the ratios ak/bk, but for many applications it is useful to know
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that one also has a natural converse under the more straightforward
hypothesis that

0 < a ≤ ak ≤ A and 0 < b ≤ bk ≤ B for all k = 1, 2, . . . , n.

Use the Cauchy converse (5.7) to prove that in this case one has{ n∑
k=1

a2
k

n∑
k=1

b2k

}/{ n∑
k=1

akbk

}2

≤ 1
4

{√
AB

ab
+

√
ab

AB

}2

.

Exercise 5.6 (A Competition Perennial)
Show that if a > 0, b > 0, and c > 0 then one has the elegant

symmetric bound

3
2
≤ a

b+ c
+

b

a+ c
+

c

a+ b
. (5.20)

This is known as Nesbitt’s inequality, and along with several natural
variations, it has served a remarkable number of mathematical compe-
titions, from Moscow in 1962 to the Canadian Maritimes in 2002.

Exercise 5.7 (Rearrangement, Cyclic Shifts, and the AM-GM)
Skillful use of the rearrangement inequality often calls for one to ex-

ploit symmetry and to look for clever specializations of the resulting
bounds. This problem outlines a proof of the AM-GM inequality that
nicely illustrates these steps.

(a) Show that for positive ck, k = 1, 2, . . . , n one has

n ≤ c1
cn

+
c2
c1

+
c3
c2

+ · · · + cn
cn−1

.

(b) Specialize the result of part (a) to show that for all positive xk,
k = 1, 2, . . . , n, one has the rational bound

n ≤ x1

x1x2 · · ·xn
+ x2 + x3 + · · · + xn.

(c) Specialize a third time to show that for ρ > 0 one also has

n ≤ ρx1

ρnx1x2 · · ·xn
+ ρx2 + ρx3 + · · · + ρxn,

and finally indicate how the right choice of ρ now yields the AM-GM
inequality (2.3).
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Fig. 5.2. One key to the proof of Kantorovich’s inequality is the geometry
of the map x � x + x−1; another key is that a multiplicative inequality is
sometimes proved most easily by first establishing an appropriate additive
inequality. To say much more would risk giving away the game.

Exercise 5.8 (Kantorovich’s Inequality for Reciprocals)

Show that if 0 < m = x1 ≤ x2 ≤ · · · ≤ xn = M < ∞ then for
nonnegative weights with p1 + p2 + · · · + pn = 1 one has{ n∑

j=1

pjxj

}{ n∑
j=1

pj
1
xj

}
≤ µ2

γ2
(5.21)

where µ = (m +M)/2 and γ =
√
mM . This bound provides a natural

complement to the elementary inequality of Exercise 1.2 (page 12), but it
also has important applications in numerical analysis where, for example,
it has been used to estimated the rate of convergence of the method of
steepest ascent. To get started with the proof, one might note that by
homogeneity it suffices to consider the case when γ = 1; the geometry
of Figure 5.2 then tells a powerful tale.

Exercise 5.9 (Monotonicity Method)

Suppose ak > 0 and bk > 0 for k = 1, 2, . . . , n and for fixed θ ∈ R

consider the function

fθ(x) =
{ n∑

j=1

aθ+x
j bθ−x

j

}{ n∑
j=1

aθ−x
j bθ+x

j

}
, x ∈ R.

If we set θ = 1, we see that f1(0)1/2 gives us the left side of Cauchy’s
inequality while f1(1)1/2 gives us the right side. Show that fθ(x) is a
monotone increasing of x on [0, 1], a fact which gives us a parametric
family of inequalities containing Cauchy’s inequality as a special case.
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Exercise 5.10 (A Proto-Muirhead Inequality)
If the nonnegative real numbers a1, a2, b1, and b2 satisfy

max{a1, a2} ≥ max{b1, b2} and a1 + a2 = b1 + b2,

then for nonnegative x and y, one has

xb1yb2 + xb2yb1 ≤ xa1ya2 + xa2ya1 . (5.22)

Prove this assertion by considering an appropriate factorization of the
difference of the two sides.

Exercise 5.11 (Chebyshev’s Inequality for Tail Probabilities)
One of the most basic properties of the mathematical expectation E(·)

that one meets in probability theory is that for any random variables
X and Y with finite expectations the relationship X ≤ Y implies that
E(X) ≤ E(Y ). Use this fact to show that for any random variable Z
with finite mean µ = E(Z) one has the inequality

P
(|Z − µ| ≥ λ

) ≤ 1
λ2
E
(|Z − µ|2). (5.23)

This bound provides one concrete expression of the notion that a random
variable is not likely to be too far away from its mean, and it is surely
the most used of the several inequalities that carry Chebyshev’s name.
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Convexity — The Third Pillar

There are three great pillars of the theory of inequalities: positivity,
monotonicity, and convexity. The notions of positivity and monotonicity
are so intrinsic to the subject that they serve us steadily without ever
calling attention to themselves, but convexity is different. Convexity
expresses a second order effect, and for it to provide assistance we almost
always need to make some deliberate preparations.

To begin, we first recall that a function f : [a, b] → R is said to be
convex provided that for all x, y ∈ [a, b] and all 0 ≤ p ≤ 1 one has

f
(
px+ (1 − p)y

) ≤ pf(x) + (1 − p)f(y). (6.1)

With nothing more than this definition and the intuition offered by the
first frame of Figure 6.1, we can set a challenge problem which creates
a fundamental link between the notion of convexity and the theory of
inequalities.

Problem 6.1 (Jensen’s Inequality)
Suppose that f : [a, b] → R is a convex function and suppose that the

nonnegative real numbers pj, j = 1, 2, . . . , n satisfy

p1 + p2 + · · · + pn = 1.

Show that for all xj ∈ [a, b], j = 1, 2, . . . , n one has

f

( n∑
j=1

pjxj

)
≤

n∑
j=1

pjf(xj). (6.2)

When n = 2 we see that Jensen’s inequality (6.2) is nothing more than
the definition of convexity, so our instincts may suggest that we look for
a proof by induction. Such an approach calls for one to relate averages
of size n−1 to averages of size n, and this can be achieved several ways.

87
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Fig. 6.1. By definition, a function f is convex provided that it satisfies the
condition (6.1) which is illustrated in frame (A), but a convex function may
be characterized in several other ways. For example, frame (B) illustrates that
a function is convex if and only if its sequential secants have increasing slopes,
and frame (C) illustrates that a function is convex if and only if for each point
p on its graph there is line through p that lies below the graph. None of these
criteria requires that f be differentiable.

One natural idea is simply to pull out the last summand and to renor-
malize the sum that is left behind. More precisely, we first note that
there is no loss of generality if we assume pn > 0 and, in this case, we
can write

n∑
j=1

pjxj = pnxn + (1 − pn)
n−1∑
j=1

pj

1 − pn
xj .

Now, from this representation, the definition of convexity, and the in-
duction hypothesis — all applied in that order — we see that

f

( n∑
j=1

pjxj

)
≤ pnf(xn) + (1 − pn) f

( n−1∑
j=1

pj

1 − pn
xj

)

≤ pnf(xn) + (1 − pn)
n−1∑
j=1

pj

1 − pn
f(xj)

=
n∑

j=1

pjf(xj).
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This bound completes the induction step and thus completes the solution
to one of the easiest — but most useful — of all our challenge problems.

The Case of Equality

We will find many applications of Jensen’s inequality, and some of
the most engaging of these will depend on understanding the conditions
where one has equality. Here it is useful to restrict attention to those
functions f : [a, b] → R such that for all x, y ∈ [a, b] and all 0 < p < 1
and x �= y one has the strict inequality

f (px+ (1 − p)y) < pf(x) + (1 − p)f(y). (6.3)

Such functions are said to be strictly convex, and they help us frame the
next challenge problem.

Problem 6.2 (The Case of Equality in Jensen’s Inequality)
Suppose that f : [a, b] → R is strictly convex and show that if

f

( n∑
j=1

pjxj

)
=

n∑
j=1

pjf(xj) (6.4)

where the positive reals pj, j = 1, 2, . . . , n have sum p1+p2+· · ·+pn = 1,
then one must have

x1 = x2 = · · · = xn. (6.5)

Once more, our task is easy, but, as with Jensen’s inequality, the
importance of the result justifies its role as a challenge problem. For
many inequalities one discovers when equality can hold by taking the
proof of the inequality and running it backwards. This approach works
perfectly well with Jensen’s inequality, but logic of the argument still
deserves some attention.

First, if the conclusion (6.5) does not hold, then the set

S =
{
j : xj �= max

1≤k≤n
xk

}
is a proper subset of {1, 2, . . . , n}, and we will argue that this leads one
to a contradiction. To see why this is so, we first set

p =
∑
j∈S

pj , x =
∑
j∈S

pj

p
xj , and y =

∑
j /∈S

pj

1 − p
xj ,
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from which we note that the strict convexity of f implies

f

( n∑
j=1

pjxj

)
= f(px+ (1 − p)y) < pf(x) + (1 − p)f(y). (6.6)

Moreover, by the plain vanilla convexity of f applied separately at x and
y, we also have the inequality

pf(x)+(1−p)f(y) ≤ p
∑
j∈S

pj

p
f(xj)+(1−p)

∑
j /∈S

pj

1 − p
f(xj) =

n∑
j=1

pjf(xj).

Finally, from this bound and the strict inequality (6.6), we find

f

( n∑
j=1

pjxj

)
<

n∑
j=1

pjf(xj),

and since this inequality contradicts the assumption (6.4), the solution
of the challenge problem is complete.

The Differential Criterion for Convexity

A key benefit of Jensen’s inequality is its generality, but before Jensen’s
inequality can be put to work in a concrete problem, one needs to es-
tablish the convexity of the relevant function. On some occasions this
can be achieved by direct application of the definition (6.1), but more
commonly, convexity is established by applying the differential criterion
provided by the next challenge problem.

Problem 6.3 (Differential Criterion for Convexity)
Show that if f : (a, b) → R is twice differentiable, then

f ′′(x) ≥ 0 for all x ∈ (a, b) implies f(·) is convex on (a, b),

and, in parallel, show that

f ′′(x) > 0 for all x ∈ (a, b) implies f(·) is strictly convex on (a, b).

If one simply visualizes the meaning of the condition f ′′(x) ≥ 0, then
this problem may seem rather obvious. Nevertheless, if one wants a
complete proof, rather than an intuitive sketch, then the problem is not
as straightforward as the graphs of Figure 6.1 might suggest.

Here, since we need to relate the function f to its derivatives, it is
perhaps most natural to begin with the representation of f provided
by the fundamental theorem of calculus. Specifically, if we fix a value
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x0 ∈ [a, b], then we have the representation

f(x) = f(x0) +
∫ x

x0

f ′(u) du for all x ∈ [a, b], (6.7)

and once this formula is written down, we may not need long to think
of exploiting the hypothesis f ′′(·) ≥ 0 by noting that it implies that
the integrand f ′(·) is nondecreasing. In fact, our hypothesis contains
no further information, so the representation (6.7), the monotonicity of
f ′(·), and honest arithmetic must carry us the rest of the way.

To forge ahead, we take a ≤ x < y ≤ b and 0 < p < 1 and we
also set q = 1 − p, so by applying the representation (6.7) to x, y, and
x0 = px+ qy we see ∆ = pf(x) + qf(y)− f(px+ qy) may be written as

∆ = q

∫ y

px+qy

f ′(u) du− p

∫ px+qy

x

f ′(u) du. (6.8)

For u ∈ [x, px+ qy] one has f ′(u) ≤ f ′(px+ qy), so we have the bound

p

∫ px+qy

x

f ′(u) du ≤ qp(y − x)f ′(px+ qy), (6.9)

while for u ∈ [px + qy, y] one has f ′(u) ≥ f ′(px + qy), so we have the
matching bound

q

∫ y

px+qy

f ′(u) du ≥ qp(y − x)f ′(px+ qy). (6.10)

Therefore, from the integral representation (6.8) for ∆ and the two
monotonicity estimates (6.9) and (6.10), we find ∆ ≥ 0, just as we
needed to complete the solution of the first half of the problem.

For the second half of the theorem, we only need to note that if
f ′′(x) > 0 for all x ∈ (a, b), then both of the inequalities (6.9) and
(6.10) are strict. Thus, the representation (6.8) for ∆ gives us ∆ > 0,
and we have the strict convexity of f .

Before leaving this challenge problem, we should note that there is an
alternative way to proceed that is also quite instructive. In particular,
one can rely on Rolle’s theorem to help estimate ∆ by comparison to an
appropriate polynomial; this solution is outlined in Exercise 6.10.

The AM-GM Inequality and the Special Nature of x �→ ex

The derivative criterion tells us that the map x �→ ex is convex, so
Jensen’s inequality tells us that for all real y1, y2, . . . , yn and all positive
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pj , j = 1, 2, . . . , n with p1 + p2 + · · · + pn = 1, one has

exp
( n∑

j=1

pjyj

)
≤

n∑
j=1

pje
yj .

Now, when we set xj = eyj , we then find the familiar relation

n∏
j=1

x
pj

j ≤
n∑

j=1

pjxj .

Thus, with lightning speed and crystal clear logic, Jensen’s inequality
leads one to the general AM-GM bound.

Finally, this view of the AM-GM inequality as a special instance of
Jensen’s inequality for the function x �→ ex puts the AM-GM inequal-
ity in a unique light — one that may reveal the ultimate source of
its vitality. Quite possibly, the pervasive value of the AM-GM bound
throughout the theory of inequalities is simply one more reflection of the
fundamental role of the exponential function as an isomorphism between
two most important groups in mathematics: addition on the real line
and multiplication on the positive real line.

How to Use Convexity in a Typical Problem

Many of the familiar functions of trigonometry and geometry have
easily established convexity properties, and, more often than not, this
convexity has useful consequences. The next challenge problem comes
with no hint of convexity in its statement, but, if one is sensitive to the
way Jensen’s inequality helps us understand averages, then the required
convexity is not hard to find.

Problem 6.4 (On the Maximum of the Product of Two Edges)

In an equilateral triangle with area A, the product of any two sides
is equal to (4/

√
3)A. Show that this represents the extreme case in the

sense that for a triangle with area A there must exist two sides the lengths
of which have a product that is at least as large as (4/

√
3)A.

To get started we need formulas which relate edge lengths to areas,
and, in the traditional notation of Figure 6.2, there are three equally
viable formulas:

A =
1
2
ab sin γ =

1
2
ac sinβ =

1
2
bc sinα.
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Fig. 6.2. All of the trigonometric functions are convex (or concave) if their
arguments are restricted to an appropriate domain, and, as a consequence,
there are many interesting geometric consequences of Jensen’s inequality.

Now, if we average these representations, then we find that

1
3
(ab+ ac+ bc) = (2A)

1
3

{
1

sinα
+

1
sinβ

+
1

sin γ

}
, (6.11)

and this is a formula that almost begs us to ask about the convexity of
1/ sinx. The plot of x �→ 1/ sinx for x ∈ (0, π) certainly looks convex,
and our suspicions can be confirmed by calculating the second derivative,(

1
sinx

)′′
=

1
sinx

+ 2
cos2 x
sin3 x

> 0 for all x ∈ (0, π). (6.12)

Therefore, since we have (α + β + γ)/3 = π/3, we find from Jensen’s
inequality that

1
3

{
1

sinα
+

1
sinβ

+
1

sin γ

}
≥ 1

sinπ/3
=

2√
3
,

so, by inequality (6.11), we do obtain the conjectured bound

max(ab, ac, bc) ≥ 1
3
(ab+ ac+ bc) ≥ 4√

3
A. (6.13)

Connections and Refinements

This challenge problem is closely related to a well-known inequality
of Weitzenböck which asserts that in any triangle one has

a2 + b2 + c2 ≥ 4√
3
A. (6.14)

In fact, to pass from the bound (6.13) to Weitzenböck’s inequality one
only has to recall that

ab+ ac+ bc ≤ a2 + b2 + c2,

which is a familiar fact that one can obtain in at least three ways —
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Cauchy’s inequality, the AM-GM bound, or the rearrangement inequal-
ity will all do the trick with equal grace.

Weitzenböck’s inequality turns out to have many instructive proofs —
Engel (1998) gives eleven! It also has several informative refinements,
one of which is developed in Exercise 6.9 with help from the convexity
of the map x �→ tanx on [0, π/2].

How to Do Better Much of the Time

There are some mathematical methods which one might call generic
improvers; broadly speaking, these are methods that can be used in
a semi-automatic way to generalize an identity, refine an inequality, or
otherwise improve a given result. A classic example which we saw earlier
is the polarization device (see page 49) which often enables one to convert
an identity for squares into a more general identity for products.

The next challenge problem provides an example of a different sort. It
suggests how one might think about sharpening almost any result that
is obtained via Jensen’s inequality.

Problem 6.5 (Hölder’s Defect Formula)
If f : [a, b] → R is twice differentiable and if we have the bounds

0 ≤ m ≤ f ′′(x) ≤M for all x ∈ [a, b], (6.15)

then for any real values a ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ b and any nonnegative
reals pk, k = 1, 2, . . . , n with p1 + p2 + · · · + pn = 1, there exists a real
value µ ∈ [m,M ] for which one has the formula

n∑
k=1

pkf(xk) − f

( n∑
k=1

pkxk

)
=

1
4
µ

n∑
j=1

n∑
k=1

pjpk(xj − xk)2. (6.16)

Context and a Plan

This result is from the same famous 1885 paper of Otto Ludwig Hölder
(1859-1937) in which one finds his proof of the inequality that has
come to be know universally as “Hölder’s inequality.” The defect for-
mula (6.16) is much less well known, but it is nevertheless valuable. It
provides a perfectly natural measure of the difference between the two
sides of Jensen’s inequality, and it tells us how to beat the plain vanilla
version of Jensen’s inequality whenever we can check the additional hy-
pothesis (6.15). More often than not, the extra precision does not justify
the added complexity, but it is a safe bet that some good problems are
waiting to be cracked with just this refinement.
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Hölder’s defect formula (6.16) also deepens one’s understanding of
the relationship of convex functions to the simpler affine or quadratic
functions. For example, if the difference M − m is small, the bound
(6.16) tells us that f behaves rather like a quadratic function on [a, b].
Moreover, in the extreme case when m = M , one finds that f is exactly
quadratic, say f(x) = α + βx + γx2 with m = M = µ = 2γ, and the
defect formula (6.16) reduces to a simple quadratic identity.

Similarly, if M is small, say 0 ≤ M ≤ ε, then the bound (6.16)
tells us that f behaves rather like an affine function f(x) = α + βx.
For an exactly affine function, the left-hand side of the bound (6.16)
is identically equal to zero, but in general the bound (6.16) asserts a
more subtle relation. More precisely, it tells us that the left-hand side
is a small multiple of a measure of the extent to which the values xj ,
j = 1, 2, . . . , n are diffused throughout the interval [a, b].

Consideration of the Condition

This challenge problem leads us quite naturally to an intermediate
question: How can we use the fact that 0 ≤ m ≤ f ′′(x) ≤M? Once this
question is asked, one may not need long to observe that the two closely
related functions

g(x) =
1
2
Mx2 − f(x) and h(x) = f(x) − 1

2
mx2

are again convex. In turn, this observation almost begs us to ask what
Jensen’s inequality says for these functions.

For g(x), Jensen’s inequality gives us the bound

1
2
Mx̄2 − f(x̄) ≤

n∑
k=1

pk

{
1
2
Mx2

k − f(xk)
}

where we have set x̄ = p1x1 +p2x2 + · · ·+pnxn, and this bound is easily
rearranged to yield{ n∑

k=1

pkf(xk)
}
−f(x̄) ≤ 1

2
M

{( n∑
k=1

pkx
2
k

)
−x̄2

}
=

1
2
M

n∑
k=1

pk(xk−x̄)2.

The perfectly analogous computation for h(x) gives us a lower bound{ n∑
k=1

pkf(xk)
}
− f(x̄) ≥ 1

2
m

n∑
k=1

pk(xk − x̄)2,

and these upper and lower bounds almost complete the proof of the
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assertion (6.16). The only missing element is the identity

n∑
k=1

pk(xk − x̄)2 =
1
2

n∑
j=1

n∑
k=1

pjpk(xj − xk)2

which is easily checked by algebraic expansion and the definition of x̄.

Prevailing After a Near Failure

Convexity and Jensen’s inequality provide straightforward solutions to
many problems. Nevertheless, they will sometimes run into a unexpected
roadblock. Our next challenge comes from the famous problem section of
the American Mathematical Monthly, and it provides a classic example
of this phenomenon.

At first the problem looks invitingly easy, but, soon enough, it presents
difficulties. Fortunately, these turn out to be of a generous kind. After
we deepen our understanding of convex functions, we find that Jensen’s
inequality does indeed prevail.

Problem 6.6 (AMM 2002, Proposed by M. Mazur)
Show that if a, b, and c, are positive real numbers for which one has

the lower bound abc ≥ 29, then

1√
1 + (abc)1/3

≤ 1
3

{
1√

1 + a
+

1√
1 + b

+
1√

1 + c

}
. (6.17)

The average on the right-hand side suggests that Jensen’s inequal-
ity might prove useful, while the geometric mean on the left-hand side
suggests that the exponential function will have a role. With more ex-
ploration — and some luck — one may not need long to guess that the
function

f(x) =
1√

1 + ex

might help bring Jensen’s inequality properly into play. In fact, once
this function is written down, one may check almost without calculation
that the proposed inequality (6.17) is equivalent to the assertion that

f

(
x+ y + z

3

)
≤ 1

3
{
f(x) + f(y) + f(z)

}
(6.18)

for all real x, y, and z such that exp(x+ y + z) ≥ 29.
To see if Jensen’s inequality may be applied, we need to assess the
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Fig. 6.3. Effective use of Jensen’s inequality calls for one to find a function
that is convex on all of [0,∞) and that is never larger than f . (Note: To make
the concavity of f on [0, log 2) visible, the graph is not drawn to scale.)

convexity properties of f , so we just differentiate twice to find

f ′(x) = − ex

2(1 + ex)3/2

and

f ′′(x) = −1
2
(1 + ex)−3/2ex +

3
4
(1 + ex)−5/2e2x.

The second formula tells us that f ′′(x) ≥ 0 if and only if we have ex ≥ 2,
so by Jensen’s inequality one finds that the target inequality (6.17) holds
provided that each of the terms a, b, and c is at least as large as 2.

Difficulties, Explorations, and Possibilities

The difficulty we face here is that the hypothesis of Problem 6.6 only
tells us that product abc is at least as large as 29; we are not given any
bounds on the individual terms except that a > 0, b > 0, and c > 0.
Thus, Jensen’s inequality cannot complete the proof all by itself, and we
must seek help from some other resources.

There are many ideas one might try, but before going too far, one
should surely consider the graph of f(x). What one finds from the plot
in Figure 6.3 is that the f(x) looks remarkably convex over the interval
[0, 10] despite the fact that calculation that shows f(x) is concave on
[0, log 2] and convex on [log 2,∞). Thus, our plot holds out new hope;
perhaps some small modification of f might have the convexity that we
need to solve our problem.
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The Idea of a Convex Minorant

When we think about the way we hoped to use f with Jensen’s in-
equality, we soon realize that we can make our task a little bit easier.
Suppose, for example, that we can find a convex function g : [0,∞) → R

such that we have both the condition

g(x) ≤ f(x) for all x ∈ [0,∞) (6.19)

and the complementary condition

g(x) = f(x) for all x ≥ 3 log 2. (6.20)

For such a function, Jensen’s inequality would tell us that for x, y, and
z with exp(x+ y + z) ≥ 29 we have the bound

f

(
x+ y + z

3

)
= g

(
x+ y + z

3

)
≤ 1

3

{
g(x) + g(y) + g(z)

}
≤ 1

3

{
f(x) + f(y) + f(z)

}
.

The first and last terms of this bound recover the inequality (6.18) so the
solution of the challenge problem would be complete except for one small
detail — we still need to show that there is a convex g on [0,∞) such
that g(x) ≤ f(x) for x ∈ [0, 3 log 2] and f(x) = g(x) for all x ≥ 3 log 2.

Construction of the Convex Minorant

One way to construct a convex function g with the minorization prop-
erties describe above is to just take g(x) = f(x) for x ≥ 3 log 2 and to de-
fine g(x) on [0, 3 log 2] by linear extrapolation. Thus, for x ∈ [0, 3 log 2],
we take

g(x) = f(3 log 2) + (x− 3 log 2)f ′(3 log 2)

=
1
3

+ (3 log 2 − x)(4/27).

Three simple observations now suffice to show that g(x) ≤ f(x) for
all x ≥ 0. First, for x ≥ 3 log 2, we have g(x) = f(x) by definition.
Second, for log 2 ≤ x ≤ 3 log 2 we have g(x) ≤ f(x) because in this
range g(x) has the value of a tangent line to f(x) and by convexity of f
on log 2 ≤ x ≤ 3 log 2 the tangent line is below f . Third, in the critical
region 0 ≤ x ≤ log 2 we have g(x) ≤ f(x) because (i) f is concave, (ii)
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g is linear, and (iii) f is larger than g at the end points of the interval
[0, log 2]. More precisely, at the first end point one has

g(0) = 0.641 · · · ≤ f(0) =
1√
2

= 0.707 . . . ,

while at the second end point one has

g(log 2) = 0.538 · · · ≤ f(log 2) =
1√
3

= 0.577 . . . .

Thus, the convex function g is indeed a minorant of f which agrees with
f on [3 log 2,∞), so the solution to the challenge problem is complete.

Jensen’s Inequality in Perspective

Jensen’s inequality may lack the primordial nature of either Cauchy’s
inequality or the AM-GM inequality, but, if one were forced to pick a
single result on which to build a theory of mathematical inequalities,
Jensen’s inequality would be an excellent choice. It can be used as a
starting point for the proofs of almost all of the results we have seen so
far, and, even then, it is far from exhausted.

Exercises

Exercise 6.1 (A Renaissance Inequality)
The Renaissance mathematician Pietro Mengoli (1625–1686) only needed

simple algebra to prove the pleasing symmetric inequality
1

x− 1
+

1
x

+
1

x+ 1
>

3
x

for all x > 1, (6.21)

yet he achieved a modest claim on intellectual immortality when he used
it to give one of the earliest proofs of the divergence of the harmonic
series,

Hn = 1 +
1
2

+
1
3

+ · · · + 1
n

=⇒ lim
n→∞Hn = ∞. (6.22)

Rediscover Mengoli’s algebraic proof of the inequality (6.21) and check
that it also follows from Jensen’s inequality. Further, show, as Mengoli
did, that the inequality (6.21) implies the divergence of Hn.

Exercise 6.2 (A Perfect Cube and a Triple Product)
Show that if x, y, z > 0 and x+ y + z = 1 then one has

64 ≤
(
1 +

1
x

)(
1 +

1
y

)(
1 +

1
z

)
.



100 Convexity — The Third Pillar

Fig. 6.4. If a convex polygon with n sides is inscribed the unit circle, our visual
imagination suggests that the area is maximized only by a regular polygon.
This conjecture can be proved by methods which would have been familiar to
Euclid, but a modern proof by convexity is easier.

Exercise 6.3 (Area Inequality for n-gons)

Figure 6.4 suggests that among all convex n-sided convex polygons
that one can inscribed in a circle, only the regular n-gon has maximal
area. Can Jensen’s inequality be used to confirm this suggestion?

Exercise 6.4 (Investment Inequalities)

If 0 < rk < ∞, and if our investment of one dollar in year k grows
to 1 + rk dollars at the end of the year, we call rk the return on our
investment in year k. Show that the value V = (1+r1)(1+r2) · · · (1+rn)
of our investments after n years must satisfy the bounds

(1 + rG)n ≤
n∏

k=1

(1 + rk) ≤ (1 + rA)n, (6.23)

where rG = (r1r2 · · · rn)1/n and rA = (r1 + r2 + · · · + rn)/n. Also
explain why this bound might be viewed as a refinement of the AM-GM
inequality.

Exercise 6.5 (Superadditivity of the Geometric Means)

We have seen before in Exercise 2.11 that for nonnegative aj and bj ,
j = 1, 2, . . . , n one has superadditivity of the geometric mean:

(a1a2 · · · an)1/n+(b1b2 · · · bn)1/n ≤ {(a1 + b1)(a2 + b2) · · · (an + bn)}1/n
.

Does this also follow from Jensen’s inequality?
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Exercise 6.6 (Cauchy’s Technique and Jensen’s Inequality)
In 1906, J.L.W.V. Jensen wrote an article that was inspired by the

proof given by Cauchy’s for the AM-GM inequality, and, in an effort to
get to the heart of Cauchy’s argument, Jensen introduced the class of
functions that satisfy the inequality

f

(
x+ y

2

)
≤ f(x) + f(y)

2
for all x, y ∈ [a, b]. (6.24)

Such functions are now called J-convex functions, and, as we note below
in Exercise 6.7, they are just slightly more general than the convex
functions defined by condition (6.1).

For a moment, step into Jensen’s shoes and show how one can modify
Cauchy’s leap-forward fall-back induction (page 20) to prove that for all
J-convex functions one has

f

(
1
n

n∑
k=1

xk

)
≤ 1
n

n∑
k=1

f(xk) for all {xk : 1 ≤ k ≤ n} ⊂ [a, b]. (6.25)

Here one might note that near the end of his 1906 article, Jensen ex-
pressed the bold view that perhaps someday the class of convex function
might seen to be as fundamental as the class of positive functions or the
class of increasing functions. If one allows for the mild shift from the
specific notion of J-convexity to the more modern interpretation of con-
vexity (6.1), then Jensen’s view turned out to be quite prescient.

Exercise 6.7 (Convexity and J-Convexity)
Show that if f : [a, b] → R is continuous and J-convex, then f must

be convex in the modern sense expressed by the condition (6.1). As a
curiosity, we should note that there do exist J-convex functions that are
not convex in the modern sense. Nevertheless, such functions are wildly
discontinuous, and they are quite unlikely to turn up unless they are
explicitly invited.

Exercise 6.8 (A “One-liner” That Could Have Taken All Day)
Show that for all 0 ≤ x, y, z ≤ 1, one has the bound

L(x, y, z) =
x2

1 + y
+

y2

1 + z
+

z2

1 + x+ y
+ x2(y2 − 1)(z2 − 1) ≤ 2.

Placed suggestively in a chapter on convexity, this problem is not much
more than a one-liner, but in a less informative location, it might send
one down a long trail of fruitless algebra.



102 Convexity — The Third Pillar

Exercise 6.9 (Hadwiger–Finsler Inequality)
For any triangle with the traditional labelling of Figure 6.2, the law of

cosines tells us that a2 = b2 + c2 − 2bc cosα. Show that this law implies
the area formula

a2 = (b− c)2 + 4A tan(α/2),

then show how Jensen’s inequality implies that in any triangle one has

a2 + b2 + c2 ≥ (a− b)2 + (b− c)2 + (c− a)2 + 4
√

3A.

This bound is known as the Hadwiger–Finsler inequality, and it provides
one of the nicest refinements of Weitzenböck’s inequality.

Exercise 6.10 (The f ′′ Criterion and Rolle’s Theorem)
We saw earlier (page 90) that the fundamental theorem of calculus

implies that if one has f ′′(x) ≥ 0 for all x ∈ [a, b], then f is convex on
[a, b]. This exercise sketches how one can also prove this important fact
by estimating the difference f(px1+qx2)−pf(x1)−qf(x2) by comparison
with an appropriate polynomial.

(a) Take 0 < p < 1, q = 1 − p and set µ = px1 + qx2 where x1 < x2.
Find the unique quadratic polynomial Q(x) such that

Q(x1) = f(x1), Q(x2) = f(x2), and Q(µ) = f(µ).

(b) Use the fact that ∆(x) = f(x) −Q(x) has three distinct zeros in
[a, b] to show that there is an x∗ such that ∆′′(x∗) = 0.

(c) Finally, explain how f ′′(x) ≥ 0 for all x ∈ [a, b] and ∆′′(x∗) = 0
imply that f(px1 + qx2) − pf(x1) − qf(x2) ≥ 0.

Exercise 6.11 (Transformation to Achieve Convexity)
Show that for positive a, b, and c such that a+ b+ c = abc one has

1√
1 + a2

+
1√

1 + b2
+

1√
1 + c2

≤ 3
2
.

This problem from the 1998 Korean National Olympiad is not easy, even
with the hint provided by the exercise’s title. Someone who is lucky may
draw a link between the hypothesis a+ b+ c = abc and the reasonably
well-known fact that in a triangle labeled as in Figure 6.2 one has

tan(α) + tan(β) + tan(γ) = tan(α) tan(β) tan(γ).

This identity is easily checked by applying the addition formula for the
tangent to the sum γ = π − (α+ β), but it is surely easier to remember
than to discover on the spot.
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Fig. 6.5. The viewing angle 2ψ of the convex hull of the set of roots
r1, r2, . . . , rn of P (z) determines the parameter ψ that one finds in Wilf’s
quantitative refinement of the Gauss–Lucas Theorem.

Exercise 6.12 (The Gauss–Lucas Theorem)
Show that for any complex polynomial P (z) = a0 + a1z+ · · ·+ an z

n,
the roots of the derivative P ′(z) are contained in the convex hull H of
the roots of P (z).

Exercise 6.13 (Wilf ’s Inequality)
Show that if H is the convex hull of the roots of the complex polyno-

mial P = a0 + a1z + · · · + an z
n, then one has∣∣∣∣ an

P (z)

∣∣∣∣1/n

≤ 1
n cosψ

∣∣∣∣P ′(z)
P (z)

∣∣∣∣ for all z /∈ H, (6.26)

where the angle ψ is defined by Figure 6.5. This inequality provides both
a new proof and a quantitative refinement of the classic Gauss–Lucas
Theorem of Exercise 6.12.

Exercise 6.14 (A Polynomial Lower Bound)
Given that the zeros of the polynomial P (z) = anz

n + · · · + a1z + a0

are contained in the unit disc U = {z : |z| ≤ 1}, show that one has

n|an|1/n|P (z)|(n−1)/n
√

1 − |z|−2 ≤ |P ′(z)| for all z /∈ U. (6.27)

Exercise 6.15 (A Complex Mean Product Theorem)
Show that if 0 < r < 1 and if the complex numbers z1, z2, . . . , zn are

in the disk D = {z : |z| ≤ r}, then there exists a z0 ∈ D such that

n∏
j=1

(1 + zj) = (1 + z0)n. (6.28)
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Exercise 6.16 (Shapiro’s Cyclic Sum Inequality)
Show that for positive a1, a2, a3, and a4, one has the bound

2 ≤ a1

a2 + a3
+

a2

a3 + a4
+

a3

a4 + a1
+

a4

a1 + a2
. (6.29)

Incidentally, the review of Bushell (1994) provides a great deal of infor-
mation about the inequalities of the form

n/2 ≤ x1

x2 + x3
+

x2

x3 + x4
+ · · · + xn−1

xn + x1
+

xn

x1 + x2
.

This bound is known to fail for n ≥ 25, yet the precise set of n for which
it is valid has not yet been determined.

Exercise 6.17 (The Three Chord Lemma)
Show that if f : [a, b] → R is convex and a < x < b, then one has

f(x) − f(a)
x− a

≤ f(b) − f(a)
b− a

≤ f(b) − f(x)
b− x

. (6.30)

As the next two exercises suggest, this bound is the key to some of the
most basic regularity properties of convex functions.

Exercise 6.18 (Near Differentiability of Convex Functions)
Use the Three Chord Lemma to show that for convex f : [a, b] → R

and a < x < b one has the existence of the finite limits

f ′+(x) def= lim
h↓0

f(x+ h) − f(x)
h

and f ′−(x) def= lim
h↓0

f(x− h) − f(x)
h

.

Exercise 6.19 (Ratio Bounds and Linear Minorants)
For convex f : [a, b] → R and a < x < y < b, show that one has

f ′−(x) ≤ f ′+(x) ≤ f(y) − f(x)
y − x

≤ f ′−(y) ≤ f ′+(y). (6.31)

In particular, note that for each θ ∈ [f ′−(x), f ′+(x)] one has the bound

f(y) ≥ f(x) + (y − x)θ for all y ∈ [a, b]. (6.32)

The linear lower bound (6.32) is more effective that its simplicity would
suggest, and it has some notable consequences. In the next chapter
we will find that it yields and exceptionally efficient proof of Jensen’s
inequality.
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Integral Intermezzo

The most fundamental inequalities are those for finite sums, but there
can be no doubt that inequalities for integrals also deserve a fair share
of our attention. Integrals are pervasive throughout science and engi-
neering, and they also have some mathematical advantages over sums.
For example, integrals can be cut up into as many pieces as we like, and
integration by parts is almost always more graceful than summation by
parts. Moreover, any integral may be reshaped into countless alternative
forms by applying the change-of-variables formula.

Each of these themes contributes to the theory of integral inequalities.
These themes are also well illustrated by our favorite device — concrete
challenge problems which have a personality of their own.

Problem 7.1 (A Continuum of Compromise)

Show that for an integrable f : R → R, one has the bound∫ ∞

−∞
|f(x)| dx ≤ 8

1
2

(∫ ∞

−∞
|xf(x)|2 dx

) 1
4
(∫ ∞

−∞
|f(x)|2 dx

) 1
4

. (7.1)

A Quick Orientation and a Qualitative Plan

The one-fourth powers on the right side may seem strange, but they
are made more reasonable if one notes that each side of the inequality is
homogenous of order one in f ; that is, if f is replaced by λf where λ is
a positive constant, then each side is multiplied by λ. This observation
makes the inequality somewhat less strange, but one may still be stuck
for a good idea.

We faced such a predicament earlier where we found that one often
does well to first consider a simpler qualitative challenge. Here the nat-
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ural candidate is to try to show that the left side is finite whenever both
integrals on the right are finite.

Once we ask this question, we are not likely to need long to think
of looking for separate bounds for the integral of |f(x)| on the interval
T = (−t, t) and its complement T c. If we also ask ourselves how we
might introduce the term |xf(x)|, then we are almost forced to think of
using the splitting trick on the set T c. Pursuing this thought, we then
find for all t > 0 that we have the bound∫ ∞

−∞
|f(x)| dx =

∫
T

|f(x)| dx+
∫

T c

1
|x| |xf(x)| dx

≤ (2t)
1
2

(∫
T

|f(x)|2 dx
) 1

2

+
(

2
t

) 1
2
(∫

T c

|xf(x)|2 dx
) 1

2

, (7.2)

where in the second line we just applied Schwarz’s inequality twice.
This bound is not the one we hoped to prove, but it makes the same

qualitative case. Specifically, it confirms that the integral of |f(x)| is
finite when the bounding terms of the inequality (7.1) are finite. We
now need to pass from our additive bound to one that is multiplicative,
and we also need to exploit our free parameter t.

We have no specific knowledge about the integrals over T and T c, so
there is almost no alternative to using the crude bound∫

T

|f(x)|2 dx ≤
∫

R

|f(x)|2 dx def= A

and its cousin ∫
T c

|xf(x)|2 dx ≤
∫

R

|xf(x)|2 dx def= B.

The sum (7.2) is therefore bounded above by φ(t) def= 2
1
2 t

1
2A

1
2 +2

1
2 t−

1
2B

1
2 ,

and we can use calculus to minimize φ(t). Since φ(t) → ∞ as t → 0 or
t → ∞ and since φ′(t) = 0 has the unique root t0 = B

1
2 /A

1
2 , we find

mint:t>0 φ(t) = φ(t0) = 8
1
2A

1
4B

1
4 , and this gives us precisely the bound

proposed by the challenge problem.

Dissections and Benefits of the Continuum

The inequality (7.1) came to us with only a faint hint that one might
do well to cut the target integral into the piece over T = (−t, t) and the
piece over T c, yet once this dissection was performed, the solution came
to us quickly. The impact of dissection is usually less dramatic, but on
a qualitative level at least, dissection can be counted upon as one of the
most effective devices we have for estimation of integrals.
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Here our use of a flexible, parameter-driven, dissection also helped us
to take advantage the intrinsic richness of the continuum. Without a
pause, we were led to the problem of minimizing φ(t), and this turned
out to be a simple calculus exercise. It is far less common for a discrete
problem to crack so easily; even if one finds the analogs of t and φ(t),
the odds are high that the resulting discrete minimization problem will
be a messy one.

Beating Schwarz by Taking a Detour

Many problems of mathematical analysis call for a bound that beats
the one which we get from an immediate application of Schwarz’s in-
equality. Such a refinement may require a subtle investigation, but
sometimes the critical improvement only calls for one to exercise some
creative self-restraint. A useful motto to keep in mind is “Transform-
Schwarz-Invert,” but to say any more might give away the solution to
the next challenge problem.

Problem 7.2 (Doing Better Than Schwarz)
Show that if f : [0,∞) → [0,∞) is a continuous, nonincreasing func-

tion which is differentiable on (0,∞), then for any pair of parameters
0 < α, β <∞, the integral

I =
∫ ∞

0

xα+βf(x) dx (7.3)

satisfies the bound

I2 ≤
{

1 −
( α− β

α+ β + 1

)2}∫ ∞

0

x2αf(x)dx
∫ ∞

0

x2βf(x) dx. (7.4)

What makes this inequality instructive is that the direct application
of Schwarz’s inequality to the splitting

xα+βf(x) = xα
√
f(x) xβ

√
f(x)

would give one a weaker inequality where the first factor on the right-
hand side of the bound (7.4) would be replaced by 1. The essence of
the challenge is therefore to beat the naive immediate application of
Schwarz’s inequality.

Taking the Hint

If we want to apply the pattern of “Transform-Schwarz-Invert,” we
need to think of ways we might transform the integral (7.3), and, from
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the specified hypotheses, the natural transformation is simply integra-
tion by parts. To explore the feasibility of this idea we first note that
by the continuity of f we have xγ+1f(x) → 0 as x → 0, so integration
by parts provides the nice formula∫ ∞

0

xγf(x) dx =
1

1 + γ

∫ ∞

0

xγ+1|f ′(x)| dx, (7.5)

provided that we also have

xγ+1f(x) → 0 as x→ ∞. (7.6)

Before we worry about checking this limit (7.6), we should first see if
the formula (7.5) actually helps.

If we first apply the formula (7.5) to the integral I of the challenge
problem, we have γ = α+ β and

(α+ β + 1)I =
∫ ∞

0

xα+β+1|f ′(x)| dx.

Thus, if we then apply Schwarz’s inequality to the splitting

xα+β+1|f ′(x)| = {x(2α+1)/2|f ′(x)|1/2} {x(2β+1)/2|f ′(x)|1/2}
we find the nice intermediate bound

(1 + α+ β)2I2 ≤
∫ ∞

0

x2α+1|f ′(x)| dx
∫ ∞

0

x2β+1|f ′(x)| dx.

Now we see how we can invert ; we just apply integration by parts (7.5)
to each of the last two integrals to obtain

I2 ≤ (2α+ 1)(2β + 1)
(α+ β + 1)2

∫ ∞

0

x2αf(x) dx
∫ ∞

0

x2βf(x) dx.

Here, at last, we find after just a little algebraic manipulation of the first
factor that we do indeed have the inequality of the challenge problem.

Our solution is therefore complete except for one small point; we still
need to check that our three applications of the integration by parts
formula (7.5) were justified. For this it suffices to show that we have
the limit (7.6) when γ equals 2α, 2β, or α + β, and it clearly suffices
to check the limit for the largest of these, which we can take to be
2α. Moreover, we can assume that in addition to the hypotheses of the
challenge problem that we also have the condition∫ ∞

0

x2αf(x) dx <∞, (7.7)

since otherwise our target inequality (7.4) is trivial.
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A Pointwise Inference

These considerations present an amusing intermediate problem; we
need to prove a pointwise condition (7.6) with an integral hypothesis
(7.7). It is useful to note that such an inference would be impossible
here without the additional information that f is monotone decreasing.

We need to bring the value of f at a fixed point into clear view, and
here it is surely useful to note that for any 0 ≤ t <∞ we have∫ t

0

x2αf(x) dx =
f(t)t2α+1

2α+ 1
− 1

2α+ 1

∫ t

0

x2α+1f ′(x) dx

=
f(t)t2α+1

2α+ 1
+

1
2α+ 1

∫ t

0

x2α+1|f ′(x)| dx (7.8)

≥ 1
2α+ 1

∫ t

0

x2α+1|f ′(x)| dx.

By the hypothesis (7.7) the first integral has a finite limit as t→ ∞, so
the last integral also has a finite limit as t→ ∞. From the identity (7.8)
we see that f(t)t2α+1/(2α+ 1) is the difference of these integrals, so we
find that there exists a constant 0 ≤ c <∞ such that

lim
t→∞ t2α+1f(t) = c. (7.9)

Now, if c > 0, then there is a T such that t2α+1f(t) ≥ c/2 for t ≥ T ,
and in this case one would have∫ ∞

0

x2αf(x) dx ≥
∫ ∞

T

c

2x
dx = ∞. (7.10)

Since this bound contradicts our assumption (7.7), we find that c = 0,
and this fact confirms that our three applications of the integration by
parts formula (7.5) were justified.

Another Pointwise Challenge

In the course of the preceding challenge problem, we noted that the
monotonicity assumption on f was essential, yet one can easily miss the
point in the proof where that hypothesis was applied. It came in quietly
on the line (7.8) where the integration by parts formula was restructured
to express f(t)t2α+1 as the difference of two integrals with finite limits.

One of the recurring challenges of mathematical analysis is the ex-
traction of local, pointwise information about a function from aggregate
information which is typically expressed with the help of integrals. If
one does not know something about the way or the rate at which the
function changes, the task is usually impossible. In some cases one can
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succeed with just aggregate information about the rate of change. The
next challenge problem provides an instructive example.

Problem 7.3 (A Pointwise Bound)
Show that if f : [0,∞) → R satisfies the two integral bounds∫ ∞

0

x2
∣∣f(x)

∣∣2dx <∞ and
∫ ∞

0

∣∣f ′(x)∣∣2dx <∞,

then for all x > 0 one has the inequality∣∣f(x)
∣∣2 ≤ 4

x

{∫ ∞

x

t2
∣∣f(t)

∣∣2dt}1/2{∫ ∞

x

∣∣f ′(t)∣∣2dt}1/2

(7.11)

and, consequently,
√
x|f(x)| → ∞ as x→ ∞.

Orientation and A Plan

In this problem, as in many others, we must find a way to get started
even though we do not have a clear idea how we might eventually reach
our goal. Our only guide here is that we know we must relate f ′ to f ,
and thus we may suspect that the fundamental theorem of calculus will
somehow help.

This is The Cauchy-Schwarz Master Class, so here one may not need
long to think of applying the 1-trick and Schwarz’s inequality to get the
bound∣∣f(x+ t) − f(x)

∣∣ = ∣∣∣∣ ∫ x+t

x

f ′(u) du
∣∣∣∣ ≤ t1/2

{∫ x+t

x

∣∣f ′(u)∣∣2 du}1/2

.

In fact, this estimate gives us both an upper bound

|f(x+ t)| ≤ |f(x)| + t1/2

{∫ ∞

x

∣∣f ′(u)∣∣2 du}1/2

(7.12)

and a lower bound

|f(x+ t)| ≥ |f(x)| − t1/2

{∫ ∞

x

∣∣f ′(u)∣∣2 du}1/2

, (7.13)

and each of these offers a sense of progress. After all, we needed to find
roles for both of the integrals

F 2(x) def=
∫ ∞

x

u2
∣∣f(u)

∣∣2 du and D2(x) def=
∫ ∞

x

∣∣f ′(u)∣∣2du,
and now we at least see how D(x) can play a part.

When we look for a way to relate F (x) and D(x), it is reasonable to



Integral Intermezzo 111

think of using D(x) and our bounds (7.12) and (7.13) to build upper and
lower estimates for F (x). To be sure, it is not clear that such estimates
will help us with our challenge problem, but there is also not much else
we can do.

After some exploration, one does discover that it is the trickier lower
estimate which brings home the prize. To see how this goes, we first
note that for any value of 0 ≤ h such that h

1
2 ≤ f(x)/D(x) one has

F 2(x) ≥
∫ h

0

u2|f(u)|2 du =
∫ h

0

(x+ t)2|f(x+ t)|2 dt

≥
∫ h

0

(x+ t)2|f(x) − t
1
2D(x)|2 dt

≥ hx2{f(x) − h
1
2D(x)}2,

or, a bit more simply, we have

F (x) ≥ h
1
2x{f(x) − h

1
2D(x)}.

To maximize this lower bound we take h
1
2 = f(x)/{2D(x)}, and we find

F (x) ≥ xf2(x)
4D(x)

or xf2(x) ≤ 4F (x)D(x),

just as we were challenged to show.

Perspective on Localization

The two preceding problems required us to extract pointwise estimates
from integral estimates, and this is often a subtle task. More commonly
one faces the simpler challenge of converting an estimate for one type
of integral into an estimate for another type of integral. We usually do
not have derivatives at our disposal, yet we may still be able to exploit
local estimates for global purposes.

Problem 7.4 (A Divergent Integral)
Given f : [1,∞) → (0,∞) and a constant c > 0, show that if∫ t

1

f(x) dx ≤ ct2 for all 1 ≤ t <∞ then
∫ ∞

1

1
f(x)

dx = ∞.

An Idea That Does Not Quite Work

Given our experiences with sums of reciprocals (e.g., Exercise 1.2,
page 12), it is natural to think of applying Schwarz’s inequality to the
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splitting 1 =
√
f(x) · {1/√f(x)}. This suggestion leads us to

(t− 1)2 =
(∫ t

1

1 dx
)2

≤
∫ t

1

f(x) dx
∫ t

1

1
f(x)

dx, (7.14)

so, by our hypothesis we find

c−1t−2(t− 1)2 ≤
∫ t

1

1
f(x)

dx,

and when we let t→ ∞ we find the bound

c−1 ≤
∫ ∞

1

1
f(x)

dx. (7.15)

Since we were challenged to show that the last integral is infinite, we
have fallen short of our goal. Once more we need to find some way to
sharpen Schwarz.

Focusing Where One Does Well

When Schwarz’s inequality disappoints us, we often do well to ask
how our situation differs from the case when Schwarz’s inequality is
at its best. Here we applied Schwarz’s inequality to the product of
φ(x) = f(x) and ψ(x) = 1/f(x), and we know that Schwarz’s inequality
is sharp if and only if φ(x) and ψ(x) are proportional. Since f(x) and
1/f(x) are far from proportional on the infinite interval [0,∞), we get
a mild hint: perhaps we can do better if we restrict our application of
Schwarz’s inequality to the corresponding integrals over appropriately
chosen finite intervals [A,B].

