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PREFACE TO THE SECOND EDITION

Seventeen years have passed since the manuscript for the first edition of this
book was submitted to the American Mathematical Society. The preparation of a
new manuscript has presented a welcome opportunity to try to improve the first
edition by rewriting and expanding some of its material, by eliminating known
misprints and errors (with however the pious hope of not introducing too many
new ones) and by including new material developed during the past seventeen
years. It has also led to the replacement of the first edition's title, The Geometry
of the Zeros of a Polynomial in a Complex Variable, by a simpler, more convenient
one, Geometry of Polynomials.

For a subject about 150 years old, the analytic theory of polynomials has
continued to show a surprising degree of vitality. A superficial measure of this is
the extent to which our bibliography has had to be enlarged. Over 300 new titles
have been added to the ones given in the first edition. These include a new,
seventy-six page survey [Specht 7] written as part of the revised Enzyklopadie der
Mathematischen Wissenschaften.

The new material has been incorporated into the text and into the exercises.
Particularly significant is the new material on infrapolynomials beginning with
sec. 5, on abstract polynomials beginning with sec. 14, and on matrix methods
beginning with sec. 31.

The author wishes to express his appreciation to those who have offered correc-
tions and suggestions regarding the first edition and to the following who generously
read all or part of the new manuscript: Dr. Oved Shisha of the Wright Patterson
A.F.B. Aerospace Research Laboratory, Professor Hans Schneider of the University
of Wisconsin at Madison, Professor Robert Vermes of McGill University, and Mr.
G. M. Shah of the University of Wisconsin-Milwaukee. He also wishes to thank
the American Mathematical Society for authorizing the publication of this second
edition and the Society's editorial staff, (Miss Ellen Swanson, Mrs. Patricia Wolf,
Mrs. Fannie S. Balsama) for the patience and care with which they have processed
the manuscript. Finally, he gratefully acknowledges the support given him by the
National Science Foundation through the grants G-16315 and GP-2571.

University of Wisconsin-Milwaukee
December 6, 1965.

MORRIS MARDEN
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PREFACE TO THE FIRST EDITION

The subject treated in this book is sometimes called the Analytic Theory of
Polynomials or the Analytic Theory of Equations. The word analytic is intended
to suggest a study of equations from a non-algebraic standpoint. Since, how-
ever, the point of view is largely that of the geometric theory of functions of a
complex variable, we have preferred to use the title of the Geometry of the Zeros
of a Polynomial in a Complex Variable.

The connection of our subject with the geometric theory of functions of a
complex variable becomes clear when we examine the type of problems treated
in the subject and the type of methods used in solving these problems.

The problems center very largely about the study of the zeros of a polynomial
f (z) as functions of various parameters. The parameters are usually the co-
efficients of f(z), or the zeros or the coefficients of some related polynomial g(z).
Regarded as points in the complex plane, the parameters are allowed to vary
within certain prescribed regions. The corresponding locus R of the zeros of
f(z) is then to be determined. The locus R may consist of several non-over-
lapping regions R1, R2, . , R1. If so, we might ask how many zeros are
contained in each Rk or in a specified subset of the Rk or, conversely, what subset
of the R contains a prescribed number of zeros of f (z). It may happen that the
determination of the exact locus R may be too difficult, too complicated, or for
some reason unnecessary. If so, we may wish to replace R by a simpler region
S containing R. If for example S is chosen as a circle with center at the origin,
its radius would of course furnish an upper bound to the moduli of the zeros
of f(z).

We may consider these questions regarding the locus R as pertaining to the
geometric theory of functions for at least two reasons. First, we recognize that
they are essentially questions concerning the mapping properties of the zeros
viewed as analytic functions of the given parameters. Secondly, we recognize
that, in determining the zeros of a polynomial f (z), we are finding the A-points
of the polynomial g(z) = f(z) + A; that is, the points where the polynomial g(z)
assumes a given value A. In other words, we may regard our problems as
instances of the general problem of the value distribution of analytic functions.
In fact, the solution to our problem may contribute to the solution of the
general problem. For, if G(z) is an arbitrary analytic function, we may be
able to construct a sequence of polynomials FJz) which in some region R con-
verge uniformly to the function F(z) = G(z) - A; the zeros of F(z), that is, the
A-points of G(z), may be then sought in R as the limit points of the zeros of the
F (z).

Our methods for investigating these questions will involve mostly the geo-
metric operations with complex numbers and certain principles which are based

ix



x PREFACE TO THE FIRST EDITION

upon these operations and which are stated in Sec. 1. Among these is the
principle that a sum of vectors cannot vanish if the vectors are all drawn from
a point 0. on a line L to points all on the same side of L. Among these also is
the so-called Principle of Argument and its corollaries such as the Rouche
Theorem, the Cauchy Index Theorem, the theorem on the continuity of the
zeros and the Hurwitz Theorem. Thus, due to the nature of not only its prob-
lems but also its methods, our subject may be considered as belonging to the
geometric theory of functions.

Historically speaking, our subject dates from about the time when the geo-
metric representation of complex numbers was introduced into mathematics.
The first contributors to the subject were Gauss and Cauchy.

Incidental to his proofs of the Fundamental Theorem of Algebra (which
might also be regarded as a part of our subject), Gauss showed that a poly-
nomial f(z) = z" + A1z"-1 + + A,, has no zeros outside certain circles
IzI = R. In the case that the A; are all real, he showed in 1799 that R =
max (1, 2112S) where S is the sum of the positive A, and he showed in 1816 that
R = max (2112 n IAI)1/k, k = 1, 2, - , n, whereas in the case of arbitrary,
real or complex A,, he showed in 1849 [Gauss 2] that R may be taken as the
positive root of the equation z" - 2112(IA11 z"-1 + - - + JAI) = 0. As a
further indication of Gauss' interest in the location of the complex zeros of
polynomials, we have his letter to Schumacher [Gauss 1, vol. X, pt. 1 p. 130,
pt. 2 pp. 189-191] dated April 2, 1833, in which he tells of having written enough
upon that topic to fill several volumes, but unfortunately the only results he
subsequently published are those in Gauss [2]. The statement of his important
result (our Th. (3,1)) on the mechanical interpretation of the zeros of the de-
rivative of a polynomial comes to us only by way of a brief entry which he made
presumably about 1836 in a notebook otherwise devoted to astronomy.

Cauchy also added much of value to our subject. About 1829 he derived for
the moduli of the zeros of a polynomial more exact bounds than those given
by Gauss. We shall describe these bounds in Sec. 27. To him we also owe the
Theory of Indices (about 1837) as well as the even more fundamental Principle
of Argument. (See Secs. 1 and 37.)

Since the days of Gauss and Cauchy, many other mathematicians have con-
tributed to the further growth of the subject. In part this development resulted
from the efforts to extend from the real domain to the complex domain the
familiar theorems of Rolle, Descartes and Sturm. In part, also, it was stimu-
lated by the discovery, in the general theory of functions of a complex variable,
of such theorems as the Picard Theorem, theorems which had no previous
counterpart in the domain of real variables. In view of the many as yet un-
settled questions, our subject continues to be in an active state of development.

The subject has been partially surveyed in the addresses delivered before
various learned societies by Curtiss [2], Van Vleck [4], Kempner [7], and Marden
[9]. Parts of the subject have been treated in Loewy [1], in P61ya-Szego [1,
vol. 2, pp. 55-65, 242-252] and in Bauer-Bieberbach [1, pp. 187-192, 204-220].
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The most comprehensive treatment to date has been Dieudonne [11], a seventy-
one page monograph devoted exclusively to our subject.

Though very excellent, these surveys have been handicapped by a lack of
the space required for an adequate treatment of the subject. There still remains
the need for a detailed exposition which would bring together results at present
scattered throughout the mathematical journals and which would endeavor to
unify and to simplify both the results and the methods of treatment.

The present book is an attempt to fill this need. In it an effort will be made
to present the subject as completely as possible within the allotted space. Some
of the results which could not be included in the main text have been listed as
exercises, with occasional hints as to how they may be derived by use of the
material in the main text. In addition, our bibliography refers each listed paper
to the section of our text containing the material most closely allied to that in
the paper, whether or not an actual reference to that paper is made in our text.

It is hoped that this book will serve the present and prospective specialist
in the field by acquainting him with the current state of knowledge in the various
phases of the subject and thus by helping him to avoid in the future the duplica-
tion of results which has occurred all too frequently in the past. It is hoped
also that this book will serve the applied mathematician and engineer who need
to know about the distribution of the zeros of polynomials when dealing with
such matters as the formulation of stability criteria. Finally, it is hoped that
this book will serve the general mathematical reader by introducing him to some
relatively new, interesting and significant material of geometric nature-material
which, though derived by essentially elementary methods, is not readily available
elsewhere.

In closing, the author wishes to express his deep gratitude to Professor Joseph
L. Walsh of Harvard University for having initiated the author into this field
and for having encouraged his further development in it; also, for having made
many helpful criticisms and suggestions concerning the present manuscript.
The author wishes to acknowledge his indebtedness to The University of Wisconsin
in Milwaukee for providing the assistance of Francis J. Stern in typing the
manuscript and of Richard E. Barr, Jr. in drawing most of the accompanying
figures; also his indebtedness to his colleagues at Madison for the opportunity
of giving there, from February to June 1948, a course of lectures based upon the
material in this book. Last but not least, the author wishes to thank the
American Mathematical Society for granting him the privilege of publishing this
manuscript in the Mathematical Surveys Series.

Milwaukee, Wisconsin
November 1, 1947
and October 1, 1948. MORRIS MARDEN
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CHAPTER I

INTRODUCTION

1. Some basic theorems. Before proceeding to the study of various specific
problems connected with the zeros of polynomials, we shall find it useful to
consider certain general theorems to which we shall make frequent reference.

The first of these theorems provides an intuitively obvious sufficient condition
for the nonvanishing of a sum of complex numbers. It requires that each term
in the sum be a vector drawn from the origin to a point on the same side of some
line through the origin. This theorem may be stated as follows.

THEOREM (1,1). If each complex number w, , j = 1, 2, , p, has the properties
that w, 34 0 and

(1,1) y<argw,<y+lr, j=1,2,..
where y is a real constant, then their sum w = w; cannot vanish.

In proving Th. (1,1), we begin with the case y = 0 when the w, are vectors drawn
from the origin to points on the positive axis of reals or in the upper half-plane.
If arg w, = 0 for all j, then 9R(w,) > 0 for all j and hence 91(w) > 0. If arg w, 54 0
for some value of j, then 3(w,) > 0 for that j and hence Z(w) > 0. Thus, if
y=0,w00.