When we repeat our earlier calculation for a generic interval [A,B]
with 1 ≤ A < B, we find

(B −A)2 ≤
∫ B

A

f(x) dx
∫ B

A

1
f(x)

dx, (7.16)

and, now, we cannot do much better in our estimate of the first integral
than to exploit our hypothesis via the crude bound∫ B

A

f(x) dx <
∫ B

1

f(x) dx ≤ cB2,

after which inequality (7.16) gives us

(B −A)2

cB2
≤
∫ B

A

1
f(x)

dx. (7.17)

The issue now is to see if perhaps the flexibility of the parameters A and
B can be of help.
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This turns out to be a fruitful idea. If we take A = 2j and B = 2j+1,
then for all 0 ≤ j <∞ we have

1
4c

≤
∫ 2j+1

2j

1
f(x)

dx,

and if we sum these estimates over 0 ≤ j < k we find

k

4c
≤
∫ 2k

1

1
f(x)

dx ≤
∫ ∞

1

1
f(x)

dx. (7.18)

Since k is arbitrary, the last inequality does indeed complete the solution
to our fourth challenge problem.

A Final Problem: Jensen’s Inequality for Integrals

The last challenge problem could be put simply: “Prove an integral
version of Jensen’s inequality.” Naturally, we can also take this oppor-
tunity to add something extra to the pot.

Problem 7.5 (Jensen’s Inequality: An Integral Version)
Show that for each interval I ⊂ R and each convex Φ : I → R, one

has the bound

Φ
(∫

D

h(x)w(x) dx
)

≤
∫

D

Φ
(
h(x)

)
w(x) dx, (7.19)

for each h : D → I and each weight function w : D → [0,∞) such that∫
D

w(x) dx = 1.

The Opportunity to Take a Geometric Path

We could prove the conjectured inequality (7.19) by working our way
up from Jensen’s inequality for finite sums, but it is probably more
instructive to take a hint from Figure 7.1. If we compare the figure to
our target inequality and if we ask ourselves about reasonable choices
for µ, one candidate which is sure to make our list is

µ =
∫

D

h(x)w(x) dx;

after all, Φ(µ) is already present in the inequality (7.19).
Noting that the parameter t is still at our disposal, we now see that

Φ(h(x)) may be brought into action if we set t = h(x). If θ denotes the
slope of the support line pictured in Figure 7.1, then we have the bound

Φ(µ) + (h(x) − µ)θ ≤ Φ(h(x)) for all x ∈ D. (7.20)
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Fig. 7.1. For each point p = (µ,Φ(µ)) on the graph of a convex function Φ,
there is a line through p which never goes above the graph of Φ. If Φ is
differentiable, the slope θ of this line is Φ′(µ), and if Φ is not differentiable,
then according to Exercise 6.19 one can take θ to be any point in the interval
[Φ′

−(µ),Φ′
+(µ)] determined by the left and right derivatives.

If we multiply the bound (7.20) by the weight factor w(x) and integrate,
then the conjectured bound (7.19) falls straight into our hands because
of the relation∫

D

(h(x) − µ)w(x)θ dx = θ

{∫
D

h(x)w(x) dx− µ

}
= 0.

Perspectives and Corollaries

Many integral inequalities can be proved by a two-step pattern where
one proves a pointwise inequality and then one integrates. As the proof
of Jensen’s inequality suggests, this pattern is particularly effective when
the pointwise bound contains a nontrivial term which has integral zero.

There are many corollaries of the continuous version of Jensen’s in-
equality, but probably none of these is more important than the one we
obtain by taking Φ(x) = ex and by replacing h(x) by log h(x). In this
case, we find the bound

exp
(∫

D

log{h(x)}w(x) dx
)

≤
∫

D

h(x)w(x) dx, (7.21)

which is the natural integral analogue of the arithmetic-geometric mean
inequality.

To make the connection explicit, one can set h(x) = ak > 0 on [k−1, k)
and set w(x) = pk ≥ 0 on [k − 1, k) for 1 ≤ k ≤ n. One then finds that
for p1 + p2 + · · · + pn = 1 the bound (7.21) reduces to exactly to the
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classic AM-GM bound,
n∏

k=1

apk

k ≤
n∑

k=1

pkak. (7.22)

Incidentally, the integral analog (7.21) of the AM-GM inequality (7.22)
has a long and somewhat muddy history. Apparently, the inequality was
first recorded (for w(x) ≡ 1) by none other than V. Y. Bunyakovsky. It
even appears in the famous Mémoire 1859 where Bunyakovsky intro-
duced his integral analog of Cauchy’s inequality. Nevertheless, in this
case, Bunyakovsky’s contribution seems to have been forgotten even by
the experts.

Exercises

Exercise 7.1 (Integration of a Well-Chosen Pointwise Bound)
Many significant integral inequalities can be proved by integration of

an appropriately constructed pointwise bound. For example, the integral
version (7.19) of Jensen’s inequality was proved this way.

For a more flexible example, show that there is a pointwise integration
proof of Schwarz’s inequality which flows directly from the symmetrizing
substitutions

u �→ f(x)g(y) and v �→ f(y)g(x)

and familiar bound 2uv ≤ u2 + v2.

Exercise 7.2 (A Centered Version of Schwarz’s Inequality)
If w(x) ≥ 0 for all x ∈ R and if the integral w over R is equal to 1,

then the weighted average of a (suitably integrable) function f : R → R

is defined by the formula

A(f) =
∫ ∞

−∞
f(x)w(x) dx.

Show that for functions f and g, one has the following bound on the
average of their product,{

A(fg) −A(f)A(g)
}2 ≤ {A(f2) −A2(f)

}{
A(g2) −A2(g)

}
,

provided that all of the indicated integrals are well defined.
This inequality, like other variations of the Cauchy and Schwarz in-

equalities, owes its usefulness to its ability to help us convert information
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on two individual functions to information about their product. Here
we see that the average of the product, A(fg), cannot differ too greatly
from the product of the averages, A(f)A(g), provided that the variance
terms, A(f2) −A2(f) and A(g2) −A2(g), are not too large.

Exercise 7.3 (A Tail and Smoothness Bound)
Show that if f : R → R has a continuous derivative then∫ ∞

−∞
|f(x)|2 dx ≤ 2

(∫ ∞

−∞
x2|f(x)|2 dx

) 1
2
(∫ ∞

−∞
|f ′(x)|2 dx

) 1
2

.

Exercise 7.4 (Reciprocal on a Square)
Show that for a ≥ 0 and b ≥ 0 one has the bound

1
a+ b+ 1

<

∫ a+1

a

∫ b+1

b

dx dy

x+ y
,

which is a modest — but useful — improvement on the naive lower
bound 1/(a+ b+ 2) which one gets by minimizing the integrand.

Exercise 7.5 (Estimates via Integral Representations)
The complicated formula for the derivative

d4

dx4

sin t
t

=
sin t
t

+
2 cos t
t2

− 12 sin t
t3

− 24 cos t
t4

+
25 sin t
t5

may make one doubt the possibility of proving a simple bound such as∣∣∣∣d4

dx4

sin t
t

∣∣∣∣ ≤ 1
5

for all t ∈ R. (7.23)

Nevertheless, this bound and its generalization for the n-fold derivative
are decidedly easy if one thinks of using the integral representation

sin t
t

=
∫ 1

0

cos(st) ds. (7.24)

Show how the representation (7.24) may be used to prove the bound
(7.23), and give at least one further example of a problem where an
analogous integral representation may be used in this way. The moral
of this story is that many apparently subtle quantities can be estimated
efficiently if they can first be represented as integrals.
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Exercise 7.6 (Confirmation by Improvement)
Confirm your mastery of the fourth challenge problem (page 111) by

showing that you can get the same conclusion from a weaker hypothesis.
For example, show that if there is a constant 0 < c < ∞ such that the
function f : [1,∞) → (0,∞) satisfies the bound∫ t

1

f(x) dx ≤ ct2 log t, (7.25)

then one still has divergence of the reciprocal integral∫ ∞

1

1
f(x)

dx = ∞.

Exercise 7.7 (Triangle Lower Bound)
Suppose the function f : [0,∞) → [0,∞) is convex on [T,∞) and

show that for all t ≥ T one has

1
2
f2(t)

/∣∣f ′(t)∣∣ ≤ ∫ ∞

t

f(u) du. (7.26)

This is called the triangle lower bound, and it is often applied in proba-
bility theory. For example, if we take f(u) = e−u2/2

/√
2π then it gives

the lower bound

e−t2/2

2t
√

2π
≤ 1√

2π

∫ ∞

t

e−u2/2du for t ≥ 1,

although one can do a little better in this specific case.

Exercise 7.8 (The Slip-in Trick: Two Examples)
(a) Show that for all n = 1, 2, . . . one has the lower bound

In =
∫ π/2

0

(1 + cos t)n dt ≥ 2n+1 − 1
n+ 1

.

(b) Show that for all x > 0 one has the upper bound

I ′n =
∫ ∞

x

e−u2/2 du ≤ 1
x
e−x2/2.

No one should pass up this problem. The “slip-in trick” is one of the
most versatile tools we have for the estimation of integrals and sums; to
be unfamiliar with it would be to suffer an unnecessary handicap.



118 Integral Intermezzo

Fig. 7.2. Consider a function g(x) for which |g′(x)| ≤ B, so g cannot change
too rapidly. If g(x0) = P > 0 for some x0, then there is a certain triangle
which must lie under the graph of g. This observation reveals an important
relation between g, g′, and the integral of g.

Exercise 7.9 (Littlewood’s Middle Derivative Squeeze)
Show that if f : [0,∞) → R is twice differentiable and if |f ′′(x)| is

bounded, then

lim
x→∞ f(x) = 0 implies lim

x→∞ f ′(x) = 0.

In his Miscellany, J.E. Littlewood suggests that “pictorial arguments,
while not so purely conventional, can be quite legitimate.” The result
of this exercise is his leading example, and the picture he offered is
essentially that of Figure 7.2.

Exercise 7.10 (Monotonicity and Integral Estimates)
Although the point was not stressed in this chapter, many of the

most useful day-to-day estimates of integrals are found with help from
monotonicity. Gain some practical experience by proving that∫ 1

x

log(1 + t)
dt

t
< (2 log 2)

1 − x

1 + x
for all 0 < x < 1

and by showing that 2 log 2 cannot be replaced by a smaller constant.
Incidentally, this particular inequality is one we will see again when it
helps us with Exercise 11.6.

Exercise 7.11 (A Continuous Carleman-Type Inequality)
Given an integrable f : [a, b] → [0,∞) and an integrable weight func-

tion w : [a, b] → [0,∞) with integral 1 on [a, b], show that one has

exp
∫ b

a

{log f(x)}w(x) dx ≤ e

∫ b

a

f(x)w(x) dx. (7.27)
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Exercise 7.12 (Grüss’s Inequality — Integrals of Products)
Suppose that −∞ < α ≤ A <∞ and −∞ < β ≤ B <∞ and suppose

that functions f and g satisfy the bounds

α ≤ f(x) ≤ A and β ≤ g(x) ≤ B for all 0 ≤ x ≤ 1.

Show that one has the bound∣∣∣∣ ∫ 1

0

f(x)g(x) dx−
∫ 1

0

f(x) dx
∫ 1

0

g(x) dx
∣∣∣∣ ≤ 1

4
(A− α)(B − β),

and show by example that the factor of 1/4 cannot be replaced by a
smaller constant.
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The Ladder of Power Means

The quantities that provide the upper bound in Cauchy’s inequality are
special cases of the general means

Mt = Mt[x;p] ≡
{ n∑

k=1

pkx
t
k

}1/t

(8.1)

where p = (p1, p2, . . . , pn) is a vector of positive weights with total mass
of p1+p2+· · ·+pn = 1 and x = (x1, x2, . . . , xn) is a vector of nonnegative
real numbers. Here the parameter t can be taken to be any real value,
and one can even take t = −∞ or t = ∞, although in these cases and
the case t = 0 the general formula (8.1) requires some reinterpretation.
The proper definition of the power mean M0 is motivated by the natural
desire to make the map t �→ Mt a continuous function on all of R. The
first challenge problem suggests how this can be achieved, and it also
adds a new layer of intuition to our understanding of the geometric
mean.

Problem 8.1 (The Geometric Mean as a Limit)
For nonnegative real numbers xk, k = 1, 2, . . . , n, and nonnegative

weights pk, k = 1, 2, . . . , n with total mass p1 + p2 + · · · + pn = 1, one
has the limit

lim
t→0

{ n∑
k=1

pkx
t
k

}1/t

=
n∏

k=1

xpk

k . (8.2)

Approximate Equalities and Landau’s Notation

The solution of this challenge problem is explained most simply with
the help of Landau’s little o and big O notation. In this useful shorthand,
the statement limt→0 f(t)/g(t) = 0 is abbreviated simply by writing

120
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f(t) = o(g(t)) as t → 0, and, analogously, the statement that the ratio
f(t)/g(t) is bounded in some neighborhood of 0 is abbreviated by writing
f(t) = O(g(t)) as t → 0. By hiding details that are irrelevant, this
notation often allows one to render a mathematical inequality in a form
that gets most quickly to its essential message.

For example, it is easy to check that for all x > −1 one has a natural
two-sided estimate for log(1 + x),

x

1 + x
≤
∫ 1+x

1

du

u
= log(1 + x) ≤ x,

yet, for many purposes, these bounds are more efficiently summarized
by the simpler statement

log(1 + x) = x+O(x2) as x→ 0. (8.3)

Similarly, one can check that for all |x| ≤ 1 one has the bound

1 + x ≤ ex =
∞∑

j=0

xj

j!
≤ 1 + x+ x2

∞∑
j=2

xj−2

j!
≤ 1 + x+ ex2,

though, again, for many calculations we only need to know that these
bounds give us the relation

ex = 1 + x+O(x2) as x→ 0. (8.4)

Landau’s notation and the big-O relations (8.3) and (8.4) for the log-
arithm and the exponential now help us calculate quite smoothly that
as t→ 0 one has

log
{( n∑

k=1

pkx
t
k

)1/t}
=

1
t

log
{ n∑

k=1

pke
t log xk

}

=
1
t

log
{ n∑

k=1

pk

(
1 + t log xk +O(t2)

)}

=
1
t

log
{

1 + t

n∑
k=1

pk log xk +O(t2)
}

=
n∑

k=1

pk log xk +O(t).

This big-O identity is even a bit stronger than one needs to confirm the
limit (8.2), so the solution of the challenge problem is complete.
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A Corollary

The formula (8.2) provides a general representation of the geometric
mean as a limit of a sum, and it is worth noting that for two summands
it simply says that

lim
p→∞

{
θa1/p + (1 − θ)b1/p

}p

= aθb1−θ, (8.5)

all nonnegative a, b, and θ ∈ [0, 1]. This formula and its more compli-
cated cousin (8.2) give us a general way to convert information for a sum
into information for a product.

Later we will draw some interesting inferences from this observation,
but first we need to develop an important relation between the power
means and the geometric mean. We will do this by a method that is
often useful as an exploratory tool in the search for new inequalities.

Siegel’s Method of Halves

Carl Ludwig Siegel (1896–1981) observed in his lectures on the geome-
try of numbers that the limit representation (8.2) for the geometric mean
can be used to prove an elegant refinement of the AM-GM inequality.
The proof calls on nothing more than Cauchy’s inequality and the limit
characterization of the geometric mean, yet it illustrates a sly strategy
which opens many doors.

Problem 8.2 (Power Mean Bound for the Geometric Mean)

Follow in Siegel’s footsteps and prove that for any nonnegative weights
pk, k = 1, 2, . . . , n with total mass p1 + p2 + · · · + pn = 1 and for any
nonnegative real numbers xk, k = 1, 2, . . . , n, one has the bound

n∏
k=1

xpk

k ≤
{ n∑

k=1

pkx
t
k

}1/t

for all t > 0. (8.6)

As the section title hints, one way to approach such a bound is to
consider what happens when t is halved (or doubled). Specifically, one
might first aim for an inequality such as

Mt ≤M2t for all t > 0, (8.7)

and afterwards one can then look for a way to draw the connection to
the limit (8.2).
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As usual, Cauchy’s inequality is our compass, and again it points us
to the splitting trick. If we write pkx

t
k = p

1
2
k p

1
2
k x

t
k we find

M t
t =

n∑
k=1

pkx
t
k =

n∑
k=1

p
1/2
k p

1/2
k xt

k

≤
(

n∑
k=1

pk

) 1
2
(

n∑
k=1

pkx
2t
k

) 1
2

= M t
2t,

and now when we take the tth root of both sides, we have before us the
conjectured doubling formula (8.7).

To complete the solution of the challenge problem, we can simply
iterate the process of taking halves, so, after j steps, we find for all real
t > 0 that

Mt/2j ≤Mt/2j−1 ≤ · · · ≤Mt/2 ≤Mt. (8.8)

Now, from the limit representation of the geometric mean (8.2) we have

lim
j→∞

Mt/2j = M0 =
n∏

k=1

xpk

k ,

so from the halving bound (8.8) we find that for all t ≥ 0 one has
n∏

k=1

xpk

k = M0 ≤Mt =
{ n∑

k=1

pkx
t
k

}1/t

for all t > 0. (8.9)

Monotonicity of the Means

Siegel’s doubling relation (8.7) and the plot given in Figure 8.1 of the
two-term power mean (pxt + qyt)1/t provide us with big hints about the
quantitative and qualitative features of the general mean Mt. Perhaps
the most basic among these is the monotonicity of the map t �→ Mt

which we address in the next challenge problem.

Problem 8.3 (Power Mean Inequality)
Consider positive weights pk, k = 1, 2, . . . , n which have total mass

p1 + p2 + · · · + pn = 1, and show that for nonnegative real numbers xk,
k = 1, 2, . . . , n, the mapping t �→ Mt is a nondecreasing function on all
of R. That is, show that for all −∞ < s < t <∞ one has{ n∑

k=1

pkx
s
k

}1/s

≤
{ n∑

k=1

pkx
t
k

}1/t

. (8.10)

Finally, show that then one has equality in the bound (8.10) if and only
if x1 = x2 = · · · = xn.
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Fig. 8.1. If x > 0, y > 0, 0 < p < 1 and q = 1 − p, then a qualitative plot
of Mt = (pxt + qyt)1/t for −∞ < t < ∞ suggests several basic relationships
between the power means. Perhaps the most productive of these is simply the
fact that Mt is a monotone increasing function of the power t, but all of the
elements of the diagram have their day.

The Fundamental Situation: 0 < s < t

One is not likely to need long to note the resemblance of our target
inequality (8.10) to the bound one obtains from Jensen’s inequality for
the map x �→ xp with p > 1,{ n∑

k=1

pkxk

}p

≤
n∑

k=1

pkx
p
k.

In particular, if we assume 0 < s < t then the substitutions ys
k = xk and

p = t/s > 1 give us { n∑
k=1

pky
s
k

}t/s

≤
n∑

k=1

pky
t
k, (8.11)

so taking the tth root gives us the power mean inequality (8.10) in the
most basic case. Moreover, the strict convexity of x �→ xp for p > 1 tells
us that if pk > 0 for all k = 1, 2, . . . , n, then we have equality in the
bound (8.11) if and only if x1 = x2 = · · · = xn.

The Rest of the Cases

There is something aesthetically unattractive about breaking a prob-
lem into a collection of special cases, but sometimes such decompositions
are unavoidable. Here, as Figure 8.2 suggests, there are two further cases
to consider. The most pressing of these is Case II where s < t < 0, and
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I

II

III

t

s

Case I: 0 < s < t

Case II: s < t < 0

Case III: s < 0 < t

Fig. 8.2. The power mean inequality deals with all −∞ < s < t < ∞ and
Jensen’s inequality deals directly with Case I and indirectly with Case II.
Case III has two halves s = 0 < t and s < t = 0 which are consequences of
the geometric mean power mean bound (8.6).

we cover it by applying the result of Case I. Since −t > 0 is smaller than
−s > 0, the bound of Case I gives us{ n∑

k=1

pkx
−t
k

}−1/t

≤
{ n∑

k=1

pkx
−s
k

}−1/s

.

Now, when we take reciprocals we find{ n∑
k=1

pkx
−s
k

}1/s

≤
{ n∑

k=1

pkx
−t
k

}1/t

,

so when we substitute xk = y−1
k , we get the power mean inequality for

s < t < 0.
Case III of Figure 8.2 is the easiest of the three. By the PM-GM

inequality (8.6) for x−t
k , 1 ≤ k ≤ n, and the power 0 ≤ −s, we find after

taking reciprocals that{ n∑
k=1

pkx
s
k

}1/s

≤
n∏

k=1

xpk

k for all s < 0. (8.12)

Together with the basic bound (8.6) for 0 < t, this completes the proof
of Case III.

All that remains now is to acknowledge that the three cases still leave
some small cracks unfilled; specifically, the boundary situations 0 = s < t

and s < t = 0 have been omitted from the three cases of Figure 8.2.
Fortunately, these situations were already covered by the bounds (8.6)
and (8.12), so the solution of the challenge problem really is complete.



126 The Ladder of Power Means

In retrospect, Cases II and III resolved themselves more easily than
one might have guessed. There is even some charm in the way the
geometric mean resolved the relation between the power means with
positive and negative powers. Perhaps we can be encouraged by this
experience the next time we are forced to face a case-by-case argument.

Some Special Means

We have already seen that some of the power means deserve special
attention, and, after t = 2, t = 1, and t = 0, the cases most worthy of
note are t = −1 and the limit values one obtains by taking t→ ∞ or by
taking t → −∞. When t = −1, the mean M−1 is called the harmonic
mean and in longhand it is given by

M−1 = M−1[x;p] =
1

p1/x1 + p2/x2 + · · · + pn/xn
.

From the power mean inequality (8.10) we know that M−1 provides a
lower bound on the geometric mean, and, a fortiori, one has a bound on
the arithmetic mean. Specifically, we have the harmonic mean-geometric
mean inequality (or the HM-GM inequality)

1
p1/x1 + p2/x2 + · · · + pn/xn

≤ xp1
1 x

p2
2 · · ·xpn

n (8.13)

and, as a corollary, one also has the harmonic mean-arithmetic mean
inequality (or the HM-AM inequality)

1
p1/x1 + p2/x2 + · · · + pn/xn

≤ p1x1 + p2x2 + · · · + pnxn. (8.14)

Sometimes these inequalities come into play just as they are written,
but perhaps more often we use them “upside down” where they give us
useful lower bounds for the weighted sums of reciprocals:

1
xp1

1 x
p2
2 · · ·xpn

n
≤ p1

x1
+
p2

x2
+ · · · + pn

xn
, (8.15)

1
p1x1 + p2x2 + · · · + pnxn

≤ p1

x1
+
p2

x2
+ · · · + pn

xn
. (8.16)

Going to Extremes

The last of the power means to require special handling are those for
the extreme values t = −∞ and t = ∞ where the appropriate definitions
are given by

M−∞[x;p] ≡ min
k
xk and M∞[x;p] ≡ max

k
xk. (8.17)
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With this interpretation one has all of the properties that Figure 8.1
suggests. In particular, one has the obvious (but useful) bounds

M−∞[x;p] ≤Mt[x;p] ≤M∞[x;p] for all t ∈ R,

and one also has the two continuity relations

lim
t→∞Mt[x;p] = M∞[x;p] and lim

t→−∞Mt[x;p] = M−∞[x;p].

To check these limits, we first note that for all t > 0 and all 1 ≤ k ≤ n

we have the elementary bounds

pkx
t
k ≤M t

t [x;p] ≤M t
∞[x;p],

and, since pk > 0 we have p1/t
k → 1 as t→ ∞, so we can take roots and

let t→ ∞ to deduce that for all 1 ≤ k ≤ n we have

xk ≤ lim inf
t→∞ Mt[x;p] ≤ lim sup

t→∞
Mt[x;p] ≤M∞[x;p].

Since maxk xk = M∞[x;p], we have the same bound on both the extreme
left and extreme right, so in the end we see

lim
t→∞Mt[x;p] = M∞[x;p].

This confirms the first continuity relation, and in view of the general
identityM−t(x1, x2, . . . , xn;p) = M−1

t (1/x1, 1/x2, . . . , 1/xn;p), the sec-
ond continuity relation follows from the first.

The Integral Analogs

The integral analogs of the power means are also important, and their
relationships follows in lock-step with those one finds for sums. To make
this notion precise, we take D ⊂ R and we consider a weight function
w : D → [0,∞) which satisfies∫

D

w(x) dx = 1 and w(x) > 0 for all x ∈ D,

then for f : D → [0,∞] and t ∈ (−∞, 0)∪(0,∞) we define the tth power
mean of f by the formula

Mt = Mt[f ;w] ≡
{∫

D

f t(x)w(x) dx
}1/t

. (8.18)

As in the discrete case, the mean M0 requires special attention, and for
the integral mean the appropriate definition requires one to set

M0[f ;w] ≡ exp
(∫

D

{
log f(x)

}
w(x) dx

)
. (8.19)
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Despite the differences in the two forms (8.18) and (8.19), the defini-
tion (8.19) should not come as a surprise. After all, we found earlier
(page 114) that the formula (8.19) is the natural integral analog of the
geometric mean of f with respect to the weight function w.

Given the definitions (8.18) and (8.19), one now has the perfect analog
of the discrete power mean inequality; specifically, one has

Ms[f ;w] ≤Mt[f ;w] for all −∞ < s < t <∞. (8.20)

Moreover, for well-behaved f , say, those that are continuous, one has
equality in the bound (8.20) if and only if f is constant on D.

We have already invested considerable effort on the discrete power
mean inequality (8.10), so we will not take the time here to work out a
proof of the continuous analog (8.20), even though such a proof provides
worthwhile exercise that every reader is encouraged to pursue. Instead,
we take up a problem which shows as well as any other just how effective
the basic bound M0[f ;w] ≤ M1[f ;w] is. In fact, we will only use the
simplest case when D = [0, 1] and w(x) = 1 for all x ∈ D.

Carleman’s Inequality and the Continuous AM-GM Bound

In Chapter 2 we used Pólya’s proof of Carleman’s geometric mean
bound,

∞∑
k=1

(a1a2 · · · ak)1/k ≤ e
∞∑

k=1

ak, (8.21)

as a vehicle to help illustrate the value of restructuring a problem so
that the AM-GM inequality could be used where it is most efficient.
Pólya’s proof is an inspirational classic, but if one is specifically curious
about Carleman’s inequality, then there are several natural questions
that Pólya’s analysis leaves unanswered.

One feature of Pólya’s proof that many people find perplexing is that
it somehow manages to provide an effective estimate of the total of all
the summands (a1a2 · · · ak)1/k without providing a compelling estimate
for the individual summands when they are viewed one at a time. The
next challenge problem solves part of this mystery by showing that there
is indeed a bound for the individual summands which is good enough so
that it can be summed to obtain Carleman’s inequality.
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Problem 8.4 (Termwise Bounds for Carleman’s Summands)
Show that for positive real numbers ak, k = 1, 2, . . . , one has

(a1a2 · · · an)1/n ≤ e

2n2

n∑
k=1

(2k − 1)ak for n = 1, 2, . . . , (8.22)

and then show that these bounds can be summed to prove the classical
Carleman inequality (8.21).

A Reasonable First Step

The unspoken hint of our problem’s location suggests that one should
look for a role for the integral analogs of the power means. Since we
need to estimate the terms (a1a2 · · · an)1/n it also seems reasonable to
consider the integrand f : [0,∞) → R where we take f(x) to be equal
to ak on the interval (k− 1, k] for 1 ≤ k <∞. This choice makes it easy
for us to put the left side of the target inequality (8.22) into an integral
form: { n∏

k=1

ak

}1/n

= exp

{
1
n

n∑
k=1

log ak

}

= exp
{

1
n

∫ n

0

log f(x) dx
}

= exp
{∫ 1

0

log f(ny) dy
}
. (8.23)

This striking representation for the geometric mean almost begs us to
apply continuous version of the AM-GM inequality.

Unfortunately, if we were to acquiesce, we would find ourselves embar-
rassed; the immediate application of the continuous AM-GM inequality
to the formula (8.23) returns us unceremoniously back at the classical
discrete AM-GM inequality. For the moment, it may seem that the nice
representation (8.23) really accomplishes nothing, and we may even be
tempted to abandon this whole line of investigation. Here, and at similar
moments, one should take care not to desert a natural plan too quickly.

A Deeper Look

The naive application of the AM-GM bound leaves us empty handed,
but surely there is something more that we can do. At a minimum, we
can review some of Pólya’s questions and, as we work down the list,
we may be struck by the one that asks, “Is it possible to satisfy the
condition?”
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Here the notion of condition and conclusion are intertwined, but ulti-
mately we need a bound like the one given by the right side of our target
inequality (8.22). Once this is said, we will surely ask ourselves where
the constant factor e is to be found. Such a factor is not in the formula
(8.23) as it stands, but perhaps we can put it there.

This question requires exploration, but if one thinks how e might be
expressed in a form that is analogous to the right side of the formula
(8.23), then sooner or later one is likely to have the lucky thought of
replacing f(ny) by y. One would then notice that

e = exp
{
−
∫ 1

0

log y dy
}
, (8.24)

and this identity puts us back on the scent. We just need to slip log y
into the integrand and return to our original plan. Specifically, we find

exp
{∫ 1

0

log f(ny) dy
}

= exp
{∫ 1

0

log{yf(ny)} − log y dy
}

= e exp
{∫ 1

0

log{yf(ny)} dy
}

≤ e

∫ 1

0

yf(ny) dy, (8.25)

where in the last step we finally get to apply the integral version of the
AM-GM inequality.

Two Final Steps

Now, for the function f defined by setting f(x) = ak for x ∈ (k−1, k],
we have the elementary identity

∫ 1

0

yf(ny) dy =
n∑

k=1

∫ k/n

(k−1)/n

yak dy =
1

2n2

n∑
k=1

(2k − 1)ak, (8.26)

so, in view of the general bound (8.25) and the identity (8.23), the proof
of the first inequality (8.22) of the challenge problem is complete.

All that remains is for us to add up the termwise bounds (8.22) and
check that the sum yields the classical form of Carleman’s inequality
(8.21). This is easy enough, but some care is still needed to squeeze out
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exactly the right final bound. Specifically, we note that

∞∑
n=1

1
n2

n∑
k=1

(2k − 1)ak =
∞∑

k=1

(2k − 1)ak

∞∑
n=k

1
n2

≤
∞∑

k=1

(2k − 1)ak

∞∑
n=k

{
1

n− 1
2

− 1
n+ 1

2

}

=
∞∑

k=1

2k − 1
k − 1

2

ak = 2
∞∑

k=1

ak

and, when we insert this bound in the identity (8.26), we see that the
estimate (8.25) does indeed complete the proof of Carleman’s inequality.

Exercises

Exercise 8.1 (Power Means in Disguise)
To use the power mean inequality effectively one must be able to pick

power means out of a crowd, and this exercise provides some practice.
Prove that for positive x, y, and z, one has

9
2(x+ y + z)

≤ 1
x+ y

+
1

x+ z
+

1
y + z

(8.27)

and prove that for p ≥ 1 one also has

1
2
32−p(x+ y + z)p−1 ≤ xp

y + z
+

yp

x+ z
+

zp

x+ y
. (8.28)

Incidentally, one might note that for p = 1 the second bound reduces to
the much-proved Nesbitt inequality of Exercise 5.6.

Exercise 8.2 (Harmonic Means and Recognizable Sums)
Suppose x1, x2, . . . , xn are positive and let S denote their sum. Show

that we have the bound

n2

(2n− 1)
≤ S

2S − x1
+

S

2S − x2
+ · · · + S

2S − xn
.

In this problem (and many like it) one gets a nice hint from the fact
that there is a simple expression for the sum of the denominators on the
right-hand side.
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Exercise 8.3 (Integral Analogs and Homogeneity in Σ)
(a) Show that for all nonnegative sequences {ak : 1 ≤ k ≤ n} one has{

n∑
k=1

a
1/2
k

}2

≤
{

n∑
k=1

a
1/3
k

}3

, (8.29)

and be sure to notice the differences between this bound and the power
mean inequality (8.10) with s = 1/3 and t = 1/2.

(b) By analogy with the bound (8.29), one might carelessly guess that
for nonnegative f that one has an integral bound{∫ 1

0

f1/2(x) dx
}2

≤
{∫ 1

0

f1/3(x) dx
}3

. (8.30)

Show by example that the bound (8.30) does not hold in general.
The likelihood of an integral analog can often be explained by a heuris-

tic principle which Hardy, Littlewood, and Pólya (1952, p. 4) describes
as “homogeneity in Σ.” The principle suggests that we consider Σ in a
bound such as (8.29) as a formal symbol. In this case we see that the left
side is “homogeneous of order two in Σ” while the right side is “homo-
geneous of order three in Σ.” The two sides are therefore incompatible,
and one should not expect any integral analog. On the other hand, in
Cauchy’s inequality and Hölder’s inequality, both sides are homogeneous
of order one in Σ. It is therefore natural — even inevitable — that we
should have integral analogs for these bounds.

Exercise 8.4 (Pólya’s Minimax Characterization)
Suppose you must guess the value of an unknown number x in the

interval [a, b] ⊂ (0,∞) and suppose you will be forced to pay a fine
based on the relative error of your guess. How should you guess if you
want to minimize the worst fine that you would have to pay?

If you guess is p, then the maximum fine you would have to pay is

F (p) = max
x∈[a,b]

{ |p− x|
x

}
, (8.31)

so your analytical challenge is to find the value p∗ such that

F (p∗) = min
p
F (p) = min

p
max

x∈[a,b]

{ |p− x|
x

}
. (8.32)

One expects p∗ to be some well-known mean, but which one is it?
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Exercise 8.5 (The Geometric Mean as a Minimum)
Prove that the geometric mean has the representation{ n∏

k=1

ak

}1/n

= min
{

1
n

n∑
k=1

akxk : (x1, x2, . . . , xn) ∈ D

}
, (8.33)

where D is the region of R
n defined by

D =
{

(x1, x2, . . . , xn) :
n∏

k=1

xk = 1, xk ≥ 0, k = 1, 2, . . . , n
}
.

For practice with this characterization of the geometric mean, use it to
give another proof that the geometric mean is superadditive; that is,
show that the formula (8.33) implies the bound (2.31) on page 34.

Exercise 8.6 (More on the Method of Halves)
The method of halves applies to more than just inequalities; it can

also be used to prove some elegant identities. As an illustration, show
that the familiar half-angle formula sinx = 2 sin(x/2) cos(x/2) implies
the infinite product identity

sinx
x

=
∞∏

k=1

cos(x/2k), (8.34)

and verify in turn that this implies the poignant formula

2
π

=
√

2
2

·
√

2 +
√

2
2

·
√

2 +
√

2 +
√

2
2

· · · .

Incidentally, the product formula (8.34) for sin(x)/x is known as Viète’s
identity, and it has been known since 1593.

Exercise 8.7 (Differentiation of an Inequality)
In general one cannot differentiate the two sides of an inequality and

expect any meaningful consequences, but there are special situations
where “differentiation of an inequality” does make sense. There are even
times when such differentiations have lead to spectacular new results.
The aspirations of this exercise are more modest, but they point the way
to what is possible.

(a) Consider a function f that is differentiable at t0 and that satisfies
the bound f(t0) ≤ f(t) for all t ∈ [t0, t0 + ∆) and some ∆ > 0. Show
that one then has 0 ≤ f ′(t0).
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(b) Use the preceding observation to show that the power mean in-
equality implies that for all xk > 0 and all nonnegative pk with total
p1 + p2 + · · · + pn = 1, one has{ n∑

k=1

pkxk

}
log
{ n∑

k=1

pkxk

}
≤
{ n∑

k=1

pkxk log xk

}
. (8.35)

Exercise 8.8 (A Niven–Zuckerman Lemma for pth Powers)
Consider a sequence of n-tuples of nonnegative real numbers

(a1k, a2k, . . . , ank) k = 1, 2, . . . .

Suppose there is a constant µ ≥ 0 for which one has

a1k + a2k + · · · + ank → nµ as k → ∞, (i)

and suppose for some 1 < p <∞ such that one also has

ap
1k + ap

2k + · · · + ap
nk → nµp as k → ∞. (ii)

Show that these conditions imply that one then has the n-term limit

lim
k→∞

ajk = µ for all 1 ≤ j ≤ n.

This exercise provides an example of a consistency principle which in this
case asserts that if the sum of the coordinates of a vector and the sum
of the corresponding pth powers have limits that are consistent with the
possibility that all of the coordinates converge to a common constant,
then that must indeed be the case. The consistency principle has many
variations and, like the optimality principle of Exercise 2.8, page 33, it
provides useful heuristic guidance even when it does not formally apply.

Exercise 8.9 (Points Crowded in an Interval)
Given n points in the interval [−1, 1], we know that some pairs must

be close together, and there are many ways to quantify this crowding.
An uncommon yet insightful way once exploited by Paul Erdős is to look
at the sum of the reciprocal gaps.

(a) Suppose that −1 ≤ x1 < x2 < · · · < xn ≤ 1, and show that∑
1≤j<k≤n

1
xk − xj

≥ 1
8
n2 log n.

(b) Show that for any permutation σ : [n] → [n] one has the bound

max
1<k≤n

k−1∑
j=1

1
|xσ(k) − xσ(j)| ≥ 1

8
n log n.



9

Hölder’s Inequality

Four results provide the central core of the classical theory of inequal-
ities, and we have already seen three of these: the Cauchy–Schwarz
inequality, the AM-GM inequality, and Jensen’s inequality. The quartet
is completed by a result which was first obtained by L.C. Rogers in 1888
and which was derived in another way a year later by Otto Hölder. Cast
in its modern form, the inequality asserts that for all nonnegative ak

and bk, k = 1, 2, . . . , n, one has the bound
n∑

k=1

akbk ≤
( n∑

k=1

ap
k

)1/p( n∑
k=1

bqk

)1/q

, (9.1)

provided that the powers p > 1 and q > 1 satisfy the relation

1
p

+
1
q

= 1. (9.2)

Ironically, the articles by Rogers and Hölder leave the impression that
these authors were mainly concerned with the extension and application
of the AM-GM inequality. In particular, they did not seem to view
their version of the bound (9.1) as singularly important, though Rogers
did value it enough to provide two proofs. Instead, the opportunity fell
to Frigyes Riesz to cast the inequality (9.1) in its modern form and to
recognize its fundamental role. Thus, one can argue that the bound (9.1)
might better be called Rogers’s inequality, or perhaps even the Rogers–
Hölder–Riesz inequality. Nevertheless, long ago, the moving hand of
history began to write “Hölder’s inequality,” and now, for one to use
another name would be impractical, though from time to time some
acknowledgment of the historical record seems appropriate.

The first challenge problem is easy to anticipate: one must prove the
inequality (9.1), and one must determine the circumstances where equal-

135
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ity can hold. As usual, readers who already know a proof of Hölder’s
inequality are invited to discover a new one. Although, new proofs of
Hölder’s inequality appear less often than those for the Cauchy–Schwarz
inequality or the AM-GM inequality, one can have confidence that they
can be found.

Problem 9.1 (Hölder’s Inequality)

First prove Riesz’s version (9.1) of the inequality of Rogers (1888) and
Hölder (1889), then prove that one has equality for a nonzero sequence
a1, a2, . . . , an if and only if there exists a constant λ ∈ R such that

λa
1/p
k = b

1/q
k for all 1 ≤ k ≤ n. (9.3)

Building on the Past

Surely one’s first thought is to try to adapt one of the many proofs
of Cauchy’s inequality; it may even be instructive to see how some of
these come up short. For example, when p �= 2, Schwarz’s argument is
a nonstarter since there is no quadratic polynomial in sight. Similarly,
the absence of a quadratic form means that one is unlikely to find an
effective analog of Lagrange’s identity.

This brings us to our most robust proof of Cauchy’s inequality, the
one that starts with the so-called “humble bound,”

xy ≤ 1
2
x2 +

1
2
y2 for all x, y ∈ R. (9.4)

This bound may now remind us that the general AM-GM inequality
(2.9), page 23, implies that

xαyβ ≤ α

α+ β
xα+β +

β

α+ β
yα+β (9.5)

for all x ≥ 0, y ≥ 0, α > 0, and β > 0. If we then set u = xα, v = yβ ,
p = (α+ β)/α, and q = (α+ β)/β, then we find for all p > 1 that one
has the handy inference

1
p

+
1
q

= 1 =⇒ uv ≤ 1
p
up +

1
q
vq for all u, v ∈ R

+. (9.6)

This is the perfect analog of the “humble bound” (9.4). It is known as
Young’s inequality, and it puts us well on the way to a solution of our
challenge problem.
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Another Additive to Multiplicative Transition

The rest of the proof of Hölder’s inequality follows a familiar pattern.
If we make the substitutions u �→ ak and v �→ bk in the bound (9.6) and
sum over 1 ≤ k ≤ n, then we find

n∑
k=1

akbk ≤ 1
p

n∑
k=1

ap
k +

1
q

n∑
k=1

bqk, (9.7)

and to pass from this additive bound to a multiplicative bound we can
apply the normalization device with which we have already scored two
successes. We can assume without loss of generality that neither of our
sequences is identically zero, so the normalized variables

âk = ak

/( n∑
k=1

ap
k

)1/p

and b̂k = bk

/( n∑
k=1

bqk

)1/q

,

are well defined. Now, if we simply substitute these values into the
additive bound (9.7), we find that easy arithmetic guides us quickly to
the completion of the direct half of the challenge problem.

Looking Back — Contemplating Conjugacy

In retrospect, Riesz’s argument is straightforward, but the easy proof
does not tell the whole story. In fact, Riesz’s formulation carried much
of the burden, and he was particularly wise to focus our attention on the
pairs of powers p and q such that 1/p + 1/q = 1. Such (p, q) pairs are
now said to be conjugate, and many problems depend on the trade-offs
we face when we choose one conjugate pair over another. This balance
is already visible in the p-q generalization (9.6) of the “humble bound”
(9.4), but soon we will see deeper examples.

Backtracking and the Case of Equality

To complete the challenge problem, we still need to determine the cir-
cumstances where one has equality. To begin, we first note that equality
trivially holds if bk = 0 for all 1 ≤ k ≤ n, but in that case the identity
(9.3) is satisfied λ = 0; thus, we may assume with loss of generality that
both sequences are nonzero.

Next, we note that equality is attained in Hölder’s inequality (9.1) if
and only if equality holds in the additive bound (9.7) when it is applied
to the normalized variables âk and b̂k. By the termwise bound (9.6), we
further see that equality holds in the additive bound (9.7) if and only if
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Fig. 9.1. The case for equality in Hölder’s inequality is easily framed as a
blackboard display, and such a semi-graphical presentation has several advan-
tages over a monologue of “if and only if” assertions. In particular, it helps
us to see the argument at a glance, and it encourages us to question each of
the individual inferences.

we have

âk b̂k =
1
p
âp

k +
1
q
b̂qk for all k = 1, 2, . . . , n.

Next, by the condition for equality in the special AM-GM bound (9.5),
we find that for each 1 ≤ k ≤ n we must have âp

k = b̂qk. Finally, when we
peel away the normalization indicated by the hats, we see that λap

k = bqk
for all 1 ≤ k ≤ n where λ is given explicitly by

λ =
( n∑

k=1

bqk

)1/q/( n∑
k=1

ap
k

)1/p

.

This is characterization that we anticipated, and the solution of the
challenge problem is complete.

A Blackboard Tool for Better Checking

Backtracking arguments, such as the one just given, are notorious for
harboring gaps, or even outright errors. It seems that after working
through a direct argument, many of us are just too tempted to believe
that nothing could go wrong when the argument is “reversed.” Unfor-
tunately, there are times when this is wishful thinking.

A semi-graphical “blackboard display” such as that of Figure 9.1 may
be of help here. Many of us have found ourselves nodding passively to
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a monologue of “if and only if” statements, but the visible inferences
of a blackboard display tend to provoke more active involvement. Such
a display shows the whole argument at a glance, yet each inference is
easily isolated.

A Converse for Hölder

In logic, everyone knows that the converse of the inference A ⇒ B

is the inference B ⇒ A, but in the theory of inequalities the notion
of a converse is more ambiguous. Nevertheless, there is a result that
deserves to be called the converse Hölder inequality, and it provides our
next challenge problem.

Problem 9.2 (The Hölder Converse — The Door to Duality)
Show that if 1 < p <∞ and if C is a constant such that

n∑
k=1

akxk ≤ C

{ n∑
k=1

|xk|p
}1/p

(9.8)

for all xk, 1 ≤ k ≤ n, then for q = p/(p− 1) one has the bound{ n∑
k=1

|ak|q
}1/q

≤ C. (9.9)

How to Untangle the Unwanted Variables

This problem helps to explain the inevitability of Riesz’s conjugate
pairs (p, q), and, to some extent, the simple conclusion is surprising.
Nonlinear constraints are notoriously awkward, and here we see that we
have x-variables tangled up on both sides of the hypothesis (9.8). We
need a trick if we want to eliminate them.

One idea that sometimes works when we have free variables on both
sides of a relation is to conspire to make the two sides as similar as
possible. This “principle of similar sides” is necessarily vague, but here
it may suggest that for each 1 ≤ k ≤ n we should choose xk such that
akxk = |xk|p; in other words, we set xk = sign(ak)|ak|p/(p−1) where
sign(ak) is 1 if ak ≥ 0 and it is −1 if ak < 0. With this choice the
condition (9.8) becomes

n∑
k=1

|ak|p/(p−1) ≤ C

{ n∑
k=1

|ak|p/(p−1)

}1/p

. (9.10)

We can assume without loss of generality that the sum on the right is
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nonzero, so it is safe to divide by that sum. The relation 1/p+ 1/q = 1
then confirms that we have indeed proved our target bound (9.9).

A Shorthand Designed for Hölder’s Inequality

Hölder’s inequality and the duality bound (9.9) can be recast in several
forms, but to give the nicest of these it will be useful to introduce some
shorthand. If a = (a1, a2, . . . , an) is an n-tuple of real numbers, and
1 ≤ p <∞ we will write

‖a‖p =
( n∑

k=1

|ak|p
)1/p

, (9.11)

while for p = ∞ we simply set ‖a‖∞ = max1≤k≤n |ak|. With this nota-
tion, Hölder’s inequality (9.1) for 1 ≤ p < ∞ then takes on the simple
form ∣∣∣∣ n∑

k=1

akbk

∣∣∣∣ ≤ ‖a‖p‖b‖q,

where for 1 < p < ∞ the pair (p, q) are the usual conjugates which are
determined by the relation

1
p

+
1
q

= 1 when 1 < p <∞,

but for p = 1 we just simply set q = ∞.
The quantity ‖a‖p is called the p-norm, or the �p-norm, of the n-tuple,

but, to justify this name, one needs to check that the function a �→ ‖a‖p

does indeed satisfy all of the properties required by the definition a norm;
specifically, one needs to verify the three properties:

(i) ‖a‖p = 0 if and only if a = 0,

(ii) ‖αa‖p = |α| ‖a‖p for all α ∈ R, and

(iii) ‖a + b‖p ≤ ‖a‖p + ‖b‖p for all real n-tuples a and b.

The first two properties are immediate from the definition (9.11), but
the third property is more substantial. It is known as Minkowski’s in-
equality, and, even though it is not difficult to prove, the result is a
fundamental one which deserves to be framed as a challenge problem.
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Problem 9.3 (Minkowski’s Inequality)
Show that for each a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) one

has

‖a + b‖p ≤ ‖a‖p + ‖b‖p, (9.12)

or, in longhand, show that for all p ≥ 1 one has the bound( n∑
k=1

|ak + bk|p
)1/p

≤
( n∑

k=1

|ak|p
)1/p

+
( n∑

k=1

|bk|p
)1/p

. (9.13)

Moreover, show that if ‖a‖p �= 0 and if p > 1, then one has equality in
the bound (9.12) if and only if (1) there exist a constant λ ∈ R such that
|bk| = λ|ak| for all k = 1, 2, . . . , n, and (2) ak and bk have the same sign
for each k = 1, 2, . . . , n.

Riesz’s Argument for Minkowski’s Inequality

There are many ways to prove Minkowski’s inequality, but the method
used by F. Riesz is a compelling favorite — especially if one is asked to
prove Minkowski’s inequality immediately after a discussion of Hölder’s
inequality. One simply asks, “How can Hölder help?” Soon thereafter,
algebra can be our guide.

Since we seek an upper bound which is the sum of two terms, it is
reasonable to break our sum into two parts:

n∑
k=1

|ak + bk|p ≤
n∑

k=1

|ak||ak + bk|p−1 +
n∑

k=1

|bk||ak + bk|p−1. (9.14)

This decomposition already gives us Minkowski’s inequality (9.13) for
p = 1, so we may now assume p > 1. If we then apply Hölder’s inequality
separately to each of the bounding sums (9.14), we find for the first sum
that

n∑
k=1

|ak||ak + bk|p−1 ≤
( n∑

k=1

|ak|p
)1/p( n∑

k=1

|ak + bk|p
)(p−1)/p

while for the second we find
n∑

k=1

|bk||ak + bk|p−1 ≤
( n∑

k=1

|bk|p
)1/p( n∑

k=1

|ak + bk|p
)(p−1)/p

.

Thus, in our shorthand notation the factorization (9.14) gives us

‖a + b‖p
p ≤ ‖a‖p · ‖a + b‖p−1

p + ‖b‖p · ‖a + b‖p−1
p . (9.15)
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Since Minkowski’s inequality (9.12) is trivial when ‖a+b‖p = 0, we can
assume without loss of generality that ‖a + b‖p �= 0. We then divide
both sides of the bound (9.15) by ‖a + b‖p−1

p to complete the proof.

A Hidden Benefit: The Case of Equality

One virtue of Riesz’s method for proving Minkowski’s inequality (9.12),
is that his argument may be worked backwards to determine the case of
equality. Conceptually the plan is simple, but some of the details can
seem fussy.

To begin, we note that equality in Minkowski’s bound (9.12) implies
equality in our first step (9.14) and that |ak + bk| = |ak| + |bk| for each
1 ≤ k ≤ n. Thus, we may assume that ak and bk are of the same sign
for all 1 ≤ k ≤ n, and in fact there is no loss of generality if we assume
ak ≥ 0 and bk ≥ 0 for all 1 ≤ k ≤ n.

Equality in Minkowski’s bound (9.12) also implies that we have equal-
ity in both of our applications of Hölder’s inequality, so, assuming that
‖a + b‖p �= 0, we deduce that there exists λ ≥ 1 such that

λ|ak|p = {|ak + bk|p−1}q = |ak + bk|p

and there exists λ′ ≥ 1 such that

λ′|bk|p = {|ak + bk|p−1}q = |ak + bk|p.

From these identities, we see that if we set λ′′ = λ/λ′ then we have
λ′′|ak|p = |bk|p for all k = 1, 2, . . . , n.

This is precisely the characterization which we hoped to prove. Still,
on principle, every backtrack argument deserves to be put to the test;
one should prod the argument to see that it is truly airtight. This is
perhaps best achieved with help from a semi-graphical display analogous
to Figure 9.1.

Subadditivity and Quasilinearization

Minkowski’s inequality tells us that the function h : R
n → R defined

by h(a) = ‖a‖p is subadditive in the sense that one has the bound

h(a + b) ≤ h(a) + h(b) for all a,b ∈ R
n.

Subadditive relations are typically much more obvious than Riesz’s proof,
and one may wonder if there is some way to see Minkowski’s inequality
at a glance. The next challenge problem confirms this suspicion and
throws added precision into the bargain.
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Problem 9.4 (Quasilinearization of the �p Norm)

Show that for all 1 ≤ p ≤ ∞ one has the identity

‖a‖p = max
{ n∑

k=1

akxk : ‖x‖q = 1
}
, (9.16)

where a = (a1, a2, . . . , an) and where p and q are conjugate (so one has
q = p/(p − 1) when p > 1, but q = ∞ when p = 1 and q = 1 when
p = ∞). Finally, explain why this identity yields Minkowski’s inequality
without any further computation.

Quasilinearization in Context

Before addressing the problem, it may be useful to add some context.
If V is a vector space (such as R

n) and if L : V ×W → R is a function
which is additive in its first variable, L(a + b,w) = L(b,w) + L(b,w),
then the function h : V → R, defined by

h(a) = max
w∈W

L(a,w), (9.17)

will always be subadditive simply because two choices are always at least
as good as one:

h(a + b) = max
w∈W

L(a + b,w) = max
w∈W

{L(a,w) + L(b,w)}
≤ max

w0∈W
L(a,w0) + max

w1∈W
L(b,w1) = h(a) + h(b).

The formula (9.17) is said to be a quasilinear representation of h, and
many of the most fundamental quantities in the theory of inequalities
have analogous representations.

Confirmation of the Identity

The existence of a quasilinear representation (9.16) for the function
h(a) = ‖a‖p is an easy consequence of Hölder’s inequality and its con-
verse. Nevertheless, the logic is slippery, and it is useful to be explicit.
To begin, we consider the set

S =
{ n∑

k=1

akxk :
n∑

k=1

|xk|q ≤ 1
}
,

and we note that Hölder’s inequality implies s ≤ ‖a‖p for all s ∈ S.
This gives us our first bound, max{s ∈ S} ≤ ‖a‖p. Next, just by the
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definition of S and by scaling we have
n∑

k=1

akyk ≤ ‖y‖q max{s ∈ S} for all y ∈ R
n. (9.18)

Thus, by the converse Hölder bound (9.9) for the conjugate pair (q, p)
— as opposed to the pair (p, q) in the statement of the bound (9.9) —
we have our second bound, ‖a‖p ≤ max{s ∈ S}. The first and second
bounds now combine to give us the quasilinear representation (9.16) for
h(a) = ‖a‖p.

A Stability Result for Hölder’s Inequality

In many areas of mathematics one finds both characterization results
and stability results. A characterization result typically provides a con-
crete characterization of the solutions of some equation, while the asso-
ciated stability result asserts that if the equation “almost holds” then
the characterization “almost applies.”

There are many examples of stability results in the theory of inequal-
ities. We have already seen that the case of equality in the AM-GM
bound has a corresponding stability result (Exercise 2.12, page 35), and
it is natural to ask if Hölder’s inequality might also be amenable to such
a development.

To make this suggestion specific, we first note that the 1-trick and
Hölder’s inequality imply that for each p > 1 and for each sequence of
nonnegative real numbers a1, a2, . . . , an one has the bound

n∑
j=1

aj ≤ n(p−1)/p

( n∑
j=1

ap
j

)1/p

.

If we then define the difference defect δ(a) by setting

δ(a) def=
n∑

j=1

ap
j − n1−p

( n∑
j=1

aj

)p

, (9.19)

then one has δ(a) ≥ 0, but, more to the point, the criterion for equality
in Hölder’s bound now tells us that δ(a) = 0 if and only if there is
a constant µ such that aj = µ for all j = 1, 2, . . . , n. That is, the
condition δ(a) = 0 characterizes the vector a = (a1, a2, . . . , an) as a
constant vector.

This characterization leads in turn to a variety of stability results,
and our next challenge problem focuses on one of the most pleasing of
these. It also introduces an exceptionally general technique for exploiting
estimates of sums of squares.
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Problem 9.5 (A Stability Result for Hölder’s Inequality)

Show that if p ≥ 2 and if aj ≥ 0 for all 1 ≤ j ≤ n, then there exists a
constant λ = λ(a, p) such that

aj ∈ [(λ− δ
1
2 )2/p, (λ+ δ

1
2 )2/p] for all j = 1, 2, . . . , n. (9.20)

In other words, show that if the difference defect δ = δ(a) is small, then
the sequence a1, a2, . . . , an is almost constant.

Orientation

There are many ways to express the idea that a sequence is almost
constant, and the specific formula (9.20) used here is just one of several
possibilities. Nevertheless, this choice does give us a hint about how we
might proceed.

The relation (9.20) may be written more sensibly as (ap/2
j −λ)2 ≤ δ(a),

and we can prove all of the individual bounds (9.20) in a single step if
we can prove the stronger conjecture that there exists a constant λ for
which we have the bound

n∑
j=1

(ap/2
j − λ)2 ≤ δ(a). (9.21)

It is possible, of course, that the inequality (9.21) asks for too much, but
it is such a nice conjecture that it deserves some attention.

Why Is It Nice?

First of all, if p = 2, then one finds by direct computation from the
definition of δ(a) that the bound (9.21) is actually an identity, provided
that one takes λ = (a1 + a2 + · · ·+ an)/n. It is always a good sign when
a conjecture is known to be true in some special case.

A more subtle charm of the conjecture (9.21) is that it asks us indi-
rectly if a certain quadratic polynomial has a real root. Namely, if the
inequality (9.21) holds for some real λ, then by continuity there must
also exist a real λ that satisfies the equation

n∑
j=1

(ap/2
j − λ)2 = δ(a) def=

n∑
j=1

ap
j − n1−p

( n∑
j=1

aj

)p

.

After algebraic expansion and simplification, we therefore find that
the conjecture (9.21) is true if and only if there is a real root of the
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equation

nλ2 − 2λ
n∑

j=1

a
p/2
j + n1−p

( n∑
j=1

aj

)p

= 0. (9.22)

Since a quadratic equation Aλ2 + 2Bλ+C = 0 has a real root if and
only if AC ≤ B2, we see that the solution to the challenge problem will
be complete if we can show

n2−p

( n∑
j=1

aj

)p

≤
( n∑

j=1

a
p/2
j

)2

. (9.23)

Fortunately, it is easy to see that this bound holds; in fact, it is a just
another corollary of Hölder’s inequality and the 1-trick. To be explicit,
one just applies Hölder’s inequality with p′ = p/2 and q′ = p/(p− 2) to
the sum a1 · 1 + a2 · 1 + · · · + an · 1.

Interpolation

The �1 norm and the �∞ norm represent the two natural extremes
among the �p norms, and it is reasonable to guess that in favorable
circumstances one should be able to combine an �1 inequality and an
�∞ inequality to get an analogous inequality for the �p norm where
1 < p <∞.

Our final challenge problem provides an important example of this
possibility. It also points the way to one of the most pervasive themes
in the theory of inequalities — interpolation.

Problem 9.6 (An Illustration of �1-�∞ Interpolation)
Let cjk, 1 ≤ j ≤ m, 1 ≤ k ≤ n, be an array of nonnegative real

numbers such that
m∑

j=1

∣∣∣∣ n∑
k=1

cjkxk

∣∣∣∣ ≤ A

n∑
k=1

|xk| and max
1≤j≤m

∣∣∣∣ n∑
k=1

cjkxk

∣∣∣∣ ≤ B max
1≤k≤n

|xk|

for all xk, 1 ≤ k ≤ n. If 1 < p < ∞ and q = p/(1 − p) show that one
also has the interpolation bound( m∑

j=1

∣∣∣∣ n∑
k=1

cjkxk

∣∣∣∣p)1/p

≤ A1/pB1/q

( n∑
k=1

|xk|p
)1/p

(9.24)

for all xk, 1 ≤ k ≤ n.



Hölder’s Inequality 147

Search for a Simpler Formulation

The feature of the inequality (9.24) which may seem troublesome is
the presence of the pth roots; one quickly starts to hunger for a way to
make them disappear. The root on the right side is not a problem since
by scaling x we can assume without loss of generality that ‖x‖p ≤ 1,
but what can we do about the pth root on the left side?

Luckily, we have a tool that is well suited to the task. The converse
of Hölder’s inequality (page 139) tells us that to prove the bound (9.24)
it suffices to show that, for all real vectors x and y such that ‖x‖p ≤ 1
and ‖y‖q ≤ 1, one has

m∑
j=1

n∑
k=1

cjkxkyj ≤ A1/pB1/q. (9.25)

Moreover, since we assume that cjk ≥ 0 for all j and k, it suffices to
prove the bound just for ‖x‖p ≤ 1 and ‖y‖q ≤ 1 with xk ≥ 0 and yj ≥ 0
for all j and k.

The reformulation (9.25) offers signs of real progress; in particular,
the pth roots are gone. We now face a problem of the kind we have met
several times before; we simply need to estimate a sum subject to some
nonlinear constraints.

From Formulation to Finish

In the past, the splitting trick has been a great help with such bounds,
and here it is natural to take a clue from the relation 1/p+ 1/q = 1. By
splitting and by Hölder’s inequality we find

m∑
j=1

n∑
k=1

cjkxkyj =
m∑

j=1

n∑
k=1

(cjkx
p
k)1/p(cjky

q
j )1/q

≤
( m∑

j=1

n∑
k=1

cjkx
p
k

)1/p( m∑
j=1

n∑
k=1

cjky
q
j

)1/q

, (9.26)

and now we just need to estimate the last two factors.
The first factor is easy, since our first hypothesis and the assumption

‖x‖p ≤ 1 give us the bound

m∑
j=1

n∑
k=1

cjkx
p
k ≤ A

n∑
k=1

xp
k ≤ A. (9.27)

Estimation of the second is not much harder since after one crude bound
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our second hypothesis and the assumption ‖y‖q ≤ 1 give us

m∑
j=1

n∑
k=1

cjky
q
j ≤

m∑
j=1

yq
j

{
max

1≤j≤m

n∑
k=1

cjk

}
≤ B

m∑
j=1

yq
j ≤ B. (9.28)

Finally, when we use the estimates (9.27) and (9.28) to estimate the
product (9.26), we get our target bound (9.25), and thus we complete
the solution of the first challenge problem.

Exercises

Exercise 9.1 (Doing the Sums for Hölder)
In Exercise 1.8 we saw that the effective use of Cauchy’s inequality

may depend on having an estimate for one of the bounding sums and, in
this respect, Hölder’s inequality is a natural heir. As a warm-up, check
that for real aj , j = 1, 2, . . . , one has

n∑
k=1

ak

{k(k + 1)}1/5
<

( n∑
k=1

|ak|5/4

)4/5

, (a)

n∑
k=1

ak√
k
< 6−1/4

√
π

( n∑
k=1

|ak|4/3

)3/4

, and (b)

∞∑
k=0

akx
k ≤ (1 − x3)−1/3

( ∞∑
k=0

|ak|3/2

)2/3

for 0 ≤ x < 1. (c)

Exercise 9.2 (An Inclusion Radius Bound)
For a polynomial P (z) = zn + an−1z

n−1 + · · · + a1z + a0 with real
or complex coefficients, the smallest value r(P ) such all roots of P are
contained in the disk {z : |z| ≤ r(P )} is called the inclusion radius for
P . Show that for any conjugate pair p > 1 and q = p/(p − 1) > 1 one
has the bound

r(P ) <
(
1 +Aq

p

)1/q where Ap =
( n−1∑

n=0

|aj |p
)1/p

. (9.29)
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Exercise 9.3 (Cauchy Implies Hölder)
Prove that Cauchy’s inequality implies Hölder’s inequality. More

specifically, show that Cauchy’s inequality implies Hölder’s inequality
for p ∈ {8/1, 8/2, 8/3, . . . , 8/6, 8/7} by first showing{ n∑

j=1

ajbjcjdjejfjgjhj

}8

≤
{ n∑

j=1

a8
j

}{ n∑
j=1

b8j

}
· · ·
{ n∑

j=1

h8
j

}
.

By the same method, one can prove Hölder’s inequality for all p = 2k/j,
1 ≤ j < 2k. One can then call on continuity to obtain Hölder’s inequality
for all 1 ≤ p <∞.

This argument serves as a reminder that an �2-result may sometimes
be applied iteratively to obtain an �p-result. The inequalities one finds
this way are often proved more elegantly by other methods, but iteration
is still a remarkably effective tools for the discovery of new bounds.

Exercise 9.4 (Interpolation Bound for Moment Sequences)
If φ : [0,∞) → [0,∞) is an integrable function and t ∈ (0,∞), then

the integral

µt =
∫ ∞

0

xtφ(x) dx

is called the tth moment of φ. Show that if t ∈ (t0, t1) then

µt ≤ µ1−α
t0 µα

t1 where t = (1 − α)t0 + αt1 and 0 < α < 1.

In other words, the linearly interpolated moment is bounded by the
geometric interpolation of two extreme moments.

Exercise 9.5 (Complex Hölder — and the Case of Equality)
Hölder’s inequality for real numbers implies that for complex numbers

a1, a2, . . . , an and b1, b2, . . . , bn one has the bound∣∣∣∣ n∑
k=1

akbk

∣∣∣∣ ≤ ( n∑
k=1

|ak|p
)1/p( n∑

k=1

|bk|q
)1/q

(9.30)

when p > 1 and q > 1 satisfy 1/p + 1/q = 1. What conditions on
the complex numbers a1, a2, . . . , an, and b1, b2, . . . , bn are necessary and
sufficient equality to hold in the bound (9.30)? Although this exercise is
easy, it nevertheless offers one useful morsel of insight that should not
be missed.
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Exercise 9.6 (Jensen Implies Minkowski)
By Jensen’s inequality, we know that for a convex φ and positive

weights w1, w2, . . . , wn one has

φ

(
w1x1 + w2x2 + · · · + wnxn

w1 + w2 + · · · + wn

)
≤ w1φ(x1) + w2φ(x2) + · · · + wnφ(xn)

w1 + w2 + · · · + wn
. (9.31)

Consider the concave function φ(x) = (1 + x1/p)p on [0,∞], and show
that by making the right choice of the weights wk and the values xk in
Jensen’s inequality (9.31) one obtains Minkowski’s inequality.

Exercise 9.7 (Hölder’s Inequality for Integrals)
Naturally there are integral versions of Hölder’s inequality and, in

keeping with the more modern custom, there is no cause for a name
change when one switches from sums to integrals.

Let w : D → [0,∞) be given, and reinforce your mastery of Hölder’s
inequality by checking that our earlier argument (page 137) also shows
that, for all suitably integrable functions f and g from D to R,∫

D

f(x)g(x)w(x) dx ≤
(∫

D

|f(x)|pw(x) dx
)1/p(∫

D

|g(x)|qw(x) dx
)1/q

where, as usual, 1 < p <∞ and p−1 + q−1 = 1.

Exercise 9.8 (Legendre Transforms and Young’s Inequality)
If f : (a, b) → R, then the function g : R → R defined by

g(y) = sup
x∈(a,b)

{xy − f(x)} (9.32)

is called the Legendre transform of f . It is used widely in the theory of
inequalities, and part of its charm is that it helps us relate products to
sums. For example, the definition (9.32) gives us the immediate bound

xy ≤ f(x) + g(y) for all (x, y) ∈ (a, b) × R. (9.33)

(a) Find the Legendre transform of f(x) = xp/p for p > 1 and compare
the general bound (9.33) to Young’s inequality (9.6).

(b) Find the Legendre transforms of f(x) = ex and φ(x) = x log x−x.
(c) Show that for any function f the Legendre transform g is convex.
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Exercise 9.9 (Self-Generalizations of Hölder’s Inequality)

Hölder’s inequality is self-generalizing in the sense that it implies sev-
eral apparently more general inequalities. This exercise address two of
the most pleasing of these generalizations.

(a) Show that for positive p, q, bigger than r one has

1
p

+
1
q

=
1
r

⇒
{ n∑

j=1

(ajbj)r

}1/r

≤
{ n∑

j=1

ap
j

}1/p{ n∑
j=1

bqj

}1/q

.

(b) Given p, q, and r are bigger than 1, show that if

1
p

+
1
q

+
1
r

= 1,

then one has the triple produce inequality

n∑
j=1

ajbjcj ≤
{ n∑

j=1

ap
j

}1/p{ n∑
j=1

bqj

}1/q{ n∑
j=1

crj

}1/r

.

Exercise 9.10 (The Historical Hölder Inequality)

The inequality which Hölder actually proved in his 1889 article asserts
that for wk ≥ 0, yk ≥ 0, and p > 1 one has

n∑
k=1

wkyk ≤
{ n∑

k=1

wk

}(p−1)/p{ n∑
k=1

wky
p
k

}1/p

. (9.34)

Show, as Hölder did, that this inequality follows from the weighted ver-
sion (9.31) of Jensen’s inequality. Finally close the loop by showing that
the historical version (9.34) of Hölder’s inequality is equivalent to the
modern version that was introduced by F. Riesz. That is, check that
inequality (9.34) implies inequality (9.1), and vice versa.

Exercise 9.11 (Minkowski Implies Hölder)

The triangle inequality implies Cauchy’s inequality, so it surely seems
reasonable to guess that Minkowski’s inequality might also imply Hölder’s
inequality. The guess is true, but the confirmation is a bit subtle. As
a hint, consider what Minkowski’s inequality (9.12) for �s says for the
vectors θ(ap/s

1 , a
p/s
2 , . . . , a

p/s
n ) and (1 − θ)(bq/s

1 , b
q/s
2 , . . . , b

q/s
n ) when s is

very large.
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∑m
j=1

∏n
k=1 awk

jk ≤∏n
k=1

(∑m
j=1 ajk

)wk

S

cols

G

rows A

GS

Fig. 9.2. Hölder’s inequality for an array (9.35) is easier to keep in mind if one
visualizes its meaning. In fact, it asserts a natural commutativity relationship
between the summation operation S and the geometric mean operation G. As
the figure suggests, if we let G act on rows and let S act on columns, then the
inequality (9.35) tells us that by acting first with the geometric mean G we
get a smaller number than if we act first with S.

Exercise 9.12 (Hölder’s Inequality for an Array)

Any formula that generalizes Hölder’s inequality to an array is likely
to look complicated but, as Figure 9.2 suggests, it is still possible for
such a formula to be conceptually simple.

Show that for nonnegative real numbers ajk, 1 ≤ j ≤ m, 1 ≤ k ≤ n

and positive weights w1, . . . , wn that sum to 1, we have the bound

m∑
j=1

n∏
k=1

awk

jk ≤
n∏

k=1

( m∑
j=1

ajk

)wk

. (9.35)

Prove this inequality, and use it to prove the mixed mean inequality
which asserts that for nonnegative x, y, z one has

x+ (xy)
1
2 + (xyz)

1
3

3
≤
(
x · x+ y

2
· x+ y + z

3

)1/3

. (9.36)

Exercise 9.13 (Rogers’s Inequality — the Proto-Hölder)

The inequality that L.C. Rogers proved in this 1888 article asserts
that for 0 < r < s < t < ∞ and for nonnegative ak, bk, k = 1, 2, . . . , n,
one has the bound( n∑

k=1

akb
s
k

)t−r

≤
( n∑

k=1

akb
r
k

)t−s( n∑
k=1

akb
t
k

)s−r

,
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which we may write more succinctly as

(Ss)t−r ≤ (Sr)t−s(St)s−r where Sp =
n∑

k=1

akb
p
k for p > 0. (9.37)

Rogers gave two proofs of his bound (9.37). In the first of these he
called on the Cauchy–Binet formula [see (3.7), page 49], and the second
he used the AM-GM inequality which he wrote in the form

xw1
1 xw2

2 · · ·xwn
n ≤

(
w1x1 + w2x2 + · · · + wnxn

w1 + w2 + · · · + wn

)w1+w2+···+wn

where the values w1, w2,. . . ,wn are assumed to be positive but which
are otherwise arbitrary.

Now, follow in Rogers’s footsteps and use the very clever substitutions
wk = akb

s
k and xk = bt−s

k to deduce the bound(
b
a1bs

1
1 b

a2bs
2

2 · · · banbs
n

n

)t−s

≤ (St/Ss)
Ss , (9.38)

and use the substitutions wk = akb
s
k and xk = br−s

k to deduce the bound(
b
a1bs

1
1 b

a2bs
2

2 · · · banbs
n

n

)r−s

≤ (Sr/Ss)
Ss . (9.39)

Finally, show how these two relations imply Rogers’s inequality (9.37).

Exercise 9.14 (Interpolation for Positive Matrices)
Let 1 ≤ s0, t0, s1, t1 ≤ ∞ be given and consider an m × n matrix T

with nonnegative real entries cjk, 1 ≤ j ≤ m, 1 ≤ k ≤ n. Show that if
there exist constants M0 and M1 such that

‖Tx‖t0 ≤M0‖x‖s0 and ‖Tx‖t1 ≤M1‖x‖s1 (9.40)

for all x ∈ R
m, then for each 0 ≤ θ ≤ 1, one has the bound

‖Tx‖t ≤Mθ‖x‖s for all x ∈ R
m (9.41)

where Mθ is defined by Mθ = Mθ
1M

1−θ
0 and where s and t are given by

1
s

=
θ

s1
+

1 − θ

s0
,

1
t

=
θ

t1
+

1 − θ

t0
. (9.42)

This problem takes some time to absorb, but the result is important,
and it pays generous interest on all invested effort. Figure 9.3 should help
one visualize the condition (9.42) and the constraints on the parameters
1 ≤ s0, t0, s1, t1 ≤ ∞. One might also note that the bound (9.41) would
follow trivially from the hypotheses (9.40) if θ = 0 or θ = 1. Moreover,



154 Hölder’s Inequality

Fig. 9.3. The constraints 1 ≤ s0, t0, s1, t1 ≤ ∞ mean that the reciprocals are
contained in the unit square S = [0, 1] × [0, 1], and the exponent relation
(9.42) tells us that (1/s, 1/t) is on the line from (1/s1, 1/t1) to (1/s0, 1/t0).
The parameter θ is then determined by the explicit interpolation formula
(1/s, 1/t) = θ(1/s1, 1/t1) + (1 − θ)(1/s0, 1/t0).

the bound (9.41) automatically recaptures the inequality (9.24) from
Challenge Problem 9.6; one only needs to set t1 = 1, s1 = 1, M1 = A,
t0 = ∞, s0 = ∞, M0 = B, and θ = 1/p.

Despite the apparent complexity of Exercise 9.14, one does not need
to look far to find a plan for proving the interpolation formula (9.41).
The strategy which worked for Problem 9.6 (page 146) seems likely to
work here, even though it may put one’s skill with the splitting trick to
the test.

Finally, for anyone who may still be hesitant to take up the challenge
of Exercise 9.14, there is one last appeal: first think about proving the
more concrete inequality (9.43) given below. This inequality is typical of
a large class of apparently tough problems which crumble quickly after
one calls on the interpolation formula (9.41).

Exercise 9.15 (An �2 Interpolation Bound)
Let cjk, 1 ≤ j ≤ m, 1 ≤ k ≤ n be an array of nonnegative real

numbers for which one has the implication

Xj =
n∑

k=1

cjkxk for all j = 1, 2, . . . ,m ⇒
n∑

j=1

|Xj |2 ≤
n∑

k=1

|xk|2.

Show that for all 1 ≤ p ≤ 2 one then has the bound( m∑
j=1

∣∣Xj

∣∣q)1/q

≤M (2−p)/p

( n∑
k=1

|xk|p
)1/p

(9.43)

where and q = p/(p− 1) and M = max |cjk|.
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Hilbert’s Inequality
and Compensating Difficulties

Some of the most satisfying experiences in problem solving take place
when one starts out on a natural path and then bumps into an unex-
pected difficulty. On occasion this deeper view of the problem forces us
to look for an entirely new approach. Perhaps more often we only need
to find a way to press harder on an appropriate variation of the original
plan.

This chapter’s introductory problem provides an instructive case; here
we will discover two difficulties. Nevertheless, we manage to achieve our
goal by pitting one difficulty against the other.

Problem 10.1 (Hilbert’s Inequality)

Show that there is a constant C such that for every pair of sequences
of real numbers {an} and {bn} one has

∞∑
m=1

∞∑
n=1

ambn
m+ n

< C

( ∞∑
m=1

a2
m

) 1
2
( ∞∑

n=1

b2n

) 1
2

. (10.1)

Some Historical Background

This famous inequality was discovered in the early 1900s by David
Hilbert; specifically, Hilbert proved that the inequality (10.1) holds with
C = 2π. Several years after Hilbert’s discovery, Issai Schur provided a
new proof which showed Hilbert’s inequality actually holds with C = π.
We will see shortly that no smaller value of C will suffice.

Despite the similarities between Hilbert’s inequality and Cauchy’s in-
equality, Hilbert’s original proof did not call on Cauchy’s inequality; he
took an entirely different approach that exploited the evaluation of some
cleverly chosen trigonometric integrals. Nevertheless, one can prove

155



156 Hilbert’s Inequality and Compensating Difficulties

Hilbert’s inequality through an appropriate application of Cauchy’s in-
equality. The proof turns out to be both simple and instructive.

If S is any countable set and {αs} and {βs} are collections of real
numbers indexed by S, then Cauchy’s inequality can be written as

∑
s∈S

αsβs ≤
(∑

s∈S

α2
s

) 1
2
(∑

s∈S

β2
s

) 1
2

. (10.2)

This modest reformulation of Cauchy’s inequality sometimes helps us
see the possibilities more clearly, and here, of course, one hopes that
wise choices for S, {αs}, and {βs} will lead us from the bound (10.2) to
the Hilbert’s inequality (10.1).

An Obvious First Attempt

If we charge ahead without too much thought, we might simply take
the index set to be S = {(m,n) : m ≥ 1, n ≥ 1} and take αs and βs to
be defined by the splitting

αs =
am√
m+ n

and βs =
bn√
m+ n

where s = (m,n).

By design, the products αsβs recapture the terms one finds on the
left-hand side of Hilbert’s inequality, but the bound one obtains from
Cauchy’s inequality (10.2) turns out to be disappointing. Specifically, it
gives us the double sum estimate( ∞∑

m=1

∞∑
n=1

ambn
m+ n

)2

≤
∞∑

m=1

∞∑
n=1

a2
m

m+ n

∞∑
n=1

∞∑
m=1

b2n
m+ n

(10.3)

but, unfortunately, both of the last two factors turn out to be infinite.
The first factor on the right side of the bound (10.3) diverges like a

harmonic series when we sum on n, and the second factor diverges like
a harmonic series when we sum on m. Thus, in itself, inequality (10.3)
is virtually worthless. Nevertheless, if we look more deeply, we soon
find that the complementary nature of these failings points the way to
a wiser choice of {αs} and {βs}.
Exploiting Compensating Difficulties

The two sums on the right-hand side of the naive bound (10.3) diverge,
but the good news is that they diverge for different reasons. In a sense,
the first factor diverges because

αs =
am√
m+ n
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is too big as a function of n, whereas the second factor diverges because

βs =
bn√
m+ n

is too big as a function of m. All told, this suggests that we might
improve on αs and βs if we multiply αs by a decreasing function of n
and multiply βs by a decreasing function ofm. Since we want to preserve
the basic property that

αsβs =
ambn
m+ n

,

we may not need long to hit on the idea of introducing a parametric
family of candidates such as

αs =
am√
m+ n

(
m

n

)λ

and βs =
bn√
m+ n

(
n

m

)λ

, (10.4)

where s = (m,n) and where λ > 0 is a constant that can be chosen
later. This new family of candidates turns out to lead us quickly to the
proof of Hilbert’s inequality.

Execution of the Plan

When we apply Cauchy’s inequality (10.2) to the pair (10.4), we find( ∞∑
m=1

∞∑
n=1

ambn
m+ n

)2

≤
∞∑

m=1

∞∑
n=1

a2
m

m+ n

(
m

n

)2λ ∞∑
n=1

∞∑
m=1

b2n
m+ n

(
n

m

)2λ

,

so, when we consider the first factor on the right-hand side we see
∞∑

m=1

∞∑
n=1

a2
m

m+ n

(
m

n

)2λ

=
∞∑

m=1

a2
m

∞∑
n=1

1
m+ n

(
m

n

)2λ

.

By the symmetry of the summands ambn/(m+n) in our target sum, we
now see that the proof of Hilbert’s inequality will be complete if we can
show that for some choice of λ there is a constant Bλ <∞ such that

∞∑
n=1

1
m+ n

(
m

n

)2λ

≤ Bλ for all m ≥ 1. (10.5)

Now we just need to estimate the sum (10.5), and we first recall that
for any nonnegative decreasing function f : [0,∞) → R, we have the
integral bound

∞∑
n=1

f(n) ≤
∫ ∞

0

f(x) dx.
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In the specific case of f(x) = m2λx2λ(m+ x)−1, we therefore find
∞∑

n=1

1
m+ n

(
m

n

)2λ

≤
∫ ∞

0

1
m+ x

m2λ

x2λ
dx =

∫ ∞

0

1
(1 + y)

1
y2λ

dy, (10.6)

where the last equality comes from the change of variables x = my. The
integral on the right side of the inequality (10.6) is clearly convergent
when λ satisfies 0 < λ < 1/2 and, by our earlier observation (10.5), the
existence of any such λ would suffice to complete the proof of Hilbert’s
inequality (10.1).

Seizing an Opportunity

Our problem has been solved as stated, but we would be derelict in
our duties if we did not take a moment to find the value of the constant
C that is provided by our proof. When we look over our argument, we
actually find that we have proved that Hilbert’s inequality (10.1) must
hold for any C = Cλ with

Cλ =
∫ ∞

0

1
(1 + y)

1
y2λ

dy for 0 < λ < 1/2. (10.7)

Naturally, we should find the value of λ that provides the smallest of
these.

By a quick and lazy consultation of Mathematica or Maple, we discover
that we are in luck. The integral for Cλ turns out to both simple and
explicit:∫ ∞

0

1
(1 + y)

1
y2λ

dy =
π

sin 2πλ
for 0 < λ < 1/2. (10.8)

Now, since sin 2πλ is maximized when λ = 1/4, we see that the smallest
value attained by Cλ with 0 < λ < 1/2 is equal to

C = C1/4 =
∫ ∞

0

1
(1 + y)

1√
y
dy = π. (10.9)

Quite remarkably, our direct assault on Hilbert’s inequality has almost
effortlessly provided the sharp constant C = π that was discovered by
Schur.

This is a fine achievement for Cauchy’s inequality, but it should not
be oversold. Many proofs of Hilbert’s inequality are now available, and
some of these are quite brief. Nevertheless, for the connoisseur of tech-
niques for exploiting Cauchy’s inequality, this proof of Hilbert’s inequal-
ity is a sweet victory.

Finally, there is a small point that we should note in passing. The
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integral (10.8) is actually a textbook classic; both Bak and Newman
(1997) and Cartan (1995) use it to illustrate the standard technique for
integrating R(x)/xα over [0,∞) where R(x) is a rational function and
0 < α < 1. This integral also has a connection to a noteworthy gamma
function identity that is described in Exercise 10.8.

Of Miracles and Converses

For a Cauchy–Schwarz argument to be precise enough to show that
one can take C = π in Hilbert’s inequality may seem to require a miracle,
but there is another way of looking at the relation between the two sides
of Hilbert’s inequality that makes it clear that no miracle was required.
With the right point of view, one can see that both π and the special
integrals (10.8) have an inevitable role. To develop this connection, we
will take on the challenge of proving a converse to our first problem.

Problem 10.2 Suppose that the constant C satisfies

∞∑
m=1

∞∑
n=1

ambn
m+ n

< C

( ∞∑
m=1

a2
m

) 1
2
( ∞∑

n=1

b2n

) 1
2

(10.10)

for all pairs of sequences of real numbers {an} and {bn}. Show that
C ≥ π.

If we plug any pair of sequences {an} and {bn} into the inequality
(10.10) we will get some lower bound on c, but we will not get too
far with this process unless we find some systematic way to guide our
choices. What we would really like is a parametric family of pairs {an(ε)}
and {bn(ε)} that provide us with a sequence of lower bounds on C that
approach π as ε → 0. This surely sounds good, but how do we find
appropriate candidates for {an(ε)} and {bn(ε)}?
Stress Testing an Inequality

Two basic ideas can help us narrow our search. First, we need to be
able to calculate (or estimate) the sums that appear in the inequality
(10.10). We cannot do many sums, so this definitely limits our search.
The second idea is more subtle; we need to put the inequality under
stress. This general notion has many possible interpretations, but here it
at least suggests that we should look for sequences {an(ε)} and {bn(ε)}
such that all the quantities in the inequality (10.10) tend to infinity
as ε → 0. This particular strategy for stressing the inequality (10.10)
may not seem too compelling when one faces it for the first time, but
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experience with even a few examples is enough to convince most people
that the principle contains more than a drop of wisdom.

Without a doubt, the most natural candidates for {an(ε)} and {bn(ε)}
are given by the identical twins

an(ε) = bn(ε) = n−
1
2−ε.

For this choice, one may easily work out the estimates that are needed
to understand the right-hand side of Hilbert’s inequality. Specifically,
we see that as ε→ 0 we have( ∞∑

m=1

a2
m(ε)

) 1
2
( ∞∑

n=1

b2n(ε)
) 1

2

=
∞∑

n=1

1
n1+2ε

∼
∫ ∞

1

dx

x1+2ε
=

1
2ε
. (10.11)

Closing the Loop

To complete the solution of Problem 10.2, we only need to show
that the corresponding sum for the left-hand side of Hilbert’s inequality
(10.10) is asymptotic to π/2ε as ε→ 0. This is indeed the case, and the
computation is instructive. We lay out the result as a lemma.

Double Sum Lemma.
∞∑

m=1

∞∑
n=1

1
n

1
2+ε

1
m

1
2+ε

1
m+ n

∼ π

2ε
as ε→ 0.

For the proof, we first note that integral comparisons tell us that it
suffices to show

I(ε) =
∫ ∞

1

∫ ∞

1

1
x

1
2+ε

1
y

1
2+ε

1
x+ y

dxdy ∼ π

2ε
as ε→ 0,

and the change of variables u = y/x also tells us that

I(ε) =
∫ ∞

1

x−1−2ε

[ ∫ ∞

1/x

u−
1
2−ε du

1 + u

]
dx. (10.12)

This integral would be easy to calculate if we could replace the lower
limit 1/x of the inside integral by 0, and, to estimate how much damage
such a change would cause, we first note that

0 <
∫ 1/x

0

u−
1
2−ε du

1 + u
<

∫ 1/x

0

u−
1
2−ε du =

x−
1
2+ε

1
2 − ε

.

When we use this bound in equation (10.12) and write the result using



Hilbert’s Inequality and Compensating Difficulties 161

big O notation of Landau (say, as defined on page 120), then we find

I(ε) =
∫ ∞

1

x−1−2ε

{∫ ∞

0

u−
1
2−ε du

1 + u

}
dx+O

(∫ ∞

1

x−
3
2−ε dx

)
=

1
2ε

∫ ∞

0

u−
1
2−ε du

1 + u
+O(1).

Finally, for ε → 0, we see from our earlier experience with the integral
(10.9) that we have∫ ∞

0

u−
1
2−ε du

1 + u
→
∫ ∞

0

u−
1
2

du

1 + u
= π,

so the proof of the lemma is complete.

Finding the Circle in Hilbert’s Inequality

Any time π appears in a problem that has no circle in sight, there is
a certain sense of mystery. Sometimes this mystery remains without a
satisfying resolution, but, in the case of Hilbert’s inequality, a geomet-
ric explanation for the appearance of π was found in 1993 by Krysztof
Oleszkiewicz. This discovery is a bit off of our central theme, but it does
build on the calculations we have just completed, and it is too lovely to
miss.

Quarter Circle Lemma. For all m ≥ 1, we have the bound
∞∑

n=1

1
m+ n

(
m

n

) 1
2

< π. (10.13)

For the proof, we first note that the shaded triangle of Figure 10.1
is similar to the triangle T determined by (0, 0), (

√
m,

√
n− 1), and

(
√
m,

√
n), and the area of T is simply 1

2

√
m(

√
n−√

n− 1). Thus, one
finds by scaling that the area An of the shaded triangle is given by

An =
( √

m√
n+m

)2 1
2
√
m(

√
n−√

n− 1). (10.14)

Since 1/
√
x is decreasing on [0,∞), we have

√
n−√

n− 1 =
1
2

∫ n

n−1

dx√
x
>

1
2
√
n

so, in the end, we find

An >
1
4

m

m+ n

√
m√
n
. (10.15)

Finally, what makes this geometric bound most interesting is that all
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Fig. 10.1. The shaded triangle is similar to the triangle determined by the
three points (0, 0), (

√
m,

√
n− 1), and (

√
m,

√
n) so we can determine its area

by geometry. Also, the triangles Tn have disjoint interiors so the sum of their
areas cannot exceed π/4. These facts give us the proof of the Quarter Circle
Lemma.

of the shaded triangles are contained in the quarter circle. They have
disjoint interiors, so we find that the sum of their areas is bounded by
πm/4, the area of the quarter circle with radius

√
m that contains them.

Exercises

Exercise 10.1 (Guaranteed Positivity)
Show that for any real numbers a1, a2, . . . , an one has

n∑
j,k=1

ajak

j + k
≥ 0 (10.16)

and, more generally, show that for positive λ1, λ2, . . . , λn one has
n∑

j,k=1

ajak

λj + λk
≥ 0. (10.17)

Obviously the second inequality implies the first, so the bound (10.16)
is mainly a hint which makes the link to Hilbert’s inequality. As a
better hint, one might consider the possibility of representing 1/λj as
an integral.
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Exercise 10.2 (Insertion of a Fudge Factor)
There are many ways to continue the theme of Exercise 10.1, and this

exercise is one of the most useful. It provides a generic way to leverage
an inequality such as Hilbert’s.

Show that if the complex array {ajk : 1 ≤ j ≤ m, 1 ≤ k ≤ n} satisfies
the bound ∣∣∣∣∑

j,k

ajkxjyk

∣∣∣∣ ≤M‖x‖2‖y‖2, (10.18)

then one also has the bound∣∣∣∣∑
j,k

ajkhjkxjyk

∣∣∣∣ ≤ αβM‖x‖2‖y‖2 (10.19)

provided that the factors hjk have an integral representation of the form

hjk =
∫

D

fj(x)gk(x) dx (10.20)

for which for all j and k one has the bounds∫
D

|fj(x)|2 dx ≤ α2 and
∫

D

|gk(x)|2 dx ≤ β2. (10.21)

Exercise 10.3 (Max Version of Hilbert’s Inequality)
Show that for every pair of sequences of real numbers {an} and {bn}

one has
∞∑

m=1

∞∑
n=1

ambn
max (m,n)

< 4
( ∞∑

m=1

a2
m

) 1
2
( ∞∑

n=1

b2n

) 1
2

, (10.22)

and show that 4 may not be replaced by a smaller constant.

Exercise 10.4 (Integral Version)
Prove the integral form of Hilbert’s inequality. That is, show that for

any f, g : [0,∞) → R, one has∫ ∞

0

∫ ∞

0

f(x)g(y)
x+ y

dxdy < π

(∫ ∞

0

|f(x)|2 dx
) 1

2
(∫ ∞

0

|g(y)|2 dy
) 1

2

.

The discrete Hilbert inequality (10.1) can be used to prove a continuous
version, but the strict inequality would be lost in the process. Typically,
it is better to mimic the earlier argument rather than to apply the earlier
result.
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Exercise 10.5 (Homogeneous Kernel Version)
If the function K : [0,∞) × [0,∞) → [0,∞) has the homogeneity

property K(λx, λy) = λ−1K(x, y) for all λ > 0, then for any pair of
functions f, g : [0,∞) → R, one has∫ ∞

0

∫ ∞

0

K(x, y)f(x)g(y) dxdy

< C

(∫ ∞

0

|f(x)|2 dx
) 1

2
(∫ ∞

0

|g(y)|2 dy
) 1

2

,

where the constant C is given by common value of the integrals∫ ∞

0

K(1, y)
1√
y
dy =

∫ ∞

0

K(y, 1)
1√
y
dy =

∫ ∞

1

K(1, y) +K(y, 1)√
y

dy.

Exercise 10.6 (The Method of “Parameterized Parameters”)
For any positive weights wk, k = 1, 2, . . . , n, Cauchy’s inequality can

be restated as a bound on the square of a general sum,

(a1 + a2 + · · · + an)2 ≤
{ n∑

k=1

1
wk

}{ n∑
k=1

a2
kwk

}
, (10.23)

and given such a bound it is sometimes useful to note the values wk,
k = 1, 2, . . . , n, can be regarded as free parameters. The natural question
then becomes, “What can be done with this freedom?” Oddly enough,
one may then benefit from introducing yet another real parameter t so
that we can write each weight wk as wk(t). This purely psychological
step hopes to simplify our search for a wise choice of the wk by re-
focusing our attention on desirable properties of the functions wk(t),
k = 1, 2, . . . , n.

Here we want to squeeze information out of the bound (10.23), and
one concrete idea is to look for choices where (1) the first factor of
the product (10.23) is bounded uniformly in t and where (2) one can
calculate the minimum value over all t of the second factor. These may
seem like tall orders, but they can be filled and the next three steps show
how this plan leads to some marvelous inferences.

(a) Show that if one takes wk(t) = t + k2/t for k = 1, 2, . . . , n then
the first factor of the inequality (10.23) is bounded by π/2 for all t ≥ 0
and all n = 1, 2, . . . .

(b) Show that for this choice we also have the identity

min
t:t≥0

{ n∑
k=1

a2
kwk(t)

}
= 2
{ n∑

k=1

a2
k

} 1
2
{ n∑

k=1

k2a2
k

} 1
2

.
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(c) Combine the preceding observations to conclude that{ n∑
k=1

ak

}4

≤ π2

{ n∑
k=1

a2
k

}{ n∑
k=1

k2a2
k

}
. (10.24)

This curious bound is known as Carlson’s inequality, and it has been
known since 1934. Despite several almost arbitrary steps on the path
to the inequality (10.24), the value π2 cannot be replaced by a smaller
one, as one can prove by the stress testing method (page 159), though
not without thought.

Exercise 10.7 (Hilbert’s Inequality via the Toeplitz Method)
Show that the elementary integral

1
2π

∫ 2π

0

(t− π)eintdt =
1
i n
,

for n �= 0, implies that for real ak, bk, 1 ≤ k ≤ N one has the integral
representation

I =
1
2π

∫ 2π

0

(t− π)
N∑

k=1

ak e
ikt

N∑
k=1

bk e
iktdt =

N∑
m=1

N∑
n=1

am bn
m+ n

,

then show that this representation and Schwarz’s inequality yield a quick
and easy proof of Hilbert’s inequality.

Exercise 10.8 (Functional Equation for the Gamma Function)
Recall that the gamma function is defined by the integral

Γ(λ) =
∫ ∞

0

xλ−1e−x dx,

and use an integral representation for 1/(1 + y) to show that∫ ∞

0

1
(1 + y)

1
y2λ

dy = Γ(2λ)Γ(1 − 2λ) for 0 < λ < 1/2. (10.25)

As a consequence, one finds that the evaluation of the integral (10.8)
yields the famous functional equation for the Gamma function,

Γ(2λ)Γ(1 − 2λ) =
π

sin 2πλ
.
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Hardy’s Inequality and the Flop

The flop is a simple algebraic manipulation, but many who master it
feel that they are forever changed. This is not to say that the flop
is particularly miraculous; in fact, it is perfectly ordinary. What may
distinguish the flop among mathematical techniques is that it works at
two levels: it is tactical in that it is just a step in an argument, and it
is strategic in that it suggests general plans which can have a variety of
twists and turns.

To illustrate the flop, we call on a concrete challenge problem of in-
dependent interest. This time the immediate challenge is to prove an
inequality of G.H. Hardy which he discovered while looking for a new
proof of the famous inequality of Hilbert that anchored the preceding
chapter. Hardy’s inequality is now widely used in both pure and applied
mathematics, and many would consider it to be equal in importance to
Hilbert’s inequality.

Problem 11.1 (Hardy’s Inequality)
Show that every integrable function f : (0, T ) → R satisfies the in-

equality ∫ T

0

{
1
x

∫ x

0

f(u) du
}2

dx ≤ 4
∫ T

0

f2(x) dx (11.1)

and show, moreover, that the constant 4 cannot be replaced with any
smaller value.

To familiarize this inequality, one should note that it provides a con-
crete interpretation of the general idea that the average of a function
typically behaves as well (or at least not much worse) than the function
itself. Here we see that the square integral of the average is never more
than four times the square integral of the original.

166
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To deepen our understanding of the bound (11.1), we might also see
if we can confirm that the constant 4 is actually the best one can do.
One natural idea is to try the stress testing method (page 159) which
helped us before. Here the test function that seems to occur first to
almost everyone is simply the power map x �→ xα. When we substitute
this function into an inequality of the form∫ T

0

{
1
x

∫ x

0

f(u) du
}2

dx ≤ C

∫ T

0

f2(x) dx, (11.2)

we see that it implies

1
(α+ 1)2(2α+ 1)

≤ C

(2α+ 1)
for all α such that 2α+ 1 > 0.

Now, by letting α → −1/2, we see that for the bound (11.2) to hold in
general one must have C ≥ 4. Thus, we have another pleasing victory for
the stress testing technique. Knowing that a bound cannot be improved
always adds some extra zest to the search for a proof.

Integration by Parts — and On Speculation

Any time we work with an integral we must keep in mind the many
alternative forms that it can take after a change of variables or other
transformation. Here we want to bound the integral of a product of two
functions, so integration by parts naturally suggests itself, especially
after the integral is rewritten as

I =
∫ T

0

{∫ x

0

f(u) du
}2 1

x2
dx = −

∫ T

0

{∫ x

0

f(u) du
}2( 1

x

)′
dx.

There is no way to know a priori if an integration by parts will provide
us with a more convenient formulation of our problem, but there is also
no harm in trying, so, for the moment, we simply compute

I = 2
∫ T

0

{∫ x

0

f(u) du
}
f(x)

1
x
dx−

∣∣∣∣T
0

{∫ x

0

f(u) du
}2 1

x
. (11.3)

Now, to simplify the last expression, we first note that we may assume
that f is square integrable, or else our target inequality (11.1) is trivially
true. Also, we note that for any square integrable f , Schwarz’s inequality
and the 1-trick tell us that for any x ≥ 0 we have∣∣∣∣ ∫ x

0

f(u) du
∣∣∣ ≤ x

1
2

{∫ x

0

f2(u) du
} 1

2

= o(x
1
2 ) as x→ 0,
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so our integration by parts formula (11.3) may be simplified to

I = 2
∫ T

0

{∫ x

0

f(u) du
}
f(x)

1
x
dx− 1

T

{∫ T

0

f(u) du
}2

.

This form of the integral I may not look any more convenient than the
original representation, but it does suggest a bold action. The last term
is nonpositive, so we can simply discard it from the identity to get∫ T

0

{
1
x

∫ x

0

f(u) du
}2

dx ≤ 2
∫ T

0

{
1
x

∫ x

0

f(u) du
}
f(x) dx. (11.4)

We now face a bottom line question: Is this new bound (11.4) strong
enough to imply our target inequality (11.1)? The answer turns out to
be both quick and instructive.

Application of the Flop

If we introduce functions ϕ and ψ by setting

ϕ(x) =
1
x

∫ x

0

f(u) du and ψ(x) = f(x), (11.5)

then the new inequality (11.4) can be written crisply as∫ T

0

ϕ2(x) dx ≤ C

∫ T

0

ϕ(x)ψ(x) dx, (11.6)

where C = 2. The critical feature of this inequality is that the function
ϕ is raised to a higher power on the left side of the equation than on
the right. This is far from a minor detail; it opens up the possibility of
a maneuver which has featured in thousands of investigations.

The key observation is that by applying Schwarz’s inequality to the
right-hand side of the inequality (11.6), we find∫ T

0

ϕ2(x) dx ≤ C

{∫ T

0

ϕ2(x) dx
} 1

2
{∫ T

0

ψ2(x) dx
} 1

2

(11.7)

so, if ϕ(x) is not identically zero, we can divide both sides of this in-
equality by {∫ T

0

ϕ2(x) dx
} 1

2

�= 0.

This division gives us{∫ T

0

ϕ2(x) dx
} 1

2

≤ C

{∫ T

0

ψ2(x) dx
} 1

2

, (11.8)
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and, when we square this inequality and replace C, ϕ, and ψ with their
defining values (11.5), we see that the “postflop” inequality (11.8) is
exactly the same as the target inequality (11.1) which we hoped to prove.

A Discrete Analog

One can always ask if a given result for real or complex functions
has an analog for finite or infinite sequences, and the answer is often
routine. Nevertheless, there are also times when one meets unexpected
difficulties that lead to new insight. We will face just such a situation
in our second challenge problem.

Problem 11.2 (The Discrete Hardy Inequality)
Show that for any sequence of nonnegative real numbers a1, a2, . . . , aN

one has the inequality

N∑
n=1

{ 1
n

(a1 + a2 + · · · + an)
}2

≤ 4
N∑

n=1

a2
n. (11.9)

Surely the most natural way to approach this problem is to mimic the
method we used for the first challenge problem. Moreover, our earlier
experience also provides mileposts that can help us measure our progress.
In particular, it is reasonable to guess that to prove the inequality (11.9)
by an application of a flop, then we might do well to look for a “preflop”
inequality of the form

N∑
n=1

{ 1
n

(a1+a2+ · · ·+an)
}2

≤ 2
N∑

n=1

{ 1
n

(a1+a2+ · · ·+an)
}
an, (11.10)

which is the natural analog of our earlier preflop bound (11.4).

Following the Natural Plan

Summation by parts is the natural analog of integration by parts,
although it is a bit less mechanical. Here, for example, we must decide
how to represent 1/n2 as a difference; after all, we can either write

1
n2

= sn − sn+1 where sn =
∞∑

k=n

1
k2

or, alternatively, we can look at the initial sum and write

1
n2

= s̃n − s̃n−1 where s̃n =
n∑

k=1

1
k2
.
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The only universal basis for a sound choice is experimentation, so, for
the moment, we simply take the first option.