In the case that y 0 0, we may consider the quantities w,: = e ?lw;. These
satisfy ineq. (1,1) with y = 0 and consequently their sum w' does not vanish.
As w' = e -"w, it follows that w # 0.

This proof establishes not merely that w 0 0, but also the following. The
point w lies inside the convex sector consisting of the origin and all the points z
for which y < arg z < y + d, S < 7r, if all the points w, lie in the same sector.

Our second theorem expresses the so-called Principle of Argument.

THEOREM (1,2). Let f(z) be analytic interior to a simple closed Jordan curve C
and continuous and dfferent from zero on C. Let K be the curve described in the
w -plane by the point w = f(z) and let AC argf(z) denote the net change in argf(z)
as the point z traverses C once over in the counterclockwise direction. Then the
number p of zeros off(z) interior to C, counted with their multiplicities, is

(1,2) p = (1/27x) Ac argf(z).

That is, it is the net number of times that K winds about the point w = 0.

1



2 INTRODUCTION [1]

We shall prove Th. (1,2) only in the case that f(z) is a polynomial. If z1,
z2 , , z, denote the zeros off (z) inside C and z9+1, z9+2 , , z7, denote those
outside C, then

f(z) = a,i(z - zl) . . . (z - z9)(z - zv+1) ... (z - z.),
n

arg f (z) = arg a,,. + arg (z - z) + I arg (z - z,).
1=1 7=D+1

As the point z describes C counterclockwise (see Fig. (1,1)), arg (z - z5) increases
by 2ir when 1 < j 5 p, but has a zero net change when p < j 5 n. This fact
leads at once to eq. (1,2).

z-plane

FIG. (1,1)

As is well known, eq. (1,2) may be written as

(1,2) P = 1 f [f'(z)lf(z)] dz
2Tri c

when there is added to Th. (1,2) the hypothesis that C be a regular curve.
From Th. (1,2) we shall next derive the important

RoUCHE's THEOREM (Th. (1,3)). If P(z) and Q(z) are analytic interior to a
simple closed Jordan curve C and if they are continuous on C and

(1,3) IP(Z)I < IQ(z)I, ZEC,

then the function F(z) = P(z) + Q(z) has the same number of zeros interior to C
as does Q(z) [Rouche 1].
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For this purpose, we shall write

(1,4) F(z) = wQ(z), w = 1 + [P(z)/Q(z)]

If q denotes the number of zeros of Q(z) in C, then according to Th. (1,2)

(1,5) Ac arg Q(z) = 2orq.

Since IP(z)IQ(z)I < 1 on C, the point w defined in eqs. (1,4) describes (see Fig.
(1,2)) a closed curve r which lies interior to the circle with center at w = 1 and
radius 1. Thus, point w remains always in the right half-plane. The net change

w-plane

FIG. (1,2)

in arg w as w varies on r is therefore zero. This means according to eqs. (1,4)
and (1,5) that 0 arg F(z) = O arg w + i ar Q(z) 21r qc c gQ= 4
and according to Th. (1,2) that F(z) has also q zeros in C.

We shall now apply Rouche's Theorem to a proposition which we shall often
use either explicitly or implicitly. It is the proposition that the zeros of a poly-
nomial are continuous functions of the coefficients of the polynomial. In more
precise language, it may be stated as

THEOREM (1,4). Let
D

{
J (z) = a0 + a1Z + + a.nz" = an fl (z - z,)-, an 54 0)

7=1

F(z) = (a0 + co) + (a1 + e1)Z + ... + (a..-1 + En-1)z'-1 + anZn

and let

(1,6) 0<rk<minlzk-zJI, j=
There exists a positive number a such that, if Ie, < e for i = 0, 1, , n - 1,

then F(z) has precisely Mk zeros in the circle Ck with center at zk and radius rk .
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To prove Th. (1,4), we have only to note (Bieberbach [1, p. 35]) that on Ck the
polynomial

S(z) = E0 + E1Z + ... + E,,-1Z"-1
has the property

whereas on Ck

(Z) n-1
I < EMk, Mk = G (rk + IZkl)'

7=0

v

l f(z)I > rkk (Izf - zkl - rk)' = 6k > 0.
i=1.i#k

If we choose E < SklMk , we have the relation IC(z)l < I f(z)l on C,.. This means
according to Rouche's Theorem that F(z) has the same number of zeros in Ck
as doesf(z). Since ineq. (1,6) ensures that the only zero off(z) in Ck is the one of
multiplicity Mk at zk, we see that F(z) has precisely Mk zeros in Ck .

For other proofs of Th. (1,4) and similar theorems, the reader is referred to
Weber [1], Coolidge [1], Maluski [1], Cippola [1], Krawtchouk [1], Van der
Waerden [1], Ostrowski [1, pp. 209-219], Kneser [1], and Iglisch [1].

Th. (1,4) may be regarded as a special case of the

HURWITZ THEOREM (Th. (1,5)). Let (n = 1, 2, - ) be a sequence of
functions which are analytic in a region R and which converge uniformly to a function
f(z) 0- 0 in every closed subregion of R. Let C be an interior point of R. If C is
a limit point of the zeros of the f (z), then C is a zero off (z). Conversely, if C is an
m -fold zero of f(z), every sufficiently small neighborhood K of C contains exactly
m zeros (counted with their multiplicities) of each f,,(z), n > N(K) [Hurwitz 1].

To prove Th. (1,5), let us first assume that f(C) # 0. Sincef(z) is analytic in R,
it can have only a finite number of zeros in R. We may then choose a positive p
such that f(z) 0 0 (in and) on the circle K: lz - Cl = p. Let us set e _
mm n l f (z)l for z on K. Since the fn(z) converge to f (z) uniformly in and on K,
we can find a positive integer N = N(K) such that l f,,,(z) - f(z)I < E for all z in
and on K and all n > N. Consequently, I fn(z) -f(z)l < If(z)I on K and, by
Rouche's Theorem, the sum function f (z)] +f(z) has as many
zeros in K as does f (z). Since therefore f (z) 0 0 in K for all n > N, a point C
at which f (C) # 0 cannot be a limit point of the zero, of the f,,(z).

Conversely, if we assume that iC is an m-fold zero off (z), we may again choose
a positive p so that f (z) 0 0 on K. Reasoning as in the previous paragraph, we
now conclude from Rouche's Theorem that each fjz), n > N, has precisely m
zeros in K.

Th. (1,5), whose proof we have now completed, will provide our principal
means of passing from certain theorems on the zeros of polynomials to the
corresponding theorems on the zeros of entire functions and perhaps of other
analytic functions.
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EXERCISES. Prove the following.
1. If each of p vectors w; drawn from the origin lies in the closed half-plane

y 5 arg w 5 y + 7r and if at least one of them lies in the open half-plane y <
argw<y+ir,then the sum w='JD=1 w, 0.

2. Th. (1,1) and ex. (1,1) hold for convergent infinite sums 1,--l w; in which
all the w; satisfy ineq. (1,1); also for integrals fa w(t) dt in which a and b are
real numbers and in which w(t) is a continuous function of the real variable t
and y<argw(t)<y+orfor a5tSb.

3. Let w = D±i w; . If p of the points w; lie in the circle Izi 5 Ro and the
remaining point w; lies in the annulus R1 < IzI 5 R2 , where R1 > pRo , then the
point w lies in the annulus R1 - pRo < IzI < R2 + pRo . Hence w 54 0.

4. If the point z traverses a line L in a specified direction, then the net change in
arg (z - z1) is IT or -1r according as z1 is to the left or to the right of L relative to
the specified direction.

5. THEOREM (1,6). Let L be a line on which a given nth degree polynomialf(z)
has no zeros. Let AL arg f (z) denote the net change in arg f (z) as point z traverses
L in a specified direction and let p and q denote the number of zeros of f(z) to the
left and to the right of this direction of L, respectively. Then

(1,7) p - q AL argf(z)

and thus

(1,8) p = (1/2)[n + 0/-) AL argf(z)],

(1,9) q = (1/2)[n - (1/rr) AL arg f(z)]

6. The polynomial g(z) = z" + blzn-1 + + b has at least m zeros in an
arbitrary neighborhood of the point z = c if Ig(k)(c)I < e for k = 0, 1, , m - 1
and for e a sufficiently small positive number [Kneser 1, Iglisch 1]. Hint: Use
Rouche's Theorem.

7. Rouche's Theorem is valid when IP(z)I < I Q(z) I for z e C provided F(z) _
P(z) + Q(z) 96 0 for z e C.

8. Rouche's Theorem is valid when C is the circle IzI = 1 and when IP(z)I 5
I Q(z)I on C, provided that at each zero Z of F(z) on C the function R(z) =
log (Q(z)/P(z)) has the properties R'(Z) 0 0, 91(ZR'(Z)) < 0, Z(ZR'(Z)) = 0
[Lipka 3].

9. Let C be a closed Jordan curve inside which P(z) and Q(z) are analytic.
On C let P(z) and Q(z) be continuous, Q(z) 0 0 and ¶l[P(z)/Q(z)] > 0. Then
inside C, P(z) has the same number of zeros as does Q(z).

10. Rouche's Theorem (1,3) follows from the continuity of the zeros of F(z) _
AP(z) + Q(z) as functions of A. Hint: Show that no zero of f may cross C as
I increases continuously from 0 to 1.

11. In F(z) = 1 + alz + b2z2 + + b,,z', the quantities n , b2, b3 , , b,,

may be so determined that all the zeros of F lie on the unit circle. Hint: Choose n
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so that lall < n and choose the zeros ; of G(z) = z"F(1/z) so that 1 for
all j, and so that the centroid of set (C1, 62 , , ") is at (-a1/n).

12. Let the interior of a piccewise regular curve C contain the origin 0 and be
star-shaped relative to O. (See sec. 8.) If al, a2, , am are given in

F(z) = I +alz+...+a,nz'4 +bm+lzm+l+...+b"z",

then n, bm+l , bm+2 , b may be determined so that all the zeros of F lie on C
[Gavrilov 2, 4, 5], [Z`ebotarev 1,'2]. Hint: As in ex. (1,11), choose the , so that
z; = 1/C; are points of C and so that Newton's formulas

Sk + sk_lal + ... + kak = 0

are satisfied by the sums s,, of the pth powers of the , .
13. Let p(z) = _Yk=0 akzk, q(z) = _Yk=o bkzk, n > m. If, given an E > 0, we can

find 6>0sothat lbk-akl <6fork=0, 1,
m + 2, , n, then the zeros 14; of q may be so ordered relative to the zeros a;
of pthat lj9;-all l/9;l>1/Efor j=m+1, u
[Zedek 1 ].