Now, if we let TN denote the sum on the left-hand side of the target
inequality (11.9), then we have

TN =
N∑

n=1

(sn − sn+1)(a1 + a2 + · · · + an)2,

so, by distributing the sums and shifting the indices, we have

TN =
N∑

n=1

sn(a1 + a2 + · · · + an)2 −
N+1∑
n=2

sn(a1 + a2 + · · · + an−1)2.

When we bring the sums back together, we see that TN equals

s1a
2
1−sN+1(a1 +a2 + · · ·+an)2 +

N∑
n=2

sn

{
2(a1 +a2 + · · ·+an−1)an +a2

n

}
and, since sN+1(a1 + a2 + · · · + an)2 ≥ 0, we at last find

N∑
n=1

{ 1
n

(a1 +a2+ · · ·+an)
}2

≤ 2
N∑

n=1

{
sn(a1 +a2+ · · ·+an)

}
an. (11.11)

This bound looks much like out target preflop inequality (11.10), but
there is a small problem: on the right side we have sn where we hoped
to have 1/n. Since sn = 1/n+O(1/n2), we seem to have made progress,
but the prize (11.10) is not in our hands.

So Near . . .Yet

One natural way to try to bring our plan to its logical conclusion
is simply to replace the sum sn in the inequality (11.11) by an honest
upper bound. The most systematic way to estimate sn is by integral
comparison, but there is also an instructive telescoping argument that
gives an equivalent result. The key observation is that for n ≥ 2 we have

sn =
∞∑

k=n

1
k2

≤
∞∑

k=n

1
k(k − 1)

=
∞∑

k=n

{ 1
k − 1

− 1
k

}
=

1
n− 1

≤ 2
n
,

and, since s1 = 1 + s2 ≤ 1 + 1/(2 − 1) = 2, we see that
∞∑

k=n

1
k2

≤ 2
n

for all n ≥ 1. (11.12)
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Now, when we use this bound in our summation by parts inequality
(11.11), we find

N∑
n=1

{ 1
n

(a1+a2+ · · ·+an)
}2

≤ 4
N∑

n=1

{ 1
n

(a1+a2+ · · ·+an)
}
an, (11.13)

and this is almost the inequality (11.10) that we wanted to prove. The
only difference is that the constant 2 in the preflop inequality (11.10) has
been replaced by a 4. Unfortunately, this difference is enough to keep
us from our ultimate goal. When we apply the flop to the inequality
(11.13), we fail to get the constant that is required in our challenge
problem; we get an 8 where a 4 is needed.

Taking the Flop as Our Guide

Once again, the obvious plan has come up short, and we must look
for some way to improve our argument. Certainly we can sharpen our
estimate for sn, but, before worrying about small analytic details, we
should look at the structure of our plan. We used summation by parts
because we hoped to replicate a successful argument that used integra-
tion by parts, but the most fundamental component of our argument
simply calls on us to prove the preflop inequality

N∑
n=1

{ 1
n

(a1+a2+ · · ·+an)
}2

≤ 2
N∑

n=1

{ 1
n

(a1+a2+ · · ·+an)
}
an. (11.14)

There is no law that says that we must prove this inequality by starting
with the left-hand side and using summation by parts. If we stay flexible,
perhaps we can find a fresh approach.

Flexible and Hopeful

To begin our fresh approach, we may as well work toward a clearer
view of our problem; certainly some of the clutter may be removed by
setting An = (a1 + a2 + · · · + an)/n. Also, if we consider the term-by-
term differences ∆n between the summands in the preflop inequality
(11.14), then we have the simple identity ∆n = A2

n − 2Anan. The proof
of the preflop inequality (11.14) therefore comes down to showing that
the sum of the increments ∆n over 1 ≤ n ≤ N is bounded by zero.

We now have a concrete goal — but not much else. Still, we may
recall that one of the few ways we have to simplify sums is by telescop-
ing. Thus, even though no telescoping sums are presently in sight, we
might want to explore the algebra of the difference ∆n while keeping
the possibility of telescoping in mind. If we now try to write ∆n just in
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terms of An and An−1, then we have

∆n = A2
n − 2Anan

= A2
n − 2An

(
nAn − (n− 1)An−1

)
= (1 − 2n)A2

n + 2(n− 1)AnAn−1,

but unfortunately the product AnAn−1 emerges as a new trouble spot.
Nevertheless, we can eliminate this product if we recall the “humble
bound” and note that if we replace AnAn−1 by (A2

n +A2
n−1)/2 we have

∆n ≤ (1 − 2n)A2
n + (n− 1)

(
A2

n +A2
n−1

)
= (n− 1)A2

n−1 − nA2
n.

After a few dark moments, we now find that we are the beneficiaries of
some good luck: the last inequality is one that telescopes beautifully.
When we sum over n, we find

N∑
n=1

∆n ≤
N∑

n=1

{
(n− 1)A2

n−1 − nA2
n

}
= −NA2

N ,

and, by the negativity of the last term, the proof of the preflop inequality
(11.14) is complete. Finally, we know already that the flop will take
us from the inequality (11.14) to the inequality (11.9) of our challenge
problem, so the solution of the problem is also complete.

A Brief Look Back

Familiarity with the flop gives one access to a rich class of strategies for
proving inequalities for integrals and for sums. In our second challenge
problem, we made some headway through imitation of the strategy that
worked in the continuous case, but definitive progress only came when
we focused squarely on the flop and when we worked toward a direct
proof of the preflop inequality

N∑
n=1

{
1
n

(a1 + a2 + · · · + an)
}2

≤ 2
N∑

n=1

{
1
n

(a1 + a2 + · · · + an)
}
an.

The new focus was a fortunate one, and we found that the preflop in-
equality could be obtained by a pleasing telescoping argument that used
little more than the bound xy ≤ (x2 + y2)/2.

In the first two examples the flop was achieved with help from Cauchy’s
inequality or Schwarz inequality, but the basic idea is obviously quite
general. In the next problem (and in several of the exercises) we will see
that Hölder’s inequality is perhaps the flop’s more natural partner.
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Carleson’s Inequality — with Carleman’s as a Corollary

Our next challenge problem presents itself with no flop in sight; there
is not even a product to be seen. Nevertheless, one soon discovers that
the product — and the flop — are not far away.

Problem 11.3 (Carleson’s Convexity Inequality)
Show that if ϕ : [0,∞) → R is convex and ϕ(0) = 0, then for all

−1 < α <∞ one has the integral bound

I =
∫ ∞

0

xα exp
(
− ϕ(x)

x

)
dx ≤ eα+1

∫ ∞

0

xα exp (−ϕ′(x)) dx (11.15)

where, as usual, e = 2.71828 . . . is the natural base.

The shape of the inequality (11.15) is uncharacteristic of any we have
met before, so one may be at a loss for a reasonable plan. To be sure,
convexity always gives us something useful; in particular, convexity pro-
vides an estimate of the shift difference ϕ(y + t) − ϕ(y). Unfortunately
this estimate does not seem to help us much here.

The way Carleson cut the Gordian knot was to consider instead the
scale shift difference ϕ(py) − ϕ(y) where p > 1 is a parameter that we
can optimize later. This is a clever idea, yet conceived, it easily becomes
a part of our permanent toolkit.

A Flop of a Different Flavor

Carleson set up his estimation of the integral I by first making the
change of variables x �→ py and then using the convexity estimate,

ϕ(py) ≥ ϕ(y) + (p− 1)yϕ′(y), (11.16)

which is illustrated in Figure 11.1. The exponential of this sum gives us
a product, so Hölder’s inequality and the flop are almost ready to act.

Still, some care is needed to avoid integrals which may be divergent,
so we first restrict our attention to a finite interval [0, A] to note that

IA =
∫ A

0

xα exp
(
− ϕ(x)

x

)
dx = pα+1

∫ A/p

0

yα exp
(
− ϕ(py)

py

)
dy

≤ pα+1

∫ A

0

yα exp
(−ϕ(y) − (p− 1)yϕ′(y)

py

)
dy,

where in the second step we used the convexity bound (11.16) and ex-
tended the range of integration from [0, A/p] to [0, A]. If we introduce
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Fig. 11.1. The convexity bound ϕ(py) ≥ ϕ(y) + (p − 1)yϕ′(y) for p > 1 tells
us how ϕ changes under a scale shift. It also cooperates wonderfully with
changes of variables, Hölder’s inequality, and the flop.

the conjugate q = p/(p−1) and apply Hölder’s inequality to the natural
splitting suggested by 1/p+ 1/q = 1, we then find

p−α−1IA ≤
∫ A

0

{
yα/p exp

(
− ϕ(y)

py

)}{
yα/q exp

(
− (p− 1)

p
ϕ′(y)

)}
dy

≤ I
1/p
A

{∫ A

0

yα exp
(
− ϕ′(y)

)
dy

}1/q

.

Since IA <∞, we may divide by I1/p
A to complete the flop. Upon taking

the qth power of the resulting inequality, we find

IA =
∫ A

0

yα exp
(
− ϕ(y)

y

)
dy ≤ p(α+1)p/(p−1)

∫ A

0

yα exp
(
−ϕ′(y)

)
dy,

and this is actually more than we need.
To obtain the stated form (11.15) of Carleson’s inequality, we first let

A→ ∞ and then let p→ 1. The familiar relation log(1 + ε) = ε+O(ε2)
implies that pp/(p−1) → e as p → 1, so the solution of the challenge
problem is complete.

An Informative Choice of ϕ

Part of the charm of Carleson’s inequality is that it provides a sly
generalization of the famous Carleman’s inequality, which we have met
twice before (pages 27 and 128). In fact, one only needs to make a wise
choice of ϕ.

Given the hint of this possibility and a little time for experimentation,
one is quite likely to hit on the candidate suggested by Figure 11.2. For
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Fig. 11.2. If y = ϕ(x) is the curve given by the linear interpolation of the
points (n, s(n)) where s(n) = log(1/a1) + log(1/a2) + · · ·+ log(1/an), then on
the interval (n−1, n) we have ϕ′(x) = log(1/an). If we assume that an ≥ an+1

then ϕ′(x) is non-decreasing and ϕ(x) is convex. Also, since ϕ(0) = 0, the
chord slope ϕ(x)/x is monotone increasing.

the function ϕ defined there, we have identity∫ n

n−1

exp(−ϕ′(x)) dx = ak (11.17)

and, since ϕ(x)/x is nondecreasing, we also have the bound( n∏
k=1

ak

)1/n

= exp
(−ϕ(n)

n

)
≤
∫ n

n−1

exp
(−ϕ(x)

x

)
dx. (11.18)

When we sum the relations (11.17) and (11.18), we then find by invoking
Carleson’s inequality (11.15) with α = 0 that

∞∑
n=1

( n∏
k=1

ak

)1/n

≤
∫ ∞

0

exp
(−ϕ(x)

x

)
dx

≤ e

∫ ∞

0

exp(−ϕ′(x)) dx = e
∞∑

n=1

an.

Thus we recover Carleman’s inequality under the added assumption that
a1 ≥ a2 ≥ a3 · · · . Moreover, this assumption incurs no loss of generality,
as one easily confirms in Exercise 11.7.

Exercises

Exercise 11.1 (The Lp Flop and a General Principle)
Suppose that 1 < α < β and suppose that the bounded nonnegative

functions ϕ and ψ satisfy the inequality∫ T

0

ϕβ(x) dx ≤ C

∫ T

0

ϕα(x)ψ(x) dx. (11.19)

Show that one can “clear ϕ to the left” in the sense that one has∫ T

0

ϕβ(x) dx ≤ Cβ/(β−α)

∫ T

0

ψβ/(β−α)(x) dx. (11.20)
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The bound (11.20) is just one example of a general (but vague) principle:
If we have a factor on both sides of an equation and if it appears to a
smaller power on the “right” than on the “left,” then we can clear the
factor to the left to obtain a new — and potentially useful — bound.

Exercise 11.2 (Rudimentary Example of a General Principle)
The principle of Exercise 11.1 can be illustrated with the simplest of

tools. For example, show for nonnegative x and y that

2x3 ≤ y3 + y2x+ yx2 implies x3 ≤ 2y3.

Exercise 11.3 (An Exam-Time Discovery of F. Riesz)
Show that there is a constant A (not depending on u and v) such that

for each pair of functions u and v on [−π, π] for which one has∫ π

−π

v4(θ) dθ ≤
∫ π

−π

u4(θ) dθ + 6
∫ π

−π

u2(θ)v2(θ) dθ, (11.21)

one also has the bound∫ π

−π

v4(θ) dθ ≤ A

∫ π

−π

u4(θ) dθ. (11.22)

According to J.E. Littlewood (1988, p. 194), F. Riesz was trying to
set an examination problem when he observed almost by accident that
the bound (11.21) holds for the real u and imaginary v parts of f(eiθ)
when f(z) is a continuous function that is analytic in the unit disk. This
observation and the inference (11.22) subsequently put Riesz on the trail
of some of his most important discoveries.

Exercise 11.4 (The Lp Norm of the Average)
Show that if f : [0,∞) → R

+ is integrable and p > 1, then one has∫ ∞

0

{ 1
x

∫ x

0

f(u) du
}p

dx ≤
( p

p− 1

)p
∫ ∞

0

fp(x) dx. (11.23)

Exercise 11.5 (Hardy and the Qualitative Version of Hilbert)
Use the discrete version (11.9) of Hardy’s inequality to prove that

S =
∞∑

n=1

a2
n <∞ implies that

∞∑
n=1

∞∑
n=1

anam

m+ n
converges.

This was the qualitative version of Hilbert’s inequality that Hardy had
in mind when he first considered the Problems 11.1 and 11.2.
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Exercise 11.6 (Optimality? — It Depends on Context)
Many inequalities which cannot be improved in general will never-

theless permit improvements under special circumstances. An elegant
illustration of this possibility was given in a 1991 American Mathemati-
cal Monthly problem posed by Walther Janous. Readers were challenged
to prove that for all 0 < x < 1 and all N ≥ 1, one has the bound

N∑
j=1

(1 + x+ x2 + · · · + xj−1

j

)2

≤ (4 log 2)(1 + x2 + x4 + · · · + x2N−2).

(a) Prove that a direct application of Hardy’s inequality provides a
similar bound where 4 log 2 is replaced by 4. Since log 2 = 0.693 . . ., we
then see that Janous’s bound beats Hardy’s in this particular instance.

(b) Prove Janous’s inequality and show that one cannot replace 4 log 2
with a constant C < 4 log 2.

Exercise 11.7 (Confirmation of the Obvious)
Show that if a1 ≥ a2 ≥ a3 · · · and if b1, b2, b3, . . . is any rearrangement

of the sequence a1, a2, a3, . . ., then for each N = 1, 2, . . . one has
N∑

n=1

( n∏
k=1

bk

)1/n

≤
N∑

n=1

( n∏
k=1

ak

)1/n

. (11.24)

Thus, in the proof of Carleman’s inequality, one can assume without
lose of generality that a1 ≥ a2 ≥ a3 · · · since a rearrangement does not
change the right side.

Exercise 11.8 (Kronecker’s Lemma)
Prove that for any sequence a1, a2, . . . of real or complex numbers one

has the inference
∞∑

n=1

an

n
converges ⇒ lim

n→∞(a1 + a2 + · · · + an)/n = 0. (11.25)

Like Hardy’s inequality, this result tells us how to convert one type
of information about averages to another type of information. This
implication is particularly useful in probability theory where it is used
to draw a connection between the convergence of certain random sums
and the famous law of large numbers.
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Symmetric Sums

The kth elementary symmetric function of the n variables x1, x2, . . . , xn

is the polynomial defined the formula

ek(x1, x2, . . . , xn) =
∑

1≤i1<i2<···<ik≤n

xi1 xi2 · · · xik
.

The first three of these polynomials are simply

e0(x1, x2, . . . , xn) = 1, e1(x1, x2, . . . , xn) = x1 + x2 + . . .+ xn,

and e2(x1, x2, . . . , xn) =
∑

1≤j<k≤n

xjxk,

while the nth elementary symmetric function is simply the full product

en(x1, x2, . . . , xn) = x1x2 · · ·xn.

These functions are used in virtually every part of the mathematical
sciences, yet they draw much of their importance from the connection
they provide between the coefficients of a polynomial and functions of
its roots. To be explicit, if the polynomial P (t) is written as the product
P (t) = (t− x1)(t− x2) · · · (t− xn), then it also has the representation

P (t) = tn−e1(x)tn−1+ · · ·+(−1)kek(x)tn−k + · · ·+(−1)nen(x), (12.1)

where for brevity we have written ek(x) in place of ek(x1, x2, . . . , xn).

The Classical Inequalities of Newton and Maclaurin

The elementary polynomials have many connections with the theory
of inequalities. Two of the most famous of these date back to the great
Isaac Newton (1642–1727) and the Scottish prodigy Colin Maclaurin

178
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(1696–1746). Their namesake inequalities are best expressed in terms of
the averages

Ek(x) = Ek(x1, x2, . . . , xn) =
ek(x1, x2, . . . , xn)(

n
k

) ,

which bring us to our first challenge problem.

Problem 12.1 (Inequalities of Newton and Maclaurin)
Show that for all x ∈ R

n one has Newton’s inequalities

Ek−1(x) · Ek+1(x) ≤ E2
k(x) for 0 < k < n (12.2)

and check that they imply Maclaurin’s inequalities which assert that

E1/n
n (x) ≤ E

1/(n−1)
n−1 (x) ≤ · · · ≤ E2(x)1/2 ≤ E1(x) (12.3)

for all x = (x1, x2, . . . , xn) such that xk ≥ 0 for all 1 ≤ k ≤ n.

Orientation and the AM-GM Connection

If we take n = 3 and set x = (x, y, z), then Maclaurin’s inequalities
simply say

(xyz)1/3 ≤
(
xy + xz + yz

3

)1/2

≤ x+ y + z

3
,

which is a sly refinement of the AM-GM inequality. In the general case,
Maclaurin’s inequalities insert a whole line of ever increasing expressions
between the geometric mean (x1x2 · · ·xn)1/n and the arithmetic mean
(x1 + x2 + · · · + xn)/n.

From Newton to Maclaurin by Geometry

For a vector x ∈ R
n with only nonnegative coordinates, the values

{Ek(x) : 0 ≤ k ≤ n} are also nonnegative, so we can take logarithms of
Newton’s inequalities to deduce that

logEk−1(x) + logEk+1(x)
2

≤ logEk(x) (12.4)

for all 1 ≤ k < n. In particular, we see for x ∈ [0,∞)n that Newton’s
inequalities are equivalent to the assertion that the piecewise linear curve
determined by the point set {(k, logEk(x)) : 0 ≤ k ≤ n} is concave.

If Lk denotes the line determined by the points (0, 0) = (0, logE1(x))
and (k, logEk(x)), then as Figure 12.1 suggests, the slope of Lk+1 is
never larger than the slope of Lk for any k = 1, 2, . . . , n − 1. Since the
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Fig. 12.1. If Ek(x) ≥ 0 for all 1 ≤ k ≤ n, then Newton’s inequalities are
equivalent to the assertion that the piecewise linear curve determined by the
points (k, yk), 1 ≤ k ≤ n, is concave. Maclaurin’s inequalities capitalize on
just one part of this geometry.

slope of Lk is logEk(x)/k, we find logEk(x)/k ≤ logEk+1(x)/(k + 1),
and this is precisely the kth of Maclaurin’s inequalities.

The real challenge is to prove Newton’s inequalities. As one might ex-
pect for a result that is both ancient and fundamental, there are many
possible approaches. Most of these depend on calculus in one way or an-
other, but Newton never published a proof of his namesake inequalities,
so we do not know if his argument relied on his “method of fluxions.”

Polynomials and Their Derivatives

Even if Newton took a different path, it does make sense to ask what
the derivative P ′(t) might tell us about the about the special polynomials
Ek(x1, x2, . . . , xn), 1 ≤ k ≤ n. If we write the identity (12.1) in the form

P (t) = (t− x1)(t− x2) · · · (t− xn)

=
n∑

k=0

(−1)k

(
n

k

)
Ek(x1, x2, . . . , xn)tn−k, (12.5)

then its derivative is almost a perfect clone. More precisely, we have

Q(t) =
1
n
P ′(t) =

n−1∑
k=0

(−1)k

(
n

k

)
n− k

n
Ek(x1, x2, . . . , xn)tn−k−1

=
n−1∑
k=0

(−1)k

(
n− 1
k

)
Ek(x1, x2, . . . , xn)tn−k−1,

where in the second line we used the familiar identity(
n

k

)
n− k

n
=

n!
k!(n− k)!

n− k

n
=

(n− 1)!
k!(n− k − 1)!

=
(
n− 1
k

)
.
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If the values xk, k = 1, 2, . . . , n are elements of the interval [a, b], then
the polynomial P (t) has n real roots in [a, b], and Rolle’s theorem tells
us that the derivative P ′(x) must have n− 1 real roots in [a, b]. If we
denote these roots by {y1, y2, . . . , yn−1}, then we also have the identity

Q(t) =
1
n
P ′(t) = (t− y1)(t− y2) · · · (t− yn−1)

=
n−1∑
k=0

(−1)k

(
n− 1
k

)
Ek(y1, y2, . . . , yn−1)tn−k−1.

If we now equate the coefficients in our two formulas for Q(t), we find
that for all 0 ≤ k ≤ n− 1 we have the truly remarkable identity

Ek(x1, x2, . . . , xn) = Ek(y1, y2, . . . , yn−1). (12.6)

Why is It So Remarkable?

The left-hand side of the identity (12.6) is a function of the n vector
x = (x1, x2, . . . , xn) while the right side is a function of the n− 1 vector
y = (y1, y2, . . . , yn−1). Thus, if we can prove a relation such as

0 ≤ F (E0(y), E1(y), . . . , En−1(y)) for all y ∈ [a, b]n−1,

then it follows that we also have the relation

0 ≤ F (E0(x), E1(x), . . . , En−1(x)) for all x ∈ [a, b]n.

That is, any inequality — or identity — which provides a relation be-
tween the n− 1 quantities E0(y), E1(y), . . . , En−1(y) and which is valid
for all values of y ∈ [a, b]n−1 extends automatically to a corresponding
relation for the n−1 quantities E0(x), E1(x), . . . , En−1(x) which is valid
for all values of x ∈ [a, b]n.

This presents a rare but valuable situation where to prove a relation
for functions of n variables it suffices to prove an analogous relation for
functions of just n − 1 variables. This observation can be used in an
ad hoc way to produce many special identities which otherwise would
be completely baffling, and it can also be used systematically to provide
seamless induction proofs for results such as Newton’s inequalities.

Induction on the Number of Variables

Consider now the induction hypothesis Hn which asserts that

Ej−1(x1, x2, . . . , xn)Ej+1(x1, x2, . . . , xn) ≤ E2
j (x1, x2, . . . , xn) (12.7)

for all x ∈ R
n and all 1 < j < n. For n = 1 this assertion is empty, so
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our induction argument begins with H2, in which case we just need to
prove one inequality,

E0(x1, x2)E2(x1, x2) ≤ E2
1(x1, x2) or x1x2 ≤

(
x1 + x2

2

)2

. (12.8)

As we have seen a dozen times before, this holds for all real x1 and x2

because of the trivial bound (x1 − x2)2 > 0.
Logically, we could now address the general induction step, but we

first need a clear understanding of the underlying pattern. Thus, we
consider the hypothesis H3 which consists of the two assertions:

E0(x1, x2, x3)E2(x1, x2, x3) ≤ E2
1(x1, x2, x3), (12.9)

E1(x1, x2, x3)E3(x1, x2, x3) ≤ E2
2(x1, x2, x3). (12.10)

Now the “remarkable identity” (12.6) springs into action. The assertion
(12.9) says for three variables what the inequality (12.8) says for two,
therefore (12.6) tells us that our first inequality (12.9) is true. We have
obtained half of the hypothesis H3 virtually for free.

To complete the proof ofH3, we now only need prove the second bound
(12.10). To make the task clear we first rewrite the bound (12.10) in
longhand as{

x1 + x2 + x3

3

}
{x1x2x3} ≤

{
x1x2 + x1x3 + x2x3

3

}2

. (12.11)

This bound is trivial if x1x2x3 = 0, so there is no loss of generality if we
assume x1x2x3 �= 0. We can then divide our bound by (x1x2x3)2 to get

1
3

{
1

x1x2
+

1
x1x3

+
1

x2x3

}
≤ 1

9

{
1
x1

+
1
x2

+
1
x3

}2

which may be expanded and simplified to

1
x1x2

+
1

x1x3
+

1
x2x3

≤ 1
x2

1

+
1
x2

2

+
1
x2

3

.

At this stage of our Master Class, this inequality is almost obvious. For a
thematic proof, one can apply Cauchy’s inequality to the pair of vectors
(1/x1, 1/x3, 1/x2) and (1/x2, 1/x1, 1/x3), or, a bit more generally, one
can sum the three AM-GM bounds

1
xjxk

≤ 1
2

{
1
x2

j

+
1
x2

k

}
1 ≤ j < k ≤ 3.

Thus, the proof of H3 is complete, and, moreover, we have found a
pattern that should guide us through the general induction step.
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A Pattern Confirmed

The general hypothesis Hn consists of n−1 inequalities which may be
viewed in two groups. First, for x = (x1, x2, . . . , xn) we have the n − 2
inequalities which involve only Ej(x) with 0 ≤ j < n,

Ek−1(x)Ek+1(x) ≤ E2
k(x) for 1 ≤ k < n− 1, (12.12)

then we have one final inequality which involves En(x),

En−2(x)En(x) ≤ E2
n−1(x). (12.13)

In parallel with the analysis of H3, we now see that all of the inequalities
in the first group (12.12) follow from the induction hypothesis Hn and
the identity (12.6). All of the inequalities of Hn have come to us for
free, except for one.

If we write the bound (12.13) in longhand and use x̂j as a symbol to
suggest that xj is omitted, then we see that it remains for us to prove
that we have the relation

2
n(n− 1)

{ ∑
1≤j<k≤n

x1 · · · x̂j · · · x̂k · · ·xn

}
x1x2 · · ·xn

≤
{

1
n

n∑
j=1

x1x2 · · · x̂j · · ·xn

}2

. (12.14)

In parallel with our earlier experience, we note that there is no loss of
generality in assuming x1x2 · · ·xn �= 0. After division by (x1x2 · · ·xn)2

and some simplification, we see that the bound (12.14) is equivalent to

1(
n
2

) ∑
1≤j<k≤n

1
xjxk

≤
{

1
n

n∑
j=1

1
xj

}2

. (12.15)

We could now stick with the pattern that worked for H3, but there is
a more graceful way to finish which is almost staring us in the face. If
we adopt the language of symmetric functions, the target bound (12.15)
may be written more systematically as

E0(1/x1, 1/x2, . . . , 1/xn)E2(1/x1, 1/x2, . . . , 1/xn)

≤ E2
1(1/x1, 1/x2, . . . , 1/xn),

and one now sees that this inequality is covered by the first bound of
the group (12.12). Thus, the proof of Newton’s inequalities is complete.
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Equality in the Bounds of Newton or Maclaurin

From Figure 12.1, we see that we have equality in the kth Maclaurin
bound yk+1/(k + 1) ≤ yk/k if and only if the dotted and the dashed
lines have the same slope. By the concavity of the piecewise linear curve
through the points {(j, yj) : 0 ≤ j ≤ n}, this is possible if and only if the
three points (k − 1, yk−1), (k, yk), and (k + 1, yk+1) all lie on a straight
line. This is equivalent to the assertion yk = (yk−1 + yk+1)/2, so, by
geometry, we find that equality holds in the kth Maclaurin bound if and
only if it holds in the kth Newton bound.

It takes only a moment to check that equality holds in each of Newton’s
bounds when x1 = x2 = · · · = xn, and there are several ways to prove
that this is the only circumstance where equality is possible. For us,
perhaps the easiest way to prove this assertion is by making some small
changes to our induction argument. In fact, the diligent reader will
surely want to confirm that our induction argument can be repeated
almost word for word while including induction hypothesis (12.7) the
condition for strict inequality.

Passage to Muirhead

David Hilbert once said, “The art of doing mathematics consists in
finding that special case which contains all the germs of generality.” The
next challenge problem is surely more modest than the examples that
Hilbert had in mind, but in this chapter and the next we will see that
it amply illustrates Hilbert’s point.

Problem 12.2 (A Symmetric Appetizer)
Show that for nonnegative x, y, and z one has the bound

x2y3 + x2z3 + y2x3 + y2z3 + z2x3 + z2y3

≤ xy4 + xz4 + yx4 + yz4 + zx4 + zy4, (12.16)

and take inspiration from your discoveries to generalize this result as
widely as you can.

Making Connections

We have already met several problems where the AM-GM inequal-
ity helped us to understand the relationship between two homogeneous
polynomials, and if we hope to use a similar idea here we need to show
that each summand on the left can be written as a weighted geometric
mean of the summands on the right. After some experimentation, one
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is sure to observe that for any nonnegative a and b we have the product
representation a2b3 = (ab4)

2
3 (a4b)

1
3 . The weighted AM-GM inequality

(2.9) then gives us the bound

a2b3 = (ab4)
2
3 (a4b)

1
3 ≤ 2

3
ab4 +

1
3
a4b, (12.17)

and now we just need to see how this may be applied.
If we replace (a, b) in turn by the ordered pairs (x, y) and (y, x), then

the sum of the resulting bounds gives us x2y3 +y2x3 ≤ xy4 +x4y and, in
exactly the same way, we can get two analogous inequalities by summing
the bound (12.17) for the two pairs (x, z) and (z, x), and the two pairs
(y, z) and (z, y). Finally, the sum of the resulting three bounds then
gives us our target inequality (12.16).

Passage to an Appropriate Generalization

This argument can be applied almost without modification to any
symmetric sum of two-term products xayb, but one may feel some un-
certainty about sums that contain triple products such as xaybzc. Such
sums may have many terms, and complexity can get the best of us unless
we develop a systematic approach.

Fortunately, geometry points the way. From Figure 12.2 one sees at a
glance that (2, 3) = 2

3 (1, 4)+ 1
3 (4, 1), and, by exponentiation, we see that

this recaptures us our decomposition a2b3 = (ab4)
2
3 (a4b)

1
3 . Geometry

makes quick work of such two-term decompositions, but the real benefit
of the geometric point of view is that it suggests useful representation
for products of three or more variables. The key is to find the right
analog of Figure 12.2.

In abstract terms, the solution of the first challenge problem piv-
oted on the observation that (2, 3) is in the convex hull of (1, 4) and
its permutation (4, 1). Now, more generally, given any pair of n-vectors
α = (α1, α2, . . . , αn) and β = (β1, β2, . . . , βn), we can consider an anal-
ogous situation where α is contained in the convex hull H(β) of the set
of points (βτ(1), βτ(2), . . . , βτ(n)) which are determined by letting τ run
over the set Sn of all n! permutations of {1, 2, . . . , n}.

This suggestion points us to a far reaching generalization of our first
challenge problem. The result is due to another Scot, Robert Franklin
Muirhead (1860–1941). It has been known since 1903, and, at first, it
may look complicated. Nevertheless, with experience one finds that it
has both simplicity and a timeless grace.
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Fig. 12.2. If the point (α1, α2) is in the convex hull of (β1, β2) and (β2, β1) then
xα1yα2 is bounded by a linear combination of xβ1yβ2 and xβ2yβ1 . This leads
to some engaging inequalities when applied to symmetric sums of products,
and there are exceptionally revealing generalizations of these bounds.

Problem 12.3 (Muirhead’s inequality)
Given that α ∈ H(β) where α = (α1, α2, . . . , αn) and β = (β1, β2, . . . , βn),

show that for all positive x1, x2, . . . , xn one has the bound∑
σ∈Sn

xα1
σ(1)x

α2
σ(2) · · ·xαn

σ(n) ≤
∑

σ∈Sn

xβ1
σ(1)x

β2
σ(2) · · ·xβn

σ(n) (12.18)

A Quick Orientation

To familiarize this notation, one might first check that Muirhead’s
inequality does indeed contain the bound given by our second challenge
problem (page 184). In that case, S3 is the set of six permutations of
the set {1, 2, 3}, and we have (x1, x2, x3) = (x, y, z). We also have

(α1, α2, α3) = (2, 3, 0) and (β1, β2, β3) = (1, 4, 0),

and since (2, 3, 0) = 2
3 (1, 4, 0)+ 1

3 (4, 1, 0) we find that α ∈ H(β). Finally,
one has the α-sum∑

σ∈S3

xα1
σ(1)x

α2
σ(2)x

α3
σ(3) = x2y3 + x2z3 + y2x3 + y2z3 + z2x3 + z2y3,

while the β-sum is given by∑
σ∈S3

xβ1
σ(1)x

β2
σ(2)x

β3
σ(3) = xy4 + xz4 + yx4 + yz4 + zx4 + zy4,

so Muirhead’s inequality (12.18) does indeed give us a generalization of
our first challenge bound (12.16).

Finally, before we address the proof, we should note that there is
no constraint on the sign of the coordinates of α and β in Muirhead’s
inequality. Thus, for example, if we take α = (1/2, 1/2, 0) and take
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Fig. 12.3. The geometry of the condition α ∈ H(β) is trivial in dimension
2, and this figure shows how it may be visualized in dimension 3. In higher
dimensions, geometric intuition is still suggestive, but algebra serves as our
unfailing guide.

β = (−1, 2, 0), then Muirhead’s inequality tells us that for positive x, y,
and z one has

2
(√
xy +

√
xz +

√
yz
) ≤ x2

y
+
x2

z
+
y2

x
+
y2

z
+
z2

x
+
z2

y
. (12.19)

This instructive bound can be proved in many ways; for example, both
Cauchy’s inequality and the AM-GM bound provide easy derivations.
Nevertheless, it is Muirhead’s inequality which makes the bound most
immediate and which embeds the bound in the richest context.

Proof of Muirhead’s Inequality

We were led to conjecture Muirhead’s inequality by the solution of
our first challenge problem, so we naturally hope to prove it by leaning
on our earlier argument. First, just to make the hypothesis α ∈ H(β)
concrete, we note that it is equivalent to the assertion that

(α1, α2, . . . , αn) =
∑

τ∈Sn

pτ (βτ(1), βτ(2), . . . , βτ(n))

where pτ ≥ 0 and
∑

τ∈Sn

pτ = 1.

Now, if we use the jth coordinate of this identity to express xαj

σ(j) as a
product, then we can take the product over all j to obtain the identity

xα1
σ(1)x

α2
σ(2) · · ·xαn

σ(n) =
∏

τ∈Sn

(
x

βτ(1)

σ(1) x
βτ(2)

σ(2) · · ·xβτ(n)

σ(n)

)pτ

.

From this point the AM-GM inequality and arithmetic do the rest of
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the work. In particular, we have∑
σ∈Sn

xα1
σ(1)x

α2
σ(2) · · ·xαn

σ(n) ≤
∑

σ∈Sn

∑
τ∈Sn

pτx
βτ(1)

σ(1) x
βτ(2)

σ(2) · · ·xβτ(n)

σ(n)

=
∑

τ∈Sn

pτ

∑
σ∈Sn

x
βτ(1)

σ(1) x
βτ(2)

σ(2) · · ·xβτ(n)

σ(n)

=
∑

τ∈Sn

pτ

∑
σ∈Sn

xβ1
σ(1)x

β2
σ(2) · · ·xβn

σ(n)

=
∑

σ∈Sn

xβ1
σ(1)x

β2
σ(2) · · ·xβn

σ(n),

and, as one surely hoped, the two ends of this chain give us Muirhead’s
inequality (12.18).

Looking Back: Benefits of Symmetry

There is nothing difficult in the individual steps of the calculations
that give us Muirhead’s inequality (12.18), but the sudden disappearance
of the pτ may seem like exceptionally good luck. To be sure, we are not
strangers to the benefits that sometimes flow from changing the order
of summation, but, as this example points out, those benefits can be
particularly striking when symmetric sums are involved.

In many cases, dramatic simplifications arise simply from the observa-
tion that “the permutation of a permutation is a permutation.” Some-
times we need to check that a one-to-one correspondence works as we
hope it should, but even this step just takes patience. The miracle is
already in the mix.

With experience, one finds that Muirhead’s inequality (12.18) is a
remarkably effective tool for understanding the relations between sym-
metric sums. Nevertheless, applications of Muirhead’s inequality come
at a price: somehow one must check the hypothesis α ∈ H(β). In many
useful cases this can be done by inspection, but before Muirhead’s in-
equality can come into its own, one needs a systematic way to test Muir-
head’s condition α ∈ H(β). Remarkably enough, there is an equivalent
condition that lends itself to almost automatic checking. It is known as
majorization, and it provides the central theme of our next chapter.

Exercises

Exercise 12.1 (On Polynomials with Positive Roots)
Show that if the real polynomial P (x) = xn+a1x

n−1+· · ·+an−1x+an

has only positive roots, then one has the bound nan ≤ a1an−1.
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Exercise 12.2 (Three Muirhead Short Stories)
(a) Show that for nonnegative a, b, and c one has

8abc ≤ (a+ b)(b+ c)(c+ a). (12.20)

(b) Show that for real aj , 1 ≤ j ≤ n, one has

2
∑

1≤j<k≤n

ajak ≤ (n− 1)
n∑

j=1

a2
j . (12.21)

(c) Show that for nonnegative aj , 1 ≤ j ≤ n, one has

(a1a2 · · · an)1/n ≤ 2
n(n− 1)

∑
1≤j<k≤n

√
ajak. (12.22)

Exercise 12.3 (The Homogenization Trick)
Show that if the positive quantities x, y, and z satisfy the relation

xyz = 1 then one has the inequality

x2 + y2 + z2 ≤ x3 + y3 + z3. (12.23)

The salient feature of this bound is that the left side is homogeneous
of order 2 but the right side is homogeneous of order 3. Somehow the
constraint xyz = 1 must make up for this incompatibility.

It may be unclear how to exploit the constraint xyz = 1, but one trick
which works remarkably often is to use the side condition to construct a
homogeneous problem which generalizes the problem at hand. One then
solves the homogeneous problem with the help of Muirhead’s inequality
or related tools.

Exercise 12.4 (Power Sum Inequalities)
Show that for positive numbers xk, 1 ≤ k ≤ n, the power sums defined

by Sm(x) = xm
1 + xm

2 + · · · + xm
n satisfy the bounds

S2
m(x) ≤ Sm−1(x)Sm+1(x) for all m = 1, 2, . . . . (12.24)

These may remind us of Newton’s inequalities, but they are more el-
ementary. They also tell us that the sequence {logSm(x)} is convex,
while Newton’s inequalities tell us that {logEm(x)} is concave.

Exercise 12.5 (Symmetric Problems & Symmetric Solutions)
Consider a real symmetric polynomial p(x, y) such that p(x, y) → ∞

as |x| → ∞ and |y| → ∞. It is reasonable to suspect that p attains its
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minimum at a “symmetric point.” That is, one might conjecture that
there is a t ∈ R such that

p(t, t) = min
x,y

p(x, y).

This conjecture was proved for polynomials of degree three or less
by Victor Yacovlevich Bunyakovsky in 1854, some five years before the
publication of his famous Mémoire on integral inequalities. Bunyakovsky
also provided a counterexample which shows that the conjecture is false
for a polynomial with degree four. Can you find such an example?

Exercise 12.6 (Symmetry — Destroyed by Design)
Participants in the 1999 Canadian Olympiad were asked to show that

if x, y, and z are nonnegative real numbers for which x+y+z = 1, then
one has the bound

f(x, y, z) = x2y + y2z + z2x ≤ 4
27
.

As a hint, first check by calculus that f(x, y, z) is maximized on the set
x+ y = 1 by taking x = 2/3 and y = 1/3, so the crucial step is to show
that without loss of generality one can assume that z = 0.

Exercise 12.7 (Creative Bunching)
A problem in the popular text Probability by Jim Pitman requires one

to show in essence that if x, y, and z are nonnegative real numbers for
which x+ y + z = 1, then

1
4
≤ x3 + y3 + z3 + 6xyz.

Can you check this bound? Can you check it in more than one way?

Exercise 12.8 (Weierstrass’s Polynomial Product Inequality)
Show that if the complex numbers a1, a2, . . . , an and b1, b2, . . . , bn sat-

isfy |aj | ≤ 1 and |bj | ≤ 1 for all 1 ≤ j ≤ n then

|a1a2 · · · an − b1b2 · · · bn| ≤
n∑

j=1

|aj − bj |. (12.25)
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Majorization and Schur Convexity

Majorization and Schur convexity are two of the most productive con-
cepts in the theory of inequalities. They unify our understanding of
many familiar bounds, and they point us to great collections of results
which are only dimly sensed without their help. Although majorization
and Schur convexity take a few paragraphs to explain, one finds with
experience that both notions are stunningly simple. Still, they are not as
well known as they should be, and they can become one’s secret weapon.

Two Bare-Bones Definitions

Given an n-tuple γ = (γ1, γ2, . . . , γn), we let γ[j], 1 ≤ j ≤ n, denote
the jth largest of the n coordinates, so γ[1] = max{γj : 1 ≤ j ≤ n},
and in general one has γ[1] ≥ γ[2] ≥ · · · ≥ γ[n]. Now, for any pair of real
n-tuples α = (α1, α2, . . . , αn) and β = (β1, β2, . . . , βn), we say that α is
majorized by β and we write α ≺ β provided that α and β satisfy the
following system of n− 1 inequalities:

α[1] ≤ β[1],

α[1] + α[2] ≤ β[1] + β[2],

... ≤ ...

α[1] + α[2] + · · · + α[n−1] ≤ β[1] + β[2] + · · · + β[n−1],

together with one final equality:

α[1] + α[2] + · · · + α[n] = β[1] + β[2] + · · · + β[n].

Thus, for example, we have the majorizations

(1, 1, 1, 1) ≺ (2, 1, 1, 0) ≺ (3, 1, 0, 0) ≺ (4, 0, 0, 0) (13.1)

and, since the definition of the relation α ≺ β depends only on the

191
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corresponding ordered values, {α[j]} and {β[j]}, we could just as well
write the chain (13.1) as

(1, 1, 1, 1) ≺ (0, 1, 1, 2) ≺ (1, 3, 0, 0) ≺ (0, 0, 4, 0).

To give a more generic example, one should also note that for any
(α1, α2, . . . , αn) we have the two relations

(ᾱ, ᾱ, . . . , ᾱ) ≺ (α1, α2, . . . , αn) ≺ (α1 + α2 + · · · + αn, 0, . . . , 0)

where, as usual, we have set ᾱ = (α1 + α2 + . . . + αn)/n. Moreover,
it is immediate from the definition of majorization that relation ≺ is
transitive: α ≺ β and β ≺ γ imply that α ≺ γ. Consequently, the
4-chain (13.1) actually entails six valid relations.

Now, if A ⊂ R
d and f : A → R, we say that f is Schur convex on A

provided that we have

f(α) ≤ f(β) for all α, β ∈ A for which α ≺ β. (13.2)

Such a function might more aptly be called Schur monotone rather than
Schur convex, but the term Schur convex is now firmly rooted in tradi-
tion. By the same custom, if the first inequality of the relation (13.2) is
reversed, we say that f is Schur concave on A.

The Typical Pattern and a Practical Challenge

If we were to follow our usual pattern, we would now call on some
concrete problem to illustrate how majorization and Schur convexity
are used in practice. For example, we might consider the assertion that
for positive a, b, and c, one has the reciprocal bound

1
a

+
1
b

+
1
c
≤ 1
x

+
1
y

+
1
z

(13.3)

where x = b+ c− a, y = a+ c− b, z = a+ b− c, and where we assume
that x, y, and z are strictly positive.

This slightly modified version of the American Mathematical Monthly
problem E2284 of Walker (1971) is a little tricky if approached from first
principles, yet we will find shortly that it is an immediate consequence
of the Schur convexity of the map (t1, t2, t3) �→ 1/t1 + 1/t2 + 1/t3 and
the majorization (a, b, c) ≺ (x, y, z).

Nevertheless, before we can apply majorization and Schur convexity to
problems like E2284, we need to develop some machinery. In particular,
we need a practical way to check that a function is Schur convex. The
method we consider was introduced by Issai Schur in 1923, but even now
it accounts for a hefty majority of all such verifications.
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Problem 13.1 (Schur’s Criterion)
Given that the function f : (a, b)n → R is continuously differentiable

and symmetric, show that it is Schur convex on (a, b)n if and only if for
all 1 ≤ j < k ≤ n and all x ∈ (a, b)n one has

0 ≤ (xj − xk)
(
∂f(x)
∂xj

− ∂f(x)
∂xk

)
. (13.4)

An Orienting Example

Schur’s condition may be unfamiliar, but there is no mystery to its
application. For example, if we consider the function

f(t1, t2, t3) = 1/t1 + 1/t2 + 1/t3

which featured in our discussion of Walker’s inequality (13.3), then one
easily computes

(tj − tk)
(
∂f(t)
∂tj

− ∂f(t)
∂tk

)
= (tj − tk)(1/t2k − 1/t2j ).

This quantity is nonnegative since (tj , tk) and (1/t2j , 1/t
2
k) are oppositely

ordered, and, accordingly, the function f is Schur convex.

Interpretation of a Derivative Condition

Since the condition (13.4) contains only first order derivatives, it may
refer to the monotonicity of something, the question is what? The answer
may not be immediate, but the partial sums in the defining conditions
of majorization do provide a hint.

Given an n-tuple w = (w1, w2, . . . , wn), it will be convenient to write
w̃j = w1+w2+· · ·+wj and to set w̃ = (w̃1, w̃2, . . . , w̃n). In this notation
we see that the majorization x ≺ y holds if and only if we have x̃j ≤ ỹj

for all 1 ≤ j < n. One benefit of this “tilde transformation” is that
is makes majorization look more like ordinary coordinate-by-coordinate
comparison.

Now, since we have assumed that f is symmetric, we know that f
is Schur convex on (a, b)n if and only if it is Schur convex on the set
B = (a, b)n ∩ D where D = {(x1, x2, . . . , xn) : x1 ≥ x2 ≥ · · · ≥ xn}.
Also, if we introduce the set B̃ = {x̃ : x ∈ B}, then we can define a new
function f̃ : B̃ → R by setting f̃(x̃) = f(x) for all x̃ ∈ B̃. The point of
the new function f̃ is that it should translate the behavior of f into the
simpler language of the “tilde coordinates.”

The key observation is that f(x) ≤ f(y) for all x,y ∈ B with x ≺ y
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if and only if we have f̃(x̃) ≤ f̃(ỹ) for all x̃, ỹ ∈ B̃ such that

x̃n = ỹn and x̃j ≤ ỹj for all 1 ≤ j < n.

That is, f is Schur convex on B if and only if the function f̃ on B̃ is a
nondecreasing function of its first n− 1 coordinates.

Since we assume that f is continuously differentiable, we therefore
find that f is Schur convex if and only if for each x̃ in the interior of B̃
we have

0 ≤ ∂f̃(x̃)
∂x̃j

for all 1 ≤ j < n.

Further, because f̃(x̃) = f(x̃1, x̃2 − x̃1, . . . , x̃n − x̃n−1), the chain rule
gives us

0 ≤ ∂f̃(x̃)
∂x̃j

=
∂f(x)
∂xj

− ∂f(x)
∂xj+1

for all 1 ≤ j < n, (13.5)

so, if we take 1 ≤ j < k ≤ n and sum the bound (13.5) over the indices
j, j + 1, . . . , k − 1, then we find

0 ≤ ∂f(x)
∂xj

− ∂f(x)
∂xk

for all x ∈ B.

By the symmetry of f on (a, b)n, this condition is equivalent to

0 ≤ (xj − xk)
(
∂f(x)
∂xj

− ∂f(x)
∂xk

)
for all x ∈ (a, b)n,

and the solution of the first challenge problem is complete.

A Leading Case: AM-GM via Schur Concavity

To see how Schur’s criterion works in a simple example, consider the
function f(x1, x2, . . . , xn) = x1x2 · · ·xn where 0 < xj < ∞ for 1 ≤ j ≤
n. Here we see that Schur’s differential (13.4) is just

(xj − xk)(fxj
− fxk

) = −(xj − xk)2(x1 · · ·xj−1xj+1 · · ·xk−1xk+1 · · ·xn),

and this is always nonpositive. Therefore, f is Schur concave.
We noted earlier that x̄ ≺ x where x̄ is the vector (x̄, x̄, . . . , x̄) and

where x̄ is the simple average (x1+x2+· · ·+xn)/n, so the Schur concavity
of f then gives us f(x) ≤ f(x̄). In longhand, this says x1x2 · · ·xn ≤ x̄n,
and this is the AM-GM inequality in its most classic form.

In this example, one does not use the full force of Schur convexity. In
essence, we have used Jensen’s inequality in disguise, but there is still
a message here: almost every invocation of Jensen’s inequality can be
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replaced by a call to Schur convexity. Surprisingly often, this simple
translation brings useful dividends.

A Second Tool: Vectors and Their Averages

This proof of the AM-GM inequality could hardly have been more
automatic, but we were perhaps a bit lucky to have known in advance
that x̄ ≺ x. Any application of Schur convexity (or Schur concavity)
must begin with a majorization relation, but we cannot always count on
having the required relation in our inventory. Moreover, there are times
when the definition of majorization is not so easy to check.

For example, to complete our proof of Walker’s inequality (13.3), we
need to show that (a, b, c) ≺ (x, y, z), but since we do not have any infor-
mation on the relative sizes of these coordinates, the direct verification
of the definition is awkward. The next challenge problem provides a
useful tool for dealing with this common situation.

Problem 13.2 (Muirhead Implies Majorization)
Show that Muirhead’s condition implies that α is majorized by β; that

is, show that one has the implication

α ∈ H(β) =⇒ α ≺ β. (13.6)

From Muirhead’s Condition to a Special Representation

Here we should first recall that the notation α ∈ H(β) simply means
that there are nonnegative weights pτ which sum to 1 for which we have

(α1, α2, . . . , αn) =
∑

τ∈Sn

pτ (βτ(1), βτ(2), · · ·βτ(n))

or, in other words, α is a weighted average of (βτ(1), βτ(2), · · ·βτ(n)) as
τ runs over the set Sn of permutations of {1, 2, . . . , n}. If we take just
the jth component of this sum, then we find the identity

αj =
∑

τ∈Sn

pτβτ(j) =
n∑

k=1

{ ∑
τ :τ(j)=k

pτ

}
βk =

n∑
k=1

djkβk, (13.7)

where for brevity we have set

djk =
∑

τ :τ(j)=k

pτ (13.8)

and where the sum (13.8) runs over all permutations τ ∈ Sn for which
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τ(j) = k. We obviously have djk ≥ 0, and we also have the identities

n∑
j=1

djk = 1 and
n∑

k=1

djk = 1 (13.9)

since each of these sums equals the sum of pτ over all Sn.
A matrix D = {djk} of nonnegative real numbers which satisfies the

conditions (13.9) is said to be doubly stochastic because each of its rows
and each of its columns can be viewed as a probability distribution on
the set {1, 2, . . . , n}. Doubly stochastic matrices will be found to provide
a fundamental link between majorization and Muirhead’s condition.

If we regard α and β as column vectors, then in matrix notation the
relation (13.7) says that

α ∈ H(β) =⇒ α = Dβ (13.10)

where D is the doubly stochastic matrix defined by the sums (13.8).
Now, to complete the solution of the first challenge problem we just
need to show that the representation α = Dβ implies α ≺ β.

From the Representation α = Dβ to the Majorization α ≺ β

Since the relations α ∈ H(β) and α ≺ β are unaffected by permuta-
tions of the coordinates of α and β, there is no loss of generality if we
assume that α1 ≥ α2 ≥ · · · ≥ αn and β1 ≥ β2 ≥ · · · ≥ βn. If we then
sum the representation (13.7) over the initial segment 1 ≤ j ≤ k, then
we find the identity

k∑
j=1

αj =
k∑

j=1

n∑
t=1

djtβt =
n∑

t=1

ctβt where ct
def=

k∑
j=1

djt. (13.11)

Since ct is the sum of the first k elements of the tth column of D, the
fact that D is doubly stochastic then gives us

0 ≤ ct ≤ 1 for all 1 ≤ t ≤ n and c1 + c2 + · · · + cn = k. (13.12)

These constraints strongly suggest that the differences

∆k
def=

k∑
j=1

αj −
k∑

j=1

βj =
n∑

t=1

ctβt −
k∑

j=1

βj

are nonpositive for each 1 ≤ k ≤ n, but an honest proof can be elusive.
One must somehow exploit the identity (13.12), and a simple (yet clever)
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way is to write

∆k =
n∑

j=1

cjβj −
k∑

j=1

βj + βk

(
k −

n∑
j=1

cj

)

=
k∑

j=1

(βk − βj)(1 + cj) +
n∑

j=k+1

cj(βj − βk).

It is now evident that ∆k ≤ 0 since for all 1 ≤ j ≤ k we have βj ≥ βk

while for all k < j ≤ n we have βj ≤ βk. It is trivial that ∆n = 0, so
the relations ∆k ≤ 0 for 1 ≤ k < n complete our check of the definition.
We therefore find that α ≺ β, and the solution of the second challenge
problem is complete.

Final Consideration of the Walker Example

In Walker’s Monthly problem (page 192) we have the three identities
x = b + c − a, y = a + c − b, z = a + b − c, so to confirm the relation
(a, b, c) ∈ H[(x, y, z)], one only needs to notice thatab

c

 =
1
2

yz
x

+
1
2

zx
y

 . (13.13)

This tells us that α ≺ β, so the proof of Walker’s inequality (13.3) is
finally complete.

Our solution of the second challenge problem also tells us that the
relation (13.13) implies that (a, b, c) is the image of (x, y, z) under some
doubly stochastic transformation D, and it is sometimes useful to make
such a representation explicit. Here, for example, we only need to express
the identity (13.13) with permutation matrices and then collect terms:ab
c

 =
1
2

0 1 0
0 0 1
1 0 0

xy
z

+
1
2

0 0 1
1 0 0
0 1 0

xy
z

 =

0 1
2

1
2

1
2 0 1

2
1
2

1
2 0

xy
z

 .
A Converse and an Intermediate Challenge

We now face an obvious question: Is is also true that α ≺ β implies
that α ∈ H(β)? In due course, we will find that the answer is affirma-
tive, but full justification of this fact will take several steps. Our next
challenge problem addresses the most subtle of these. The result is due
to the joint efforts of Hardy, Littlewood, and Pólya, and its solution
requires a sustained effort. While working through it, one finds that
majorization acquires new layers of meaning.
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Problem 13.3 (The HLP Representation: α ≺ β ⇒ α = Dβ)

Show that α ≺ β implies that there exists a doubly stochastic matrix
D such that α = Dβ.

Hardy, Littlewood, and Pólya came to this result because of their in-
terests in mathematical inequalities, but, ironically, the concept of ma-
jorization was originally introduced by economists who were interested
in inequalities of a different sort — the inequalities of income which one
finds in our society. Today, the role of majorization in mathematics far
outstrips its role in economics, but consideration of income distribution
can still add to our intuition.

Income Inequality and Robin Hood Transformations

Given a nation A we can gain some understanding of the distribution
of income in that nation by setting α1 equal to the percentage of total
income which is received by the top 10% of income earners, setting α2

equal to the percentage earned by the next 10%, and so on down to α10

which we set equal to the percentage of national income which is earned
by the bottom 10% of earners. If β is defined similarly for nation B,
then the relation α ≺ β has an economic interpretation; it asserts that
income is more unevenly distributed in nation B than in nation A. In
other words, the relation ≺ provides a measure of income inequality.

One benefit of this interpretation is that it suggests how one might
try to prove that α ≺ β implies that α = Dβ for some doubly stochastic
transformation D. To make the income distribution of nation B more
like the income of nation A, one can simply draw on the philosophy
of Robin Hood: one steals from the rich and gives to the poor. The
technical task is to prove that this thievery can be done in scientifically
correct proportions.

The Simplest Case: n = 2

To see how such a Robin Hood transformation would work in the
simplest case, we just take α = (α1, α2) = (ρ + σ, ρ − σ) and take
β = (β1, β2) = (ρ+ τ, ρ− τ). There is no loss of generality in assuming
α1 ≥ α2, β1 ≥ β2, and α1 +α2 = β1 +β2; moreover, no loss in assuming
that α and β have the indicated forms. The immediate benefit of this
choice is that we have α ≺ β if and only if σ ≤ τ .

To find a doubly stochastic matrix D that takes β to α is now just
a question of solving a linear system for the components of D. The
system is overdetermined, but it does have a solution which one can
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confirm simply by checking the identity

Dβ =
(

τ+σ
2τ

τ−σ
2τ

τ−σ
2τ

τ+σ
2τ

)(
ρ+ τ

ρ− τ

)
=
(
ρ+ σ

ρ− σ

)
= α. (13.14)

Thus, the case n = 2 is almost trivial. Nevertheless, it is rich enough
to suggest an interesting approach to the general case. Perhaps one can
show that an n×n doubly stochastic matrix D is the product of a finite
number transformations each one of which changes only two coordinates.

An Inductive Construction

If we take α1 ≥ α2 ≥ · · · ≥ αn and β1 ≥ β2 ≥ · · · ≥ βn where
α ≺ β, then we can consider a proof by induction on the number N of
coordinates j such that αj �= βj . Naturally we can assume that N ≥ 1,
or else we can simply take D to be the identity matrix.

Now, given N ≥ 1, the definition of majorization implies that there
must exist a pair of integers 1 ≤ j < k ≤ n for which we have the bounds

βj > αj , βk < αk, and βs = αs for all j < s < k. (13.15)

Figure 13.1 gives a useful representation of this situation; the essence of
which is that the interval [αk, αj ] is properly contained in the interval
[βk, βj ]. The intervening values αs = βs for j < s < k are omitted from
the figure to minimize clutter, but the figure records several further
values that are important in our construction. In particular, it marks
out ρ = (βj + βk)/2 and τ ≥ 0 which we choose so that βj = ρ + τ

and βk = ρ − τ , and it indicates the value σ which is defined to be the
maximum of |αk − ρ| and |αj − ρ|.

We now take T to be the n×n doubly stochastic transformation which
takes β = (β1, β2, . . . , βn) to β′ = (β′

1, β
′
2, . . . , β

′
n) where

β′
k = βk + σ, β′

j = βj − σ, and β′
t = βt for all t �= j, t �= k.

The matrix representation for T is easily obtained from the matrix given
by our 2×2 example. One just places the coefficients of the 2×2 matrix
at the four coordinates of T which are determined by the j, k rows and
the j, k columns. The rest of the diagonal is then filled with n− 2 ones
and then the remaining places are filled with n2 − n − 2 zeros, so one
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Fig. 13.1. The value ρ is the midpoint of βk = ρ − τ and βj = ρ + τ as well
as the midpoint of αk = ρ − σ and αj = ρ + σ. We have 0 < σ ≤ τ , and the
figure shows the case when |αk − ρ| is larger than |αj − ρ|.

comes at last to a matrix with the shape

1
. . .

1
τ+σ
2τ · · · τ−σ

2τ
...

...
τ−σ
2τ · · · τ+σ

2τ

1
. . .

1


. (13.16)

The Induction Step

We are almost ready to appeal to the induction step, but we still need
to check that α ≺ β′ = Tβ. If we use st(γ) = γ1+γ2+· · ·+γt to simplify
the writing of partial sums, then we have three basic observations:

st(α) ≤ st(β) = st(β′) 1 ≤ t < j (a)

st(α) ≤ st(β′) j ≤ t < k (b)

st(α) ≤ st(β) = st(β′) k ≤ t ≤ n. (c)
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Observations (a) and (c) are immediate, and to justify (b) we only need
to note that αj ≤ β′

j and to recall that αt = β′
t = β for j < t < k.

These bounds confirm that α ≺ β′ and, by the design of T , we know
that the n-tuples α and β′ agree in all but at most N − 1 coordinates.
Hence, by induction, there is a doubly stochastic matrix D′ such that
α = D′β′. Since β′ = Tβ, we therefore have α = D′(Tβ) = (D′T )β, and,
since the product of two doubly stochastic matrices is doubly stochastic,
we see that the matrix D = D′T provides us with the solution to our
challenge problem.

Jensen’s Inequality: Revisited and Refined

The Hardy, Littlewood, Pólya representation α = Dβ is a statement
about averages. Part of its message is that for each j the value αj is an
average of β1, β2, . . . , βn, but the identity α = Dβ actually tells us a bit
more. Specifically, we also know that each column of D must sum to
one, though for the moment it may not be clear how one might use this
additional information.

We do know from our experience with Jensen’s inequality that aver-
ages and convex functions can be combined to provide a large number of
useful inequalities, and it is natural to ask if the representation α = Dβ

might provide something even grander. Issai Schur confirmed this sug-
gestion with a simple calculation which has become a classic part of the
lore of majorization and which provides the final challenge problem of
the chapter.

Problem 13.4 (Schur’s Majorization Inequality)
Show that if φ : (a, b) → R is a convex function, then the function

f : (a, b)n → R defined by the sum

f(x1, x2, . . . , xn) =
n∑

k=1

φ(xk) (13.17)

is Schur convex. Thus, for α, β ∈ (a, b)n with α ≺ β one has
n∑

k=1

φ(αk) ≤
n∑

k=1

φ(βk). (13.18)

Orientation

To familiarize the bound (13.18), one should first note that if we take
α = (x̄, x̄, . . . , x̄) and β = (x1, x2, . . . , xn), then it reduces to Jensen’s
inequality. Also, since the function t �→ 1/t is convex on the set (0,∞),
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we see that Schur’s majorization bound (13.18) also implies Walker’s
inequality (13.3), since we know now that the representation (13.13)
implies (a, b, c) ≺ (x, y, z).

One should further note that if we assume that φ is differentiable, then
the Schur convexity of f follows almost immediately from the differential
criterion (13.4). In particular, by the convexity of φ the derivative φ′

is nondecreasing, so the pairs (xj , xk) and (φ′(xj), φ′(xk)) are similarly
ordered. Consequently, Schur’s differential

(xj − xk)
(
fxj

(x) − fxj
(x)
)

= (xj − xk)(φ′(xj) − φ′(xk))

is nonnegative, and f is Schur convex. Part of our challenge problem is
thus to prove the Schur convexity of f without recourse to differentia-
bility.

A Direct Approach

To prove the bound (13.18) by a direct appeal to convexity of φ,
one needs to find an appropriate average, and the HLP representation
(page 198) is a natural place to look. We are given α ≺ β, so the HLP
representation tells us that there is a doubly stochastic matrixD = {djk}
such that α = Dβ, or, in longhand, for each j = 1, 2 . . . , n we have the
representation

aj =
n∑

k=1

djkβk where dj1 + dj2 · · · + djn = 1.

Now, if we apply Jensen’s inequality to these averages, we have

φ(aj) ≤
n∑

k=1

djkφ(bk),

and, except for the abstract quality of the djk factors, this bound is
better than the one we seek. In particular, if we sum over j and change
the order of summation, we find

n∑
j=1

φ(aj) ≤
n∑

j=1

n∑
k=1

djkφ(bk) =
n∑

k=1

{
φ(bk)

n∑
j=1

djk

}
=

n∑
k=1

φ(bk),

just as we hoped to show.
No one would deny that Schur’s majorization inequality (13.18) is a

very easy result, but one should not be deceived by its simplicity. It
strips away the secret of many otherwise mysterious bounds.



Majorization and Schur Convexity 203

A Day-to-Day Example

The final challenge addresses a typical example of the flood of prob-
lems that one can solve — or invent — with help from the tools devel-
oped in this chapter.

Problem 13.5 Given x, y, z ∈ (0, 1) such that

max(x, y, z) ≤ (x+ y + z)/2 < 1, (13.19)

show that one has the bound(
1 + x

1 − x

)(
1 + y

1 − y

)(
1 + z

1 − z

)
≤
{

1 + 1
2 (x+ y + z)

1 − 1
2 (x+ y + z)

}2

. (13.20)

If this problem were met in another context, it might be quite puzzling.
It is not obvious that the two sides are comparable, and the hypothesis
(13.19) is unlike anything we have seen before. Still, with majorization
in mind, one may not need long to hit on a fruitful plan.

In particular, one might think of exploiting the hypothesis (13.19) by
noting that it gives us (x, y, z) ≺ (s, s, 0) where s = (x+ y+ z)/2. After
this observation, it becomes clear that the bound (13.20) would follow
from Schur’s majorization inequality (13.18) if we could show that

φ(t) = log
(

1 + t

1 − t

)
is a convex function on (0, 1). This is easily confirmed by direct calcu-
lation of the second derivative,

φ′′(t) =
4t

(t2 − 1)2
> 0,

but it is also obvious from the Taylor expansion

φ(t) = 2
(
t+

t3

3
+
t5

5
+ · · ·

)
.

Illustrative Exercises and a Vestige of Theory

Most of the chapter’s exercises are designed to illustrate the appli-
cations of majorization and Schur convexity, but last the two exercises
serve a different purpose. They are given to complete the picture of
majorization theory that is illustrated by Figure 13.2. We have proved
all of the implications pictured there except for the one which we have
labelled as Birkhoff’s Theorem.

This famous theorem asserts that every doubly stochastic matrix is a
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α ∈ H(β) α = Dβ α ≺ β

α = T1T2 · · ·Tnβ

Birkhoff’s
Theorem

(5)

(4) trivial

easy

(1)

easy

(2)

(3)

Hardy,
Littlewood,
Pólya

Fig. 13.2. Sometimes the definition of α ≺ β is easy to check, but perhaps more
often one relies on either the condition α = Dβ or the condition α ∈ H(β) to
prove majorization.

convex combination of permutation matrices, and it closes the loop on
the double implication α ≺ β ⇔ α ∈ H(β) asserting the equivalence
of majorization and Muirhead’s condition. Most day-to-day applica-
tions of majorization do not require Birkhoff’s half of this equivalence,
but Birkhoff’s theorem has applications throughout pure and applied
mathematics. It is sometimes called the fundamental theorem of doubly
stochastic matrices.

Exercises

Exercise 13.1 (Two Doubly Stochastic Giveaways)
Show that for positive x, y, z one has the product bound

xyz ≤
(
x/2 + y/3 + z/6

)(
x/3 + 2y/3

)(
x/6 + 5y/6

)
,

and the awe inspiring reciprocal bound(
2

x+ y

)5

+
(

6
3x+ y + 2z

)5

+
(

6
3x+ 3y + z

)5

≤ 1
x5

+
1
y5

+
1
x5
.

Exercise 13.2 (Finding the Majorization)
Given 1 ≤ k ≤ n and real numbers xj > 0, 1 ≤ j ≤ n, such that

max(x1, x2, . . . , xn) ≤ (x1 + x2 + · · · + xn)/k, show that one has
n∑

j=1

1
1 + xj

≤ (n− k) +
k2

k + x1 + x2 + · · · + xn
. (13.21)
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Exercise 13.3 (A Refinement of the 1-Trick)
Given integers 0 < m < n and real numbers x1, x2, . . . , xn such that

m∑
k=1

xk =
m

n

n∑
k=1

xk + δ (13.22)

where δ ≥ 0, show that the sum of squares has the lower bound

n∑
k=1

x2
k ≥ 1

n

( n∑
k=1

xk

)2

+
δ2n

m(n−m)
. (13.23)

This refinement of the familiar 1-trick lower bound was crucial to the
discovery and proof of the Szeméredi’s Regularity Lemma, which is one
of the cornerstones of modern combinatorial theory.

Exercise 13.4 (Symmetric Polynomials and Schur Concavity)
After observing that the kth elementary symmetric function

ek(x) = ek(x1, x2, . . . , xn) =
∑

1≤i1<i2<···<ik≤n

xi1 xi2 · · · xik

satisfies the elegant “cancellation identity”

∂ek(x)
∂xs

= ek−1(x1, x2, . . . , xs−1, xs+1, . . . , xn), (13.24)

show that ek(x) is Schur concave for x ∈ [0,∞)n.

Exercise 13.5 (Schur Concavity and Measures of Dispersion)
Many methods have been proposed to measure dispersion. Statisti-

cians, for example, often use the sample variance

s(x) =
1

n− 1

n∑
j=1

(xj − x̄)2 where x̄ = (x1 + x2 + · · · + xn)/n

for x ∈ R
n, n ≥ 2, while information theorists rely on the entropy

h(p) = −
n∑

k=1

pk log pk

to measure of dispersion of the probability distribution (p1, p2, . . . , pn)
where pk ≥ 0 and p1 + p2 + · · · + pn = 1. Show that both the sample
variance s(x) and the entropy h(p) are Schur convex.
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Exercise 13.6 (Another Inversion Preserving Form)

If pk ≥ 0, p1 + p2 + · · · + pn = 1, and 0 < α show that

(n2 + 1)α

nα−1
≤

n∑
k=1

(
pk +

1
pk

)α

. (13.25)

Incidentally, way back in Exercise 1.6 we used Cauchy’s inequality to
deal with the case α = 1. Remarkably often majorization helps one to
put a consequence of Cauchy’s inequality into a broader context.

Exercise 13.7 (A Birthday Problem)

Given n random people, what is the probability that two or more of
them have the same birthday? Under the natural (but approximate!)
model where the birthdays are viewed as an independent and uniformly
distributed in the set {1, 2, . . . ., 365}, show that this probability is at
least 1/2 if n ≥ 23. For the more novel bit, show this probability does
not go down if one drops the assumption that the birthdays are uniformly
distributed.

Exercise 13.8 (SDRs and the Marriage Problem)

If S1,S2,. . . ,Sn is a collection of subsets of the set S, we say that the
set R = {x1, x2, . . . , xn} ⊂ S is a system of distinct representatives (or
an SDR) provided that the elements of R are all distinct and xk ∈ Sk

for each 1 ≤ k ≤ n. Prove that a necessary and sufficient condition for
the existence of an SDR is that one has the inequality

|A| ≤
∣∣∣∣ ⋃

j∈A

Sj

∣∣∣∣ for all A ⊂ {1, 2, . . . , n}, (13.26)

where |C| is used as shorthand for the cardinality of a set C.

The quaint term “marriage problem” comes from a 1949 article by
Hermann Weyl who essentially put the issue as follows: given a set of
girls and boys, it is possible for each girl to marry a boy she knows if
and only if each subset of k girls knows at least k boys.

The marriage lemma is one of the most widely applied results in all
of combinatorial theory, and it has many applications to the theory of
inequalities. In particular, it is of great help with the final exercise which
develops Birkhoff’s Theorem.
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Exercise 13.9 (Birkhoff’s Theorem)
Given a permutation σ ∈ Sn, the permutation matrix associated with

σ is the n× n matrix Pσ = (Pσ(j, k) : 1 ≤ j, k ≤ n) with entries

Pσ(j, k) =

{
1 if σ(j) = k

0 otherwise.

Show that if D is an n × n doubly stochastic matrix, then there exist
nonnegative weights {wσ : σ ∈ Sn}, such that∑

σ∈Sn

wσ = 1 and
∑

σ∈Sn

wσPσ = D. (13.27)

In other words, every doubly stochastic matrix is an average of permu-
tation matrices.
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Cancellation and Aggregation

Cancellation is not often discussed as a self-standing topic, yet it is the
source of some of the most important phenomena in mathematics. Given
any sum of real or complex numbers, we can always obtain a bound by
taking the absolute values of the summands, but such a step typically
destroys the more refined elements of our problem. If we hope to take
advantage of cancellation, we must consider summands in groups.

We begin with a classical result of Niels Henrik Abel (1802–1829) who
is equally famous for his proof of the impossibility of solving the general
quintic equation by radicals and for his brief tragic life. Abel’s inequal-
ity is simple and well known, but it is also tremendously productive.
Many applications of cancellation call on its guidance, either directly or
indirectly.

Problem 14.1 (Abel’s Inequality)
Let z1, z2, . . . , zn denote a sequence of complex numbers with partial

sums Sk = z1 + z2 + · · · + zk, 1 ≤ k ≤ n. For each sequence of real
numbers such that a1 ≥ a2 ≥ · · · ≥ an ≥ 0 one has

|a1z1 + a2z2 + · · · + anzn| ≤ a1 max
1≤k≤n

|Sk|. (14.1)

Making Partial Sums More Visible

Part of the wisdom of Abel’s inequality is that it shifts our focus onto
the maximal sequence Mn = max1≤k≤n |Sk|, n = 1, 2, . . ., even when our
primary concern might be for the sums a1z1 +a2z2 + · · ·+anzn. Shortly
we will find that there are subtle techniques for dealing with maximal
sequences, but first we should attend to Abel’s inequality and some of
its consequences.

The challenge is to bound the modulus of a1z1+a2z2+ · · ·+anzn with
help from max1≤k≤n |Sk|, so a natural first step is to use summation by
parts to bring the partial sums Sk = z1 + z2 + · · ·+ zk into view. Thus,

208
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we first note that

a1z1 + a2z2 + · · · + anzn = a1S1 + a2(S2 − S1) + · · · + an(Sn − Sn−1)

= S1(a1 − a2) + S2(a2 − a3) + · · · + Sn−1(an−1 − an) + Snan.

This identity (which is often called Abel’s formula) now leaves little left
for us to do. It shows that |a1z1 + a2z2 + · · · + anzn| is bounded by

|S1|(a1 − a2) + |S2|(a2 − a3) + · · · + |Sn−1|(an−1 − an) + |Sn|an

≤ max
1≤k≤n

|Sk|{(a1 − a2) + (a2 − a3) + · · · + (an−1 − an) + an}

= a1 max
1≤k≤n

|Sk|,

and the (very easy!) proof of Abel’s inequality is complete.

Applications of Abel’s Inequality

Abel’s inequality may be close to trivial, but its consequences can be
surprisingly elegant. Certainly it is the tool of choice when one asks
about the convergence of sums such as

Q =
∞∑

k=1

(−1)k

√
k

or R =
∞∑

k=1

cos(kπ/6)
log (k + 1)

.

For example, in the first case Abel’s inequality gives the succinct bound∣∣∣∣ N∑
k=M

(−1)k

√
k

∣∣∣∣ ≤ 1√
M

for all 1 ≤M ≤ N <∞. (14.2)

This is more than one needs to show that the partial sums of Q form a
Cauchy sequence, so the sum Q does indeed converge.

The second sum R may look harder, but it is almost as easy. Since
the sequence {cos(kπ/6) : k = 1, 2, . . . , } is periodic with period 12, it is
easy to check by brute force that

max
M,N

∣∣∣∣ N∑
k=M

cos(kπ/6)
∣∣∣∣ = 2 +

√
3 = 3.732 . . . , (14.3)

so Abel’s inequality gives us another simple bound∣∣∣∣ N∑
k=M

cos(kπ/6)
log (k + 1)

∣∣∣∣ ≤ 2 +
√

3
log (M + 1)

for all 1 ≤M ≤ N <∞. (14.4)

This bound suffices to show the convergence of R and, moreover, one can
check by numerical calculation that it has very little slack. For example,
the constant 2 +

√
3 cannot be replaced by a smaller one. Without
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foreknowledge of Abel’s inequality, one probably would not guess that
the partial sums of R would have such simple, sharp bounds.

The Origins of Cancellation

Cancellation has widely diverse origins, but bounds for partial sums of
complex exponentials may provide the single most common source. Such
bounds lie behind the two introductory examples (14.2) and (14.3), and,
although these are particularly easy, they still point toward an important
theme.

Linear sums are the simplest exponential sums. Nevertheless, they
can lead to subtle inferences, such as the bound (14.7) for the quadratic
exponential sum which forms the core of our second challenge problem.
To express the linear bound most simply, we use the common shorthand

e(t) def= exp(2πit) and ||t|| = min{|t− k| : k ∈ Z}; (14.5)

so, here, ||t|| denotes the distance from t ∈ R to the nearest integer.
This use of the “double bar” notation is traditional in this context, and
it should not lead to any confusion with the notation for a vector norm.

Problem 14.2 (Linear and Quadratic Exponential Sums)
First, as a useful warm-up, show that for all t ∈ R and all integers M

and N one has the bounds∣∣∣∣ M+N∑
k=M+1

e(kt)
∣∣∣∣ ≤ min

{
N,

1
| sinπt|

}
≤ min

{
N,

1
2||t||

}
, (14.6)

then, for a more engaging challenge, show that for b, c ∈ R and all
integers 0 ≤ M < N one also has a uniform bound for the quadratic
exponential sums,∣∣∣∣ M∑

k=1

e
(
(k2 + bk + c)/N

) ∣∣∣∣ ≤√2N(1 + logN). (14.7)

Linear Exponential Sums and Their Estimates

For a quick orientation, one should note that the bound (14.6) gener-
alizes those which were used in the discussion of Abel’s inequality. For
example, since |Rew| ≤ |w| we can set t = 1/12 in the bound (14.6) to
obtain an estimate for the cosine sum∣∣∣∣ M+N∑

k=M+1

cos(kπ/6)
∣∣∣∣ ≤ 1

sin(π/12)
=

2
√

2√
3 − 1

= 3.8637 . . . .
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This is remarkably close to the best possible bound (14.3), and the
phenomenon it suggests is typical. If one must give a uniform estimate
for a whole ensemble of linear sums, the estimate (14.6) is hard to beat,
though, of course, it can be quite inefficient for many of the individual
sums.

To prove the bound (14.6), one naturally begins with the formula for
geometric summation,

M+N∑
k=M+1

e(kt) = e((M + 1)t)
{

e(Nt) − 1
e(t) − 1

}

and, to bring the sine function into view, one has the factorization

e((M + 1)t)
e(Nt/2)
e(t/2)


(
e(Nt/2) − e(−Nt/2)

)
/2i(

e(t/2) − e(−t/2)
)
/2i

 .

If we identify the bracketed fraction and take the absolute value, we find

∣∣∣∣ M+N∑
k=M+1

e(kt)
∣∣∣∣ = ∣∣∣∣ sin(πNt)

sin(πt)

∣∣∣∣ ≤ 1
| sinπt| .

Finally, to get the second part of the bound (14.6), one only needs to
notice that the graph of t �→ sinπt makes it obvious that 2||t|| ≤ | sinπt|.
An Exploration of Quadratic Exponential Sums

The geometric sum formula provided a ready-made plan for estimation
of the linear sums, but the quadratic exponential sum (14.7) is further
from our experience. Some experimentation seems appropriate before
we try to settle on a plan.

If we consider a generic quadratic polynomial P (k) = αk2 + βk + γ

with α, β, γ ∈ R and k ∈ Z, we need to estimate the sum

SM (P ) def=
M∑

k=1

e(P (k)), (14.8)

or, more precisely, we need to estimate the modulus |SM (P )| or its square
|SM (P )|2. If we try brute force, we will need an n-term analog of the
familiar formula |c1 + c2|2 = |c1|2 + |c2|2 + 2Re {c1c̄2}, and this calls for
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us to compute∣∣∣∣ M∑
n=1

cn

∣∣∣∣2 =
M∑

n=1

|cn|2 +
∑

1≤m<n≤M

{cmc̄n + c̄mcn}

=
M∑

n=1

|cn|2 +
∑

1≤m<n≤M

2Re {cnc̄m}

=
M∑

n=1

|cn|2 + 2Re
M−1∑
h=1

M−h∑
m=1

cm+hc̄m. (14.9)

If we specialize the formula (14.9) by setting cn = e(P (n)), then we
come to the identity

|SM (P )|2 = M + 2Re
M−1∑
h=1

M−h∑
m=1

e ((P (m+ h) − P (m))) . (14.10)

This formula may seem complicated, but if one looks past the clutter,
it suggests an interesting opportunity. The inside sum contains the
exponentials of differences of a quadratic polynomial, and, since such
differences are simply linear polynomials, we can estimate the inside
sum with help from the basic bound (14.6).

The difference P (m+h)−P (m) = 2αmh+αh2 +βh brings us to the
factorization e(P (m + h) − P (m)) = e(αh2 + βh)e(2αmh), so for the
inside sum of the identity (14.10) we have the bound∣∣∣∣M−h∑

m=1

e ((P (m+ h) − P (m)))
∣∣∣∣ ≤ 1

| sin(πhα)| . (14.11)

Thus, for any real quadratic P (k) = αk2 + βk+ γ we have the estimate

|SM (P )|2 ≤M + 2
M−1∑
h=1

1
| sin(πhα)| ≤ N +

N−1∑
h=1

1
||hα|| , (14.12)

where ||αh|| is the distance from αh ∈ R to the nearest integer.
After setting α = 1/N , β = b/N , and γ = c/N in the estimate (14.12),

we find a bound for our target sum∣∣∣∣ M∑
k=1

e
(
(k2 + bk + c)/N

) ∣∣∣∣2 ≤ N +
N−1∑
h=1

1
||h/N ||

≤ N + 2N
∑

1≤h≤N/2

1
h
, (14.13)



Cancellation and Aggregation 213

where in the second step we used the fact that the fraction h/N is closest
to 0 for 1 ≤ h ≤ N/2 while for N/2 < h < N it is closest to 1.

The logarithmic factor in the challenge bound (14.7) is no longer so
mysterious; it is just the result of using the logarithmic bound for the
harmonic series. Since 1 + 1/2 + · · · + 1/m ≤ 1 + logm, we find that
our estimate (14.13) not larger than N + 2N (1 + log(N/2)) which is
bounded by 2N(1 + logN) since (3 − 2 log 2) ≤ 2. After taking square
roots, the solution of the second challenge problem is complete.

The Role of Autocorrelations

The proof of the quadratic bound (14.7) relied on the general relation∣∣∣∣ N∑
n=1

cn

∣∣∣∣2 ≤
N∑

n=1

|cn|2 + 2
N−1∑
h=1

∣∣∣∣N−h∑
m=1

cm+hc̄m

∣∣∣∣ (14.14)

which one obtains from the identity (14.9). This bound suggests that
we focus on the autocorrelation sums which may be defined by setting

ρN (h) =
N−h∑
m=1

cm+hc̄m for all 1 ≤ h < N. (14.15)

If these are small on average, then the sum |c1 + c2 + · · · + cN | should
also be relatively small.

Our proof of the quadratic bound (14.7) exploited this principle with
help from the sharp estimate (14.11) for |ρN (h)|, but such quantita-
tive bounds are often lacking. More commonly we only have qualitative
information with which we hope to answer qualitative questions. For
example, if we assume that |ck| ≤ 1 for all k = 1, 2, . . . and assume that

lim
N→∞

ρN (h)
N

= 0 for all h = 1, 2, . . . , (14.16)

does it follow that |c1 + c2 + · · · + cN |/N → 0 as N → ∞? The answer
to this question is yes, but the bound (14.14) cannot help us here.

Limitations and a Challenge

Although the bound (14.14) is natural and general, it has serious
limitations. In particular, it requires one to sum |ρN (h)| over the full
range 1 ≤ h < N , and consequently its effectiveness is greatly eroded if
the available estimates for |ρN (h)| grow too quickly with h. For example,
in a case where one has hN1/2 ≤ |ρN (h)| ≤ 2hN1/2 the limit conditions
(14.16) are all satisfied, yet the bound provided by (14.14) is useless
since it is larger than N2.
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Such limitations suggest that it could be quite useful to have an analog
of the bound (14.14) where one only uses the autocorrelations ρN (h) for
1 ≤ h ≤ H where H is a fixed integer. In 1931, J.G. van der Corput
provided the world with just such an analog, and it forms the basis
for our next challenge problem. We actually consider a streamlined
version of van der Corput’s which underscores the role of ρN (h), the
autocorrelation sum defined by formula (14.15).

Problem 14.3 (A Qualitative van der Corput Inequality)
Show that for each complex sequence c1, c2, . . . , cN and for each integer

1 ≤ H < N one has the inequality∣∣∣∣ N∑
n=1

cn

∣∣∣∣2 ≤ 4N
H + 1

{ N∑
n=1

|cn|2 +
H∑

h=1

|ρN (h)|
}
. (14.17)

A Question Answered

Before we address the proof of the bound (14.17), we should check
that it does indeed answer the question which was posed on page 213. If
we assume that for each h = 1, 2, . . . , one has ρN (h)/N → 0 as N → ∞
and if we assume that |ck| ≤ 1 for all k, then the bound (14.17) gives us

lim sup
N→∞

1
N2

∣∣∣∣ N∑
n=1

cn

∣∣∣∣2 ≤ 4
H + 1

. (14.18)

Here H is arbitrary, so we do find that |c1 + c2 + · · · + cN |/N → 0 as
N → ∞, just as we hoped we would.

The cost — and the benefit — of van der Corput’s inequality are
tied to the parameter H. It makes the bound (14.17) more complicated
than its naive precursor (14.14), but this is the price one pays for added
flexibility and precision.

Exploration and Proof

The challenge bound (14.17) does not come with any overt hints for
its proof, and, until a concrete idea presents itself, almost all one can
do is explore the algebra of similar expressions. In particular, one might
try to understand more deeply the relationships between a sequence and
shifts of itself.

To discuss such shifts without having to worry about boundary effects,
it is often useful to take the finite sequence c1, c2, . . . , cN and extend it to
one which is doubly infinite by setting ck = 0 for all k ≤ 0 and all k > N .
If we then consider the sequence along with its shifts, some natural



Cancellation and Aggregation 215

relationships start to become evident. For example, if one considers the
original sequence and the first two shifts, we get the picture

· · · c−2 c−1 c0 c1 c2 c3 · · · cN cN+1 cN+2 cN+3 · · ·

· · · c−2 c−1 c0 c1 c2 c3 · · · cN cN+1 cN+2 cN+3 · · ·

· · · c−2 c−1 c0 c1 c2 c3 · · · cN cN+1 cN+2 cN+3 · · ·

and when we sum along the “down-left” diagonals we see that the ex-
tended sequence satisfies the identity

3
N∑

n=1

cn =
N+2∑
n=1

2∑
h=0

cn−h.

In the exactly same way, one can sum along the diagonals of an array
with H + 1 rows to show that the extended sequence satisfies

(H + 1)
N∑

n=1

cn =
N+H∑
n=1

H∑
h=0

cn−h. (14.19)

This identity is not deep, but does achieve two aims: it represents a
generic sum in terms of its shifts and it introduces a free parameter H.

An Application of Cauchy’s Inequality

If we take absolute values and square the sum (14.19), we find

(H + 1)2
∣∣∣∣ N∑
n=1

cn

∣∣∣∣2 =
∣∣∣∣N+H∑

n=1

H∑
h=0

cn−h

∣∣∣∣2≤ {N+H∑
n=1

∣∣∣∣ H∑
h=0

cn−h

∣∣∣∣}2

,

and this invites us to apply Cauchy’s inequality (and the 1-trick) to find

(H + 1)2
∣∣∣∣ N∑
n=1

cn

∣∣∣∣2 ≤ (N +H
)N+H∑

n=1

∣∣∣∣ H∑
h=0

cn−h

∣∣∣∣2. (14.20)

This estimate brings us close to our challenge bound (14.17); we just
need to bring out the role of the autocorrelation sums. When we expand
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the absolute values and attend to the algebra, we find

N+H∑
n=1

∣∣∣∣ H∑
h=0

cn−h

∣∣∣∣2

=
N+H∑
n=1

{ H∑
j=0

cn−j

H∑
k=0

c̄n−k

}

=
N+H∑
n=1

{ H∑
s=0

|cn−s|2 + 2Re
H−1∑
s=0

H∑
t=s+1

cn−sc̄n−t

}

= (H + 1)
N∑

n=1

|cn|2 + 2Re
{H−1∑

s=0

H∑
t=s+1

N+H∑
n=1

cn−sc̄n−t

}

≤ (H + 1)
N∑

n=1

|cn|2 + 2
H−1∑
s=0

H∑
t=s+1

∣∣∣∣N+H∑
n=1

cn−sc̄n−t

∣∣∣∣
= (H + 1)

N∑
n=1

|cn|2 + 2
H∑

h=1

(H + 1 − h)
∣∣∣∣ N∑

n=1

cnc̄n+h

∣∣∣∣.
This estimate, the Cauchy bound (14.20), and the trivial observation
that |z| = |z̄|, now combine to give us∣∣∣∣ N∑

n=1

cn

∣∣∣∣2 ≤ N +H

H + 1

N∑
n=1

|cn|2+2(N +H)
H + 1

H∑
h=1

(
1− h

H + 1

)∣∣∣∣N−h∑
n=1

cn+hc̄n

∣∣∣∣.
This is precisely the inequality given by van der Corput in 1931. When
we reintroduce the autocorrelation sums and bound the coefficients in
the simplest way, we come directly to the inequality (14.17) which was
suggested by our challenge problem.

Cancellation on Average

Many problems pivot on the distinction between phenomena that take
place uniformly and phenomena that only take place on average. For
example, to make good use of Abel’s inequality one needs a uniform
bound on the partial sums |Sk|, 1 ≤ k ≤ n, while van der Corput’s
inequality can be effective even if we only have a good bound for the
average value of |ρN (h)| over the fixed range 1 ≤ h ≤ H.

It is perhaps most common for problems that have a special role for
“cancellation on average” to call on integrals rather than sums. To
illustrate this phenomenon, we first recall that a sequence {ϕk : k ∈ S}
of complex-valued square integrable functions on [0, 1] is said to be an
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orthonormal sequence provided that for all j, k ∈ S one has∫ 1

0

ϕj(x)ϕk(x) dx =

{
0 if j �= k

1 if j = k.
(14.21)

The leading example of such a sequence is ϕk(x) = e(kx) = exp(2πikx),
the sequence of complex exponentials which we have already found to
be at the heart of many cancellation phenomena.

For any finite set A ⊂ S, the orthonormality conditions (14.21) and
direct expansion lead one to the identity∫ 1

0

∣∣∣∣∑
k∈A

ckϕk(x)
∣∣∣∣2 dx =

∑
k∈A

|ck|2. (14.22)

Thus, for Sk(x) = c1ϕ1(x) + c2ϕ2(x) + · · ·+ ckϕk(x), the application of
Schwarz’s inequality gives us∫ 1

0

|Sn(x)| dx ≤
{∫ 1

0

|Sn(x)|2 dx
} 1

2

= (|c1|2 + |c2|2 + · · · + |cn|2) 1
2

and, if we assume that |ck| ≤ 1 for all 1 ≤ k ≤ n, then “on average”
|Sn(x)| is not larger than

√
n. The next challenge problem provides

us with a bound for the maximal sequence Mn(x) = max1≤k≤n |Sk(x)|
which is almost as good.

Problem 14.4 (Rademacher–Menchoff Inequality)
Given that the functions ϕk : [0, 1] → C, 1 ≤ k ≤ n, are orthonormal,

show that the partial sums

Sk(x) = c1ϕ1(x) + c2ϕ2(x) + · · · + ckϕk(x) 1 ≤ k ≤ n

satisfy the maximal inequality∫ 1

0

max
1≤k≤n

|S2
k(x)| dx ≤ log2

2(4n)
n∑

k=1

|ck|2. (14.23)

This is known as the Rademacher–Menchoff inequality, and it is surely
among the most important results in the theory of orthogonal series. For
us, much of the charm of the Rademacher–Menchoff inequality rests in
its proof and, without giving away too much of the story, one may say
in advance that the proof pivots on an artful application of Cauchy’s
inequality. Moreover, the proof encourages one to explore some fun-
damental grouping ideas which have applications in combinatorics, the
theory of algorithms, and many other fields.
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Posing a Combinatorial Question

Our goal is to bound the integral of max1≤k≤n |Sk(x)|2, and our only
tool is the orthogonality identity (14.22). We need to find some way
to exploit the full strength of this identity; in particular, we need to
exploit the fact that it holds for all possible choices of A ⊂ {1, 2, . . . , n}.
This advice is vague, but it still suggests some relevant combinatorial
questions.

For example, is there a “reasonably small” collection B of subsets of
{1, 2, . . . , n} such that each of the initial segments

Ik = {1, 2, . . . , k} 1 ≤ k ≤ n,

can be written as a disjoint union of a “reasonably small” number of
elements of B? An affirmative answer would suggest that we might get
a useful bound on the integral of max1≤k≤n |Sk(x)|2 by using the identity
(14.22) on each element of B.

Our experience with binary representations reminds us that integers
have succinct representations as sums of powers of two, so perhaps we
should seek an analogous representation for the sets {Ik : 1 ≤ k ≤ n}.
For example, we might try to show that each Ik can be written as a
disjoint union of a small number of blocks with length 2s where s may
run between 0 and �log2 n�.

To translate this suggestion into a formal plan, we first let [a, b] denote
the interval of integers {a, a + 1, . . . , b}, and we let B denote the set of
all integer intervals of the form

[r2s + 1, (r + 1)2s] where 0 ≤ r <∞, 0 ≤ s <∞

and where [r2s + 1, (r + 1)2s] ⊂ [1, n].

Now, for any integer k ∈ [1, n], we can easily produce a collection of sets
C(k) ⊂ B such that

[1, k] =
⋃

B∈C(k)

B (14.24)

but, if we exercise some care, we can also keep a tight control on |C(k)|,
the cardinality of the collection C(k).

A Greedy Algorithm

A natural way to construct the desired collection C(k) of binary in-
tervals is to use a greedy algorithm. For example, to represent [1, k], we
first take the largest element B of B that begins with 1, and we remove
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the elements of B from [1, k]. Except when k is a power of 2, the first
step leaves us with a nonempty interval of the form [x, k] where x is
equal to 2s + 1 for some integer s. We then apply the same greedy idea
to [x, k].

On the second step, we find the largest element B in B that begins
with x, and we remove the elements of B from [x, k]. This time, if the
remaining set is nonempty, its first element must be of the form r2s + 1
for some choice of integers r and s. The greedy removal process then
continues until one gets down to the empty set.

If we count the number of steps taken by the greedy algorithm we find
that it is simply the number of 1s in the binary expansion of k. Since
the number of such 1’s is at most �log2(k)�, we have a useful cardinality
bound |C(k)| ≤ �log2(k)� ≤ �log2(n)�.

For a quick confirmation of the construction, one might consider the
interval I27 = [1, 27]. In base 2 one writes 27 as 11011, and we find that
the greedy algorithm provides a representation for I27 as a 4-term union

[1, 27] = {1, 2, . . . , 16} ∪ {17, 18, . . . , 24} ∪ {25, 26} ∪ {27}.

Sums and an Opportunity for Cauchy’s Inequality

We now need to see how our set representations are related to partial
sums such as those in our challenge problem. Still, to keep the combi-
natorial essentials in clear view, we keep ϕj(x) out of the picture for the
moment, and we simply focus on partial sums of complex numbers aj ,
1 ≤ j ≤ n.

From our representation of [1, k] as the union of the sets in C(k), we
have a representation of a generic partial sum,

a1 + a2 + · · · + ak =
∑

B∈C(k)

∑
j∈B

aj .

The benefit of this representation is that the index set for each of the
double sums is reasonably small, so one can apply Cauchy’s inequality
(and the 1-trick) to the outside sum to find

|a1 + a2 + · · · + ak|2 ≤ |C(k)|
∑

B∈C(k)

∣∣∣∣∑
j∈B

aj

∣∣∣∣2. (14.25)

One should now have high hopes of finding a useful estimate for the last
sum; after all, it is a sum of squares, and we have already studied such
sums at considerable length. If we prepare for the worst, we have

|C(k)| ≤ �log2(k)� ≤ �log2(n)� and C(k) ⊂ B,
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so the double sum bound (14.25) gives us

max
1≤k≤n

|a1 + a2 + · · · + ak|2 ≤ �log2(n)�
∑
B∈B

∣∣∣∣∑
j∈B

aj

∣∣∣∣2, (14.26)

and this offers several signs of progress. On the left side one finds a
maximal sequence max1≤k≤n |a1 + a2 + · · · + ak|2 of the kind we hoped
to estimate, while on the right side we find a sum of squares which does
not depend on the index value 1 ≤ k ≤ n. Honest bookkeeping should
carry us the rest of the way.

A Final Accounting

If we simply replace aj by cjϕj(x) in the bound (14.26) and recall our
notation for the partial sums of the ϕj(x), 1 ≤ j ≤ n, then we find

max
1≤k≤n

|Sk(x)|2 ≤ �log2(n)�
∑
B∈B

∣∣∣∣∑
j∈B

cjϕj(x)
∣∣∣∣2.

Now, if we integrate both sides, then we see that the basic orthonormal-
ity conditions (14.22) tell us that∫ 1

0

max
1≤k≤n

∣∣Sk(x)
∣∣2 dx ≤ �log2(n)�

∑
B∈B

∑
j∈B

|cj |2, (14.27)

which is almost our target inequality. For each j ∈ [1, n] there are at
most 1+ �log2(n)� sets B ∈ B such that j ∈ B, so we see that inequality
(14.27) gives us the bound∫ 1

0

max
1≤k≤n

∣∣Sk(x)
∣∣2 dx ≤ �log2(n)�(1 + �log2(n)�)

n∑
j=1

|cj |2. (14.28)

This bound is actually a bit stronger than the one asserted by the
Rademacher–Menchoff inequality (14.23) since for all n ≥ 1 we have
the bound �log2(n)�(1 + �log2(n)�) ≤ (2 + log2 n)2 = log2

2(4n).

Cancellation and Aggregation

The Rademacher–Menchoff inequality and van der Corput’s inequal-
ity provide natural illustrations of the twin themes of cancellation and
aggregation. They are also two of history’s finest examples of pure
“Cauchy–Schwarz technique.” They contribute to one’s effectiveness as
a problem solver, and they provide a fitting end to our class — which is
not over just yet. Here, as in all the earlier chapters, the exercises are
at the heart of the matter.
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Exercises

The first few exercises lean on Abel’s inequality and, among other
things, they provide an analog for increasing multipliers and an ana-
log for integrals. To help with the latter, Exercise 14.2 develops the
slippery “second mean value formula” for integrals. This handy tool is
also used to obtain the so-called van der Corput’s lemmas — two ele-
mentary bounds which turn out to be of fundamental help when facing
cancellation in integrals.

The next few exercises address diverse aspects of cancellation, includ-
ing the exploitation of complete exponential sums, the dyadic trick, and
variations on the Rademacher–Menchoff inequality. Lower bounds for
complex sums are entertained for the first time in Exercise 14.9, and
Exercise 14.10 provides our first example of a domination inequality.

The final exercise develops Selberg’s inequality. At first, it may seem
to be simply a messy variation on Bessel’s inequality, but the added
complexity and generality serve a genuine purpose. The applications
of Selberg’s inequality in combinatorics, number theory, and numerical
analysis could fill a book, perhaps even a proper sequel to the Cauchy
Schwarz Master Class.

Exercise 14.1 (Abel’s Second Inequality)
Show that for each nondecreasing sequence of nonnegative real num-

bers 0 ≤ b1 ≤ b2 · · · ≤ bn one has a bound which differs slightly from
Abel’s first inequality,

|b1z1 + b2z2 + · · · + bnzn| ≤ 2bn max
1≤k≤n

|Sk|. (14.29)

Exercise 14.2 (The Integral Mean Value Formulas)
The first integral mean value formula (IMVF) asserts that for each

continuous f : [a, b] → R and each integrable g : [a, b] → [0,∞), there is
a ξ ∈ [a, b] such that∫ b

a

f(x)g(x) dx = f(ξ)
∫ b

a

g(x) dx, (14.30)

while the second IMVF is the slightly trickier assertion that for each dif-
ferentiable nonincreasing function ψ : [a, b] → (0,∞) and each integrable
function φ : [a, b] → R, there is a ξ0 ∈ [a, b] such that∫ b

a

ψ(x)φ(x) dx = ψ(a)
∫ ξ0

a

φ(x) dx. (14.31)

Prove these formulas. They are both quite handy, and the second one
may be tricker than you might guess.
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Exercise 14.3 (A Integral Analog to Abel’s Inequality)
If f : [a, b] → (0,∞) is a nonincreasing function, then for each inte-

grable function g : [a, b] → R one has the bound∣∣∣∣ ∫ b

a

f(x)g(x) dx
∣∣∣∣ ≤ f(a) sup

a≤y≤b

∣∣∣∣ ∫ y

a

g(x) dx
∣∣∣∣, (14.32)

which is the natural integral analog of Abel’s inequality. Prove the
bound (14.32) and show that it implies∣∣∣∣ ∫ b

a

sinx
x

dx

∣∣∣∣ ≤ 2
a

for all 0 < a < b <∞. (14.33)

Exercise 14.4 (van der Corput on Oscillatory Integrals)
(a) Given a differentiable function θ : [a, b] → R for which the deriva-

tive θ′(·) is monotonic and satisfies θ′(x) ≥ ν > 0 for all x ∈ [a, b], show
that one has the bound ∣∣∣∣ ∫ b

a

eiθ(x) dx

∣∣∣∣ ≤ 4
ν
. (14.34)

(b) Use the bound (14.34) to show that if θ : [a, b] → R is a twice
differentiable function with θ′′(x) ≥ ρ > 0 for all x ∈ [a, b], then∣∣∣∣ ∫ b

a

eiθ(x) dx

∣∣∣∣ ≤ 8√
ρ
. (14.35)

These workhorses lie behind many basic cancellation arguments for in-
tegrals and sums. They also come to us from the same J. G. van der
Corput who gave us our third challenge problem. In fact, these may be
the best known of van der Corput many inequalities, even though they
are notably less subtle than the bound (14.17).