14. Let f (z) = z" + alz"-' + ... + a,,, g(z) = z' + blz"-l + ... + b with
anbn 54 0 satisfy

(1,10) 1(bk/ak) - 11 <_ E <_ 4-"n "

for k = 1, 2, , n. Then the zeros y of g(z) may be so ordered relative to the
zeros xk of f(z) that l(yk/xk) - I I < 8nE1/n for k = 1, 2, , n [Ostrowski 1].

15. For the f, g and c in ex. (1,14), let Sk and Tk be the least positive numbers
such that

lakl Sk , Ibkl C Tk , Sk `Sk-l`Sk+1 , Tk Tk-lTk+l

for k = 1, 2, , n; let a = (1 + Ell")/(1 - El1n) and let N = n or n - 1
according as n is odd or even. If instead of ineq. (1,10) we have

lak - bkl C ESk, lak - bkl < ETk,

then the zeros y; of g(z) may be so ordered relative to the zeros x, of f(z) that

d -N,4, IYklxkl < N [Ostrowski 2].

16. If the polynomial f(z) = Zn + alzn-1 + + an has distinct zeros x; and
if b,(w) are continuous and b,(w) = a, + o(l) in sector S = {w: a S arg w < /1,
Iw'I > R} for j = 1, 2, , n, then the zeros yk(w) of the polynomial g(z, w) _
z" + bl(w)zt-1 + + b"(w) may be so paired with the x; that y, = x, + o(1) in
S for j = 1, 2, , n [Schumacher 1]. Hint: Use eq. (1,2)'.

2. The zeros of the derivative. Mindful of the importance of Rolle's Theorem
in the theory of functions of a real variable, we shall begin our detailed treatment
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of the zeros of polynomials in a complex variable by studying the location of the
zeros of the derivative f '(z) of the polynomial

(2,1) f(z) = (z - zi)ml(z - z2)mz ... (z - zD)m9, n = m;
i=1

in relation to the distinct zeros z; of f(z).
Sincef'(z) may be written as

f'(z) =f(z)[f'(z)/f(z)] =f(z)d[logf(z)]/dz,
its zeros fall into two classes. First, there are the points z; for which m; > 1;
as zeros of f'(z), they have the individual multiplicities of m; - I and the total
multiplicity of n - p. Secondly, there are the p - 1 zeros of the logarithmic
derivative

(2,2) F(z) = d[logf(z)]/dz.

In most of our problems, we shall prescribe the location of the zeros of f(z)
and consequently we shall know a priori the location of the first class of zeros of
f'(z). It will remain for us to determine the location of the second class of zeros
off '(z), namely those of F(z). From eqs. (2,1) and (2,2), we see that these are the
zeros of the function

(2,3) F(z) _ m,
,=1 Z - z;

in which the mf are positive integers.
In order to gain some insight into the problems about to be considered, we

shall now interpret the zeros of F from the standpoint of physics, geometry and
function theory. Since our physical and geometrical interpretations will not use
the fact that the m; are positive integers, we shall express these interpretations as
theorems concerning the zeros of a rational function F(z) = g(z)/f(z) whose
decomposition into partial fractions has the form of eq. (2,3) with the m; as
arbitrary real constants. In our function-theoretic interpretation, however, we
shall find it convenient to restrict the m, to be positive constants.

3. Physical interpretations. In place of F(z), let us introduce its conjugate
imaginary

(3,1) r(z) _ m;w,, w; = 1/(2 - zf).

If we write z - z; = p,ei4i, then the jth term in eq. (3,1) is

m,w, = m,(1/p4)et#J.

It may hence be represented by a vector having the direction from z; to z and
having the magnitude of m; times the reciprocal of the distance from z; to z.
In other words, the jth term may be regarded as the force with which a fixed
mass (or electric charge) m; at z; repels (attracts if m, < 0) a movable unit mass
(or charge) at z, the law of repulsion being the inverse distance law.
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An equivalent interpretation may be made in terms of masses repelling according
to the inverse-square law. For this purpose let us recall a result derived in books
on Newtonian Potential Theory [0. D. Kellogg, Potential theory, Springer, Berlin,
1929, p. 10, ex. 5]. If an infinite, thin rod L, of linear mass (or charge) density
m,/2 passes through the point z; at right angles to the z-plane, the resultant force
upon a unit particle at z due to the particles of Lf repelling according to the inverse-
square law is a force directed along the line from z; to z and inversely proportional
to the distance from zs to z. This means that alternatively we may interpret the
conjugate imaginary of F(z) as the resultant force at z, in the Newtonian field due
to a system of n infinite thin rods (line charges) Li at z5 , j = 1, 2, , n.

Still another interpretation is that m,w, is the velocity vector in the two-
dimensional flow of an incompressible fluid due to a source of strength m3 at
z; (sink if m, < 0). Thus F(z) is the resultant velocity vector in a two-dimensional
flow due to the systems of sources of strength m, at the points z; [L. M. Milne-
Thomson, Theoretical hydrodynamics, Macmillan, New York, 1955, pp. 197-8].

Corresponding to each of these three physical interpretations of the function
F(z), we have a physical interpretation of the zeros of F(z). In the first two cases,
these zeros are the positions of equilibrium in the given force fields. In the third
case, these zeros are the positions at which the velocity vanishes; that is, they are
the so-called stagnation points.

We may summarize these results by stating two theorems. In the case that
the m, are positive integers, the first theorem is essentially due to Gauss [1],
having been stated by him as a theorem on the zeros of the derivative of a
polynomial. (Cf. our Preface.)

THEOREM (3,1). The zeros of the function F(z) m,/(z - z,) with all m,
real are the points of equilibrium in the field of force due to the system of p masses
(point charges) m, at the fixed points z, repelling a movable unit mass at z according
to the inverse distance law.

THEOREM (3,2). The zeros of F(z) are the equilibrium points in the Newtonian
field due to the system of p infinite, thin rods (line charges) of mass (or charge)
density m./2 at the points z, . They are also the stagnation points in the two-
dimensional flow of an incompressible fluid due to p sources of strength m, at the
points z;.

A further interpretation concerns Green's function G (x, y), with pole at infinity,
for an infinite region R bounded by a finite set B of Jordan Curves. The function
G (x, y) is the potential of a charge induced on a grounded cylindrical sheet
conductor whose cross-section is B, by a unit charge at infinity.

If B is the lemniscate I f(z)I = p, p > 0, where f is given by eq. (2,1), then
G(x, y) = (1/n) log I f(z)/p1. This is the real part of the function

(3,2) '(z) = (1/n) log [f(z)lp].
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The equilibrium points in this potential field are the critical points of G (x, y).
These points are the zeros of the derivative of $(z); that is, the zeros of F(z)
given by eq. (2,3).

More generally [Walsh 20, p. 246], we may write G as

(3,3) G(x,y) = K + fB log Iz - tl dy(t),

du = (1/2-)(8G/8v) ds, where K = constant and du > 0 if v is taken as the normal
to B pointing into R. This G is the real part of the function

(3,4) I(z) k
+JB

log (z - t) du(t)

whose critical points are the zeros of the function

(3,5) F(z) =J dlu

B z - t
Since this function has the same form as eq. (2,3), the results on the zeros of Fin
eq. (2,3) may carry over to form (3,5) when these results are independent of p.

EXERCISE. Prove the following concerning F in eq. (2,3).
1. Each finite zero Z of F(z) is the centroid of a system of p particles of mass

,u; = m;/IZ - z;I2 situated at point z; , j = 1, 2, . . , p.

4. Geometric interpretation. Let us begin with the case p = 3 when eq. (2,3)
becomes

F(z) = m1 + m2 + m3

Z- Zl Z-Z2 Z-Z3
We note that F(z) has two zeros zi and z2 , unless n = m1 + m2 + m3 = 0 when
it has only one finite zero zi . Hence, if n 0 0,

(4,2) F(z) = n(z - zi)(z - zz)

(Z - Z1)(Z - Z2)(Z - Z3)

The location of points z; , z2 relative to the triangle with vertices zl , z2 , z3 is
specified in

THEOREM (4,1). The zeros zi and z2 of the function F(z) = 13 m;(z - z;)-1

are the foci of the conic which touches the line segments (zl , z2), (z2 , z3) and (z3 , z1)
in the points 3, Sl , and 2 that divide these segments in the ratios ml: m2 , m2: m3
and m3: m1i respectively. If n = m1 + m2 + m3 96 0, the conic is an ellipse or
hyperbola according as nmlm2m3 > 0 or <0; whereas, if n = 0 but v = mlzl +
m2z2 + m3z3 0 0, the conic is a parabola whose axis is parallel to the line joining
the origin to point v.
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FIG. (4,1)

[1]

To prove Th. (4,1) when ml , m2 , m3 have the same sign, we shall use the well-
known property that in any ellipse E the lines from the foci to a point zl on or
exterior to E make equal angles with the tangents drawn from zl to E.

Let us draw (Fig. (4,1)) the ellipse E having foci zl , z2 and line z1z2 as tangent.
To show line z1z3 to be tangent to E, let us set

77y = arg KZ3 - z1)/(Zl - Z1)J, 6 = arg [(z2 - Z1)/(Z2 - Z1)1

Since from eqs. (4,1) and (4,2)

lim (z - z1)(z - z2)(z - z3)F(z) = ml(z1 - z2)(z1 - z3) = n(z1 - zi)(z1 - z2),
z-.z1

and thus from
{(Z3 - z1)/(zl - zl)}/{(Z2 - Zl)/(Z2 - zl)} = n/ml

it follows that

(4,3) S = arg (n/m1) = 0

Hence, line z1z3 is tangent to E.
Let us now show that

(4,4) C3 = (m1Z2 + m2Z1)/(m1 + m2)

is the point of tangency of the line z1z2 to E. We may write (4,4) as

if nm1 > 0.

yy

ml + m2 = 0
S3-z1 C3-z2
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so that from (4,1) and (4,2) we infer

ms - y n(C3 -zi)(C3 -zs)
C3 - Z3 (S3 - Zl)(S3 -

Z2)(yyS3

- Z3)
That is,

(4,5) (zl - S3)(Z2 - C3) = ms

(Z1 - S3)(Z2 - 4) n
If we set

qq y y yyoC = arg [(zl - S3)/(z1 - C3)l, = arg [(z2 - S3)/(z2 - S3)1,
then from (4,5) we learn that

(4,6) a - = arg (n/m3) = 0

Hence, S3 is the contact point of line z1z2 with E.