Exercise 14.5 (The “Extend and Conquer” Paradigm)
First show that for integers m and j one has the formula

m−1∑
k=1

e(jk/m) =

{
0 if m does not divide j

m if m does divide j.
(14.36)

This formula tells us that for such a complete sum one either has to-
tal cancellation, or no cancellation at all. There are many remarkable
consequences of this elementary observation.

For example, use it to show that for each prime p ≥ 3, and each pair
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A and B of subsets of Fp = {0, 1, 2, . . . , p− 1}, one has∣∣∣∣∑
j∈A

∑
k∈B

exp
(

2πijk
p

)∣∣∣∣ ≤ p
1
2 |A| 12 |B| 12 . (14.37)

Exercise 14.6 (Another Dyadic Passage)
Sometimes we have an estimate for f(x) and we would like an estimate

of g(x), but we cannot show g(x) ≤ f(x). We may still be able to get a
useful bound on g(x) if we only know that f(x) dominates “half” of g
in the sense that

g(x) − g(x/2) ≤ f(x) for all x ≥ 0.

To be specific, assume such a function is continuous and show that if
f(x) ≤ Ax+B for x ≥ 0, then g satisfies the (only slightly worse) bound
g(x) ≤ A′x+B′ log2(x)+C ′ for x ≥ 1 for appropriate constants A′, B′,
and C ′.

Exercise 14.7 (Rademacher–Menchoff with Weights)
Let ψ1, ψ2, . . . , ψn be real-valued functions for which∫ 1

0

ψ2
j (x) dx = 1 and

∫ 1

0

ψj(x)ψk(x) dx = ajk. (14.38)

Show that if there exists a constant C such that∣∣∣∣ n∑
j=1

n∑
k=1

ajkyjyk

∣∣∣∣ ≤ C

n∑
j=1

y2
j , (14.39)

for any n real numbers y1, y2, . . . , yn, then we also have∫ 1

0

max
1≤k≤n

( k∑
j=1

cjψj(x)
)2

dx ≤ C log2
2(4n)

n∑
k=1

c2k (14.40)

for all real c1, c2, . . . , cn.

Exercise 14.8 (Functions with Geometric Dependence)
If the constant ρ satisfies 0 < ρ < 1 and the sequence of functions

{ψj} satisfies∫ 1

0

ψj(x)ψk(x) dx ≤ ρ|j−k|
(∫ 1

0

ψ2
j (x) dx

) 1
2
(∫ 1

0

ψ2
k(x) dx

) 1
2

for all 1 ≤ j, k ≤ n, then there is a constant M depending only on ρ
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Fig. 14.1. To find a subset of S = {z1, z2, . . . , zn} whose sum has a large
absolute value, why not first consider the just the subsets S(θ) for θ ∈ (0, 2π)?

such that partial sums Sk(x) = ψ1(x) + ψ2(x) + · · ·+ ψk(x), 1 ≤ k ≤ n,

satisfy the maximal inequality

∫ 1

0

max
1≤k≤n

S2
k(x) dx ≤M log2

2(4n)
n∑

k=1

∫ 1

0

ψ2
k(x) dx.

Exercise 14.9 (The Subset Lower Bound)

Show that for complex numbers z1, z2, . . . , zn one has

1
π

n∑
j=1

|zj | ≤ max
I⊂{1,2,...,n}

∣∣∣∣∑
j∈I

zj

∣∣∣∣, (14.41)

and show that the constant factor 1/π cannot be replace by a larger one.
The qualitative message of this cancellation story is that there is always
some subset with a sum whose modulus is a large fraction of the sum
of all the moduli. For a hint one might consider the special subset Sθ

defined in Figure 14.1.

Exercise 14.10 (A Domination Principle)

If the complex numbers an satisfy the bounds |an| ≤ An, 1 ≤ n ≤ N ,
then the complex array {ynr : 1 ≤ n ≤ N, 1 ≤ r ≤ R} satisfies the
bounds

R∑
r=1

R∑
s=1

∣∣∣∣ N∑
n=1

an ynrȳns

∣∣∣∣2 ≤
R∑

r=1

R∑
s=1

∣∣∣∣ N∑
n=1

An ynrȳns

∣∣∣∣2. (14.42)
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Exercise 14.11 (An Inequality of P. Enflo)
Show that for vectors um, 1 ≤ m ≤ M , and vn, 1 ≤ n ≤ N , in the

inner product space C
d one has the bound

M∑
m=1

N∑
n=1

|〈um,vn〉|2

≤
{ M∑

m=1

M∑
µ=1

|〈um,uµ〉|2
}1/2{ N∑

n=1

N∑
ν=1

|〈vn,vν〉|2
}1/2

.

Exercise 14.12 (Selberg’s Inequality)
Prove that if x and y1,y2, . . . ,yn are elements of a real or complex

inner product space, then we have
n∑

j=1

|〈x,yj〉|2∑n
k=1 |〈yj ,yk〉| ≤ 〈x,x〉. (14.43)

Selberg’s inequality can sometimes be used as a replacement for the
orthonormality identity (14.22) or Bessel’s inequality (4.29) when the
elements y1,y2, . . . ,yn are only approximately orthogonal. Techniques
for relaxing the requirements of orthonormality have important conse-
quences throughout probability, number theory, and combinatorics.



Solutions to the Exercises

Chapter 1: Starting with Cauchy

Solution for Exercise 1.1. The first inequality follows by applying
Cauchy’s inequality to {ak} and {bk} where one takes bk = 1 for all
k. In isolation, this “1-trick” is almost trivial, but it is remarkably
general: every sum can be estimated in this way. The art is rather one
of anticipating when the resulting estimate might prove to be helpful.

For the second problem we apply Cauchy’s inequality to the product of
{a1/3

k } and {a2/3
k }. This is a simple instance of the “splitting trick” where

one estimates the sum of the ak by Cauchy’s inequality after writing ak

as a product ak = bkck. Almost every chapter will make some use of the
splitting trick, and some of these applications are remarkably subtle.

Solution for Exercise 1.2. This is another case for the splitting
trick; one just applies Cauchy’s inequality to the sum

1 ≤
n∑

j=1

{
p

1
2
j a

1
2
j

}{
p

1
2
j b

1
2
j

}
.

Solution for Exercise 1.3. The first inequality just requires two
applications of Cauchy’s inequality according to the grouping ak(bkck),
but one might wander around a bit before hitting on the proof of second
inequality.

One key to the proof of the second bound comes from noting that
when we substitute ak = bk = ck = 1 we get the lackluster bound
n2 ≤ n3. This suggests the inequality is not particularly strong, and it
encourages us to look for a cheap shot. One might then think to deal

226
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with the ck factors by introducing

ĉk = c2k/(c
2
1 + c22 + · · · + c2n),

so the target inequality would follow if we could show

n∑
k=1

|akbk ĉk| ≤
( n∑

k=1

a2
k

) 1
2
( n∑

k=1

b2k

) 1
2

;

but this bound is an immediate consequence of the usual Cauchy in-
equality and the trivial observation that |ĉk| ≤ 1.

Solution for Exercise 1.4. For part (a) we note by Cauchy’s in-
equality and the 1-trick that we have

S2 ≤ (12 + 12 + 12
)( x+ y

x+ y + z
+

x+ z

x+ y + z
+

y + z

x+ y + z

)
= 6.

For part (b) we apply Cauchy’s inequality to the splitting

x+ y + z =
x√
y + z

√
y + z +

y√
x+ z

√
x+ z +

z√
x+ y

√
x+ y.

Solution for Exercise 1.5. From Cauchy’s inequality, the splitting
pk = p

1/2
k p

1/2
k , and the identity cos2(x) = {1 + cos(2x)}/2, one finds

g2(x) ≤
n∑

k=1

pk

n∑
k=1

pk cos2(βkx)

=
n∑

k=1

pk
1
2
(1 + cos(2βkx)) = {1 + g(2x)}/2.

Solution for Exercise 1.6. We first expand the sum

n∑
k=1

(pk + 1/pk)2 = 2n+
n∑

k=1

p2
k +

n∑
k=1

1/p2
k, (14.44)

and then we estimate the last two terms separately. By the 1-trick and
the hypothesis p1 + p2 + · · · + pn = 1, the first of these two sums is at
least 1/n. To estimate the last sum in (14.44), we first apply Cauchy’s
inequality to the sum of the products 1 =

√
pk · (1/√pk) to get

n2 ≤
n∑

k=1

1/pk,
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and to complete the proof we apply Cauchy’s inequality to the sum of
the products 1/pk = 1 · 1/pk to get

n3 ≤
n∑

k=1

1/p2
k.

There are several other solutions to this problem, but this one does an
especially nice job of illustrating how much can be achieved with just
Cauchy’s inequality and the 1-trick.

Solution for Exercise 1.7. The natural candidate for the inner
product is given by 〈x,y〉 = 5x1y1 + x1y2 + x2y1 + 3y2

2 where one has
set x = (x1, x2) and y = (y1, y2). All of the required inner product
properties are immediate, except perhaps for the first two. For these we
just need to note that the polynomial 5z2 +3z+3 = 0 has no real roots.

More generally, if ajk, 1 ≤ j, k ≤ n, is a square array of real numbers
that is symmetric in the sense that ajk = akj for all 1 ≤ j, k ≤ n, then
the sum

〈x,y〉 =
n∑

j=1

n∑
k=1

ajkxjyk (14.45)

provides a candidate for inner products on R
n. The candidate (14.45)

yields a legitimate inner product on R
n if (a) the polynomial defined by

Q(x1, x2, . . . , xn) =
∑n

j=1

∑n
k=1 ajkxjxk is nonnegative for all vectors

(x1, x2, . . . , xn) ∈ R
n and if (b) Q(x1, x2, . . . , xn) = 0 only when xj = 0

for all 1 ≤ j ≤ n. A polynomial with these two properties is called a
positive definite quadratic form, and each such form provides us with
potentially useful of Cauchy’s inequality.

Solution for Exercise 1.8. In each case, one applies Cauchy’s in-
equality, and then estimates the resulting sum. In part (a) one uses the
sum for a geometric progression: 1 + x2 + x4 + x6 + · · · = 1/(1 − x2),
while for part (b), one can use Euler’s famous formula

∞∑
k=1

1
k2

=
π2

6
= 1.6449 . . . < 2,

or, alternatively, one can use the nice telescoping argument,

n∑
k=1

1
k2

≤ 1 +
n∑

k=2

1
k(k − 1)

= 1 +
n∑

k=2

(
1

k − 1
− 1
k

)
= 2 − 1

n
.
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For part (c) one has the integral comparison

1
n+ k

<

∫ n+k

n+k−1

dx

x
so

n∑
k=1

1
n+ k

<

∫ 2n

n

dx

x
= log 2.

Finally, for part (d) one uses the explicit sum for the squares of the
binomial coefficients

n∑
k=0

(
n

k

)2

=
n∑

k=0

(
n

k

)(
n

n− k

)
=
(

2n
n

)
,

which one can prove by a classic counting argument. Specifically, one
considers the number of ways to form a committee of n people from a
group of n men and n women. The middle sum first counts the number
of committees with k men and then sums over 0 ≤ k ≤ n, while the last
term directly counts the number of ways to choose n people out of 2n.

Solution for Exercise 1.9. If T denotes the left-hand side of the
target inequality, then by expansion one gets

T = 2
n∑

j=1

a2
j + 4

∑
(j,k)∈S

ajak,

where S is the set of all (j, k) such that 1 ≤ j < k ≤ n with j + k even.
From the elementary bound 2ajak ≤ a2

j + a2
k, one then finds

T ≤ 2
n∑

j=1

a2
j + 2

∑
(j,k)∈S

(a2
j + a2

k) ≤ 2
n∑

j=1

a2
j + 2

n∑
s=1

nsa
2
s,

where ns denotes the number of pairs (j, k) in S with j = s or k = s.
One has ns ≤ �(n− 1)/2�, so

T ≤ (2 + 2�(n− 1)/2�) n∑
j=1

a2
j ≤ (n+ 2)

n∑
j=1

a2
j .

Solution for Exercise 1.10. If we apply Cauchy’s inequality to the
splitting |cjk| 12 |xj ||cjk| 12 |yk| we find∣∣∣∣∑

j,k

cjkxjyk

∣∣∣∣ ≤ (∑
j,k

|cjk||xj |2
) 1

2

·
(∑

j,k

|cjk||yk|2
) 1

2

=
( m∑

j=1

{ n∑
k=1

|cjk|
}
|xj |2

) 1
2

·
( n∑

k=1

{ m∑
j=1

|cjk|
}
|yk|2

) 1
2

,

and the sums in the braces are bounded by C and R respectively.
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Solution for Exercise 1.11. Only a few alterations are needed in
Schwarz’s original proof (page 11), but the visual impression does shift.
First, we apply the hypothesis and the definition of p(t) to find

0 ≤ p(t) = 〈v,v〉 + 2t〈v,w〉 + t2〈w,w〉.
The discriminant of p(t) is D = B2 − AC = 〈v,w〉2 − 〈v,v〉〈w,w〉,
and we deduce that D ≤ 0, or else p(t) would have two real roots (and
therefore p(t) would be strictly negative for some value of t).

Solution for Exercise 1.12. We define a new inner product space
(V [n], [·, ·]) by setting V [n] = {(v1,v2, . . . ,vn) : vj ∈ V, 1 ≤ j ≤ n}
and by defining [v,w] =

∑n
j=1〈xj ,yj〉 where v = (v1,v2, . . . ,vn) and

where w = (w1,w2, . . . ,wn). After checking that [·, ·] is an honest inner
product, one sees that the bound (1.24) is just the Cauchy–Schwarz
inequality for the inner product [·, ·].
Solution for Exercise 1.13. If we view {xjk : 1 ≤ j ≤ m, 1 ≤ k ≤ n}
as a vector of length mn then Cauchy’s inequality and the one-trick
splitting xjk = xjk · 1 imply the general bound m∑

j=1

n∑
k=1

xjk

2

≤ mn

m∑
j=1

n∑
k=1

x2
jk. (14.46)

We apply this bound to xjk = ajk − rj/n− ck/m where

rj =
n∑

k=1

ajk, ck =
m∑

j=1

ajk, and if we set T =
m∑

j=1

n∑
k=1

ajk,

then the left side of the bound (14.46) works out to be T 2, and the right
side works out to be

mn

m∑
j=1

n∑
k=1

a2
jk −m

m∑
j=1

r2j − n

n∑
k=1

c2k + 2T 2,

so the Cauchy bound (14.46) reduces to our target inequality.
To characterize the case of equality, we note that equality holds in the

bound (14.46) if and only if xjk is equal to a constant c in which case one
can take αj = c+ rj and βk = ck to provide the required representation
for ajk. This result is Theorem 1 of van Dam (1998) where one also finds
a proof which uses matrix theory as well as some instructive corollaries.

Solution for Exercise 1.14. More often than one might like to
admit, tidiness is important in problem solving, and here the hygienic
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use of parentheses can make the difference between success and failure.
One just carefully computes

∑
1≤i,j,k≤n

a
1
2
ij b

1
2
jk c

1
2
ki =

∑
1≤i,k≤n

c
1
2
ki

{ n∑
j=1

a
1
2
ij b

1
2
jk

}

≤
∑

1≤i,k≤n

c
1
2
ki

{ n∑
j=1

aij

} 1
2
{ n∑

j=1

bjk

} 1
2

=
n∑

k=1

{ n∑
j=1

bjk

} 1
2
( n∑

i=1

c
1
2
ki

{ n∑
j=1

aij

} 1
2
)
,

which is bounded in turn by

n∑
k=1

{ n∑
j=1

bjk

} 1
2
{ n∑

i=1

cki

} 1
2
{ ∑

1≤i,j≤n

aij

} 1
2

=
{ ∑

1≤i,j≤n

aij

} 1
2
{ n∑

k=1

( n∑
j=1

bjk

) 1
2
( n∑

i=1

cki

) 1
2
}

≤
{ ∑

1≤i,j≤n

aij

} 1
2
{ ∑

1≤j,k≤n

bjk

} 1
2
{ ∑

1≤k,i≤n

cki

} 1
2

.

This proof of the triple product bound (1.25) follows Tiskin (2002).
Incidentally, the corollary (1.26) was posed as a problem on the 33rd
International Mathematical Olympiad (Moscow, 1992). More recently,
Hammer and Shen (2002) note that the corollary may be obtained as an
application of Kolmogorov complexity. George (1984, p. 243) outlines a
proof of continuous Loomis–Whitney inequality, a result which can be
used to give a third proof of the discrete bound (1.26).

Solution for Exercise 1.15. If we differentiate the identities (1.27)
and (1.28) we find for all θ ∈ Θ that∑

k∈D

pθ(k; θ) = 0 and
∑
k∈D

g(k)pθ(k; θ) = 1.

Consequently, we have the identity

1 =
∑
k∈D

(g(k) − θ)pθ(k; θ)

=
∑
k∈D

{
(g(k) − θ)p(k; θ)

1
2

}{(
pθ(k; θ)

/
p(k; θ)

)
p(k; θ)

1
2

}
,
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which yields the Cramér–Rao inequality (1.29) when we apply Cauchy’s
inequality to this sum of bracketed terms.

The derivation of the Cramér–Rao inequality may be the most signifi-
cant application of the 1-trick in all of applied mathematics. It has been
repeated in hundreds of papers and books.

Chapter 2: The AM-GM Inequality

Solution for Exercise 2.1. For the general step, consider the sum
Sk+1 = a1b2 + a2b2 + · · · + a2k+1b2k+1 = S′

k+1 + S′′
k+1 where S′

k+1 is
the sum of the first 2k products and S′′

k+1 is the sum of the second 2k

products. By induction, apply the 2k-version of Cauchy’s inequality to
S′

k+1 and S′′
k+1 to get S′

k+1 ≤ A′B′ and S′
k+1 ≤ A′′B′′ where we set

A′ = (a2
1 + · · ·+a2

2k)
1
2 , A′′ = (a2

2k+1 + · · ·+a2
2k+1)

1
2 , and where we define

B′ and B′′ analogously. The 2-version of Cauchy’s inequality implies

Sk+1 ≤ A′B′ +A′′B′′ ≤ (A′2 +A′′2)
1
2 (B′2 +B′′2)

1
2 ,

and this is the 2k+1-version of Cauchy’s inequality. Thus, induction gives
us Cauchy’s inequality for all 2k, k = 1, 2, . . . . Finally, to get Cauchy’s
inequality for n ≤ 2k we just set aj = bj = 0 for n < j ≤ 2k and apply
the 2k-version.

Solution for Exercise 2.2. To prove the bound (2.23) by induction,
first note that the case n = 1 is trivial. Next, take the bound for general
n and multiply it by 1 + x to get 1 + (n+ 1)x+ x2 ≤ (1 + x)n+1. This
is stronger than the bound (2.23) in the case n+ 1, so the bound (2.23)
holds for all n = 1, 2, . . . by induction. To show 1 +x ≤ ex, one replaces
x by x/n in Bernoulli’s inequality and lets n go to infinity. Finally, to
prove the relation (2.25), one sets f(x) = (1 + x)p − (1 + px) then notes
that f(0) = 0, f ′(x) ≥ 0 for x ≥ 0, and f ′(x) ≤ 0 for −1 < x ≤ 0, so
minx∈[−1,∞) f(x) = f(0) = 0.

Solution for Exercise 2.3. To prove the bound (2.26) one takes
p1 = α/(α+ β), p2 = β/(α+ β), a1 = xα+β , and a2 = yα+β and applies
the AM-GM bound (2.7). To get the timely bound we specialize (2.26)
twice, once with α = 2004 and β = 1 and once with α = 1 and β = 2004.
We then sum the two resulting bounds.

Solution for Exercise 2.4. The target inequality is equivalent to
a2bc+ ab2c+ abc2 ≤ a4 + b4 + c4, a pure power bound. By the AM-GM
inequality, we have a2bc = (a3)2/3(b3)1/3(c3)1/3 ≤ 2a3/3 + b3/3 + c3/3,
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and analogous bounds hold for ab2c and abc2. The sum of these bounds
yields the target inequality.

Equality holds in the target inequality if and only equality holds for
both of our applications of the AM-GM bound. Thus, equality holds
in the target bound if and only if a = b = c. Incidentally, three other
solutions of this problem are available on website of the Canadian Math-
ematical Association.

Solution for Exercise 2.5. For all j and k, the AM-GM inequality
gives us (xj+kyj+k)

1
2 ≤ 1

2 (xjyk + xkyj). Setting k = n − 1 − j and
summing over 0 ≤ j < n yields the bound

n(xy)(n−1)/2 ≤ xn−1 + xn−1y + · · · + xyn−2 + yn−1 =
xn − yn

x− y
.

Solution for Exercise 2.6. Since α+β = π we have γ = α and δ = β

so the triangles ∆(ABD) and ∆(DBC) are similar. By proportionality
of the corresponding sides we have h : a = b : h, and we find h2 = ab,
just as required.

Solution for Exercise 2.7. The product (1+x)(1+y)(1+z) expands
as 1 + x+ y + z + xy + xz + yz + xyz and the AM-GM bound gives us

(x+ y + z)/3 ≥ xyz ≥ 1 and

(xy + xz + yz)/3 ≥ {(xy)(xz)(yz)}1/3 = (xyz)2/3 ≥ 1,

so the bound (2.28) follows by summing. With persistence, the same
idea can be used to show that for all nonnegative ak, 1 ≤ k ≤ n, one
has the inference

1 ≤
n∏

k=1

ak =⇒ 2n ≤
n∏

k=1

(1 + ak). (14.47)

Solution for Exercise 2.8. The AM-GM inequality tells us

{a1x1a2x2 · · · anxn}1/n ≤ a1x1 + a2x2 + · · · + anxn

n
,

and this yields a relation between the critical quantities of P1 and P2,

x1x2 · · ·xn ≤ (a1x1 + a2x2 + · · · + anxn)n

a1a2 · · · annn
.

We have equality here if and only if a1x1 = a2x2 = · · · = anxn, and
nothing more is needed to confirm the stated optimality criterion.
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Solution for Exercise 2.9. By the AM-GM inequality, one has

2{a2b2c2}1/3 = {(2ab)(2ac)(2bc)}1/3 ≤ 2ab+ 2ac+ 2bc
3

= A/3,

and this gives the bound (2.9). Finally, equality holds here if and only
if ab = ac = bc. This is possible if and only if a = b = c, so the box of
maximum volume for a given surface area is indeed the cube.

Solution for Exercise 2.10. If we set p = n and y = x − 1 in
Bernoulli’s inequality, we find that y(n−yn−1) ≤ n−1 and equality holds
only for y = 1. If we now choose y such that yn−1 = an/ā where ā =
(a1+a2+· · ·+an)/n, then we have n−yn−1 = (a1+a2+· · ·+an−1)/ā, and
easy arithmetic takes one the rest of the way to the recursion formula.

As a sidebar, one should note that the recursion also follows from
the weighted AM-GM inequality x1/ny(n−1)/n ≤ 1

nx + n−1
n y by taking

x = an and y = (a1 + a2 + · · · + an−1)/(n− 1).

Solution for Exercise 2.11. Following the hint, one finds from the
AM-GM inequality that

(a1a2 · · · an)1/n + (b1b2 · · · bn)1/n{
(a1 + b1)(a2 + b2) · · · (an + bn)

}1/n

=
n∏

j=1

{
aj

aj + bj

}1/n

+
n∏

j=1

{
bj

aj + bj

}1/n

≤ 1
n

n∑
j=1

aj

aj + bj
+

1
n

n∑
j=1

bj
aj + bj

= 1,

and the proof is complete. The division device is decisive here, and as
the introduction to the exercise suggests, this is not an isolated instance.

Solution for Exercise 2.12 As Figure 2.4 suggests, we have the
bound f(x) = x/ex−1 ≤ 1 for all x ≥ 0. In fact, we used this bound long
ago (page 24); it was the key to Pólya’s proof of the AM-GM inequality.
If we now write ck = ak/A, then we have c1 + c2 + · · · + cn = n, and
from this fact we see that for each k we have

n∏
j=1

cj = ck

n∏
j:j 
=k

cj ≤ ck

n∏
j:j 
=k

ecj−1 = cke
1−ck = ck/e

ck−1 = f(ck).

Since ε = (A−G)/A and ck = ak/A we have for all k = 1, 2, . . . , n that

(1 − ε)n =
a1a2 · · · an

An
≤ ak/A

exp(ak/A− 1)
= f(ak/A).
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Now the bounds (2.33) are immediate from the definition of ρ−, ρ+,
together with the fact that f is strictly increasing on [0, 1) and strictly
decreasing on (1,∞).

This solution was given by Gabor Szegő in 1914 in response to a
question posed by George Pólya. It is among the earliest of their many
joint efforts; at the time, Szegő was just 19.

Solution for Exercise 2.13. In general one has |w| ≥ |Rew| and
Re (w + z) = Re (w) + Re (z), so from Re zj = ρj cos θj we find

|z1 + z2 + · · · + zn| ≥ |Re (z1 + z2 + · · · + zn)|
= |z1| cos θ1 + |z2| cos θ2 + · · · + |zn| cos θn

≥ (|z1| + |z2| + · · · + |zn|
)
cosψ

≥ n
(|z1| |z2| · · · |zn|

)1/n cosψ,

where we first used the fact that cosine is monotone decreasing on [0, π/2]
and then we applied the AM-GM inequality to the nonnegative real
numbers |zj |, j = 1, 2, . . . , n. This exercise is based on Wilf (1963).
Mitrinović (1970) notes that versions of this bound may be traced back
at least to Petrovitch (1917). There are also informative generalizations
given by Diaz and Metcalf (1966).

Solution for Exercise 2.14. Take x ≥ 0 and y ≥ 0 and consider the
hypothesis H(n), ((x + y)/2)n ≤ (xn + yn)/2. To prove H(n + 1) we
note by H(n) that(

x+ y

2

)n+1

=
(
x+ y

2

)(
x+ y

2

)n

≤
(
x+ y

2

)
xn + yn

2

=
xn+1 + yn+1 + xyn + yxn

4

=
xn+1 + yn+1

2
− (x− y)(xn − yn)

4
≤ xn+1 + yn+1

2
.

Induction then confirms the validity of H(n) for all n ≥ 1.
Now by H(n) applied twice we find{

x1 + x2 + x3 + x4

4

}n

≤ 1
2

{(
x1 + x2

2

)n

+
(
x3 + x4

2

)n}
≤ 1

2

{
xn

1 + xn
2

2
+
xn

3 + xn
4

2

}
=
xn

1 + xn
2 + xn

3 + xn
4

4
,
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and this argument can be repeated to show that for each k and each set
of 2k nonnegative real numbers x1, x2, . . . , x2k we have{

x1 + x2 + · · · + x2k

2k

}n

≤ xn
1 + xn

2 + · · · + xn
2k

2k
. (14.48)

Cauchy’s trick of padding a sequence of length m with extra terms to
get a sequence of length 2k now runs into difficulty, so a new twist is
needed. One idea that works is to use a full backwards induction.

Specifically, we now let Hnew(m) denote the hypothesis that{
x1 + x2 + · · · + xm

m

}n

≤ xn
1 + xn

2 + · · · + xn
m

m
(14.49)

for any set of m nonnegative real numbers x1, x2, . . . , xm. We already
know that Hnew(m) is valid when m is any power of two, so to prove
that Hnew(m) is valid for all m = 1, 2, . . . we just need to show that for
m ≥ 2, the hypothesis Hnew(m) implies Hnew(m− 1).

Given m − 1 nonnegative reals S = {x1, x2, . . . , xm−1}, we introduce
a new variable y by setting y = (x1 + x2 + · · · + xm−1)/(m − 1). Since
y is equal to (x1 + x2 + · · · + xm−1 + y)/m, we see that when we apply
H(m) to the m-element set S ∪ {y}, we obtain the bound

yn ≤ xn
1 + xn

2 + · · · + xn
m−1 + yn

m
,

and, when we clear yn to the left side, we find

yn ≤ xn
1 + xn

2 + · · · + xn
m−1

m− 1
.

This inequality is precisely what one needed to establish the validity of
Hnew(m− 1), so the solution the problem is complete. This solution is
guided by the one given by Shklarsky, Chentzov, and Yaglom (1993, pp.
391–392).

Chapter 3: Lagrange’s Identity and Minkowski’s Conjecture

Solution for Exercise 3.1. From the four geometric tautologies,

cosα =
a1√
a2
1 + a2

2

, sinα =
a2√
a2
1 + a2

2

,

cosβ =
b1√
b21 + b22

, sinβ =
−b2√
b21 + b22

,
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and the two trigonometric identities,

cos(α+ β) = cosα cosβ − sinα sinβ =
a1b1 + a2b2√
b21 + b22

√
a2
1 + a2

2

,

sin(α+ β) = sinα cosβ + cosα sinβ =
a2b1 − a1b2√
b21 + b22

√
a2
1 + a2

2

,

we find the Pythagorean path to the identity of Diophantus:

1 = cos2(α+ β) + sin2(α+ β) =
(a1b1 + a2b2)2 + (a1b2 − a2b1)2

(b21 + b22)(a
2
1 + a2

2)
.

Solution for Exercise 3.2 Here we just prove the identity of Dio-
phantus since Brahmagupta’s identity is analogous. As expected, one
first factors. What is amusing is how one then recombines twice:

(x2
1 + x2

2)(y
2
1 + y2

2) = (x1 − ix2)(x1 + ix2)(y1 − iy2)(y1 + iy2)

=
{
(x1 − ix2)(y1 + iy2)

}{
(x1 + ix2)(y1 − iy2)

}
.

The first factor is
{
(x1y1 +x2y2)+ i(x1y2−x2y1)

}
and the second factor

is its conjugate
{
(x1y1 + x2y2)− i(x1y2 − x2y1)

}
so these have product

(x1y1 +x2y2)2 + (x1y2 −x2y1)2, a computation which reveals the power
of the factorization a2 + b2 = (a+ ib)(a− ib) in a most remarkable way.

Solution for Exercise 3.3. On can pass from the discrete identity
to a continuous version by appealing to the definition of the Riemann
integral as a limit of sums, but it is both easier and more informative to
consider the anti-symmetric form s(x, y) = f(x)g(y) − g(x)f(y) and to
integrate s2(x, y) over the square [a, b]2. In this way one finds

1
2

∫ b

a

∫ b

a

{
f(x)g(y) − f(y)g(x)

}2

dxdy

=
∫ b

a

f2(x) dx
∫ b

a

g2(x) dx−
{∫ b

a

f(x)g(x) dx
}2

, (14.50)

provided that that all of the indicated integrals are well defined. In-
cidentally, anti-symmetric forms often merit exploration. Surprisingly
often, they lead us to useful algebraic relations.

Solution for Exercise 3.4. The two sides of the proposed inequality
can be written respectively as

A =
{
x

n∑
j=1

aj

n∑
k=1

bk + (1 − x)
n∑

j=1

ajbj

}2
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and as

B =
{
x

( n∑
j=1

aj

)2

+ (1 − x)
n∑

j=1

a2
j

}{
x

( n∑
j=1

bj

)2

+ (1 − x)
n∑

j=1

b2j

}
from which one finds that B −A can be written as the sum of the term

x(1 − x)
{ n∑

j=1

(
bj

n∑
k=1

ak − aj

n∑
k=1

bk

)2}
and the term

(1 − x)2
{ n∑

j=1

a2
j

n∑
k=1

b2k −
n∑

j=1

ajbj

}2

.

The first term is a sum of squares and the second term is nonnegative
by Cauchy’s inequality. Thus, B − A is the sum of two nonnegative
terms, and the solution is complete. The inequality of the problem is
from Wagner (1965) and the solution is from Flor (1965).

Solution for Exercise 3.5. Since f is nonnegative and nondecreas-
ing one has the integral inequality

0 ≤
∫ 1

0

∫ 1

0

f(x)f(y)(y − x)
(
f(x) − f(y)

)
dxdy

since the integrand is nonnegative. One may now complete the proof
by simple expansion. Incidentally, this way of exploiting monotonicity
is exceptionally rich, and several variations on this theme are explored
at length in Chapter 5.

Solution for Exercise 3.6. One expands and then factors

Dn+1 −Dn =
n∑

j=1

ajbj + nan+1bn+1 − bn+1

n∑
j=1

aj − an+1

n∑
j=1

bj

=
n∑

j=1

aj(bj − bn+1) + an+1

n∑
j=1

(bn+1 − bj)

=
n∑

j=1

(an+1 − aj)(bn+1 − bj) ≥ 0.

According to Mitrinović (1970, p. 206) this elegant observation is due
to R.R. Janić. The interaction between order relations and quadratic
inequalities is developed more extensively in Chapter 5.

Solution for Exercise 3.7. In the suggested shorthand, Lagrange’s
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identity can be written as

〈a,a〉〈b,b〉 − 〈a,b〉2 =
∑
j<k

∣∣∣∣aj bj
ak bk

∣∣∣∣2
and if we fix b and polarize a with s we find

〈a, s〉〈b,b〉 − 〈a,b〉〈s,b〉 =
∑
j<k

∣∣∣∣aj bj
ak bk

∣∣∣∣ ∣∣∣∣sj bj
sk bk

∣∣∣∣ .
Now, if we fix a and s and polarize b with t we find

〈a, s〉〈b, t〉 − 〈a, t〉〈s,b〉 =
∑
j<k

∣∣∣∣aj bj
ak bk

∣∣∣∣ ∣∣∣∣sj tj
sk tk

∣∣∣∣ ,
which is the shorthand version of the target identity.

Solution for Exercise 3.8
After expanding the two products, on sees that the difference of the

left-hand side and the right-hand side of Milne’s inequality (3.17) can
be written as a symmetric sum∑

1≤i<j≤n

(
aibj + ajbi − (ajbj)(ai + bi)

(aj + bj)
− (aibi)(aj + bj)

(ai + bi)

)
.

When each summand is put over the denominator (ai + bi)(aj + bj), the
numerator may be simplified, and one finds that this difference coincides
with the definition (3.16) of R.

Chapter 4 On Geometry and Sums of Squares

Solution for Exercise 4.1. Each case follows by an application of
the triangle inequality to an appropriate sum. Those sums are:

(a) (x+ y + z, x+ y + z)) = (x, y) + (y, z) + (z, x)
(b) (y, z) = (x, x) + (y − x, z − x) and
(c) (2, 2, 2) ≤ (x+ 1/x, y+ 1/y, z + 1/z) = (x, y, z) + (1/x, 1/y, 1/z).

Solution for Exercise 4.2. The derivative on the left is equal
to 〈∇f(x),u〉 which is bounded by ‖∇f(x)‖‖u‖ = ‖∇f(x)‖ by the
Cauchy–Schwarz inequality. On the other hand, the derivative on the
right is equal to 〈∇f(x),v〉 = ‖∇f(x)‖ by direct calculation and the
definition of v. These observations yield the inequality (4.21).

We have equality in the application of the Cauchy–Schwarz inequality
only if u and ∇f(x) are proportional, so the bound (4.21) reduces to an
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equality if and only if u = λ∇f(x). Since u is a unit vector, this implies
λ = ±1/‖∇f(x)‖. Only the positive sign can give equality in the bound
(4.21), and in that case we have u = v.

Solution for Exercise 4.3. Direct expansion proves the representa-
tion (4.22). To minimize P (t) we solve P ′(t) = 2t〈w,w〉 − 2〈v,w〉 = 0
and find P (t) ≥ P (t0) where t0 = 〈v,w〉/〈w,w〉. The evaluation of
P (t0) then leads one to the expression (4.22).

Solution for Exercise 4.4. This exercise provides a reminder that
one sometimes needs a more elaborate algebraic identity to deal with
the absolute values of complex numbers than to deal with the absolute
values of real numbers. Here the key is to use the Cauchy–Binet four
letter identity (3.7) on page 49. The proof of that identity was purely
algebraic (no absolute values or complex conjugates were used) so the
identity is also valid for complex numbers. One then just makes the
replacements ak �−→ āk, bk �−→ bk, sk �−→ ak, and tk �−→ b̄k.

Solution for Exercise 4.5. This observation of S.S. Dragomir (2000)
shows how the principles behind Lagrange’s identity continue to bear
fruit. Here one just takes the natural double sum and expands:

0 ≤ 1
2

n∑
j=1

n∑
k=1

pjpk‖αjxk − αkxj

∥∥2

=
1
2

n∑
j=1

n∑
k=1

pjpk

[
α2

j‖xk‖2 − 2〈αjxk, αkxj〉 + α2
k‖xj‖2

]
=

n∑
j=1

n∑
k=1

pjpkα
2
j‖xk‖2 −

n∑
j=1

n∑
k=1

pjpkαjαk〈xk,xj〉

=
n∑

j=1

pjα
2
j

n∑
k=1

pk‖xk‖2 −
∥∥∥∥ n∑

j=1

pjαjxj

∥∥∥∥2

.

This identity gives us our target bound (4.24) and shows that the in-
equality is strict unless αjxk = αkxj for all j and k. Finally, one should
also note that a corresponding inequality for a complex inner product
spaces can obtained by a similar calculation.

Solution for Exercise 4.6.
There are proofs of this inequality that use only the tools of plane

geometry, but there is also an exceptionally interesting proof that uses
the transformation z �→ 1/z for complex numbers. There is no loss of
generality in setting A = 0, B = z1, C = z2, andD = z3, and the triangle
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inequality then gives us∣∣∣∣ 1
z1

− 1
z3

∣∣∣∣ ≤ ∣∣∣∣ 1
z1

− 1
z2

∣∣∣∣+ ∣∣∣∣ 1
z3

− 1
z3

∣∣∣∣ ,
which may be rewritten as |z2||z1 − z3| ≤ |z3||z1 − z2| + |z1||z2 − z3|.
After identifying these terms with help from Figure 4.7, we see that it
is precisely Ptolemy’s inequality!

To prove the converse, we first note that one has equality in this ap-
plication of the triangle inequality if and only if the points z−1

1 , z−1
2 , z−1

3

are on line. One then obtains the required characterization by appealing
to the fact that z �→ 1/z takes a circle through the origin to a line and
vice versa.

The transformation z �→ 1/z is perhaps the leading example of a
Möbius transformation, which more generally are the maps of the form
z �→ (az+ b)/(cz+ d). Every book on complex variables examines these
transformations, but the treatment of Needham (1997), pages 122–188,
is especially attractive. Needham also discusses Ptolemy’s result with
the help of inversion, but the quick treatment given here is closer to that
of Treibergs (2002).

Solution for Exercise 4.7. To prove the identity (4.26), expand the
inner product squares and use 1+α+ · · ·+αN−1 = (1−αN )/(1−α) = 0.
For the second identity, just expand and integrate. This exercise is based
on D’Angelo (2002, pp. 53–55) where one finds related material.

Solution for Exercise 4.8. The first part of the recursion (4.28)
gives us 〈zk, ej〉 = 0 for all 1 ≤ j < k, and this gives us 〈ek, ej〉 = 0 for
all 1 ≤ j < k. The normalization 〈ek, ek〉 = 1 for 1 ≤ k ≤ n is immediate
from the second part of the recursion (4.28), and the triangular spanning
relations just rewrite the first part of the recursion (4.28).

Solution for Exercise 4.9. Without loss of generality may we as-
sume that ‖x‖ = 1. The Gram–Schmidt relations are then given by
x = e1 and y = µ1e2 + µ2e2. Orthonormality gives us 〈x,y〉 = µ1 and
〈y,y〉 = |µ1|2 + |µ2|2, and the bound |µ1| ≤ (|µ1|2 + |µ2|2) 1

2 is obvious.
But this says |〈x,y〉| ≤ 〈y,y〉 1

2 which is the Cauchy–Schwarz inequality
when ‖x‖ = 1.

Solution for Exercise 4.10. From the Gram–Schmidt process ap-
plied to {y1,y2, . . . ,yn,x} one finds e1 = y1, e2 = y2,. . . ,en = yn and
en+1 = z/‖z‖ where z = x − (〈x, e1〉e1 + 〈x, e2〉e2 + · · · + 〈x, en〉en),
provided that z �= 0. Taking inner products and using orthonormality
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then gives us

〈x,x〉 =
n+1∑
j=1

|〈x, ej〉|2 = |〈x, en+1〉|2 +
n∑

j=1

|〈x,yj〉|2,

and since |〈x, en+1〉|2 gives us Bessel’s inequality when z �= 0. When
z = 0 one finds that Bessel’s inequality is in fact an identity.

Solution for Exercise 4.11. Without loss of generality we can as-
sume that x, y, and z are linearly independent and ‖x‖ = 1, so the
Gram–Schmidt relations can be written as x = e1, y = µ1e2 + µ2e2,
and z = ν1e1 + ν2e2 + ν3e3, from which we find 〈x,x〉 = 1, 〈x,y〉 =
µ1, 〈x, z〉 = ν1 and 〈y, z〉 = µ1ν1 + µ2ν2. The bound (4.30) asserts
µ1ν1 ≤ 1

2 (µ1ν1 + µ2ν2 + (µ2
1 + µ2

2)
1
2 (ν2

1 + ν2
2 + ν2

3)
1
2 ) or µ1ν1 − µ2ν2 ≤

(µ2
1 +µ2

2)
1
2 (ν2

1 +ν2
2 +ν2

3)
1
2 , which is immediate from Cauchy’s inequality.

Solution for Exercise 4.12. With the normalization and notation
used in the solution of Exercise 4.11, the left side L of the bound (4.31)
can be written as

|〈x,x〉〈y, z〉 − 〈x,y〉〈x, z〉| = |{(µ1ν̄1 + µ2ν̄2) − µ1ν̄1}|2 = |µ2ν̄2|2,
and the right side R can be written as{〈x,x〉2 − |〈x,y〉|2}{〈x,x〉2 − |〈x, z〉|2}

= (1 − |µ1|2)(1 − |ν1|2) = |µ2|2(|ν2|2 + |ν3|2),
since we have 1 = ‖y‖ = |µ1|2 + |µ2|2 and 1 = ‖z‖ = |ν1|2 + |ν2|2 + |ν3|2.
These formulas for L and R make it evident that L ≤ R.

Now, to prove the bound (4.32) it similarly reduces to showing

|µ1ν̄1 + µ2ν̄2|2 + |µ1|2 + |ν1|2
≤ 1 + (µ̄1ν1 + µ̄2ν2)µ1ν̄1 + (µ1ν̄1 + µ2ν̄2)µ̄1ν1

and, by expansion, this is the same as

|µ1|2 + |ν1|2 + |µ1ν1|2 + |µ2ν2|2 + 2Re {µ1ν̄1µ̄2ν2}
≤ 1 + 2|µ1ν1|2 + 2Re {µ1ν̄1µ̄2ν2}.

After cancelling terms, we see it suffices for us to show

L ≡ |µ1|2 + |ν1|2 + |µ2ν2|2 ≤ 1 + |µ1ν1|2,
but the substitution |µ2ν2|2 = (1 − |µ1|2)(1 − |ν1|2 − |ν3|2) gives us
L = 1 + |µ1ν1|2 + |ν3|2(|µ1|2 − 1) ≤ 1 + |µ1ν1|2 since |µ1|2 ≤ 1. This
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exercise is based on Problems 16.50 and 16.51 of Hewitt and Stomberg
(1969, p. 254).

Solution for Exercise 4.13. Following the hint, we first note

‖AT v‖2 = 〈AT v, AT v〉 = 〈v, AAT v〉 ≤ ‖v‖||AAT v‖ = ‖v‖||AT v‖,
so by division ‖AT v‖ ≤ ‖v‖. Next, by the Cauchy–Schwarz inequality
and the properties of A and AT we have the chain

‖v,v‖2 = 〈Av, Av〉 = 〈v, ATAv〉 ≤ ‖v‖‖ATAv‖ ≤ ‖v‖‖Av‖ = ‖v,v‖2,

so we actually have equality where the first inequality is written. This
tells us that there is a λ (which possibly depends on v) for which we
have λv = ATAv. This relation in turn gives us

λ〈v,v〉 = 〈v, ATAv〉 = 〈Av, Av〉 = 〈v,v〉,
so in fact λ = 1 (and hence it does not actually depend on v)). We
therefore find that v = ATAv for all v, so ATA = I as claimed. This
argument follows Sigillito (1968).

Chapter 5: Consequences of Order

Solution for Exercise 5.1. The upper bound of (5.17) follows from

h1 + h2 + · · · + hn =
h1

b1
b1 +

h2

b2
b2 + · + hn

bn
bn

≤ {b1 + b2 + · · · + bn}max
k

hk

bk
,

and the lower bound is analogous. For application, if we set ak = ckx
k

and bk = cky
k, then we have min ak/bk = (x/y)n and max ak/bk = 1.

Solution for Exercise 5.2. The n − 1 elements of S have mean A,
so by the induction hypothesis H(n− 1) we have

a2a3 · · · an(a1 + a2 −A) ≤ An−1.

The betweenness bound already gave us a1an/A ≤ a1 + a2 − A, and,
when we may apply this bound above, we get H(n) which completes the
induction.

This proof from Chong (1975) is closely related to a “smoothing” proof
of the AM-GM which exploits the algorithm:

(i) if a1, a2, . . . , an are not all equal to the mean A, let aj and ak

denote the smallest and largest, respectively,
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(ii) replace aj by A and replace ak by aj + ak −A,
(iii) note that each step of the algorithm increases by one the number

of terms equal to the mean, so the algorithm terminates in at
most n steps.

The betweenness bound gives us ajak ≤ A(aj + ak − A) so each step
of the algorithm increases the geometric mean of the current sequence.
Since we start with the sequence a1, a2, . . . , an and terminate with a
sequence of n copies of A, we see a1a2 · · · an ≤ An.

Solution for Exercise 5.3. If one first considers V = R and sets
a = u and b = v then the inequality in question asserts that

AB − ab ≥ (A2 − a2)
1
2 (B2 − b2)

1
2 . (14.51)

By expansion and factorization, this is equivalent to

(aB −Ab)2 ≥ 0,

so the bound (14.51) is true and equality holds if and only if aB = Ab.
To address the general problem, we first note by the Cauchy–Schwarz
inequality

AB − 〈u, v〉 ≥ AB − 〈u, u〉 1
2 〈v, v〉 1

2 ,

so, by the bound (14.51) with a = 〈u, u〉 1
2 and b = 〈v, v〉 1

2 , one has

AB − 〈u, v〉 ≥ (A2 − 〈u, u〉) 1
2 (B2 − 〈v, v〉) 1

2 , (14.52)

which was to be proved. If equality hold in the bound (14.52), this argu-
ment shows that we have 〈u, v〉 = 〈u, u〉 1

2 〈v, v〉 1
2 , so there is a constant

λ such that u = λv. By substitution one then finds that λ = A/B.
The bound (14.52) is abstracted from an integral version given in

Theorem 9 of Lyusternik (1966) which Lyusternik used in his proof of
the Brunn–Minkowski inequality in two dimensions. The idea viewing
V = R as a special inner product space is often useful, but seldom is
it as decisive as it proved to be here. One should also notice the easily
overlooked fact that the bound (14.52) is actually equivalent to the light
cone inequality (4.15).

Solution for Exercise 5.4. This problem does not come with an
order relation, but we can give ourselves one if we note that by the
symmetry of the bound we can assume that 0 ≤ x ≤ y ≤ z. We then
get for free the positivity of the first summand xα(x − y)(x − z), so to
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complete the proof we just need to show the positivity of the sum of the
other two. This follows from the factorization

yα(y − x)(y − z) + zα(z − x)(z − y) = (z − y){zα(z − x) − yα(y − x)}
and the observation that z ≥ y and z − x ≥ y − x.

This proof illustrates one of the most general methods at our disposal;
the positivity of a sum can often be proved by creatively grouping the
summands so that the positivity of each group becomes obvious.

Solution for Exercise 5.5. This is one of the text’s few “plug-in”
exercises, but the bound is so nice it had to be made explicit. We just
note that m def= a/A ≤ ak/bk ≤ A/b

def= M , then we substitute into the
formulas (5.6) and (5.7).

Solution for Exercise 5.6. Without loss of generality, we can as-
sume that 0 < a ≤ b ≤ c, and, under this assumption, we also have

1
b+ c

≤ 1
a+ c

≤ 1
a+ b

.

The rearrangement inequality then tells us that

b

b+ c
+

c

a+ c
+

a

a+ b
≤ a

b+ c
+

b

a+ c
+

c

a+ b

and that
c

b+ c
+

a

a+ c
+

b

a+ b
≤ a

b+ c
+

b

a+ c
+

c

a+ b
.

By summing these two bounds we find Nesbitt’s inequality.
Engel (1998, pp. 162–168) provides five instructive proofs of Nesbitt’s

inequality, including the one given here, but, even so, one can add to
the list. Tony Cai recently noted that Nesbitt’s inequality follows from
the bound (1.21), page 13, provided that one sets

p1 =
a

a+ b+ c
, p2 =

b

a+ b+ c
, p3 =

c

a+ b+ c
,

a1 =
a+ b+ c

b+ c
, a2 =

a+ b+ c

a+ c
, a3 =

a+ b+ c

a+ b
,

and sets bk = 1/ak for k = 1, 2, 3. With these substitutions the bound
(1.21) automatically gives us

1 ≤
(

a

b+ c
+

b

a+ c
+

c

a+ b

)(
(a+ b+ c)2 − (a2 + b2 + c2)

(a+ b+ c)2

)
,

which in turn yields Nesbitt’s inequality since the second factor is bounded
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by 2/3 because Cauchy’s inequality for (a, b, c) and (1, 1, 1) tells us that
(a+ b+ c)2 ≤ 3(a2 + b2 + c2).

Solution for Exercise 5.7. Since the sequences {ck} and {1/ck} are
oppositely ordered, the rearrangement inequality (5.12) tells us that for
any permutation σ one has n ≤ c1/cσ(1) + c2/cσ(2) + · · ·+ cn/cσ(n), and
part (a) is a special case of this observation. If we set ck = x1x2 · · ·xk

in part (a) we get part (b), and if we then replace xk by ρxk, we get
part (c). Finally, by setting ρ = (x1x2 · · ·xn)−n and simplifying, we get
the AM-GM bound.