11

if nm3 > 0.

Similar considerations suffice to show that lines z2z3 and z3z1 are tangent to E,
respectively, at points

yy

(4,7) Sl = (m2z3 + m3z2)/(m2 + m3), S2 = (m3z1 + mlz3)/(m3 + m1)

Hence, the theorem has been established when the m, have all the same sign.
The proof of Th. (4,1) in the remaining cases is left to the reader.

The theorem just established is a special case of the following:

THEOREM (4,2). The zeros of the function

(4,8) F(z) _ m' , m; real, m, 0 0,
=1Z-Z1

are the foci of the curve of class p - 1 which touches each line-segment z;zk in a
point dividing the line segment in the ratio mf:m,.

The proof of Th. (4,2) is necessarily less elementary than that of Th. (4,1).
The one which follows will make use of line-co-ordinates and some abridged
notation.

We may write eq. (4,8) in the form

(4,9) m' = 0, t = 1/(x iY)
J=1 tx, + ity, - 1

Let us compare (4,9) with the equation

(4,10) m'=0, 2';=Ax,+uY,-1.
i=1 f

When cleared of fractions this equation has the form

0(lA, A)
(4,11) = m12'223 ...2'9 + m22'12'3 ...2' + ... + m1,2'12'2 ...

=0
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and hence represents a curve C of class p - 1. Eq. (4,9) tells us that eq. (4,10)
is satisfied by the line with the co-ordinates

(4,12) A = 1 /(x + iy), µ = i/(x + iy),
a line which, consequently, is tangent to curve C. Since line (4,12) is an isotropic
line through point (x, y), point (x, y) must be a focus of curve C. Furthermore,
the line (20 , ,uo) joining the two points (x1 , Y1), (X2, Y2) satisfies simultaneously
the two equations 21 = 0 and 22 = 0; viz.,

(4,13) 20x1 + µ0Y1 - 1 = 0, 20x2 + µ0y2 - 1 = 0.

That is, it satisfies eq. (4,11) and is hence tangent to curve (4,11).
Now the point of contact of a tangent line (20 , ,uo) has the line equation

Lo =
)0

0,(4,14) (A - 20)(J + (µ - µo) (a
µ

where the subscript 0 indicates values at (20 , µo). In view of eq. (4,11),

ao

- (934 ... Y9)0[m1x2 + m2x1],
_Wo

_

(4,15)
Laµ )o=

(Y3Y4 .. °M,)o[m1Y2 + m2Y1]

On discarding the common factor in eqs. (4,15), we may write (4,14) as

(4,16)
[2(m1x2 + m2x1) + µ(m1Y2 + m2Y1)]

- [20(m1x2 + m2x1) + µo(m1Y2 + m2Y1)] = 0.

According to eqs. (4,13), the second bracket in (4,16) has the value
and thus (4,16) may be written in the form

(4,17) m2°l'1 + m12'2 = 0.

If m1 + m2 0 0, this clearly is a line equation for the point

(m2x1 + m1x2 m2Y1 + m1Y21

m2+m1 ' m2+m1
Hence, the line-segment z1z2 has the desired properties.

(m1 + m2)

In a like manner the same may be shown concerning the other line-segments
z;zk , thus completing the proof of Th. (4,2).

Th. (4,2) was proved first by Siebeck [1] and later by Van den Berg [1], Vries [1],
Juhel-Renoy [1], Heawood [1], Occhipinti [1], Fujiwara [2], Linfield [1] and
Haensel [1]. A proof covering only the special case p = 3, that is Th. (4,1), was
given by Bocher [2] and Grace [1] for the subcase m; > 0, all j, and by Marden [13]
for arbitrary m; . Furthermore, Th. (4,2) has been extended to the kth derivative
of a rational function by Fujiwara [2] and Linfield (I] and to certain entire functions
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by Reutter [1]. Also, in the case p = 3 and m1 = mz = m3 = 1, the result has
been applied by Walsh [4] to the ruler-and-compass construction of the zeros of
the derivative of a cubic polynomial. More recently, proofs have been given by
Jung [1] and Kuipers-Veldkamp [1].

EXERCISE. Prove the following.
1. The zeros 1;; (j = 1, 2, - , p - 1) of F(z) in eq. (4,8) are such that for every k

D-1 D

arg zk) = arg (zr - zk)
1=1 f=1, 7 k

[Motzkin-Walsh 2]. Hint: Choose k = 1, z1 = 0 and lp 1m, = 1. From (4,8)
then C1S2 . C,1 = m1zzz3 .. ZD

5. Function-theoretic interpretations. Infrapolynomials. We now give two
additional interpretations. The first, treated briefly, is connected with the
mapping properties of polynomials and the second, discussed at greater length, is
related to the minimization of certain norms on given point sets.

First, for a polynomial f let us interpret the q distinct zeros zj, of its derivative f '

q q

f'(z) = n fl (z - zj)P', p, = n - 1,
1 1

from the point of view that f is an analytic function of the complex variable
z. This means, as is well known, that w = f(z) maps any finite region R of
the z-plane upon a finite region S of the w-plane, the map being conformal except
at the q points z;. Specifically, if two curves of the z-plane intersect at zl at an
angle of V, they map into two curves of the w-plane that intersect at an angle of
(p, + 1)V. For this reason the zeros of f'(z) are called the critical points of f(z).

To introduce our second interpretation [Marden 21], we begin by defining an
infrapolynomial. Let us denote by 9,,: {z' + a1z"-1 + + the class of all
nth degree polynomials with leading coefficient one and by E a bounded set of
points in the' complex plane. The set E could consist of discrete points, arcs of
curves, regions or a combination of these. If p E 93 and q E e'n with p(z) 0_q(z)
for z E E, we say that q is an underpolynomial of p on E [abbreviated q c U(p, E)] if

(5 1)

Iq(z)I < Ip(z)I for z E E, p(z) 0 0,
q(z) = 0 for z e E, p(z) = 0.

If, however, p has no underpolynomial on E [i.e., U(p, E) = 0 ], then we say that
p is an infrapolynomial on E [abbreviated p E I (E) or I (E)].

Among the best known infrapolynomials are polynomials which minimize
certain given norms. An example is the Tchebycheff norm

(5,2) Ilgll, = max Iq(z)I,
ZEE
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the polynomial T. E -0n such that

I1Tn11, =min{11411,; gE9n}

being called the Tchebycheff polynomial on E. For instance, when E: -1 <
x < 1, let us verify that T,,(z) - ly(z), where

V(z) = 2-"{[z + (z2 - 1)14]" + [z - (z2 - 1)II]"} = 2-"+1 cos [n arc cos z].

Clearly, IIV 11, = Ilv(cos krr/n)I =.2-n+1 for k = 0, 1, , n. If Ilq II, < 1Iv II, for
some real q E Y,", then the polynomial Q(z) = V(z) - q(z) would have alternate
signs at z = cos (k7rln), k = 0, 1, , n and hence would have at least n real
zeros, in contradiction to the fact that deg Q(z) < n. Hence, ip(z) - T"(z).
Since q e U(V; E) implies Ilq 11, < II'p 11, , it follows also that Tn E I (E). Thus V
is not only the Tchebycheff polynomial on E, but also an infrapolynomial on E.

Another example is the Bessel norm defined, when E is a rectifiable curve, as
11q where

(5,3) (11811,0)k = fE Iq(z)Ik ds,

and defined by means of appropriate sums or integrals for other pointsets E.
The polynomial Bn(z) such that

JIB. Ile=min {Ilglle:gE9n}

is called the Bessel polynomial of degree n. For instance, if k = 2 and
E: -1 < x < 1, let us verify that Bn(z) - coLn(z), where L is the Legendre poly-
nomial of degree n and co = 2'(n!)2(2n!)-1. If we choose any q E 9n, we may
write it in the form

q(z) = c0Ln(z) + c1Ln_1(z) + ... + c,L0(z).

Substituting this into (5,3) with k = 2, and using the orthogonal relations

L;(x)Lk(x) dx = 0 if j 0 k; 2(2k + 1)-1 if j = k,
we find

n

(Ilgllp)2 = 21 Ic;l2(2n - 2j + 1)-1 = 2co(2n + 1)-1= (Ilc0Lnllp)2
1=0

This establishes that B,,(z) = c0Ln(z). Since q E U(c0Ln ; E) implies Ilglly <
11coLn11 p , it follows also that c0Ln e I(E).

In fact, if we introduce suitable weight functions into the integral (5,3) with
k = 2 and E: -1 < x < 1, we obtain the other classical orthogonal polynomials.
More generally, any p c- 9,, is an infrapolynomial on E. if it minimizes some
"monotonically increasing norm" Ilq(z) II, i.e., a norm with the property

(5,4) Ilq(z) II < IIp(z) II

Thus these extremal polynomials form a subclass of I(E).

if q e U(p, E).

We shall consider next how to construct and represent the infrapolynomials
associated with a given bounded pointset E.
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The simplest case is that in which E = (z1, z2 , - , zk), 1 5 k 5 n. All poly-
nomials p(z) = (z - Z1)(Z - z2) (z - zk) 1(z), 0 E 9,n_k , are clearly infrapoly-
nomials since here p(z) = 0 for all z E E. As this case is trivial, we shall assume
hereafter that E contains at least n + I points. We have then the following:

THEOREM (5,1) [FEKETE 8]. Let (z0 , z1 , , z,) be any subset of n + I distinct
points in E and let Ai be any positive constants such that Ao + Al + + A. = 1.
Then p c- I (E) if

(5,5) P(z) = w(z)l co(z) = IT (z - zi).
i=o Z - zi i=o

Proof. Let us suppose on the contrary that p 0 I (E). Then there exists
q c- U(p, E). We expand p and q according to the Lagrange Interpolation
Formula

(5,6) p(z) = co(z) P(zi) , q(z) =
w(z)

q(zi)
o w (zi)(z - z) i=0 w (zi)(z - z,)

Comparison of p(z) in (5,5) and (5,6) shows that Ai = p(zi)/w'(zi). Since q E Y ,
its leading coefficient is one; thus,

(5,7) q(zi)lw'(z,) = 1.
i=0

But, since q e U(p, E),

j q(zi) I I P(zi) _ Ai = 1,
i=o w (Zi) i=o w (z,) i=o

which contradicts (5,7). Hence U(p, E) = 0 and p c- I(E), as was to be proved.
In certain cases, Th. (5,1) has a converse which we may state as follows.

THEOREM (5,2) [FEKETE 8]. Let E be a closed bounded pointset containing at
least n + 1 points. Let p E I,,(E) such that p(z) 0 O for z c- E. Then there exist an
integer m with n 5 m 5 2n, a set of positive constants Ai with Ao + 21 + - + A,n =
1 and a set of m + 1 points (zo , z1, zn) a E such that p(z) is a factor of the
polynomial F(z):

'4 m(5,8) F(z) = Q(z)Y_ Ai , Q(z) = fJ (z - z,).
i=o Z - Zi i=o

If E consists only of points on a line, we may take m = n.

To establish Th. (5,2) we shall need a number of lemmas. In the first we denote
by 2 the class of all polynomials aoz" + a1z"-1 + - + a,.

LEMMA (5,1). Let E be a closed bounded pointset. Then for a given p e .9,,
with p(z) 0 0 for z e E, there exists q E U(p, E) if and only if for some r c- 2_1
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the function w = r(z)/p(z) maps E onto a pointset S whose convex hull H(S) does
not contain the origin w = 0.

PROOF. If such a q exists, then

(5,9) p(z) - q(z) - 1 I = I z) I < 1.
P(z) P(z)

Thus, with r(z) = p(z) - q(z), the set S and hence H(S) both lie in the disk
P: Iw- 11 < 1, and sow=00H(S).

Conversely, if, for some r e _Qn-1, H(S) does not contain w = 0, there exists a
line L through w = 0 which does not intersect H(S). Thus H(S) lies in some disk

Iw - YI < IYI, Y 0 0.

This inequality implies that w = y-1[r(z)/p(z)] lies in the disk P for every z E E
and hence that

q(z) = p(z) - Y lr(z)
is an underpolynomial of p on E.

This lemma has the following counterpart in the Euclidean space of 2n-
dimensions.

LEMMA (5,2). Let E be a closed bounded set and let p e -0n and p(z) 0 0 for
z E E. Let Z be the corresponding 2n-dimensional set whose points are expressed
in the n complex valued co-ordinates = (C,, 2, ' ' ' , Sn), where , = zn-'/p(z)
and z e E. Then p E I (E) if and only if the origin lies in the convex hull H(Z) of Z.

PROOF. Using the notation of Lems. (5,1) and (5,2), we may write

w = rP((zz) -) C1Z"'-1 + C2Z7dP(-z2) + ... + Cn =
C1S1 + C2S2 + + Cnyy

Sn

=If p 0I(E), there twould exist q e U(p, E) and hence by ineq. (5,9) with c,
Ckl + ick2 and bk = Sk + i7?k,

tt
¶R[r(z)/P(z)] _ X (Cklsk - Ck2ylk) > 0

k=1

for all z e E. Thus the points for all z e E lie to one side of a hyperplane through
the origin and hence H(Z) does not contain the origin of 2n-dimensional space.

We may prove the converse statement similarly.
PROOF OF THEOREM (5,2). By Lem. (5,2), the origin is a point of H(Z) if p e I (E).

Hence the origin is the centroid of m + 1 points correspdnding to m + 1 points
z; e E, with m < 2n, according to a theorem of Caratheodory [Eggleston 1, pp.
34-38]. That is, we may find non-negative constants A, with Ao + + A,,, = 1
such that we have the orthogonality relations

in

(5,10)
1A,[Z7-k/P(z,)] = 0 (k = 1, 2, ... , n).

i=o
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Writing p(z) = z" + a1z"-1 + + a,,, multiplying the kth equation in (5,10)
by ak for each k and adding the resulting equations, we are led to the further
equation

MAj
[P(Zj) - 41 = 0

j=o P(zj)
which because I Aj = 1 is the same as

(5,11) DAZ 3I P(Zj)] = 1.
J=O

The n + 1 equations (5,11) and (5,10) may be regarded as involving the m + 1
unknowns Aj of which at least one is different from zero.

The matrix of the coefficients

Z0 n
Z1

nZm

P(zo)
n-1

P(z1)
n-1

P(Z.)
n-1

Z0 Z1 Zm

A= P(zo)

1

P(z1)

1

P(zm)

1

P(zo) P(z1) P(Zm)

has in the lower left corner a minor whose order is k + 1 and whose determinant
has the value

AOl...k =
V(ZO, Z1, ... I Zk)

P(ZO)P(Z1) ... P(Z")

where V(zo , z1 , , zk), as the Vandermonde determinant for the distinct
numbers zo , z1 , , zk , is different from zero.

If m < n, we may solve for the Aj using the last m equations (5,10). Since these
are homogeneous equations with nonvanishing determinant, all Aj would be
zero-a contradiction. Hence m > n.

If m = n, we use them + 1 equations (5,10) and (5,11) and thus get the results

(5,12)

where

Here therefore

(-1)j A01...j-11+1...n- P(Z5)

A01...n w'(Zj)

w(Z) _ fJ (Z - Zj).
j=0

" p(z'.) " A'.
(5,13) P(z) = w(z)I = w(z)I .

j=o W (zj)(z - z) j=o z - zj
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If m > n, we solve for A0 , Al , , An in terms of An+1 , , An , thus obtaining

m

Ai = Aoi n{(-1)5A01. i-1 i+1...n AkA01...;-1k i+1 nJ
k=n+1

P(Z) - ^ 2 w(Zk)P(Zi)

(0'(Z,) k=nnn+1

CO'(Z)(Zk

- Zi)P(Zk)
Hence

(5,14)

Let

Then

so that

and

CJk(Z) = Cw(z)(z - zk) (k = n + 1, , m).

wk(Z) = w'(Z)(Z - Zk) + W(Z)

wk(Z5) = w'(Z,)(Z, - Zk) (1 = 0, 1, ... n)

wk(Zk) = w(Zk) (k = n + 1, , m).

By the Lagrange Interpolation Formula

P(Zk) P(Z,) P(Z)
wk(Zk)(Z - Zk) i=0 w'(Zi)(Zk - Z5)(Z - Z) wk(Z)

Eq. (5,14) now becomes

Ai = P(Z) +
G 2k

w(Zk)r P(Z) - P(Zk)

J=O Z - Zi w(Z) k=n+1 P(Zk) wk(Z) wk(Zk)(Z - Zk)

Transposing the last
we obtain

PZ)J(1 + Akw(Zk) _ I Ak

CU(Z)l k=n+1 P(Zk)(Z - Zk) k=n+1 Z - Zk

sum to the left side and multiplying both sides by S2(z),

f2(Z) A,
= P(Z){ C1 + Akw(Zk) ] ft (Z - Zk)}.

i=0 Z - Zi k=n+1 P(Zk)(Z - Zk) k=n+1 11

This proves that p(z) is a factor of F(z) as required foiTh. (5,2).
Extension of Th. (5,2) is possible to an infrapolynomial p which has as zeros the

pointset K: 41, 2 , - - - , Ck on E, where 1 < k < n. If we write p(z) = p1(z)p2(z),
where p1(z) = (z - W(z - C2) . (z - j and where p2 E 9n-k , then p2 E
In-k(E). For, if there exists q2 E U(p2, E), then (p1g2) E U(p, E), a contradiction.
Thus, if in Th. (5,2) p has the zeros C, , 2 , .. , Sk E E, thenp has the representation

P(Z) = (Z - W ... (z - WP2(Z),
wherep2(z) is a factor of a polynomial of the form (5,8) with n - k:5 m < 2(n - k).

n
Ai - P(Z) - 2k w(Zk)

n
P(Z,)

J=O Z - Zi CO(Z) k--n+1 P(Zk) i=0 w (Z;)(Zk - Z;)(Z - Zi)
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REMARKS ON THS. (5,1) AND (5,2). These theorems say in effect that the
zeros of function F(z) given by eq. (2,3) are the zeros of an infrapolynomial on
a set E which includes the points z;. Comparing eqs. (5,5) and (5,8) with eq. (2,3),
we see that the pointset E and the zeros of an infrapolynomial on E play roles
respectively like those of the zeros of a given polynomial and the zeros of its deriva-
tive. Therefore we may expect that certain theorems on the relative location of
the zeros of a polynomial and those of its derivative will lead to analogous theorems
about the relative location of a pointset E and the zeros of any infrapolynomial
on E, and vice-versa.

EXERCISES. Prove the following.
1. If f(z) is an nth degree polynomial and f'(z) its derivative, the multiple

points of each curve 9R [ f (z) ] = a, ' 1[ f (z)] = b, I f (z)1 = c, arg f (z) = d, where
a, b, c and d are constants, lie at the zeros zj' off '(z).

2. In ex. (5,1) let K be the arc z1z2 of curve 3[f ] = 0 joining a pair z1, z2 of
zeros off. Then at least one zero off' lies on K [Liouville 1].

3. If a polynomial p has a zero at a point zo outside H(E), the convex hull of a
closed, bounded pointset E, then p is not an infrapolynomial on E. Hint: Show
that there exists at least one point z1 E H(E) such that Iz - z11 < Iz - z0 for all
z c- E and that q c- U(E, p) for q(z) = p(z)(z - z1)/(z - z0) [Fejer 3]. Show that
an analogous result holds in three dimensions [Shisha 1].

4. If E is a circle IzI = 1 or the disk IzI 5 1, then p(z) = z" is an infrapoly-
nomial on E. Hint: Show for fixed z1, Iz11 5 1,

max Iz - z11 5 1 + Iz11 and min (1 + 1z11) = 1.
IZ1;51 lull

5. Let p c- I"(E) and p(z) = p1(z)p2(z), where p1(z) and p2(z) are polynomials of
degrees n1 and n2 = n - n1 . Then p1 E I"1(E) and P2 E I,, (E) [Motzkin-Walsh 3 ].
Hint: Assume q1 e U(p1, E). Show q(z) = g1(z)p2(z) E U(p, E).

6. In Th. (5,1) p given by eq. (5,5) is the unique (Tchebycheff) polynomial for
which max [,u(z) Iq(z)I, z e E] is a minimum for q E 1',, and ,u a weight function
with (z,) = 1/[..., Iw'(z,)I] for j = 0, 1, , n [Fekete-von Neumann 1], [Motzkin-
Walsh 1].