Solution for Exercise 5.8.
The inequality is unaffected if m, M , and xj , 1 ≤ j ≤ n are multiplied

by a positive constant, so we can assume without loss of generality that
γ = 1, in which case, we have M = m−1, and it suffices to show that{ n∑

j=1

pjxj

}{ n∑
j=1

pj
1
xj

}
≤ µ2 (14.53)

where 2µ = m + M = m + m−1. Now, one has xj ∈ [m,m−1] for all
1 ≤ j ≤ n, so we have

xj + x−1
j ≤ m+m−1 ≤ 2µ and

{ n∑
j=1

pjxj

}
+
{ n∑

j=1

pj
1
xj

}
≤ 2µ,

and these yield the bound (14.53) after one applies the AM-GM in-
equality to the two bracketed terms. There are many instructive proofs
of Kantorovich’s inequality; this elegant approach via the AM-GM in-
equality is due to Pták (1995).

Solution for Exercise 5.9. One elegant way to make the monotonic-
ity of fθ evident is to set cj = (ajbj)θ and dj = log(aj/bj) to obtain

fθ(x) =
n∑

j=1

cj e
djx

n∑
j=1

cj e
−djx =

n∑
j=1

[
c2j + 2

∑
j<k

cj ck cosh
(
dj − dk

)
x

]

where cosh y = (ey + e−y)/2. Since cosh y is symmetric about zero and
monotone on [0,∞), the monotonicity of fθ(·) is now immediate. This
solution follows Steiger (1969) where a second proof based on Hölder’s
inequality is also given.

Solution for Exercise 5.10. We can assume without loss of gen-
erality that a1 ≥ a2, b1 ≥ b2, and a1 ≥ b1. Remaining mindful of the
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relation a1+a2 = b1+b2, the proof can be completed by the factorization

xa1ya2 + xa2ya1 − xb1yb2 − xb2yb1

= xa2ya2(xa1−a2 + ya1−a2 − xb1−a2yb2−a2 − xb2−a2yb1−a2)

= xa2ya2(xb1−a2 − yb1−a2)(xb2−a2 − yb2−a2) ≥ 0,

since b1 − a2 ≥ b2 − a2 = a1 − b1 ≥ 0. Lee (2002) notes that the bound
(5.22) may be used to prove analogous inequalities with three or more
variables. Chapter 13 will developed such inequalities by other methods.

Solution for Exercise 5.11. Let A denote the event that |Z − µ|
is at least as large as λ. Now, define a random variable χA by setting
χA = 1 if the event A occurs and setting χA = 0 otherwise. Note that
E(χA) = P (A) = P (|Z − µ| ≥ λ). Also note that χA ≤ |Z − µ|2/λ2,
since both sides are zero if A does not occur, and the right side is at least
as large as 1 if the event A does occur. On taking the expectation of
the last bound one gets Chebyshev’s tail bound (5.23). Admittedly, the
language used in this problem and its solution are special to probability
theory, but nevertheless the argument is completely rigorous.

Chapter 6: Convexity — The Third Pillar

Solution for Exercise 6.1. Cancelling 1/x from both sides and
adding the fractions, one sees that Mengoli’s inequality is equivalent to
the trivial bound x2 > x2−1. For a proof using Jensen’s inequality, just
note that x �→ 1/x is convex. Finally, for a modern version of Mengoli’s
proof that Hn diverges, we assume H∞ <∞ and write H∞ as

1 + (1/2 + 1/3 + 1/4) + (1/5 + 1/6 + 1/7) + (1/8 + 1/9 + 1/10) + · · · .

Now, by applying Mengoli’s inequality within the indicated groups we
find the lower bound 1 + 3/3 + 3/6 + 3/9 + · · · = 1 +H∞, which yields
the contradictions H∞ > 1 +H∞.

By the way, according to Havil (2003, p. 38) it was Mengoli who in
1650 first posed the corresponding problem of determining the value
of the sum 1 + 1/22 + 1/32 + · · · . The problem resisted the efforts of
Europe’s finest mathematicians until 1731 when L. Euler determined the
value to be π2/6.

Solution for Exercise 6.2. The bound follows by applying Jensen’s
inequality to the function f(t) = log(1+1/t) = log(1+ t)− log(t), which
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is convex because

f ′′(t) = − 1
(1 + t)2

+
1
t2
> 0 for t > 0.

Solution for Exercise 6.3. From the geometry of Figure 6.4, the

area A of an inscribed polygon with n sides can be written as

A =
1
2

n∑
k=1

sin θk where 0 < θk < π and
n∑

k=1

θk = 2π.

Since sin(·) is strictly concave on [0, π], we have

A =
1
2

n∑
k=1

sin(θk) ≤ 1
2
n sin

(
1
n

n∑
k=1

θk)
)

=
1
2
n sin(2π/n) def= A′,

and we have equality if and only if θk = 2π/n for all 1 ≤ k ≤ n. Since
A′ is the area of a regular inscribed n-gon, the conjectured optimality is
confirmed.

Solution for Exercise 6.4. The second bound is the AM-GM in-
equality for ak = 1 + rk, k = 1, 2, . . . , n. The first bound follows from
Jensen’s inequality applied to the convex function x �→ log(1 + ex). Fi-
nally, by taking nth roots and subtracting 1, we see that the investment
inequality (6.23) refines the AM-GM bound rG ≤ rA by slipping V 1/n−1
between the two means.

Solution for Exercise 6.5. To build a proof with Jensen’s inequality,
we first divide by (a1a2 · · · an)1/n and write ck for bk/ak, so the target
inequality takes the form

1 + (c1c2 · · · cn)1/n ≤ {(1 + c1)(1 + c2) · · · (1 + cn)
}1/n

.

Now, if we take logs and write cj as exp(dj), we find it takes the form

log
(
1 + exp(d̄)

) ≤ 1
n

n∑
j=1

log(1 + exp(dj)),

where d̄ = (d1 + d2 + · · · + dn)/n. Finally, the last inequality is simply
Jensen’s inequality for the convex function x �→ log(1 + ex), so the
solution is complete. One feature of this solution worth noting is that
progress came quickly after division reduced the number of variables
from 2n to n. This phenomenon is actually rather common, and such
reductions are almost always worth a try.
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Here it is perhaps worth noting that Minkowski’s proof used yet an-
other idea. Specifically, he built his proof on analysis of the polynomial
p(t) =

∏
(aj + tbj). Can you recover his proof?

Solution for Exercise 6.6. Essentially no change is needed in
Cauchy’s argument (page 20). First, for the cases n = 2k, k = 1, 2, . . .,
one just applies the defining relation (6.25) to successive halves. For the
fall-back step, one chooses k such that n ≤ 2k and applies the 2k result
to the padded sequence yj , 1 ≤ j ≤ 2k which one defines by taking
yj = xj for 1 ≤ j ≤ n and by taking yj = (x1 + x2 + · · · + xn)/n for
n < j ≤ 2k.

Solution for Exercise 6.7. As we noted in the preceding solution,
iteration of the defining condition (6.24) gives us for all k = 1, 2, . . . that

f

(
1
2k

2k∑
j=1

xj

)
≤ 1

2k

2k∑
j=1

f(xj),

so setting xj = x for 1 ≤ j ≤ m and xj = y for m < j ≤ 2k we also have

f
(
(m/2k)x+ (1 −m/2k)y

)
≤ (m/2k)f(x) + (1 −m/2k)f(y).

If we now choose mt and kt such that mt/2kt → p as t → ∞, then
continuity of f and the preceding bound give us convexity of the kind
required by the modern definition (6.1).

Solution for Exercise 6.8. The function L(x, y, z) is convex in each
of its three variables separately and, by the argument detailed below,
this implies that L must attain its maximum at one of the vertices of
the cube. After eight easy evaluations we find that L(1, 0, 0) = 2 and
that no other corner has a larger value, so the solution is complete.

It is also easy to show that if a function on the cube is convex in each
variable separately then the function must attain its maximum on one
of the corner points. In essence one argues by induction but, for the
cube in R

3, one may as well give all of the steps.
First, one notes that a convex function on [0, 1] must take its max-

imum at one of the end points of the interval, so, for any fixed values
of y and z, we have the bound L(x, y, z) ≤ max{L(0, y, z), L(1, y, z)}.
Similarly, by convexity of y �→ L(0, y, z) and y �→ L(1, y, z) so L(0, y, z)
is bounded by max{L(0, 0, z), L(0, 1, z)} and L(1, y, z) is bounded by
max{L(1, 0, z), L(1, 1, z)}. All together, we have for each value of z that
L(x, y, z) is bounded by max{L(0, 0, z), L(0, 1, z), L(1, 0, z), L(1, 1, z)}.



250 Solutions to the Exercises

Convexity of z �→ L(x, y, z) applied four times then gives us the final
bound L(x, y, z) ≤ max{L(e1, e2, e3) : ek = 0 or ek = 1 for k = 1, 2, 3}.

One should note that this argument does not show that one can find
the maximum by the “greedy algorithm” that performs three successive
maximums. In fact, the greedy algorithm can fail miserably here, as
easy examples show.

Solution for Exercise 6.9. To prove the first formula, we note

a2 = b2 + c2 − 2bc cosα = (b− c)2 + 2bc(1 − cosα)

= (b− c)2 + 4A(1 − cosα)/ sinα = (b− c)2 + 4A tan(α/2),

so, by symmetry and summing, we see that a2 + b2 + c2 is equal to

(a− b)2 + (b− c)2 + (c− a)2 + 4A
(
tan(α/2) + tan(β/2) + tan(γ/2)

)
.

Since x �→ tanx is convex on [0, π/2], Jensen’s inequality gives us

1
3
{tan(α/2) + tan(β/2) + tan(γ/2)} ≥ tan

(α+ β + γ

6

)
= tan(π/6)

and tan(π/6) =
√

3, so this completes the proof. Engel (1998, p. 173)
gives this as the eighth among his eleven amusing proofs of Weitzenböck’s
inequality and its refinements.

Solution for Exercise 6.10. The polynomial Q(x) can be written
as a sum of three simple quadratics:

(x− x2)(x− µ)
(x1 − x2)(x1 − µ)

f(x1)+
(x− x1)(x− µ)

(x2 − x1)(x2 − µ)
f(x2)+

(x− x1)(x− x2)
(µ− x1)(µ− x2)

f(µ).

By two applications of Rolle’s theorem we see that Q′(x) − f ′(x) has
a zero in (x1, µ) and a zero in (µ, x2), so a third application of Rolle’s
theorem shows there is an x∗ between these zeros for which we have
0 = Q′′(x∗) − f ′′(x∗). We therefore have Q′′(x∗) = f ′′(x∗) ≥ 0, but

Q′′(x∗) =
2f(x1)

(x1 − x2)(x1 − µ)
+

2f(x2)
(x2 − x1)(x2 − µ)

+
2f(µ)

(µ− x1)(µ− x2)

so, by setting p = (x2 − µ)/(x2 − x1) and q = (µ − x1)/(x2 − x1) and
simplifying, one finds that the last inequality reduces to the definition
of the convexity of f .

Solution for Exercise 6.11. Given the hint, we obviously want
to consider the change of variables, α = tan−1(a), β = tan−1(b), and
γ = tan−1(c). The conditions a > 0, b > 0, c > 0, and a+b+c = abc now
tell us that α > 0, β > 0, γ > 0, and α+β+γ = π. The target inequality



Solutions to the Exercises 251

also becomes cosα+ cosβ + cos γ ≤ 3/2, and this follows directly from
Jensen’s inequality in view of the concavity of cosine on [0, π] and the
evaluation cos(π/3) = 1/2. This solution follows Andreescu and Feng
(2000, p. 86). Hojoo Lee has given another solution which exploits the
homogenization trick which we discuss in Chapter 12 (page 189).

Solution for Exercise 6.12. If we write

P (z) = an(z − r1)m1(z − r2)m2 · · · (z − rn)mk

where r1, r2, . . . , rk are the distinct roots of P (z), and m1,m2, . . . ,mk

are the corresponding multiplicities, then comparison of P ′(z) and P (z)
gives us the familiar formula

P ′(z)
P (z)

=
m1

z − r1
+

m2

z − r2
+ · · · + mk

z − rn
.

Now, if z0 is a root of P ′(z) which is also a root of P (z), then z0 is
automatically in H, so without loss of generality, we may assume that
z0 is a root of P ′(z) that is not a root of P (z), in which case we find

0 =
m1

z0 − r1
+

m2

z0 − r2
+ · · · + mk

z0 − rk

=
m1(z̄0 − r̄1)
|z0 − r1|2 +

m2(z̄0 − r̄2)
|z0 − r2|2 + · · · + mk(z̄0 − r̄k)

|z0 − rk|2 .

If we set wk = mk/|z0 − rk|2, then we can rewrite this identity as

z0 =
w1 r1 + w2 r2 + · · · + wk rk

w1 + w2 + · · · + wk
,

which shows z0 is a convex combination of the roots of P (z).

Solution for Exercise 6.13. Write r1, r2, . . . , rn for the roots of P
repeated according to their multiplicity, and for a z which is outside of
the convex hull H write z − rj in polar form z − rj = ρje

iθj . We then
have

1
z − rj

= ρj
−1e−θji 1 ≤ j ≤ n,

and the spread in the arguments θj , 1 ≤ j ≤ n, is not more than 2ψ.
Thus, by the complex AM-GM inequality (2.35) one has the bound

(cosψ)
∣∣∣∣ 1
z − r1

1
z − r2

· · · 1
z − rn

∣∣∣∣1/n

≤ 1
n

∣∣∣∣ n∑
j=1

1
z − rj

∣∣∣∣
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and, in terms of P and P ′, this simply says∣∣∣∣ an

P (z)

∣∣∣∣1/n

≤ 1
n cosψ

∣∣∣∣P ′(z)
P (z)

∣∣∣∣ for all z /∈ H, (14.54)

just as we hoped to prove.

Solution for Exercise 6.14. If 2ψ is the viewing angle determined by
U when viewed from z /∈ U , then we have 1 = |z| sinψ, so Pythagoras’s
theorem tells us that cosψ = (1 − |z|−2)

1
2 . The target inequality (6.27)

then follows directly from Wilf’s bound (6.26).

Solution for Exercise 6.15. This is American Mathematical Monthly
Problem E10940 posed by Y. Nievergelt. We consider the solution by
A. Nakhash. The disk D0 = {z : |1 − z| ≤ 1} in polar coordinates is
{reiθ : 0 ≤ r ≤ 2 cos θ, −π/2 < θ < π/2}, so for each j we can write
1 + zj as rjeiθj where −π/2 < θ < π/2 and where rj ≤ 2 cos θj . It is
immediate that z0 = −1 + (r1r2 · · · rn)1/n exp(i(θ1 + θ2 + · · · + θn)/n)
solves Nievergelt’s equation (6.28), and to prove that z0 ∈ D it suffices
to show 1 + z0 ∈ D0; equivalently, we need to show

(r1r2 · · · rn)1/n ≤ 2 cos
(
θ1 + θ2 + · · · + θn

n

)
. (14.55)

Since (r1r2 · · · rn)1/n is bounded by ((2 cos θ1)(2 cos θ2) · · · (2 cos θn))1/n,
it therefore suffices to show that

((cos θ1)(cos θ2) · · · (cos θn))1/n ≤ cos
(
θ1 + θ2 + · · · + θn)

n

)
,

and this follows the concavity of f(x) = log(cosx)) on −π/2 < θ < π

together with Jensen’s inequality.

Solution for Exercise 6.16. A nice solution using Jensen’s inequal-
ity for f(x) = 1/x was given by Robert Israel in the sci.math newsgroup
in 1999. If we set S = a1 + a2 + a3 + a4 and let C denotes the sum on
the right hand side of the bound (6.29), then Jensen’s with pj = aj/S

and x1 = a2 + a3, x2 = a3 + a4, x3 = a4 + a1, and x4 = a1 + a2 gives us
C/S ≥ {D/S}−1 or C ≥ S2/D, where one has set

D = a1

(
a2 + a3

)
+ a2

(
a3 + a4) + a3(a4 + a1) + a4(a1 + a2).

Now, it is easy to check that S2 − 2D =
(
a1 − a3

)2 +
(
a2 − a4

)2
> 0,

and this lucky fact suffices to complete the solution.
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Solution for Exercise 6.17. By interpolation and convexity one has

x =
b− x

b− a
a+

x− a

b− a
b ⇒ f(x) ≤ b− x

b− a
f(a) +

x− a

b− a
f(b)

so, after subtracting f(a), we find

f(x) − f(a) ≤ x− a

b− a
{f(b) − f(a)} . (14.56)

This gives us the second inequality of (6.30), and the second is proved
in the same way.

Solution for Exercise 6.18. Let g(h) = {f(x + h) − f(x)}/h and
check from the Three Chord Lemma that for 0 < h1 < h2 one has
g(h1) ≤ g(h2). Next choose y with a < y < x and use the Three Chord
Lemma to check that −∞ < {f(x)−f(y)}/{x−y} ≤ g(h) for all h > 0.
The monotonicity and boundedness g(h) guarantee that g(h) has finite
limit as h → 0. This gives us the first half of the problem, and the
second half almost identical.

Solution for Exercise 6.19. This is just more handy work of the
Three Chord Lemma which gives us for 0 < s and 0 < t with y − s ∈ I

and y + t ∈ I that {f(y) − f(y − s)}/s ≤ {f(y + t) − f(y)}/t. From
Exercise 6.18 we have that finite limits as s, t→ 0, and these limits are
f ′−(y) and f ′+(y) respectively. This gives us f ′−(y) ≤ f ′+(y) and the other
bounds are no harder. Incidentally, the bound f ′−(y) ≤ f ′+(y) may be
regarded as an “infinitesimal” version of the Three Chord Lemma.

For a < x ≤ s ≤ t ≤ y < b and M = max{|f ′+(x)|, |f ′−(y)|} the bound
(6.31) gives us |f(t) − f(s)| ≤ M |t− s|, which is more than we need to
say that f is continuous.

Chapter 7: Integral Intermezzo

Solution for Exercise 7.1. The substitution gives us

2f(x)f(y)g(x)g(y) ≤ f2(x)g2(y) + f2(y)g2(x),

so integration over [a, b] × [a, b] yields

2
∫ b

a

f(x)g(x) dx
∫ b

a

f(y)g(y) dy

≤
∫ b

a

f2(x) dx
∫ b

a

g2(y) dy +
∫ b

a

f2(y) dy
∫ b

a

g2(x) dx,

which we recognize to be Schwarz inequality once it is rewritten with
only a single dummy variable.
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This derivation was suggested by Claude Dellacherie who also notes
that the continuous version of Lagrange’s identity (14.50) follows by a
similar calculation provided that one begins with (u−v)2 = u2+v2−2uv.

Solution for Exercise 7.2. Setting D(f, g) = A(fg)−A(f)A(g) we
have the identity

D(f, g) =
∫ ∞

−∞
{f(x) −A(f)}w 1

2 (x) {g(x) −A(g)}w 1
2 (x) dx,

and Schwarz’s inequality gives D2(f, g) ≤ D(f, f)D(g, g) which is our
target bound.

Solution for Exercise 7.3. We first note that without loss of gener-
ality we can assume that both of the integrals on the right of Heisenberg’s
inequality are finite, or else there is nothing to prove. The inequality
(7.11) of Problem 7.3 then tells us that f2(x) = o(x) as |x| → ∞, so
starting with the general integration by parts formula∫ B

−A

f2(x) dx =
∣∣∣∣B
−A

xf2(x) −−2
∫ B

−A

xf(x)f ′(x) dx,

we can let A,B → ∞ to deduce that∫ ∞

−∞

∣∣f(x)
∣∣2dx = −2

∫ ∞

−∞
xf(x)f ′(x)dx ≤ 2

∫ ∞

−∞
|xf(x)| |f ′(x)| dx.

Schwarz’s inequality now finishes the job.

Solution for Exercise 7.4. One applies Jensen’s inequality (7.19)
to the integrals in turn:∫ b+1

b

dx

x+ y
>

1
b+ 1

2 + y
and

∫ a+1

a

dy

b+ 1
2 + y

>
1

b+ a+ 1
.

Solution for Exercise 7.5. By differentiation under the integral sign
we have ∣∣∣∣d4

dx4

sin t
t

∣∣∣∣ = ∣∣∣∣ ∫ 1

0

s4 cos(st) ds
∣∣∣∣ ≤ ∫ 1

0

s4 ds =
1
5
.

To be complete, one should note that differentiation under the inte-
gral sign is legitimate since for f(t) = cos(st) once can check that the
difference quotients (f(t + h) − f(x))/h are uniformly bounded for all
0 ≤ s ≤ 1 and 0 < h ≤ 1.
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Solution for Exercise 7.6. By the pattern of Problem 7.4, we find

(B −A)2 ≤ cB2 logB
∫ B

A

dx

f(x)
,

so setting A = 2j and B = 2j+1 one finds

1
4c(j + 1) log 2

≤
∫ 2j+1

2j

dx

f(x)
and

1
4c log 2

n∑
j=0

1
j + 1

≤
∫ 2n+1

1

dx

f(x)
.

The conclusion then follows by the divergence of the harmonic series.

Solution for Exercise 7.7. If we set δ = f(t)/|f ′(t)| then the trian-
gle T determined by the points (t, f(t)), (t, 0), and (t, t + δ) lies below
the graph of f , so the integral in the bound (7.26) is at least as large as
the area of T which is 1

2f
2(t)/|f ′(t)|.

Solution for Exercise 7.8. Since 0 ≤ sin t ≤ 1 on [0, π/2] we can
slip sin t inside the integral to get a smaller one. Thus, we have

In ≥
∫ π/2

0

(1 + cos t)n sin t dt =
∫ 1

0

(1 + u)n du =
2n+1 − 1
n+ 1

.

Similarly, one has u/x ≥ 1 on [x,∞), so we have the bound

I ′n ≤ 1
x

∫ ∞

x

ue−u2/2 du =
1
x
e−x2/2.

In each case one slips in a factor to make life easy. Factors that are
bounded between 0 and 1 help us find lower bounds, and factors that
are always at least 1 help us find upper bounds.

Solution for Exercise 7.9. In order to argue by contradiction, we
assume without loss of generality that there is a sequence xn → ∞ such
that f ′(xn) ≥ ε > 0. Now, by Littlewood’s Figure 7.2 (or the by triangle
lower bound of Exercise 7.7), we note that

f(xn + δ) − f(xn) =
∫ xn+δ

xn

f ′(t) dt ≥ 1
2
ε2/B

where B = sup |f ′′(x)| < ∞ and δ = ε/B. This bound implies that
f(x) �= o(1), so we have our desired contradiction.

Solution for Exercise 7.10. Differentiation suffices to confirm that
on (0, 1) the map t �→ t−1 log t is decreasing and t �→ (1 + t−1) log t is
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increasing so we have the bounds∫ 1

x

log(1 + t)
dt

t
< (1 − x)x−1 log x

=
1 − x

1 + x
(1 + x−1) log(1 + x) ≤ 2 log 2

1 − x

1 + x
.

To show 2 log 2 cannot be replaced by a smaller constant, note that

lim
x→1

1
1 − x

∫ 1

x

log(1 + t)
dt

t
= log 2

since | log 2 − log(1 + t)/t| ≤ ε for all x with |1 − x| ≤ δ(ε).
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Solution for Exercise 7.11. If W (x) is the integral of w on [a, x],
then W (a) = 0, W (b) = 1, and W ′(x) = w(x), so we have∫ b

a

{logW (x)}w(x) dx =
∫ 1

0

log v dv = −1.

We then have the relations

exp
∫ b

a

{log f(x)}w(x) dx = e exp
∫ b

a

{log f(x)W (x)}w(x) dx

≤ e exp
∫ b

a

{log f(x)}w(x) dx ≤ e

∫ b

a

f(x)w(x) dx

where we used first the fact that 0 ≤ W (x) ≤ 1 for all x ∈ [a, b] and
then we applied Jensen’s inequality.

Solution for Exercise 7.12. Setting If to the integrals of f we have∫ 1

0

(f(x) − If )2 dx = (A− If )(If − α) −
∫ 1

0

(A− f(x))(f(x) − α) dx

≤ (A− If )(If − α),

and an analogous inequality holds for g. Schwarz’s inequality then gives∣∣∣∣ ∫ 1

0

f(x)g(x) dx− IfIg

∣∣∣∣2 =
∣∣∣∣ ∫ 1

0

(f(x) − If )(g(x) − Ig) dx
∣∣∣∣2

≤
∫ 1

0

(f(x) − If )2 dx
∫ 1

0

(g(x) − Ig)2 dx

≤ (A− If )(If − α)(B − Ig)(Ig − β)

≤ 1
4
(A− α)2

1
4
(B − β)2,

where in the last step we used the fact that (U −x)(x−L) ≤ 1
4 (U −L)2

for all L ≤ x ≤ U . Finally, to see that Grüss’s inequality is sharp, set
f(x) = 1 for 0 ≤ x ≤ 1/2, set f(x) = 0 for 1/2 < x ≤ 1, and set
g(x) = 1 − f(x) for all 0 ≤ x ≤ 1.

Chapter 8: The Continuum of Means

Solution for Exercise 8.1. Part (a) follows immediately from the
Harmonic Arithmetic inequality for equal weights applied to the 3-vector
(1/(y+z), 1/(x+z), 1/(x+y). For part (b), one fist notes by Chebyshev’s
order inequality that 1/3{xp/(y+z)+yp/(x+z)+xp(x+y)} is bounded
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below by the product{
1
3
(xp + yp + zp)

}{
1
3

(
1

y + z
+

1
x+ z

+
1

x+ y

)}
.

To complete the proof, one then applies the power mean inequality (with
s = 1 and t = p) to lower bound the first factor, and one uses part (a)
to lower bound the second factor.

Solution for Exercise 8.2. By the upside-down HM-AM inequality
(8.16) one has

n2

a1 + a2 + · · · + an
≤ 1
a1

+
1
a2

+ · · · + 1
an
.

If we set ak = 2S − xk, then a1 + a2 + · · ·+ an = 2nS − S = (2n− 1)S,
and the HM-AM bound yields

n2

(2n− 1)S
≤ 1

2S − x1
+

1
2S − x2

+ · · · + 1
2S − xn

.

Solution for Exercise 8.3. Both sides of the bound (8.29) are ho-
mogeneous of order one in (a1, a2, . . . , an), so we can assume without
loss of generality that a1/3

1 + a
1/3
2 + · · · + a

1/3
n = 1. Given this, we only

need to show a
1/2
1 + a

1/2
2 + · · · + a

1/2
n ≤ 1, and this is remarkably easy.

By the normalization, we have ak ≤ 1 for all 1 ≤ k ≤ n, so we also
have a1/2

k ≤ a
1/3
k for all 1 ≤ k ≤ n, and we just take the sum to get

our target bound. One might want to reflect on what made this exercise
so much easier than the proof of the power mean inequality (8.10). For
part (b), if we take f(x) = x6 to minimize arithmetic, then we see that
the putative bound (8.30) falsely asserts 1/16 ≤ 1/27.

Solution for Exercise 8.4. We only need to consider p ∈ [a, b], and
in that case we can write

F (p) = max
{
p− a

a
,
b− p

b

}
.

The identity

a

a+ b

{
p− a

a

}
+

b

a+ b

{
b− p

b

}
=
b− a

a+ b

tells us that (b−a)/(a+b) is a weighted mean of (p−a)/a and (b−p)/b,
so we always have the bound

F (p) = max
{
p− a

a
,
b− p

b

}
≥ b− a

a+ b
.
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Moreover, we have strict inequality here unless (p − a)/a = (b − p)/b,
so, as Pólya (1950) observed, the unique minimum of F (p) is attained
at p∗ = 2ab/(a+ b), which is the harmonic mean of a and b.

Solution for Exercise 8.5. For all x ∈ D we have the bound

(a1a2 · · · an)1/n = (a1x1a2x2 · · · anxn)1/n ≤ 1
n

n∑
k=1

akxk (14.57)

by the AM-GM inequality, and we have equality here if and only if akxk

does not depend on k. If we take xk = ak/(a1a2 · · · an)1/n, then x ∈ D

and the equality holds in the bound (14.57). This is all one needs to
justify the identity (8.33).

Now, to prove the the bound (2.31) on page 34, one now just notes

min
x∈D

1
n

n∑
k=1

akxk + min
x∈D

1
n

n∑
k=1

bkxk ≤ min
x∈D

1
n

n∑
k=1

(ak + bk)xk,

since two choices are better than one. Incidentally, this type of argument
is exploited systematically in Beckenbach and Bellman (1965) where the
formula (8.33) is called the quasilinear representation of the geometric
mean.

Solution for Exercise 8.6. The half-angle formula for sine gives

sinx
x

=
2 sin(x/2) cos(x/2)

x
= cos(x/2)

{
sin(x/2)
x/2

}
= cos(x/2) cos(x/4)

{
sin(x/4)
x/4

}
= cos(x/2) cos(x/4) · · · cos(x/2k)

{
sin(x/2k)
x/2k

}
,

and as k → ∞ the bracketed term goes to 1 since sin t = t + O(t3)
as t → 0. Upon setting x = π/2, one gets the second formula after
computing the successive values of cosine with help from its half-angle
formula. Naor (1998, pp. 139–143) gives a full discussion of Viète’s
formula, including a fascinating geometric proof.

Solution for Exercise 8.7. Our assumptions give us the bound
(f(t0 + h) − f(t0))/h ≥ 0 for all h ∈ (0,∆], and now we just let h → 0
to prove the first claim. To address the second claim, one first notes by
the power mean inequality, or by Jensen’s inequality, that one has

f(t) =
n∑

k=1

pkx
t
k −

( n∑
k=1

pkxk

)t

≥ 0 for all t ∈ [1,∞).
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Since 0 = f(1) ≤ f(t) for 1 ≤ t, we also have f ′(1) ≥ 0, and this is
precisely the bound (8.35).

Solution for Exercise 8.8. We argue by contradiction, and we begin
by assuming that (a1k, a2k, . . . , ank) does not converge to the constant
limit �µ = (µ, µ, . . . , µ). For each j, the sequence {ajk : k = 1, 2, . . .}
is bounded so we can find a subsequence ks, s = 1, 2, . . ., such that
(a1ks

, a2ks
, . . . , anks

) converges to �ν = (ν1, ν2, . . . , νn) with �ν �= �µ. Let-
ting s→ ∞ and applying hypotheses (i) and (ii), we find

ν1 + ν2 + · · · + νn

n
= µ and

νp
1 + νp

2 + · · · + νp
n

n
= µp.

Now, by Problem 8.1 we see from these two identities and the case of
equality in the power mean inequality that imply νj = µ for all j, but
this contradicts our assumption �ν �= �µ, so the proof is complete.

Niven and Zuckerman (1951) consider only p = 2, and in this case
Knuth (1968, p. 135) notes that one can give a very easy proof by con-
sidering the sum

∑
(ajk −µ)2. The benefit of the subsequence argument

is that it works for all �p with p > 1, and, more generally, it reminds
us that there many situations where the characterization of the case of
equality can be used to prove a limit theorem.

Subsequence arguments often yield a qualitative stability result while
assuming little more than the ability to identify the case where equality
holds. When more is known, specialized arguments may yield more
powerful quantitative stability results; here the two leading examples
are perhaps the stability result for the AM-GM inequality (page 35) and
the stability result for Hölder’s inequality (page 144).

Solution for Exercise 8.9. First notes that the hypothesis yields
the telescoping relationship,

n−k∑
i=1

(xi+k −xi) = (xn +xn−1 + · · ·+xn−k+1)− (x1 +x2 + · · ·+xk) ≤ 2k,

so the inverted HM-AM inequality (8.16) gives us the informative bound

n−k∑
i=1

1
xi+k − xi

≥ (n− k)2

2k
.
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Now, by summation we have

∑
1≤j<k≤n

1
xj − xk

=
n−1∑
k=1

n−k∑
i=1

1
xi+k − xi

≥
n−1∑
k=1

(n− k)2

2k
=
n2

2

(
Hn−1 − 1

2
+

1
2n

)
,

so the bound Hn−1 = 1 + 1
2 + · · · + 1

n−1 >
∫ n

1
dx/x = log n completes

the first part.
For the second part, we note that for any permutation σ one has

∑
1≤j<k≤n

1
xj − xk

=
∑

1<k≤n

k−1∑
j=1

1
|xσ(k) − xσ(j)|

≤ (n− 1) max
1<k≤n

k−1∑
j=1

1
|xσ(k) − xσ(j)| .

This argument of Erdős (1961, p. 237) speaks volumes about the rich
possibilities of simple averages.

Chapter 9: Hölder’s Inequality

Solution for Exercise 9.1. For the second bound one applies Hölder’s
inequality with p = 5/4 and q = 5 and finishes with the telescoping
identity 1/(1 · 2) + 1/(2 · 3) + · · · + 1/{n(n + 1)} = 1 − 1/(n + 1). For
the second bound one uses p = 3/4 and q = 4 and finishes with Eu-
ler’s classic sum 1 + 1/22 + 1/32 + · · · = π2/6. While for the third
bound one uses p = 3/2 and q = 3 and finishes with the geometric sum
1 + x3 + x3 + · · · = 1/(1 − x3).

Solution for Exercise 9.2. Consider z such that |z| > 1 and note
by Hölder’s inequality that one has the bound∣∣∣∣ n−1∑

n=0

ajz
j

∣∣∣∣ ≤ Ap

( n−1∑
n=0

|z|jq

)1/q

, so we also have

|P (z)| ≥ |z|n
(

1 −Ap

( n−1∑
n=0

1
|z|(n−j)q

)1/q)
, and by summation

n−1∑
n=0

1
|z|(n−j)q

<
∞∑

n=0

1
|z|jq

=
1

|z|q − 1
.
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Thus, we have |P (z)| > 0 if Ap/ (|z|q − 1)1/q ≤ 1. That is, we have
|P (z)| > 0 for all z such that |z| > (1 +Aq

p)
1/q.

The bound (9.29) for the inclusion radius is due to M. Kuniyeda, and
it provides a useful reminder how one can benefit from the flexibility
afforded by Hölder’s inequality. Here, for a given polynomial, a wise
choice of the power p sometimes leads to an inclusion radius that is
dramatically smaller than the one given simply by taking p = 2. This
result and many other bounds for the inclusion radius are developed in
Mignotte and Ştefănescu (1999).

Solution for Exercise 9.3. This method is worth understanding, but
the exercise does not leave much to do. First apply Cauchy’s inequality
to the sum of αjβj where αj = ajbjcjdj and βj = ejfjgjhj , then repeat
the natural splitting twice more. It is obvious (but easy to overlook!)
that each p ∈ [1,∞) can be approximated as closely as we like by a
rational number of the form p = 2k/j where 1 ≤ j < 2k.

Solution for Exercise 9.4. Apply the Hölder inequality given by
Exercise 9.7 with D = [0,∞) and w(x) = φ(x) with the natural choices
f(x) = x(1−α)t0 , g(x) = xαt1 , p = 1/(1 − α) and q = 1/α. One conse-
quence of this bound is that if the tth moment is infinite, then either
t0th or t1th moment must be infinite.

Solution for Exercise 9.5. Equality in the bound (9.30) gives us∣∣∣∣ n∑
k=1

akbk

∣∣∣∣ = n∑
k=1

|akbk| =
( n∑

k=1

|ak|p
)1/p( n∑

k=1

|bk|q
)1/q

. (14.58)

Now, if |a1|, |a2|, . . . , an| is a nonzero sequence, then the real variable
characterization on page 136 tells us that the second equality holds if
and only if there exists a constant λ ≥ 0 such that λ|ak|1/p = |bk|1/q for
all 1 ≤ k ≤ n.

The novel issue here is to discover when the first equality holds. If
we set akbk = ρke

iθ where ρk ≥ 0 and θk ∈ [0, 2π) and if we further set
pk = ρk/(ρ1 + ρ2 + · · · + ρn), then the first equality holds exactly when
the average p1e

iθ1 + p2e
iθ2 + · · ·+ pne

iθn is on the boundary of the unit
disk, and this is possible if and only if there exists a θ such that θ = θk

for all k such that pk �= 0. In other words, the first equality holds if and
only if the values arg{akbk} are equal for all k for which arg{akbk} is
well defined.

Solution for Exercise 9.6. One checks by taking derivatives that
φ′′(x) = (1−p)x−2+1/p(1+x1/p)−2+p/p, and this is negative since p > 1
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and x ≥ 0. One then applies Jensen’s inequality (for concave functions)
to wk = |ak|p and xk = |bk|p/|ak|p; the rest is arithmetic. This modestly
miraculous proof is just one move example of how much one can achieve
with Jensen’s inequality, given the wisdom to chose the “right” function.

Solution for Exercise 9.7. Without lost of generality, one can as-
sume that the integrals of the upper bound do not vanish. Call these
integrals I1 and I2, apply Young’s inequality (9.6) to u = |f(x)|/I1/p

1

and |g(x)|/I1/q
2 , multiply by w(x), and integrate. Hölder’s inequality

then follows by arithmetic. For a thorough job, one may want to retrace
this argument to sort out the case of equality.

Solution for Exercise 9.8. The natural calculus exercise shows the
Legendre transform of f(x) = xp/p is g(y) = yq/q where q = p/(p− 1).
Thus, the bound (9.33) simply puts Young’s inequality (9.6) into a larger
context. Similarly, one finds the Legendre transform pair:

f(x) = ex �→ g(y) = y log y − y and φ(x) = x log x− x �→ γ(y) = ey.

This example suggests the conjecture that for a convex function, the
Legendre transform of its Legendre is the original function. This con-
jecture is indeed true. Finally, for part (c), we take 0 ≤ p ≤ 1 and note
that g(py1 + (1− p)y2) = supx∈D{x(py1 + (1− p)y2)− f(x)} also equals
supx∈D

(
p{(xy1 − f(x)} + (1 − p){xy2 − f(x)}). Since this is bounded

by supx∈D p{(xy1 − f(x)} + supx∈D(1 − p){xy2 − f(x)} which equals
pg(y1) + (1 − p)g(y2), we see that g is convex.

Solution for Exercise 9.9. Part (a) follows by applying Hölder’s
inequality for the conjugate pair (p/r, q/r) to the splitting ar

j · brj . Part
(b) can be obtained by two similar applications of Hölder’s inequality,
but one saves arithmetic and gains insight by following Riesz’s pattern.
By the AM-GM inequality one has xyz ≤ xp/p+ yq/q+ zr/r and, after
applying this to the corresponding normalized values âj ,b̂j , and ĉj , one
can finish exactly as before.

Solution for Exercise 9.10. The historical Hölder inequality follows
directly from the weighted Jensen inequality (9.31) with φ(x) = xp, a
proof which suggests why Hölder might have viewed the inequality (9.31)
as his main result.

To pass from the bound (9.34) to the modern Hölder inequality (9.1),
one takes wk = bqk and yk = ak/b

q−1
k . To pass from the bound (9.1) to the

historical Hölder inequality, one uses the splitting akbk = {w1/p
k yk}{w1/q

k }.
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Solution for Exercise 9.11. The hint leads one to the bound
n∑

k=1

{
θa

p/s
k + (1 − θ)bq/s

k

}s

≤
{
θ

{ n∑
k=1

ap
j

}1/s

+ (1 − θ)
{ n∑

k=1

bqk

}1/s}s

and, if we let s→ ∞, then the formula (8.5) gives us

n∑
k=1

aθp
k b

(1−θ)q
k ≤

{ n∑
k=1

ap
k

}θ{ n∑
k=1

bqk

}1−θ

, (14.59)

which is Hölder’s inequality after one sets θ = 1/p. This derivation of
Kedlaya (1999) and Maligranda (2000) serves as a reminder that the
formula (8.5) gives us another general tool for effecting the “additive
to multiplicative” transformation which is often needed in the theory of
inequalities.

Solution for Exercise 9.12. Fix m and use induction on n. For
n = 1 we have w1 = 1, and the inequality is trivial. For the induction
step apply Hölder’s inequality to u1v1 + u2v2 + · · · + umvm where

uj =
n−1∏
k=1

awk

jk , vj = awn
jn , p = 1/(w1 + w2 + · · · + wn−1), and q = 1/wn.

This gives us the bound

m∑
j=1

n∏
k=1

awk

jk ≤
{ m∑

j=1

n−1∏
k=1

a
wk/(w1+···+wn−1)
jk

}w1+···+wn−1
( m∑

j=1

ajn

)wn

,

and the proof is then completed by applying the induction hypothesis
to the bracketed sum of (n− 1)-fold products.

To prove the inequality (9.36), we first apply the bound (9.35) with
w1 = w2 = w3 = 1/3 to the array

A =

x x x

x
√
xy y

x y z


to find x+ (xy)

1
2 + (xyz)

1
3 ≤ {(3x)(x+ y +

√
xy)(x+ y + z)}1/3. Now,

by applying
√
xy ≤ (x+ y)/2 one finds

3x(x+ y +
√
xy)(x+ y + z) ≤ 27x · x+ y

2
· x+ y + z

3
,

and this completes the proof of the bound (9.36) suggested by Lozansky
and Rousseau (1996, p. 127). The bound (9.36) is due to Finbarr Holland
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who also conjectured the natural n-variable analogue, a result which was
subsequently proved by Kiran Kedlaya.

Solution for Exercise 9.13. Taking the bound (9.38) and the in-
version of the bound (9.39) one finds(

Ss/Sr

)Ss/(s−r) ≤ b
a1bs

1
1 b

a2bs
2

2 · · · banbs
n

n ≤ (St/Ss

)Ss/(t−s)
,

which we can write more leanly as(
Ss/Sr

)1/(s−r) ≤ (St/Ss

)1/(t−s) or St−r
s ≤ St−s

r Ss−r
t , as claimed.

Solution for Exercise 9.14. As in Problem 9.6 we begin by noting
that scaling and the Converse Hölder inequality imply that it suffices to
show that we have the bound

m∑
j=1

n∑
k=1

cjkxkyj ≤Mθ for all ‖x‖s ≤ 1 and ‖y‖t′ ≤ 1, (14.60)

where t′ = t/(t−1) is the conjugate power for t (so 1/t+1/t′ = 1). Also,
just as before, the assumption that cjk ≥ 0 for all j, k implies that it
suffices for us to consider nonnegative values for xj and yk. To continue
with the earlier pattern, we need to set up the splitting trick. Here there
are many possibilities, and an unguided search can be frustrating but
there are some observations that can help direct our search.

First, we know that we must end up with the sum of the xs
k and the

sum of the yt′
j separated from the cjk factors; this is the only way we can

use the hypotheses that ‖x‖p ≤ 1 and ‖y‖t′ ≤ 1. Also, the definition of
the splitting will surely need to exploit the defining relations (9.42) for
the three variables s, t, and θ.

When we try to combine these hints, we may note that

(1 − θ)
s

s0
+ θ

s

s1
= s

1
s

= 1

while for the conjugate powers t′ = t/(t − 1), t′0 = t0/(t0 − 1), and
t′1 = t1/(t1 − 1) we have the analogous relation

(1 − θ)
t′

t′0
+ θ

t′

t′1
= t′ {(1 − θ)(1 − 1/t′0) + θ(1 − 1/t′1)} = t′

1
t′

= 1.

Now, we just need use these relations to create a splitting of cjkxkyj

which will bring the sums of xs
k and yt′

j in to view after an applications
of Hölder’s inequality. With just a little experimentation, one should
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then find the bound
m∑

j=1

n∑
k=1

cjkxkyj =
m∑

j=1

n∑
k=1

(cjkx
s/s0
k y

t′/t′0
j )1−θ(cjkx

s/s1
k y

t′/t′1
j )θ

≤
( m∑

j=1

{ n∑
k=1

cjkx
s/s0
k

}
y

t′/t′0
j

)1−θ

×
( m∑

j=1

{ n∑
k=1

cjkx
s/s1
k

}
y

t′/t′1
j

)θ

.

This bound is a grand champion among splitting trick estimates and,
after our eyes adjust to the clutter, we see that it is the natural culmi-
nation of a line of argument which we have used several times before.

To complete our estimate, we need to bound the last two factors. For
the first factor we naturally want to apply Hölder’s inequality for the
conjugate pair t0 and t′0 = t0/(t0 − 1). We then find that

m∑
j=1

( n∑
k=1

cjkx
s/s0
k

)
y

t′/t′0
j ≤

( m∑
j=1

( n∑
k=1

cjkx
s/s0
k

)t0)1/t0( m∑
j=1

yt′
j

)1/t′0

≤M0

( n∑
k=1

xs
k

)1/s0
( m∑

j=1

yt′
j

)1/t′0
≤M0,

where in the second inequality we applied the bound ‖Tx‖t0 ≤M0‖x‖s0

to the vector x = (xs
1, x

s
2, . . . , x

s
n). We can then bound the second factor

in exactly the same way to find
m∑

j=1

{ n∑
k=1

cjkx
s/s1
k

}
y

t′/t′1
j ≤M1,

so when we return to our first bound we have the estimate
m∑

j=1

n∑
k=1

cjkxkyj ≤Mθ
1M

1−θ
0 .

This is exactly what we needed to complete the solution.

Solution for Exercise 9.15. One can proceed barehanded, but it is
also instructive to apply the result of the preceding exercise. From the
hypothesis we have ‖Tx‖2 ≤ ‖x‖2, and from the definition of M one
finds ‖Tx‖∞ ≤M‖x‖1. Since the linear system(

1
p
,
1
q

)
= θ

(
1
1
,

1
∞
)

+ (1 − θ)
(

1
2
,
1
2

)
,
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has θ = (2 − p)/p ∈ [0, 1] as its unique solution, the bound (9.43) is
indeed a corollary of Exercise 9.14.

Chapter 10: Hilbert’s Inequality

Solution for Exercise 10.1. The proof fits in a single line: just note
n∑

j,k,=1

ajakx
jxk =

( n∑
j=1

ajxj

)2

≥ 0

and integrate over [0, 1]. For the general case, one naturally uses the
representation 1/λj =

∫ 1

0
xλjdx.

This problem is a reminder that there are many circumstances where
dramatic progress is made possible by replacing a number (or a function)
with an appropriate integral. Although this example and the one given
by Exercise 7.5, page 116, are simple, the basic theme has countless
variations. Some of these variation are quite deep.

Solution for Exercise 10.2. We substitute, switch order, apply the
bound (10.18), switch again, and finish with Cauchy’s inequality to find∣∣∣∣∑

j,k

ajkhjkxjyk

∣∣∣∣
=
∣∣∣∣ ∫

D

(∑
j,k

ajkxjfj(x)ykgk(x)
)
dx

∣∣∣∣
≤
∫

D

M

(∑
j

|xjfj(x)|2
)1/2(∑

k

|ykgk(x)|2
)1/2

dx

≤M

(∑
j

x2
j

∫
D

|fj(x)|2 dx
)1/2(∑

k

y2
k

∫
D

|gk(x)|2 dx
)1/2

.

The bound αβM‖x‖2‖y‖2 now follows from the assumption (10.21).

Solution for Exercise 10.3. To mimic our proof of Hilbert’s in-
equality we take λ > 0 and use the analogous splitting to find

∞∑
m=1

∞∑
n=1

ambn
max(m,n)

=
∞∑

m=1

∞∑
n=1

ambn
max(m,n)

(
m

n

)λ(
n

m

)λ

=
∞∑

m=1

∞∑
n=1

am

max
1
2 (m,n)

(
m

n

)λ
bn

max
1
2 (m,n)

(
n

m

)λ

.

By Cauchy’s inequality, the square of the double sum is bounded by the



268 Solutions to the Exercises

product of the sum given by

∞∑
m=1

∞∑
n=1

a2
m

max(m,n)

(m
n

)2λ

=
∞∑

m=1

a2
m

∞∑
n=1

1
max(m,n)

(m
n

)2λ

and the corresponding sum containing {b2n}. If we take λ = 1/4, we have

∞∑
n=1

1
max(m,n)

(m
n

) 1
2

=
m∑

n=1

1
m

(m
n

) 1
2

+
∞∑

n=m+1

1
n

(m
n

) 1
2

≤ 1√
m

m∑
n=1

1√
n

+
√
m

m∑
n=m+1

1
n3/2

≤ 1√
m

2
√
m+

√
m 2

1√
m

≤ 4

so, to complete the proof we only need to note that the {b2n} sum satisfies
an exactly analogous bound.

Finally, the usual “stress testing” method shows that 4 cannot be
replaced with a smaller value. After setting an = bn = n−

1
2−ε, one

checks that

∞∑
n=1

an =
1
2ε

+O(1) and
∞∑

m=1

∞∑
n=1

aman

max(m,n)
=

2
ε

+O(1).

Peeking ahead and takingK(x, y) = 1/max(x, y) in Exercise 10.5, one
finds that the constant 4 in the bound (10.3) is perhaps best understood
when interpreted as the integral

4 =
∫ ∞

0

1√
u

1
max(1, u)

du.

Solution for Exercise 10.4. One can repeat the proof of the discrete
case line-by-line, and to do so is worth one’s time. The parallel between
the discrete and continuous problems is really quite striking.

Solution for Exercise 10.5. The first step exploits the homogeneity
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condition of K(x, y) by a homogeneous change of variables y = ux:

I =
∫ ∞

0

∫ ∞

0

f(x)K(x, y)g(y) dxdy

=
∫ ∞

0

f(x)
{∫ ∞

0

K(x, y)g(y) dy
}
dx

=
∫ ∞

0

f(x)
{∫ ∞

0

K(x, ux)g(ux)x du
}
dx

=
∫ ∞

0

f(x)
{∫ ∞

0

K(1, u)g(ux) du
}
dx

=
∫ ∞

0

K(1, u)
{∫ ∞

0

f(x)g(ux) dx
}
du.

Now, once K has been pulled outside, we can apply Schwarz’s inequality
to the inside integral to find∫ ∞

0

f(x)g(ux) dx ≤
(∫ ∞

0

|f(x)|2 dx
) 1

2
(∫ ∞

0

|g(ux)|2 dx
) 1

2

=
(∫ ∞

0

|f(x)|2 dx
) 1

2 1√
u

(∫ ∞

0

|g(v)|2 dv
) 1

2

,

so we see at last that

I ≤
∫ ∞

0

K(1, u)
1√
u
du·
(∫ ∞

0

|f(x)|2 dx
) 1

2
(∫ ∞

0

|g(v)|2 dv
) 1

2

.

This completes the solution of the exercise with c given by the first of the
three indicated integrals, and we can make a simple change of variables
to check that all three of the integrals are equal.

This argument is yet another of the gems from Schur’s remarkable
1911 paper. Actually, Schur proves the trickier finite range result,∫ b

a

f(x)K(x, y)g(y)dxdy ≤ c

(∫ b

a

|f(x)|2 dx
) 1

2
(∫ b

a

|g(y)|2 dy
) 1

2

,

where 0 ≤ a < b < ∞. In this case, the domain of integration changes
with the change of variables, but the original plan still works.