7. Let a. be the class of all polynomials z" + a1z"-1 + + a,, which differ
from one another only with respect to the coefficients ak+1, ak+2 , am , where
k and m are fixed integers with O < k < m 5 n. Let E be a compact set containing
at least m + 1 points but with 0 0 E. Let a restricted infrapolynomial p* on E
relative to 9* mean that p* E and p* has on E no underpolynomial q* e 9 *1 .

If k = 0, then a necessary and sufficient condition for p* to be a restricted infra-
polynomial with p*" a 9* , p*(z) # 0 z E E, is that there exist N points zk E E and
N positive numbers A, satisfying orthogonality relations

N.1,zf-"`` = 0 (a= 0, 1,...,m- 1)
9=1

with m < N:!5 2m + 1 [Walsh 24]. Hint: Use method of proof for Th. (5,2).
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8. If in ex. (5,7) p* is an infrapolynomial, then p* is a factor of F* where

(z - z;),F*(z) = (,)(Z) CO(z) + azk+1I
2;

]' co(z) = IT
N

a=o z - Z, s=o

where 2, > 0 for all j, 1o + 2 -{- + AN = 1, where a is a constant and O(z)
is a polynomial of degree less than n - N + 1 such that [co(z)q(z) + azm+1] is
of degree not exceeding n [Shisha-Walsh 1]. Hint: Modify proof of Th. (5,2) by
noting under Lem. (5,2) that c; = 0 if j = 1, 2, , k, m + 1, , n [Shisha 3].

9. In ex. (5,7) the determination of an infrapolynomial p* is equivalent to that
of finding the polynomial r" of class 5*

92 * = {ak+lZm-k-1 + ak+2Zm-k-2 + ... + am}

which is {n' nearest to the given function

f(Z)(Z) = Z-n+m[Zn + a1Zn-1 + ... + a,Zk + am+1Zn-m-1 + ... + an]

in the sense
lf(z) + r*(z)I < If(z) + s*(z)I

for all s* E.* and all z e E, with the equality holding only where r*(z) = s*(z).
Hint: Apply definition of restricted infrapolynomial.

10. Let R(z) = Y1(z - a;)-5 J1(z - f)-n' where all the a; and j; are distinct
and the m, , n; , m and n are positive integers. Let N = IT m; - I1 n, and
co(z) _ ji (z - a;) j1(z - f;). Then every finite zero of R'(z), not an a; , is a zero
of the extremal polynomial of form p(z) = Nzm+n-1 + bizm+n-2 + for which
p(a;) = m;co'(a;) (j = 1,2, , m) and the Tchebycheff norm max l p(#;)ln;co'(#;)l
is a minimum on the set Ai , fln} [Shisha-Walsh 3]. Hint: Cf. ex. (5,6).



CHAPTER II

THE CRITICAL POINTS OF A POLYNOMIAL

6. The convex hull of critical points. In the previous chapter, we found that
any critical point (zero of the derivative) of the polynomial

(6,1) f(Z) = (Z - Zi)ml(Z - Z2)m2 . .. (Z - Z,)-'p

if not a multiple zero off(z), is a zero of the function

F(z) _ v
m,

2=1Z-z;
all m, > 0.

We found also that the zeros of F(z) can be interpreted in various ways from the
standpoint of physics, geometry and function theory. In the present chapter
we shall employ these interpretations and some additional analysis to determine
the relative positions of the zeros of F(z) and of the points z;. We shall also,
by the same analysis, determine the location of the zeros of rational functions
of a more general form than (6,2), as well as the zeros of certain systems of
functions of a form similar to (6,2).

The relative position of the real zeros and critical points of a real differentiable
function is described in the well-known Theorem of Rolle that between any two
zeros of the function lies at least one zero of its derivative. However, Rolle's
Theorem is not generally true for analytic functions of a complex variable.
For example, the function f (z) = e2AZ' - 1 vanishes for z = 0 and z = 1, but
its derivative f(z) = 2irie2°'Z never vanishes. This leads to the question as to
what generalizations or analogues of Rolle's Theorem are valid for at least a
suitably restricted class of analytic functions, such as the polynomials in a
complex variable. [Cf. Dieudonne 1].

In the present section we shall answer this question, not with respect to Rolle's
Theorem, but rather with respect to a particular corollary of Rolle's Theorem.
This says that any interval of the real axis which contains all the zeros of a
polynomialf(z) also contains all the zeros of the derivative f'(z). This corollary
may be replaced (see ex. (10,1)) by the more general theorem that a line-segment
L (not necessarily on the real axis) which contains all the zeros of a polynomial
f(z) also contains all the zeros of its derivative. But this theorem is only a special
case of the following result proved in 1874 by Lucas [1, 2, 3] and subsequently
by Legebeke [1], De Boer [1], Berlothy [1], Cesaro [1], Bocher [2], Grace [1],
Hayashi [3], Irwin [1], Gonggryp [1], Porter [1], Uchida [1], Krawtchouck [2]
and Nagy [1 and 5].

21
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THEOREM (6,1) [LUCAS]. All the critical points of a non-constant polynomial
f lie in the convex hull H of the set of zeros of f. If the zeros off are not collinear,
no critical point off lies on the boundary of H unless it is a multiple zero off.

From a physical point of view, this theorem is an obvious consequence of
Gauss' Theorem (Th. (3,1)) with the m, as positive integers. For, if the zeros
(see Fig. (6,1)) off'(z) are either multiple zeros of f(z) or the positions of equilib-
rium in the field of force due to masses at the zeros of f (z), then in either case
the zeros off'(z) must lie in or on any convex polygon enclosing the zeros off (z).

FIG. (6,1)

To prove the theorem analytically, let us apply Th. (1,1). If z', a zero of
f'(z), were exterior to H, it could not be a multiple zero of f(z). Furthermore,
the angle subtended at z' by H would be A(z'), where 0 < A(z') < ir. Hence,
if drawn from z', each of the vectors (-w;) of formula (3,1) would lie in A(z)
as would therefore each of the vectors W, = -m;w,. Hence by Th. (1,1),
F(z') = -(WI + W2 + + W9) # 0. As this contradicts our assumption
that z' is a zero off'(z), no zero off'(z) may lie exterior to polygon H.

In fact we have proved the following more general result.

THEOREM (6,1)'. For arbitrary positive constants m, each zero of the function F
in eq. (6,2) lies in the convex hull H of the points z; and none lies on the boundary
of H unless the points z, are collinear.

From Th. (6,1) we may infer

THEOREM (6,2). Any circle C which encloses all the zeros of a polynomial f (z)
also encloses all the zeros of its derivativef'(z).
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For, if K is the smallest convex polygon enclosing the zeros of f(z), then K
lies in C and therefore by Th. (6,1) all the zeros off '(z), being in K, also lie in C.

Conversely, Th. (6,1) follows from Th. (6,2). For, if Th. (6,2) were valid,
through each pair of vertices of the polygon H of Th. (6,1) we could draw a
circle Ck which contains H and hence the zeros of both f(z) and f(i). The
region K' common to all these disks Ck would also contain all the zeros of f (z)
and f'(z). Since this holds for all choices of circles Ck passing through pairs of
vertices of H and containing H, all the zeros off'(z) must lie in the region common
to all possible regions K', that is, in the polygon H.

Thus, as stated in Walsh [2(a)], Ths. (6,1) and (6,2) are actually equivalent.
Furthermore, they are the best possible theorems in the sense that, if the zeros
of an nth degree polynomial f(z), n > 1, are allowed to vary independently in
and on a convex polygon K or circle C, every point in or on K or C is a possible
multiple point off (z) and therefore a possible zero of f'(z). If, however, the zeros
of f (z) are fixed and not all collinear, no zero off'(z) other than a multiple zero
of f (z) may lie on the polygon K or circle C or may lie in a certain neighbor-
hood of each zero off(z). Cf. ex. (6,1) and ex. (26,5).

In view of the similarity of forms (5,8) and (6,2), we may state for infrapoly-
nomials the following analogue to Lucas' Theorem (6,1) due to [Fejer 3].

THEOREM (6,3). Let E be a closed bounded pointset and let p be an infrapoly-
nomial on E. Then all the zeros of p lie in H(E), the convex hull of E; no zero
lies on the boundary all(E) of H(E) except perhaps at a point of E on aH(E).

As an application of Lucas' Theorem (6,1), we state

THEOREM (6,4). Let aK be the boundary of a convex domain K in the z plane
and let P and Q be polynomials such that (i) deg P 5 deg Q; (ii) IP(z)I < IQ(z)I
for z c- 2K; (iii) all zeros of Q lie in K U M. Then IP'(z)I 5 IQ'(z)I for z e M.

Th. (6,4), due to Bernstein [1] when K: IzI 5 1 and De Bruijn [2] in the general
case, may be proved as follows. We note that the function f(z) = P(z)/Q(z)
is holomorphic in the complement D of K U aK and that I f(z)J < 1 for z E M.
Hence by the maximum modulus principle I f(z)I < 1 for z e D. If now zo is
any zero of

g(z) = P(z) - AQ(z), IAI > 1,
and if Q(zo) 0, then

IP(zo)I = IAI IQ(zo)I > IQ(zo)I

That is, I f(zo)J > I and thus zo E K. From Lucas' Theorem (6,1) follows that
every zero of g'(z) also lies in K. This means that for no A with JAI > I is
P'(z)/Q'(z) = A for z E D U 8K. Hence IP'(z)I < J Q'(z)I for z E D U M.

An important corollary of Th. (6,4) is the well-known theorem:

COROLLARY (6,4). Let P(z) be a polynomial of degree not exceeding n such
that IP(z)J < 1 for IzI < 1. Then JP'(z)J < n for IzI < 1.
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This result follows from taking Q(z) = z" in Th. (6,4), and noting that

IP(z)I < 1 = Iz"I for Izl = 1.

We may also state results analogous to Lucas' Theorem (6,1) for three real
variables [see ex. (6,10)], for a quaternion variable [see Scheelbeek 1] and for an
abstract field [see Zervos 3].

Finally, we may state the following theorem due to Walsh [20, p. 249] regarding
the critical points of Green's function.

THEOREM (6,5). Let R be an infinite region whose boundary B consists of a
finite set of Jordan curves, and G the Green's function for R with pole at infinity.
Then all the critical points of G in R lie in the convex hull H of B; none lies on the
boundary of H unless the points of B are collinear.

This theorem is analogous to Lucas' Theorem and may be proved in a similar
way, since eq. (3,5) has the same form as eq. (2,1).

ExERCISES. Prove the following.
1. Th. (6,1) may be deduced from ex. (3,1).
2. The zeros of the kth derivative f (k)(z), 1 < k < n - 1, also lie in polygon H

of Th. (6,1) and in the circle of Th. (6,2).
3. Any infinite convex region which contains all the zeros of an entire function

f of genus zero also contains all the zeros of f'. Hint: By definition f(z) _
III 1 (1 - z/a). Use Ths. (1,5) and (6,1) [Porter I].

4. If r is the smallest number such that all zeros off', the derivative of a poly-
nomial f, lie in Izl < r, then at least one zero of f(z) lies in Izl ? r. Hint: Use
Th. (6,2).

5. Ths. (6,3) and (6,5) may be established by the method used to prove Th. (6,1).
6. Let f (z) = ckzk + ck+lzk+l + ... + C"Z", ckc" 0 0, have all its zeros in a

half-plane bounded by a line L through the origin, not all the zeros of f(z) being
on L. Then c; 0 0 for k :5j:5 n [Laguerre Ic, Weisner 3]. Hint: c1 =
P)(0)/j! 0 0 by Lucas' Theorem.

7. The zeros of Fin eq. (6,2) with all m, > 0 lie in the convex hull of the points

,k=(1/n)[(n-m;)z,+m,Zkl, j, k = 1, 2,...,p, j0k,
[Specht 9]. Hint: With Z as in ex. (3,1), show 91(aZ + 8) > 0 for arbitrary
constants a, P if Rl(aL;k + P) > 0 for all j, k.

8. For f a given nth degree polynomial and c an arbitrary constant, let KK and
K' be respectively the convex hulls of the zeros of [f(z) + c] and of those of f'(z)
and let K* = n K, for all c. If a side S of 8K0 passes through only two simple
zeros of f(z) + c, then S rl K* = 0 unless n = 2 when S c K* [Chamberlin-
Wolfe 2].

9. If the polynomials P and Q satisfy the relations Q(z) 0 0, IP(z)I < I Q(z)I for
3(z) ? 0, then IP'(z)I < IQ'(z)I for 3(z) > 0 [De Bruijn 5]. Hint: All zeros of
F(z) = P(z) - AQ(z), JAI > 1, lie in half-plane 3(z) < 0. Apply Th. (6,1) to F.
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10. In 3-dimensional Euclidean space, let p = xi + yj + zk be the position
vector to point (x, y, z) and let

n

F(p) = CHIP - Pk12, F(p) = [4F(P)]-1 1'7F(p)l'
k-1

be a "distance polynomial" and its derivative respectively with C an arbitrary
real constant and OF the gradient of F. Then all the zeros of F' lie in the convex
hull H of the zeros of F; no zero lies on aH unless it is also a zero of F [Nagy 18].
Hint: As in ex. (3,1) each zero of F' is the centroid of suitable masses placed at
the zeros of F.

11. If E is a closed convex set of more than one point, every polynomial having
all its zeros on E is an infrapolynomial on E [Motzkin-Walsh 4]. Hint: Reread
sec. 5.

12. If in Th. (6,4) hypothesis (ii) is replaced by the assumption that w =
P(z)/Q(z) E S for z e aK where S is a simply-connected domain in the w-plane,
then also [P'(z)/Q'(z)] E S for all z c aK [De Bruijn 2].

13. If all the zeros of an nth degree polynomial f lie in the unit circle, then

max I f'(z)I >_ (n/2) max I f(z)I [Turin 1].
1z1s1 , IzIs1

7. The critical points of a real polynomial. In the Lucas Theorem (6,1) we
treated the zeros z5 of f(z) as independent parameters. Obviously, if we impose
some mutual restraints upon the z; , such as the requirements that the z; be
symmetrical in a line or point, we may expect the locus of the zeros of f(z) to
be a smaller region than that given by the Lucas Theorem.

Let us in particular assume that f(z) is a real polynomial and thus that its
non-real zeros occur in conjugate imaginary pairs. Let us construct the circles
whose diameters are the line-segments joining the pairs of conjugate imaginary
zeros of f(z). These circles we shall call the Jensen circles of f(z). (See Fig. (7,1).)

We shall now state a theorem which was announced without proof by Jensen
[1] in 1913. It was proved by Walsh [4] in 1920 and later by Echols [1] and
Nagy [3].

NG. (7,1)
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JENSEN's THEOREM (Th. (7,1)). Every non-real zero of the derivative of a real
polynomial f (z) lies in or on at least one of the Jensen circles off (z).

To establish this theorem, we note that in the equation
n

f'(z)/f(z) = [1/(z - z,)]
7=l

the sum of the terms wl = 1/(x .+ iy - xl - iy) and w2 = 1/(x + iy - x1 + iy1)
corresponding to the pair of zeros zl = xl + iyl and z2 = xl - iy1 has the
imaginary part

(wl + ws) _
-2y[(x - x1)2 + y2 - y1]

[(x - x1)2 + (y - yl)2][(x - x1)2 + (y + yl)2]
whereas the term w3 = 1/(x + iy - x3) corresponding to a real zero z3 = x3 of
f(z) has the imaginary part

3(w3) = -yl [(x - x3)2 + y2].

Thus, sg 3(w1 + w2) = -sgy for every point z outside all the Jensen circles
and sg 3(w3) = -sgy for every point z. In other-words, outside all the Jensen
circles

(7,1) sg 3[f'(z)1f(z)1 = - sgy.

In particular, if z is a non-real point outside all the Jensen circles, f'(z) 0 0, a
result which proves the Jensen Theorem.

Actually, from the above expressions we may derive the following more specific
result :

THEOREM (7,1)'. If a real polynomial f has at least one real zero, each non-real
critical point off lies interior to at least one Jensen circle off. If f has no real zeros,
each non-real critical point off lies either on all the Jensen circles off or interior to
at least one Jensen circle off and exterior to at least one Jensen circle off.

In fact we have also proved the following more general result. %

THEOREM (7,1). If in eq. (6,2) the pointset S = {z,} is symmetric in the axis
of reals and if m, = mf when zk = z; , then each non-real zero of F lies in or on
at least one Jensen circle of S.

The Jensen Theorem supplements Rolle's Theorem in describing the location
of the zeros off' relative to those of f. A theorem which describes the number
of zeros off' is the following one due to Walsh [4].

THEOREM (7,2). Let I: a < x < fi be an interval of the real axis such that
neither a nor 9 is a zero of the real polynomial f (z) or is a point in or on any Jensen
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circle of f(z). Let R be the configuration consisting of I and of the closed interiors
of all the Jensen circles which intersect I. Then, if R contains k zeros of f(z), it
contains at least k - 1 and at most k + I zeros off V).

We shall prove this theorem with the aid of Th. (1,2), the Principle of Argument.
Let us denote by K the boundary of the smallest rectangle which has sides parallel
to the co-ordinate axes and which encloses R. In view of eq. (7,1) K is mapped
by the function w = f'(z)l f (z) upon the w-plane into a curve which encircles
the origin at most once. Hence, Aw arg [f(z)1f(z)1 is 0 or ±2ir and by eq. (1,2)
the number of zeros of f'(z) within K differs by at most one from the number of
zeros of f(z) in K.

An immediate consequence of Th. (7,2) is the following result also due to
Walsh [4].

COROLLARY (7,2). Any closed interval of the real axis contains at most one zero
of f'(z) if it contains no zero off (z) and if it is exterior to all the Jensen circles for
f(z)

An analogous theorem, due to Fekete and von Neumann [1], holds for infra-
polynomials [see sec. 5]. It is the following:

THEOREM (7,3). Let the pointset E be symmetric in the real axis and let J denote
the circles having as diameters the pairs of conjugate imaginary points of E. If p
is a real infrapolynomial on E, then any non-real zero of p must be in or on at least
one circle J.

PROOF. Any non-real zero of p on E clearly satisfies Th. (7,3). Because of the
symmetry of E and p in the real axis, the zeros of p, not on E, will satisfy not only
the equation

=0 (A;>0,j =0,1,...,m)
,=o z - z,

obtained from (5,8) for suitable points z; E E, but also the equation

= 0, Z; = x; - iy;,
f=o z - z;

and hence the equation
in 1 1

i=o Z-Z; z-Z;
Using now the same reasoning as for the proof of the Jensen Theorem (7,1),

we complete the proof of Th. (7,3).
Finally, we may state results analogous to Th. (7,1) for certain rational functions

of three real variables [see ex. (7,11)] or for certain functions of a quaternion
variable [see Scheelbeek 1 ].
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Also an analogous theorem, due to Walsh [20, p. 255], holds for Green's
function. It is the following:

THEOREM (7,4). Let G be the Green's function with pole at infinity, for an
infinite region R having as boundary a finite set B of Jordan curves, which are
symmetric in the real axis. Then every non-real critical point of G lies in or on at
least one of the circles whose diameters join the pairs of symmetric points of B.

EXERCISES. Prove the following.
1. If a is a real constant and if f(z) is a real polynomial whose derivative is

f'(z), none of the imaginary zeros of F1(z) = (D + a) f (z) =f(z) + of (z) lies
outside the Jensen circles off (z). Hint: Study the imaginary part of a + f'(z)/f (z)
[Jensen 1, Nagy 3].

2. Let E,,,(A, A) denote the ellipse having as minor axis the line-segment
joining the pair of conjugate imaginary points A and A and as major axis a line-
segment in' times as long as the minor axis. Then the envelope of the circles
whose diameters are the vertical chords of Em{A, A) is the ellipse E,,,+1(A, A).

3. If a and b are real constants and f(z) is a real polynomial whose first two
derivatives are f'(z) andf"(z), then none of the imaginary zeros of

F2(z) = f "(z) + (a + b) f'(z) + abf(z)

lies outside the ellipses having as minor axes the lines joining the pairs of conjugate
imaginary zeros of f(z) and having major axes 214 times as large as the minor
axes. Hint: Noting that F2(z) = (D + b)(D + a)f(z) = (D + b)F1(z), apply
twice the results of exs. 1 and 2 (Jensen 1, Nagy 3].