Solution for Exercise 10.6. Integral comparison gives part (a) by

t

t2 + 12
+

t

t2 + 22
+ · · ·+ t

t2 + n2
<

∫ n

0

t

t2 + x2
dx ≤

∫ ∞

0

dy

1 + y2
= π/2,
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and for part (b) we note that

n∑
k=1

a2
kwk(t) = t

n∑
k=1

a2
k +

1
t

n∑
k=1

k2a2
k = tA+

1
t
B

is minimized by taking t = (B/A)
1
2 . Part (c) just assembles the pieces.

Solution for Exercise 10.7. Since |t−π| ≤ π for t ∈ [0, 2π] we have

|I| ≤ π

{
1
2π

∫ 2π

0

∣∣∣∣ N∑
k=1

ak e
ikt

∣∣∣∣∣∣∣∣ N∑
k=1

bk e
ikt

∣∣∣∣dt}

≤ π

{
1
2π

∫ 2π

0

∣∣∣∣ N∑
k=1

ak e
ikt

∣∣∣∣2dt}1/2{ 1
2π

∫ 2π

0

∣∣∣∣ N∑
k=1

bk e
ikt

∣∣∣∣2dt}1/2

= π

{ n∑
k=1

ak
2

}1/2{ n∑
k=1

bk
2

}1/2

.

This remarkably quick way of obtaining Hilbert’s inequality is known
as Toeplitz’s method. Hilbert’s original proof also used trigonometric
integrals, but those used by Hilbert were not quite as efficient. Toeplitz’s
argument tells us more generally that if ϕ is any bounded function on
[0, 2π] with Fourier coefficients cn, −∞ < n < ∞, then one has the
bound ∣∣∣∣ N∑

m=1

N∑
n=1

cm+n am bn

∣∣∣∣ ≤ ‖ϕ‖∞ ‖a‖2 ‖b‖2.

Integral representation can also be used to prove more distinctive gen-
eralizations of Hilbert’s inequality. For example, if α /∈ Z one finds

1
2π

∫ 2π

0

ei(n+α)tdt =
1

π(n+ α)
eiαπ sinαπ,

and this representation can be used to show

∣∣∣∣ N∑
m=1

N∑
n=1

am bn
m+ n+ α

∣∣∣∣ ≤ π

| sinαπ| ‖a‖2 ‖b‖2.
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Solution for Exercise 10.8. We substitute and change orders:∫ ∞

0

1
1 + y

1
y2λ

dy =
∫ ∞

0

{∫ ∞

0

e−t(1+y) dt

}
1
y2λ

dy

=
∫ ∞

0

e−t

{∫ ∞

0

e−ty 1
y2λ

dy

}
dt

=
∫ ∞

0

e−t

{
Γ(1 − 2λ)
t1−2λ

}
dt = Γ(2λ)Γ(1 − 2λ).

Chapter 11 Hardy’s Inequality and the Flop

Solution for Exercise 11.1. By applying Hölder’s inequality with
p = β/α and q = β/(β − α) to the right side of the bound (11.20) we
obtain the inequality∫ T

0

ϕβ(x) dx ≤ C

(∫ T

0

ϕβ(x) dx

)α/β (∫ T

0

ψβ/(β−α)(x) dx

)(β−α)/β

.

There is no loss of generality if we assume that the first integral factor
on the right is nonzero, so we may divide both sides by that factor. If
we then raise both sides of the resulting bound to the power β/(β − α)
to get our target bound (11.20).

It is only in the division step where we use the condition that ϕ is
bounded. The inequality for bounded functions can then be used to
prove a corresponding inequality for functions that need not be bounded.
It is quite common in arguments that call on the flop for one to first
consider bounded functions so that one can sidestep any inappropriate
arithmetic with integrals that might be infinite.

Solution for Exercise 11.2. By the AM-GM inequality we have
2x3 ≤ y3 + y2x+ yx2 ≤ y3 + 2y3/3 + x3/3 + y3/3 + 2x3/3 = 2y3 + x3.
In this example, the higher power on the left made the transformation
possible, but for the transformation to be nontrivial one also needed
cooperation from the constant factors. If we replace 2 by 1/2 in the
original problem, we only obtain the trivial bound −x3 ≤ 4y3.

Solution for Exercise 11.3. The hypothesis (11.21) and Schwarz’s
inequality give us∫ π

−π

v4(θ) dθ ≤
∫ π

−π

u4(θ) dθ + 6
{∫ π

−π

u4(θ) dθ
} 1

2
{∫ π

−π

v4(θ) dθ
} 1

2

which is x2 ≤ c2 + 6cx with the natural identifications. If we solve this
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for the case of equality, we find x = c(6 ± √
40)/2, so the hypothesis

(11.21) implies the bound (11.22) if we take A = {(6 +
√

40)/2}2.

Solution for Exercise 11.4. Only a few obvious changes are needed
to convert the proof of the L2 bound (11.1) to a proof for the corre-
sponding Lp bound (11.23). By that analogy, we first note

I =
∫ T

0

{
1
x

∫ x

0

f(u) du
}p

dx = − 1
p− 1

∫ T

0

{∫ x

0

f(u) du
}p

(x1−p)′ dx,

so integration by parts gives us the identity

I =
p

p− 1

∫ T

0

f(x)
{

1
x

∫ x

0

f(u) du
}p−1

dx−
∣∣∣∣T
0

x1−p

p− 1

{∫ x

0

f(u) du
}p

.

As before, the boundary contribution at zero is zero, and the contribu-
tion at T is nonpositive; therefore, we have the bound

I ≤ p

p− 1

∫ T

0

f(x)
{

1
x

∫ x

0

f(u) du
}p−1

dx,

which is the Lp analog of the preflop L2 bound (11.4). One now finishes
with the Lp flop precisely as in Exercise 11.1 provided that one sets
α = p− 1 and β = p.

Solution for Exercise 11.5. Without loss of generality we assume
that an ≥ 0 for all n = 1, 2, . . .. We then set An = a1 +a2 + · · ·+an and
apply Cauchy’s inequality followed by Hardy’s inequality (11.9) to get

T =
∞∑

n=1

an(An/n) ≤ 2
∞∑

n=1

a2
n.

We then finish with the even simpler bound

T ≥
∞∑

n=1

an

n∑
m=1

am

m+ n
=

∑
1≤m≤n<∞

aman

m+ n
≥ 1

2
S.

Solution for Exercise 11.6. The solution of this problem is not easy,
and here we follow the one provided by Richberg (1993) that begins with
the observation that∫ 1

x

∫ 1

x

1 − (st)N

1 − st
dsdt =

N∑
j=1

∫ 1

x

∫ 1

x

(st)j−1 dsdt =
N∑

j=1

(
1 − xj

j

)2

,

so our target inequality is equivalent to∫ 1

x

∫ 1

x

1 − (st)N

1 − x2N

dsdt

1 − st
< (4 log 2)

1 − x

1 + x
.
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This bound would follow from∫ 1

x

∫ 1

x

dsdt

1 − st
< (4 log 2)

1 − x

1 + x
,

and by a direct calculation one finds∫ 1

x

∫ 1

x

dsdt

1 − st
= 2

∫ 1

x

log(1 + t)
dt

t
,

so the proof of the our target inequality is reduced to showing∫ 1

x

log(1 + t)
dt

t
< (2 log 2)

1 − x

1 + x
.

This bound and the fact that it is sharp was already addressed in Exer-
cise 7.10, so the solution is complete.

Solution for Exercise 11.7. This observation is painfully obvious,
but it seems necessary for completeness. The hypothesis gives us the
bounds b1 ≤ a1, b2 ≤ a2, . . . , bN ≤ aN ; thus, for all 1 ≤ n ≤ N we have
(b1b2 · · · bn)1/n ≤ (a1a2 · · · an)1/n, which is more than we need. There
are questions on infinite rearrangements which are subtle, but this is not
one of them.

Solution for Exercise 11.8.
From the convergence of the sum, we know that the sequence of re-

mainders rn = an+1/(n+ 1) + an+2/(n+ 2) + an+3/(n+ 3) + · · · must
converge to zero as n→ ∞. When we write these terms in longhand,

r0 = a1 +a2/2 +a3/3 · · · + · · · + · · · +an/n +rn
r1 = a2/2 +a3/3 · · · + · · · + · · · +an/n +rn
r2 = a3/3 · · · + · · · + · · · +an/n +rn
...

...
...

...
...

...
...

...
rn−2 = an−1/(n− 1) +an/n +rn
rn−1 = an/n +rn,

we see they may be summed to yield the nice identity

(a1 + a2 + · · · + an)/n = −rn + (r0 + r1 + · · · + rn−1)/n, (14.61)

which makes the limit (11.25) routine.

Chapter 12: Symmetric Sums

Solution for Exercise 12.1. If the roots of P (x) are x1, x2, . . . , xn,
then an−1/an = (1/x1 + 1/x2 + · · ·+ 1/xn) and a1 = x1 + x2 + · · ·+ xn



274 Solutions to the Exercises

so we have (an−1/an)−1 ≤ a1/n by the HM-AM inequality (8.14). This
exercise offers a basic reminder: facts for polynomial coefficients and
facts for symmetric sums are almost in a one-to-one correspondence.

Solution for Exercise 12.2. (a) By expansion and simplification,
we see that we need to prove

6abc ≤ ac2 + ab2 + ba2 + bc2 + ca2 + cb2
def= R,

and after setting a = x1, b = x2, and c = x3 we also have∑
σ∈S(3)

xσ(1)xσ(2)xσ(3) = 6abc and
∑

σ∈S(3)

xσ(1)x
2
σ(2) = R.

Since (1, 1, 1) = 1
6 (2, 1, 0) + 1

6 (2, 0, 1) + · · ·+ 1
6 (0, 1, 2) we have (1, 1, 1) is

in H[(2, 1, 0)], so we may apply Muirhead’s inequality.
(b) We have (1, 1, 0, . . . , 0) = 1

2 (2, 0, 0, . . . , 0) + 1
2 (0, 2, 0, . . . , 0) so we

have (1, 1, 0, . . . , 0) ∈ H[(2, 0, 0, . . . , 0)], and by Muirhead’s inequality it
suffices to note that∑
σ∈S(n)

aσ(1)aσ(2) = 2(n−2)!
∑

1≤j<k≤n

ajak and
∑

σ∈S(n)

a2
σ(1) = (n−1)!

n∑
j=1

a2
j .

(c) Since the average {(1/2, 1/2, 0, . . . , 0) + · · · + (0, . . . , 0, 1/2, 1/2)} /(n2)
equals (1/n, 1/n, . . . , 1/n), it suffices by Muirhead’s inequality to note∑

σ∈S(n)

a
1/n
σ(1) · · · a1/n

σ(n) = n!(a1a2 · · · an)1/n and

∑
σ∈S(n)

a
1/2
σ(1)a

1/2
σ(2) = 2(n− 2)!

∑
1≤j<k≤n

√
ajak.

Solution for Exercise 12.3. Multiply the left side of the bound
(12.23) by (xyz)1/3 and consider the candidate inequality

x7/3y1/3z1/3 + x1/3y7/3z1/3 + x1/3y1/3z7/3 ≤ x3 + y3 + z3. (14.62)

This generalizes our original problem in the sense that if we can prove
that the bound (14.62) holds for all nonnegative x, y, z then the bound
(12.23) must hold when xyz = 1. Fortunately, the new bound (14.62) is
a corollary of Muirhead’s inequality and the relationship

(7/3, 1/3, 1/3) =
7
9
(3, 0, 0) +

1
9
(0, 3, 0) +

1
9
(0, 0, 3).

Kedlaya (1999) presents several more sophisticated examples of the ho-
mogenization device.



Solutions to the Exercises 275

Solution for Exercise 12.4. By expanding the bound (12.24) we
see after simplification that it is equivalent to the assertion that∑

(j,k):j 
=k

xm
j x

m
k ≤

∑
(j,k):j 
=k

xm−1
j xm+1

k

but (m,m, 0, . . . , 0) = 1
2 (m+1,m−1, 0, . . . , 0)+ 1

2 (m−1,m+1, 0, . . . , 0)
so the bound (12.24) follows from Muirhead’s inequality.

Solution for Exercise 12.5. With surprising frequency, solvers of
this exercise find the same example discovered by Bunyakovsky (1854):

p(x, y) =
{
x2 + (1 − y)2

}{
y2 + (1 − x)2

}
.

Here one has p(1, 0) = 0 and p(0, 1) = 0 but otherwise p(x, y) is strictly
positive. Thus, despite the symmetry of p, the minimum of p is not on
the diagonal D = {(x, y) : x = y}. Incidentally, this problem reminds
us that whenever we are in pursuit of some conjecture, it is important
to allocate time to the search for counterexamples. One often discovers
quite quickly that the conjecture must be refined — or even rejected.

Solution for Exercise 12.6. First, by (cyclical) symmetry, we can
assume that x ≥ y and x ≥ z. This makes x “special,” so it is then
natural to consider the symmetry properties of y and z. If we consider
the difference

f(x, y, z) − f(x, z, y) = (y − z)(x− y)(x− z),

we see it is negative when y is less than z, so we can assume without
loss of generality that y ≥ z. Finally, assuming x ≥ y ≥ z we note
f(x+ z, y, 0) − f(x, y, z) = z2y + yz(x− y) + xy(y − z) ≥ 0, so we may
also assume without loss of generality that z = 0. We can now finish
with calculus as suggested by the hint or, alternatively, we can use the
AM-GM inequality check that for x+ y = 1 we have

f(x, y, 0) =
x2y

2
≤ 1

2

(
x+ x+ 2y

3

)3

= 4/27.

One lesson to take away from this exercise is that it is often possible
to make step-by-step progress by considering how a function changes
when subjected to simple transformations such as the interchange of
two variables.
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Solution for Exercise 12.7. Pitman solves his Problem 3.1.24 by
first expanding 1 = (x+ y+ z)3 and then noting that it suffices to show

Q = x2y + x2z + y2x+ y2z + z2x+ z2y ≤ 1/4 when x+ y + z = 1.

If we write Q = x{x(y + z)} + y{y(x + z)} + z{z(x + y)}, then it now
suffices to notice that each of the three braced expressions is bounded
below by 1/4 by the AM-GM inequality. Other solutions can be based
on the homogenization trick of Exercise 12.3, or Schur’s inequality (page
83), or the reduction devices of Exercise 12.6.

Solution for Exercise 12.8. This elementary (but very useful!) in-
equality serves as a reminder that symmetry is often the key to successful
telescoping. Here the telescoping identity

a1a2 · · · an − b1b2 · · · bn =
n∑

j=1

a1 · · · aj−1(aj − bj)bj+1 · · · bn

makes the Weierstrass inequality immediate. Naturally, generalizations
of this identity lead one to more elaborate versions of Weierstrass in-
equality.

Chapter 13: Majorization and Schur Convexity

Solution for Exercise 13.1. From each of the representationsab
c

 =

1/2 1/3 1/6
1/3 2/3 0
1/6 0 5/6

xy
z

 ab
c

 =

 0 1/2 1/2
1/2 1/6 1/3
1/2 1/3 1/6

xy
z


one gets (a, b, c) ≺ (x, y, z). The inequalities of the exercise then follow
from the Schur concavity of the map (x, y, z) �→ xyz and the Schur
convexity of the map (x, y, z) �→ 1/x5 + 1/y5 + 1/z5.

Solution for Exercise 13.2. If we set s = (x1 + x2 + · · · + xn)/k
we have (x1, x2, . . . , xn) ≺ (s, s, . . . , s, 0, 0, . . . , 0) when we take k copies
of s. Thus, for convex φ : [0,∞) → R, Schur’s majorization inequality
(13.18) gives us φ(x1) + φ(x2) + · · ·+ φ(xn) ≤ (n− k)φ(0) + kφ(s), and
we can set φ(x) = 1/(1 + x) to obtain the bound (13.21).

Solution for Exercise 13.3. If one sets

yk =

{
µ+ δ/m for 1 ≤ k ≤ m

µ− δ/(n−m) for m < k ≤ n

where µ = (x1+x2+· · ·+xn)/n, then from the condition (13.22) it follows
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easily that y ≺ x. The map f(x) = x2
1 +x2

2 + · · ·+x2
n is Schur convex, so

we have f(y) ≺ f(x), and, after expansion, this is precisely the target
inequality (13.23). For the connection to Szemerédi’s Regularity Lemma,
see Komlós and Simonovits (1996).

Solution for Exercise 13.4. Two applications of cancellation iden-
tity (13.24) permit one to reduce Schur’s differential (13.4) to

−(xs − xt)2ek−1(x1, x2, . . . , xs−1, xs+1, . . . , xt−1, xt+1, . . . xn),

and this polynomial is obviously nonpositive for x ∈ [0,∞)n.

Solution for Exercise 13.5. Use Schur’s criterion (13.4) and note

(xj − xk)(sxj
(x) − sxk

(x)) = 2(xj − xk)2/(n− 1) ≥ 0 and

(pj − pk)(hpj
(p) − hpk

(p)) = (pj − pk)(log pj − log pk) ≥ 0,

where the subscripts connote partial derivatives. Incidentally, the second
formula verifies that h(p) is Schur convex on all of (0,∞)n, not just the
subset of (0,∞)n where p has sum equal to one.

Solution for Exercise 13.6. Since (1/n, 1/n, . . . , 1/n) ≺ p, this is a
special case of the bound (13.18) for φ(x) = (x+ 1/x)α since

φ′′(x) = α(x+ 1/x)α(x+ x3)−2{(1 + x2 − x4) + α(1 − x2)2}
must be positive for 0 ≤ x ≤ 1 and α > 0. The relevance of Schur
convexity to this problem was noted by Marshall and Olkin (1979, p. 72);
a proof using Lagrange multipliers is given by Mitrinović (1970, p. 282).

Solution for Exercise 13.7. In the uniform case the probability is
1− (1− 1/365) · (1− 2/365) · · · (1− 22/365) ∼ 0.5079 . . .. In the general
case the probability is 1 − en(p1, p2, . . . , p365) where en(p) is the nth
symmetric polynomial and pk is the probability that a randomly chosen
person is born on day k. By Exercise 13.4 the polynomial en(p) is Schur
concave, and this is even more than one needs. The connection between
majorization and the birthday problem has been made in Clevenson and
Watkins (1991) and Proschan and Joag–Dev (1992); McConnell (2001)
gives a treatment for nonuniform probabilities without explicit recourse
to majorization.

Solution for Exercise 13.8. The necessity of the condition is imme-
diate, so we just need to prove sufficiency. In Weyl’s terms, girl j knows
precisely the boys in the set Sj , so for a given a set A of girls, every boy
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in the set ∪j∈ASj will be known by some girl in A. We now consider
two cases.

In Case I, we assume that the inequality (13.26) is strict for all A with
|A| < n. Girl n then marries any boy b she knows. Since the condition
(13.26) continues to hold for all A ⊂ {1, 2, . . . , n − 1} when each Sj ,
1 ≤ j ≤ n−1, is replaced by Sj \{b}, the remaining girls can be married
by induction to the remaining boys.

In Case II, we assume that equality holds in the bound (13.26) for
some A0 with |A0| < n. We then let

B =
⋃

j∈A0

Sj and set S′
j = Sj \B for all j ∈ Ac

0.

The girls in A0 can be married to the boys in B by induction, and it
remains to show that the girls in Ac

0 can be married to the boys in Bc.
We now take any A ⊂ Ac

0 and note that∣∣∣∣ ⋃
j∈A0∪A

Sj

∣∣∣∣ ≥ |A0 ∪A| = |A| + |A0|.

We also have the identity∣∣∣∣ ⋃
j∈A0∪A

Sj

∣∣∣∣ = ∣∣∣∣{ ⋃
j∈A0

Sj

}⋃{ ⋃
j∈A

S′
j

}∣∣∣∣ = |A0| +
∣∣∣∣⋃
j∈A

S′
j

∣∣∣∣.
Thus, we find for all A ⊂ Ac

0 that we have∣∣∣∣⋃
j∈A

S′
j

∣∣∣∣ ≥ |A|;

that is, every set of k girls in Ac
0 knows at least k boys in Bc. By

induction the girls in Ac
0 can be married to the boys in Bc. This proof is

essentially the one given by Halmos and Vaughan (1950). The marriage
lemma is a cornerstone of the large and active field of matching theory
which is beautifully surveyed by Lovász and Plummer (1986).

Solution for Exercise 13.9. One can argue by induction on the
number of nonzero entries of D, but it is perhaps more concrete to look
for an algorithm to compute the required convex combination. Either
way, the basic idea is to use the marriage lemma to make step-by-step
progress.

For each 1 ≤ j ≤ n, we let Sj denote the set of all k such that djk > 0,
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and we note that for each A ⊂ {1, 2, . . . , n} one has

|A| =
∑
j∈A

∑
k∈Sj

djk ≤
∑

k∈∪j∈ASj

∑
1≤j≤n

djk =
∣∣∣∣⋃
j∈A

Sj

∣∣∣∣.
By the marriage lemma, there is a system of SDRs of {S1, S2, . . . , Sn}, so
we can define a permutation σ by taking σ(j) to be the representative
from Sj for each j = 1, 2, . . . , n. Now, we let Pσ be the permutation
matrix associated with σ and set α = min djσ(j) > 0. If α = 1 then
D is a permutation matrix, and there is nothing left to prove. On the
other hand, if α < 1 consider the new matrix D′ defined by setting
D′ = (1 − α)−1(D − αPσ). We then have D = αPσ + (1 − α)D′ and
D′ is a doubly stochastic matrix with more zero entries than D. The
proof may now be completed by applying the induction hypothesis toD′.
Alternatively, one can compute the required summands by repeating the
analogous steps until the representation is complete; at most n2 steps
will be needed.

Chapter 14: Cancellation and Aggregation

Solution for Exercise 14.1. To prove the second bound (14.29), we
again sum b1z1 + b2z2 + · · · + bnzn by parts to get

S1(b1 − b2) + S2(b2 − b3) + · · · + Sn−1(bn−1 − bn) + Snbn,

but this time we bound the sum |b1z1 + b2z2 + · · · + bnzn| by noting

|S1||b1 − b2| + |S2||b2 − b3| + · · · + |Sn−1||bn−1 − bn| + |Sn|bn
≤ max

1≤k≤n
|Sk|{(b2 − b1) + (b3 − b2) + · · · + (bn − bn−1) + bn}

= {(bn − b1) + bn} max
1≤k≤n

|Sk| ≤ 2bn max
1≤k≤n

|Sk|.

Solution for Exercise 14.2. From the nonnegativity of g one has
the bounds

min
a≤y≤b

f(y)
∫ b

a

g(x) dx ≤
∫ b

a

f(x)g(x) dx ≤ max
a≤y≤b

f(y)
∫ b

a

g(x) dx,

and by the continuity of f it takes on all values between its minimum
and its maximum. These observations give us the first IMVF (14.30).

To prove the second, choose Φ with Φ(a) = 0 such that Φ′(x) = φ(x),
then integrate by parts and apply the first IMVF with f(x) = Φ(x) and
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g(x) = −ψ′(x) ≥ 0 to find∫ b

a

ψ(x)φ(x) dx =
∫ b

a

ψ(x)Φ′(x) dx = ψ(b)Φ(b) −
∫ b

a

ψ′(x)Φ(x) dx

= ψ(b)Φ(b) − Φ(ξ)
∫ b

a

ψ′(x) dx

= ψ(a)
{
ψ(a) − ψ(b)

ψ(a)
Φ(ξ) +

ψ(b)
ψ(a)

Φ(b)
}
.

Since 0 < ψ(b) ≤ ψ(a) the bracketed quantity is an average of Φ(b) and
Φ(ξ) so it must be equal to Φ(ξ0) for some ξ0 ∈ [ξ, b] ⊂ [a, b] by the
continuity of Φ.

Solution for Exercise 14.32. The bound (14.32) is immediate from
the second IMVF (14.31). The sine bound (14.33) then follows by taking
f(x) = 1/x, g(x) = sinx and by noting that the integral of g over [a, b]
is cos b− cos a which is bounded by 2 in absolute value.

Solution for Exercise 14.4. We are given that θ′(·) is monotonic,
and, without loss of generality, we assume it is nondecreasing. From the
second IMVP of Exercise 14.2, we find that∫ b

a

cos θ(x) dx =
∫ b

a

θ′(x) cos θ(x)
θ′(x)

dx

=
1

θ′(a)

∫ ξ

a

{cos θ(x)}θ′(x) dx =
sin θ(ξ) − sin θ(a)

θ′(a)
.

The last ratio has modulus bounded by 2/ν, so to complete the proof,
one only needs to check that an exactly analogous argument applies to
the imaginary part of the integral in our target inequality (14.34).

Since θ′(x) is strictly monotone, it vanishes at most once in the interval
[a, b], and, for the moment, suppose it vanishes at c. To prove the second
bound (14.35), we write the integral I over [a, b] as the sum I1+I2+I3 of
integrals over [a, c−δ], [c−δ, c+δ] and [c+δ, b]. In the interval [c+δ, b],
one has θ′(x) ≥ ρδ, so by the bound (14.34), we have |I3| ≤ 4/ρδ. An
analogous bound applies to I1, while for the integral I2 we have the
trivial bound |I2| ≤ 2δ. In sum we have

|I| ≤ |I1| + |I2| + |I3| ≤ 8
ρδ

+ 2δ,

which we can minimize by setting δ = 2/
√
ρ to obtain the target bound

(14.35). To be 100% complete, one finally needs to note that the target
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bound continues to hold if c± 2/
√
ρ /∈ [a, b], or, indeed, if θ′(x) does not

vanish in [a, b].

Solution for Exercise 14.5. To begin let W denote the target sum,
and note that

|W | =
∣∣∣∣∑

j∈A

∑
k∈B

exp
(

2πijk
p

) ∣∣∣∣ ≤∑
j∈A

∣∣∣∣∑
k∈B

exp
(

2πijk
p

) ∣∣∣∣
so Cauchy’s inequality gives us

|W |2 ≤ |A|
∑
j∈A

∣∣∣∣∑
k∈B

exp
(

2πijk
p

) ∣∣∣∣2.
Now we come to a devilish trick: we extend the outside sum to all
of Fp = {0, 1, . . . , p − 1}. This is feasible because we are just adding
positive terms, and it is sensible because it sets up the application of
the cancellation identity (14.36). To put the algebra neatly, we first
define the function δ(x) by setting δ(0) = 1 and δ(x) = 0 for x �= 0, then
we note

|W |2 ≤ |A|
∑
j∈Fp

∣∣∣∣∣∑
k∈B

exp
(

2πijk
p

)∣∣∣∣∣
2

= |A|
∑
j∈Fp

∑
k1,k2∈B

exp
(

2πij(k1 − k2)
p

)

= |A|
∑

k1,k2∈B

∑
j∈Fp

exp
(

2πij(k1 − k2)
p

)
= |A|p

∑
k1,k2∈B

δ(k1 − k2) = p|A||B|.

This problem and the description “extend and conquer” are from the
informative exposition of Shparlinski (2002) where one finds several fur-
ther examples of the ways to exploit complete sums. Shparlinski links
bounds of the type (14.37) back to the work of I.M. Vinogradov; in
particular, Exercise 14 of Vinogradov (1954, p. 128) is of this kind.

Solution for Exercise 14.6. For each 1 ≤ k ≤ �log2(x)� = K

we have the bound g(x/2k−1) − g(/2k) ≤ Ax/2k + B. Summing these
gives us g(x) − g(x/2K) ≤ Ax(1 + 1/2 + 1/22 + · · · + 1/2K) + KB, or
g(x) ≤ 2Ax + B�log2(x)� + max0≤t≤1 g(t), so we can take A′ = 2A,
B′ = B and C ′ = B + max0≤t≤1 g(t).
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Solution for Exercise 14.7. For any A ⊂ {1, 2, . . . , n} we have∫ 1

0

(∑
j∈A

cjψj(x) dx
)2

dx =
∑
j∈A

∑
k∈A

cjckajk ≤ C
∑
j∈A

c2j , (14.63)

where the last inequality comes from applying the hypothesis (14.39)
where yj = cj if j ∈ A and yj = 0 if j /∈ A. Next, if we replace ai by
ciψi(x) in the real-variable inequality (14.26) and integrate, we find∫ 1

0

max
1≤k≤n

( k∑
i=1

ciψi(x)
)2

dx ≤ �log2(n)�
∑
B∈B

∫ 1

0

(∑
i∈B

ψi(x)
)2

dx

≤ �log2(n)�
∑
B∈B

c
∑
i∈B

c2i

≤ �log2(n)��1 + log2(n)�c
n∑

i=1

c2i ,

which is slightly stronger than the target inequality (14.40).

Solution for Exercise 14.8. From the splitting

ρ−|j−k|yjyk = ρ−|j−k|/2yj · ρ−|j−k|/2yk,

we see that Cauchy’s inequality gives us( n∑
j=1

n∑
k=1

ρ−|j−k|yjyk

)2

≤
n∑

j=1

n∑
k=1

ρ−|j−k|y2
j ·

n∑
j=1

n∑
k=1

ρ−|j−k|y2
k

≤
n∑

j=1

y2
j

(
max

1≤j≤n

n∑
k=1

ρ−|j−k|
)
·

n∑
k=1

y2
k

(
max

1≤k≤n

n∑
j=1

ρ−|j−k|
)
.

Next, geometric summation shows that we have

max
1≤k≤n

n∑
j=1

ρ−|j−k| ≤
∑
j∈Z

ρ−|j| =
1 + ρ

1 − ρ
,

so our Cauchy estimate may be reduced to the simple bound∣∣∣∣ n∑
j=1

n∑
k=1

ρ−|j−k|yjyk

∣∣∣∣≤ 1 + ρ

1 − ρ

n∑
k=1

y2
k. (14.64)

Given the inequality (14.64), the conclusion of Exercise 14.8 with the
value M = (1 + ρ)/(1 − ρ) follows from Exercise 14.7.
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Solution for Exercise 14.9. From the definition of Sθ one finds

f(θ) def=
∣∣∣∣ ∑

zk∈Sθ

zk

∣∣∣∣ = ∣∣∣∣ ∑
zk∈Sθ

zke
−iθ

∣∣∣∣ ≥ ∣∣∣∣ ∑
zk∈Sθ

Re (zke
−iθ)

∣∣∣∣
=
∣∣∣∣ ∑

zk∈Sθ

|zk| cos(θ − arg zk)
∣∣∣∣ = ∑

zk∈Sθ

|zk| cos(θ − arg zk).

It suffices to show that max f(θ) is as large as the left side of the bound
(14.41). To do this we compute the average,

1
2π

∫ 2π

0

f(θ) dθ ≥ 1
2π

∫ 2π

0

∑
zk∈Sθ

|zk| cos(θ − arg zk) dθ

=
n∑

k=1

|zk|
2π

∫ arg(zk)+π/2

arg(zk)−π/2

cos(θ − arg zk) dθ =
1
π

n∑
k=1

|zk|

so, indeed, there must exist some value θ∗ for which f(θ∗) is at least as
large as the last sum. By taking {zk = exp(ik2π/N) : 0 ≤ k < N} for
large N one can show that the constant 1/π cannot be improved. This
argument follows W.W. Bledsoe (1970); Mitrinović (1970, p. 331) notes
that similar results were obtained earlier by D.Ž. Djoković.

Solution for Exercise 14.10. If L and R denote the left and right
sides of the target bound (14.42), then by squaring and changing order,
one finds the representation

L =
R∑

r=1

R∑
s=1

N∑
n=1

N∑
m=1

ān ȳnr yns am ymr ȳms

=
N∑

n=1

N∑
m=1

amān

{ R∑
r=1

R∑
s=1

ymr ȳms ȳnr yms

}

=
N∑

n=1

N∑
m=1

am ān

R∑
r=1

ymr ȳnr

R∑
s=1

ȳms yms

=
N∑

n=1

N∑
m=1

am ān

∣∣∣∣ R∑
r=1

ymr ȳnr

∣∣∣∣2,
and the identical calculation from the right side R shows

R =
N∑

n=1

N∑
m=1

AmAn

∣∣∣∣ R∑
r=1

ymr ȳnr

∣∣∣∣2,
so our hypothesis gives us L ≤ R. The bound (14.42) provides a generic
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example of a class of inequalities called majorant principles, and the
treatment given here follows Theorem 4 of Montgomery (1994, p. 132).

Solution for Exercise 14.11. The most direct proof just requires a
big piece of paper and a timely application of Cauchy’s inequality. First
expand the squares |〈um,vn

〉|2 in terms of the vector components umj ,
1 ≤ j ≤ d and vnk, 1 ≤ k ≤ d. Next, change the order of summation
so that the double sum over j and k is outermost, and only now apply
Cauchy’s inequality. Finally, within each of the two resulting rooted
expressions, you change the order of summation within each of the braces
and reinterpret the sums innermost sums as inner products.

This solution amplifies the remark of Montgomery (1994, p. 144) that
manipulations like those used in the solution of Exercise 14.10 can be
used to prove Enflo’s inequality. An alternative solution may be based
on the observation that the functions φn,m(x, y) = e(mx)e(ny) are or-
thonormal on the square [0, 1]2. One then introduces the function

f(x, y) def=
M∑

m=1

N∑
n=1

〈
um,vn

〉
e(mx)e(ny)

and exploits the fact that the integral of |f(x, y)|2 over [0, 1]2 gives the
left side of Enflo’s inequality.

Solution for Exercise 14.12. One always has 〈z, z〉 ≥ 0 so if we set
z = x − (c1y1 + c2y2 + · · · + cnyn), we find for all cj , 1 ≤ j ≤ n that

0 ≤ 〈x,x〉 −
n∑

j=1

cj〈x,yj〉 −
n∑

j=1

c̄j〈x,yj〉 +
n∑

j=1

n∑
k=1

cj c̄k〈yj ,yk〉.

The so-called humble bound |cj c̄k| ≤ 1
2 |cj |2 + 1

2 |ck|2 gives us

0 ≤〈x,x〉 −
n∑

j=1

cj〈x,yj〉 −
n∑

j=1

c̄j〈x,yj〉

+
1
2

n∑
j=1

n∑
k=1

|cj |2|〈yj ,yk〉| + 1
2

n∑
j=1

n∑
k=1

|ck|2|〈yj ,yk〉|,

and if we set cj = 〈x,yj〉
/∑n

k=1 |〈yj ,yk〉| simple algebra bring us to the
inequality (14.43). This argument is based on the classic exposition of
E. Bombieri (1974).
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Chapter 1: Starting with Cauchy

Bunyakovsky’s 1859 Mémoire was eighteen pages long, and it sold as
a self-standing piece for 25 kopecks, a sum which was then represented
by a silver coin roughly the size of a modern US quarter. Yale University
library has one of the few extant copies of the Mémoire. On the title page
the author used the French transliteration of his name, Bouniakowsky;
here this spelling is used in the references, but elsewhere in the text the
more common spelling Bunyakovsky is used.

The volume containing Schwarz’s 1885 article was issued in honor of
the 60th birthday of Karl Weierstrass. In due course, Schwarz came to
occupy the chair of mathematics in Berlin which had been long held by
Weierstrass.

Dubeau (1990) is one of the few articles to advocate the inductive
approach to Cauchy’s inequality that is favored in this chapter.

The Cramér–Rao inequality of Exercise 1.15 illustrates one way that
the Cauchy–Schwarz inequality can be used to prove lower bounds.
Chapter 6 of Matoušek (1999) gives an insightful development of several
deeper examples from the theory of geometric discrepancy. The recent
monograph of Dragomir (2003) provides an extensive survey of discrete
inequalities which refine and extend Cauchy’s inequality.

Chapter 2: The AM-GM Inequality

The AM-GM inequality is arguably the world’s oldest nontrivial in-
equality. As Exercise 2.6 observes, for two variables it was known even
to the ancients. By the dawn of the era of calculus it was known for
n variables, and there were even subtle refinements such as Maclaurin’s
inequality of 1729. Bullen, Mitrinović, and Vasić (1987, pp. 56–89) give
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fifty-two proofs of the AM-GM inequality in (essentially) their chrono-
logical order.

Duncan and McGregor (2004) survey several proofs of Carleman’s in-
equality including Carleman’s original, and Pečarić and Stolarsky (2001)
provide a comprehensive historical review.

Pólya’s 1926 article proves in one page what his 1949 article proves in
eight, but Pólya’s 1949 explanation of how he found his proof is one of the
great classics of mathematical exposition. It is hard to imagine a better
way to demonstrate how the possibilities for exploiting an inequality are
enhanced by understanding the cases where equality holds. The quote
from Pólya on page 23 is from Alexanderson (2000, p. 75).

Chapter 3: Lagrange’s Identity and Minkowski’s Conjecture

Stillwell (1998, p. 116) gives the critical quote from Arithmetica, Book
III, Problem 19, which suggests that Diophantus knew the case n = 2 of
Lagrange’s identity. Stillwell also gives related facts and references that
are relevant here — including connections to Fibonacci, Brahmagupta,
and Abu Ja’far al-Khazin. Exercise 3.2 is motivated by a similar exercise
of Stillwell (1998, p. 218). Bashmakova (1997) provides an enjoyable
introduction to Diophantus and his namesake equations.

Lagrange (1771, pp. 662–663) contains Lagrange’s identity for the case
n = 3, but it is only barely visible behind the camouflage of a repetitive
system of analogous identities. For the contemporary reader, the most
striking feature of Lagrange’s article may be the wild proliferation of
expressions such as ab − cd which nowadays one would contain within
determinants or wedge products.

The treatment of Motzkin’s trick in Rudin (2000) helped frame the
discussion given here, and the theory of representation by a sum of
squares now has an extensive literature which is surveyed by Rajwade
(1993) and by Prestel and Delzell (2001). Problem 3.5 was on the 1957
Putnam Exam which is reprised in Bush (1957).

Chapter 4: On Geometry and Sums of Squares

The von Neumann quote (page 51) is from G. Zukav (1979, p. 226
footnote). A long oral tradition precedes the example of Figure 4.1, but
this may be the first time it has found its way into print. The bound (4.8)
is developed for complex inner products in Buzano (1971/1973) which
cites an earlier result for real inner product spaces by R.U. Richards.
Magiropoulos and Karayannakis (2002) give another proof which de-
pends more explicitly on the Gram–Schmidt process, but the argument
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given here is closest to that of Fuji and Kubo (1993) where one also finds
an interesting application of the linear product bound to the exclusion
region for polynomial zeros.

The proof of the light cone inequality (page 63) is based on the discus-
sion of Aczél (1961, p. 243). A generalization of the light cone inequality
is given in van Lint and Wilson (1992, pp. 96–98), where it is used to give
a stunning proof of the van der Waerden permanent conjecture. Hilbert’s
pause (page 55) is an oft-repeated folktale. It must have multiple print
sources, but none has been found.

Chapter 5: Consequences of Order

The bound (5.5) is known as the Diaz–Metcalf inequality, and the
discussion here is based on Diaz–Metcalf (1963) and the comments by
Mitrinović (1970, p. 61). The original method used by Pólya and Szegö
is more complicated, but, as the paper of Henrici (1961) suggests, it may
be applied somewhat more broadly.

The Thread by Philip Davis escorts one through a scholar’s inquiry
into the origins and transliterations of the name “Pafnuty Chebyshev.”

The order-to-quadratic conversion (page 77) also yields the traditional
proof of the Neyman–Pearson Lemma, a result which many consider to
be one of the cornerstones of statistical decision theory.

Chapter 6: Convexity — The Third Pillar

Hölder clearly viewed his version of Jensen’s inequality as the main
contribution of his 1888 paper. Hölder also cites Rogers’s 1887 paper
quite generously, but, even then, Hölder seems to view Rogers’s main
contribution to be the weighted version of the AM-GM inequality. Ev-
eryone who works in relative obscurity may take heart from the fact
that neither Hölder nor Rogers seems to have had any inkling that their
inequality would someday become a mathematical mainstay. Pečarić,
Proschan, and Tong (1992, p. 44) provide further details on the early
history of convexity.

This chapter on inequalities for convex functions provides little infor-
mation on inequalities for convex sets, and the omission of the Prékopa-
Leindler and the Brunn-Minkowski inequalities is particularly regret-
table. In a longer and slightly more advanced book, each of these would
deserve its own chapter. Fortunately, Ball (1997) provides a well moti-
vated introductory treatment of these inequalities, and there are defini-
tive treatments in the volumes of Burago and Zalgaller (1988) and Schei-
dner (1993).
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Chapter 7: Integral Intermezzo

Hardy, Littlewood, and Pólya (1952, p. 228) note that the case α = 0,
β = 2 of inequality (7.4) is due to C.F. Gauss (1777-1855), though
presumably Gauss used an argument that did not call on the inequality
of Schwarz (1885) or Bunyakovsky (1859). Problem 7.1 is based on
Exercise 18 of Bennett and Sharpley (1988, p. 91). Problem 7.3 (page
110) and Exercise 7.3 (page 116) slice up and expand Exercise 7.132 of
George (1984, p. 297). The bound of Exercise 7.3 is sometimes called
Heisenberg’s Uncertainty Principle, but one might note that there are
several other inequalities (and identities!) with that very same name.
The discrete analog of Problem 7.4 was used by Weyl (1909, p. 239) to
illustrate a more general lemma.

Chapter 8: The Ladder of Power Means

Narkiewicz (2000, p. xi) notes that Landau (1909) did indeed intro-
duce the notation o(·), but Narkiewicz also makes the point that Landau
only popularized the related notation O(·) which had been introduced
earlier by P. Bachmann. Bullen, Mitrinović, and Vasić (1987) provide
extensive coverage of the theory of power means, including extensive
references to original sources.

Chapter 9: Hölder’s Inequality

Maligranda and Persson (1992, p. 193) prove for complex a1, a2, . . . , an

and p ≥ 2 that one has the inequality∣∣∣∣ n∑
j=1

aj

∣∣∣∣p +
∑

1≤j<k≤n

|aj − ak|p ≤ np−1
n∑

j=1

|aj |p. (14.65)

This refines the 1-trick bound δ(a) ≥ 0 which is given on page 144, and
it leads automatically to stability results for Hölder’s inequality which
complement Problem 9.5 (page 145).

Problem 9.6 and the follow-up Exercises 9.14 and 9.15 open the door
to the theory of interpolation of linear operators, which is one of the most
extensive and most important branches of the theory of inequalities. In
these problems we considered the interpolation bounds for any reciprocal
pairs (1/s1, 1/t1) and (1/s0, 1/t0) anywhere in S = [0, 1]× [0, 1], but we
also made the strong assumption that cjk ≥ 0 for all j, k.

In 1927, Marcel Riesz, the brother of Frigyes Riesz (whose work we
have seen in several chapters), proved that the assumption that the cjk

are nonnegative can be dropped provided that one assumes that the re-
ciprocal pairs (1/s1, 1/t1) and (1/s0, 1/t0) are from the “clear” upper
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triangle of Figure 9.3. M. Riesz’s proof used only elementary methods,
but it was undeniably subtle. It was also unsettling that Riesz’s argu-
ment did not apply to the whole rectangle, but this was inevitable. Easy
examples show that the interpolation bound (9.41) can fail for reciprocal
pairs from the “gray” lower half of the unit square S.

Some years after M. Riesz proved his interpolation theorem, Riesz’s
student G.O. Thorin made a remarkable breakthrough by proving that
the interpolation bound is valid for the whole square S under one im-
portant proviso: it is essential to consider the complex normed linear
spaces �p in lieu of the real �p spaces.

Thorin’s key insight was to draw a link between the interpolation
problem and the maximum modulus theorem from the theory of ana-
lytic functions. Over the years, this link has become one of the most
robust tools in the theory of inequalities, and it has been exploited in
hundreds of papers. Bennett and Sharpley (1988, pp. 185–216) pro-
vide an instructive discussion of the arguments of Riesz and Thorin in
a contemporary setting.

Chapter 10: Hilbert’s Inequality

Hilbert’s inequality has a direct connection to the eigenvalues of a
special integral equations which de Bruijn and Wilf (1961) used to show
that for an n by n array one can replace the π in Hilbert’s inequality
with the smaller value λn = π − π5/{2(log n)2} + O(log log n/ log n)2).
The finite sections of many inequalities are addressed systematically by
Wilf (1970).

Mingzhe and Bichen (1998) show that the Euler–Maclaurin expansions
can be used to obtain instructive refinements of the estimates on page
158. Such refinements are almost always a possibility when integrals are
used to estimate sums, but there can be many devils in the details.

The notion of “stressing” an inequality is motivated by the discussion
of Hardy, Littlewood, and Pólya (1952, pp. 232–233). The method works
so often that its failures are more surprising than its successes.

Chung, Hajela, and Seymour (1988) exploit the inequality (10.22) in
the analysis of self-organizing lists, a topic of importance in theoretical
computer science. Exercise 10.6 elaborates on an argument which is
given quite succinctly in Hardy (1936). Maligranda and Person (1993)
note that Carlson suggested in his original paper that the bound (10.24)
could not be derived from Hölder’s inequality (or Cauchy’s), yet Hardy
was quick to find a path.
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Chapter 11: Hardy’s Inequality and the Flop

In 1920 Hardy gave only an imperfect version of the discrete inequality
(11.2), and his primary point at the time was to record the quantitative
Hilbert’s inequality described in Exercise 11.5. Hardy raised but did not
resolve the issue of the best constant, although Hardy gives a footnote
citing a letter of Issai Schur which comes very close.

Hardy (1920, p. 316) has another intriguing footnote which cites the
inequality of Rogers (1888) and Hölder (1889) in its pre-Riesz form
(9.34). In this note, Hardy says “the well-known inequality...seems to
be due to Hölder.” In support of his statement, Hardy refers to Landau
(1907), and this may be the critical point at which Rogers’s contribu-
tion lapsed into obscurity. By the time Hardy, Littlewood, and Pólya
wrote Inequalities, they had read Hölder’s paper, and they knew that
Hölder did not claim the inequality as his own. Unfortunately, by the
time Inequalities was to appear, it was Rogers who became a footnote.

The argument given here for the inequality (11.1) is a modest sim-
plification of the Lp argument of Elliot (1926). The proof of the dis-
crete Hardy inequality can be greatly shortened, especially (as Claude
Dellacherie notes) if one appeals to ideas of Stieltjes integration. The
volumes of B. Opic and A. Kufner (1990) and Grosse–Erdmann (1998)
show how the problems discussed in this chapter have grown into a field.

Chapter 12: Symmetric Sums

The treatment of Newton’s inequalities follows the argument of Rosset
(1989) which is elegantly developed in Niculescu (2000). Waterhouse
(1983) discusses the symmetry questions which evolve from questions
such as the one posed in Exercise 12.5. Symmetric polynomials are
at the heart of many important results in algebra and analysis, so the
literature is understandably enormous. Even the first few chapters of
Macdonald (1995) reveal hundreds of identities.

Chapter 13: Schur Convexity and Majorization

The Schur criterion developed in Problem 13.1 relies mainly on the
treatment of Olkin and Marshall (1979, pp. 54–58).

The development of the HLP representation is a colloquial rendering
of the proof given by Hardy, Littlewood, and Pólya in Inequalities.

Chapter 14: Cancellation and Aggregation

Exponential sums have a long rich history, but few would dispute that
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the 1916 paper of Hermann Weyl created the estimation of exponential
sums as a mathematical specialty. Weyl’s paper contained several sem-
inal results, and, in particular, it pioneered what is now called Weyl’s
method, where one applies the bound (14.10) recursively to estimate the
exponential sum associated with a general polynomial.

The discussion of the quadratic bound (14.7) introduces some of the
most basic ideas of Weyl’s method, but it can only hint at the delicacy of
the general case. The inequality of van der Corput’s inequality (14.17)
is more special, but van der Corput’s 1931 argument must be one of
history’s finest examples of pure Cauchy–Schwarz artistry.

Nowadays, the form (14.23) of the Rademacher–Menchoff inequality is
quite standard, but it is not given so explicitly in the fundamental works
of Rademacher (1922) and Menchoff (1923). Instead, this form seems
to come to us from Kazmarz and Steinhaus. One finds the inequality in
(essentially) its modern form as Lemma 534 in the 1951 second edition
of their famous monograph of 1935, and searches have not yielded an
earlier source.
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Lozansky, E. and Rousseau, C. (1996). Winning Solutions, Springer-
Verlag, Berlin.

Love, E.R. (1991). Inequalities related to Carleman’s inequality, in In-



References 297

equalities: Fifty Years on from Hardy, Littlewood, and Pólya (W.N.
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Pólya’s proof, 23
rational weights, 22
smoothing proof, 244
stability, 35
via cyclic shifts, 84
via integral analog, 114
via rearrangement, 84
via Schur concavity, 194

American Mathematical Monthly, 96,
192, 253

Andreescu, T., 251
anti-symmetric forms, 237
arithmetic mean-geometric mean

inequality, see AM-GM inequality
Arithmetica of Diophantus, 40
arrangement of spheres, 52
Artin, Emil, 47

backtracking, 137
backwards induction, 236
baseball inequality, 82
Belentepe, C., vi
Bennett, C., 288, 289
Bernoulli inequality, 31
Bessel inequality, 71, 225
betweeness, exploitation of, 74
Birkhoff’s Theorem, 207
birthday problem, 206
Bledsoe, W.W., 283
Bombieri, E., 284
box, thinking outside, 52
Brahmagupta, 286

identity, 47
Brunn–Minkowski inequality, 245, 287
Bunyakovsky, Victor Yacovlevich, 10,

190, 285
and AM-GM inequality, 115
Chebyshev contact, 76
vis-a-vis Schwarz, 11

Buzano, M.L., 286

Cai, T., vi, 246
cancellation, origins of, 210
Carleman inequality, 118

Carleson proof, 173
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Cramér–Rao inequality, 18
Cronin–Kardon, C., vi
crystallographic inequality, 13
cyclic shifts, 84
cyclic sum inequality, 104

D’Angelo, J.P, 242
Davis, P.J., 287
Debeau, F., 285
Dellacherie, C., vi, 254, 290
determinant, 49
Diaconis, P., vi
Diophantus, 40, 286
Diophantus identity

and Brahmagupta, 47, 237
and complex factorization, 237
and Pythagoras, 47, 237

dissection of integrals, 106
doubly stochastic, 196
Dragomir, S.S., 241, 285

Dudley, R.M., vi

elementary symmetric function, 178
Elliot, E.B., 290
Enflo inequality, 225
Engel, A., 94, 246, 251
equality

in AM-GM inequality, 22
in Cauchy inequality, 5, 37
in Cauchy–Schwarz, 8
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Matoušek, J., vi, 285
McConnell, T.R., 277
Meng, X., vi
Mengoli, P., 99, 248
method

of halves, 122
of parameterized parameters, 164

metric space, 54
Mignotte, M., 262
Milne inequality, 50
minimal surfaces, 10
Minkowski inequality, 141

Riesz proof, 141
via Jensen, 150

Minkowski’s
conjecture, 44, 46
light cone, 62

Minkowski, Hermann, 44
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