4. If f(z) is a real polynomial and g(z) an mth degree polynomial with only
real zeros, then the non-real zeros of the polynomial

Fm(z) = g(D) f(z), D = dldz,

lie in the ellipses which have as minor axes the lines joining the pairs of conjugate
imaginary zeros of f(z) and which have major axes m%i times as long as their
minor axes [Jensen 1, Nagy 3].

5. If f is any polynomial whose zeros are symmetric in the origin, then
(a) all the zeros off '(z) lie in any double sector Iarg (±z)I < y < 7r/4 containing

the zeros off(z);
(b) all the zeros of f'(z) (except perhaps one at the origin) lie inside, outside

or on any equilateral hyperbola H with center at 0 according as all the zeros of
f(z) also lie inside, outside or on H. Hint: By hypothesisf(z) = zkO(z2). Show
that the zeros of F(W) = [f(W4)]2 lie in a convex point set, which by the
Lucas Theorem must contain the zeros of F'(W) [Walsh 13].

6. If Z is a non-real critical point of a real polynomial f, then the equilateral
hyperbola with vertices at Z and Z either passes through all the zeros off or
separates them. Hint: If Z = X + iY, (X - x1)2 - yl + Y2 > 0 implies that
z1 is outside H.
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7. If C is a real constant and if mk > 0, R(zk) > 0 for all k, then all the non-real
zeros of the function

F(z) = CZ-' + mk[(Z - Zk) + (Z
k=1

lie in the closed interiors of the circles rk tangent at zk and zk to the lines joining zk
and zk to the origin [Walsh 9, 23]. Hint: Consider -3[F(z)].

8. Under the conditions of ex. (7,7) the closed interiors of the circles rk also
contain the zeros of

F(z) = Bz 2 + mk[(z - zk)_1 + (z - zk)-1], B < 0 [Walsh 9, 23].
k=1

9. Let all the zeros of the real polynomial p lie in the strip S: a < 9R(z) <
and let y be a a real point not in S. Through the pair zk, 2k of conjugate imaginary
zeros of p let the circle rk be drawn tangent to lines yzk and yzk at zk and zk respec-
tively. Then every non-real critical point of p lies in or on at least one circle
rk [Walsh 23]. Hint: Show that

sg 3[(z - y).f'(z)/f (z)] = f sg Y

at any point z outside all rk.
10. Let Hk be the equilateral hyperbola with vertices at a,. and ak, where

Z (ak) > 0. Then no critical point of the function

m

F(z) = [f [(z - ak)I (Z - ak)]
k=1

lies either outside all Hk or inside all Hk [Nagy 19]. Hint: Examine Z[F'(z)/F(z)].
11. Let all the zeros of the distance polynomial F in ex. (6,10) be symmetric in

the plane E. Then any zero of F' not on E lies in at least one of the spheres
having as diameters the line-segments joining pairs of zeros of F symmetric in E
[Nagy 18].

12. Let the nth degree polynomial f have only real zeros and the mth degree
real polynomial g, have all its non-real zeros in the sector larg zI < 0 where
0 5 0 5 n-%i. Then all the zeros of h(z) = g(d/dz) f(z) are also real [Obrech-
koff 12]. Hint: For 0 = 0, this is the Poulain-Hermite Theorem. It remains
valid as 0 increases from 0 to 0o when h has a multiple real zero. For 0 > 0o + E,
e a sufficiently small positive number, h has non-real zeros. Prove theorem
first for g(z) = (e'O - pz)(e a0 - Pz), P > 0.

13. Let E be a bounded point set consisting of at least n + 1 points lying on
a line L. If p c- I(E) (see sec. 5) but p(z) 0 0 for z c E, then p has only simple
zeros, all on L and separated by the points of E. If conversely p E 9n and p has
only simple zeros separated by the points of E, then p E I(E) [Marden 22]. Hint:
Use Th. (5,2).

8. Some generalizations. From the proofs given in the last two sections, it
is clear that the Lucas and Jensen Theorems are essentially results regarding
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the zeros of the function

[2]

F(z) =I tn,/(z - z,), mf > 0,
j=1

and that these results are valid even when the positive numbers m, are not
integers. This expression is however only a special case of the linear combination

(8,1) F(z) _ m; f,(z)

where
=1

fs(z) =
(z - a .1)(z - a,2) ... (z - a,2,)
(z - b71)(z - b12) ... (z - b7,)

and where the m; are complex numbers such that

(8,2) ,u<_argm,<u+y<IA +Tr, j=1,2,...,n.
We ask now whether or not the Lucas Theorem (Th. (6,1)) may be generalized
to functions F(z) of type (8,1).

We shall first prove

THEOREM (8,1). If K is a convex region which encloses all the zeros a., and
poles blk of each A (Z) of eq. (8,1), then 0 0 at any point at which K subtends
an angle less than `F = (ir - y)/(p + q).

Since i; is necessarily exterior to K, we may find in K two points a and # such
that (see Fig. (8,1) where, however, K subtends at the angle

F1c. (8,1)
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and for all j and k
(8,3)

yy

0 < arg U;k <'Y', 0 < arg Tjk

where 6;k = (S - a,,)/G - x) and T;k b;k). Let us now set

(8,4) x', = m,f(z)((C - p)ql( - a)D].

Since wf = m; fk=1 aik fl1=1 Tik, we may, on use of eqs. (8,2) and (8,3), obtain
the inequality z < arg w, < u + y + (p + q)W = u + 7r.
It follows now from Th. (1,1) and eqs. (8,1) and (8,4) that

n

a)9] =I w, 0 0,
=I

as required in Th. (8,1).

FIG. (8,2)

If we define 27r to be the angle subtended by K at a point interior to K, we
may say that the zeros of F(z) lie in the region S(K, W) comprised of all points
at which K subtends an angle of at least T. It is important therefore that we
determine the nature of the region S(K, 'F).

For example, if K is a circle of radius r, then S(K, 0) is a concentric circle of
radius r csc (0/2). If K is an ellipse, then S(K, 0) is an oval-shaped region
bounded by a fourth-order curve. If K is the line-segment AB in Fig. (8,2),
then S(K, 0) will be bounded by two arcs of circles which pass through A and
B and are symmetric in the line AB. If K is the closed interior of the triangle
ABC in Fig. (8,3), then S(K, (D) will be a polygonal figure bounded by circular arcs.

As the last two examples show, the region S(K, 0) is not in general a convex
region, though it always contains K and coincides with K when 0 = 7r. The
region S(K, 0) is, however, always star-shaped with respect to K. That is, it
has the property that, if P is any point of K and if Q is any point of S(K, 0),
then the entire line-segment PQ lies in S(K, 0). (Cf. Fig. (8,3).)

This fact is obvious when Q is also a point of K. We need therefore only
consider the case that Q: i; is not a point of K. Then the angle y, subtended at
Q by K satisfies the inequality 0 < y, < 7r and two points a and P can be found
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FIG. (8,3)

in K so that y, = arg (9 - t)/(x - t). Let us choose any point Q': ' lying on
the segment PQ and let us set ip' = arg (9 - l')/(a - c'). Obviously, ?P' > V.
Since the angle subtended at Q' by K cannot be less than ip', we infer that it is
greater than 0 and that therefore Q' lies in the region S(K, 0).

In view of this discussion we may restate Th. (8,1) in the following form,
which in the case y = 0 is due to Nagy [2] but in the general case is due to
Marden [4].

THEOREM (8,2). If all the zeros and poles of each rational function f,(z) entering
in eq. (8,1) lie in a closed convex region K and if the m; (j = 1, 2, , n) are
constants satisfying ineq. (8,2), then all the zeros of the linear combination F(z) _InJ.' m,f (z) lie in S(K, 0), a region which is star-shaped with respect to K and
which consists of all points from which K subtends an angle of at least 0 _

- y)l(p + q)

We may add that in Th. (8,2) the region S(K, 0) may not be replaced by a
smaller region. (Cf. Marden [4].) For, if P:s is any point in S(K, 0), two
points Q1: t1 and Q2: t2 may be found in K such that . Q1PQ2 = 0. Let us
denote by d1 and d2 the distances of Q1 and Q2 from P respectively and by w
the angle formed by the ray PQ1 with the positive real axis. Also let us define

k1 = [(s - tl)/d1]P+a and k2 = [(s - t2)/d2]D+ae4'.

Then, since Ikll _ jk21 = 1,
arg k1 = (p + q)a'
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and

argk2=(p+q)(w+0)+y=rr+(p+q)w,

the vectors k1 and k2 are equal and opposite and thus

k1+k2=0.
This means that the function

33

G(z) = [d°z(z - t1)D/di(z - t2)°] + el"[di(z - t2)D/dz(z - tl)Q]

has a zero at the point s. In other words, every point s of S(K, 0) is a zero of
at least one function F(z) of type (8,1).

Th. (8,1) is a generalization of the Lucas Theorem (6,1) as may be seen by
setting y = 0, p = 0 and q = 1. Like the Lucas Theorem, it has various physical
interpretations.

If y 0 0, p = 0 and q = 1, the function F(z) in (8,1) has the form (2,3) and
thus Th. (8,1) describes the location of the equilibrium points in a field of force
due to complex masses m, acting according to the inverse distance law. An
example of such a field is the one due both to the charges carried by long straight
wires at right angles to the z-plane and to the electromagnetic field induced by
the currents flowing through these wires. Another example is the velocity field
in the two-dimensional flow due to a vortex-source obtained by placing a source
and vortex at the same point.

If y : 0, p = 1 and q = 0, the zero of F(z) is the "centroid" of a system of
complex masses and thus Th. (8,l) describes the location of this centroid in
relation to these particles.

As another application of Th. (8,2), let us introduce a polynomial f (z) of
degree p and n polynomials h,(z), j = 1, 2, , n, each of degree at most p - 1.
Then

F(z) = f(z) - m1h1(z) + m2h2(z) + ... + m,,h, (z)
m1+ m2+... + mn

_ m,[f(z) - h;(z)] mj
7=1 7-1

is a polynomial of type (8,1) with q = 0 and with

f(z) - h,(z) = (z - a,1)(z - a;2) ... (z - a,,).

The a51 are clearly the points at which f(z) = h.(z) and the zeros of F(z) are the
points where

n

f(z) _ Y "11h,(z) i mr
i=1 1=1

In other words, we have established the following Mean-Value Theorem for
polynomials.
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THEOREM (8,3). Let f(z) be a pth degree polynomial, let each h,(z) (j = 1, 2,
, n) bg a polynomial of degree at most p - 1 and let m, be complex constants

satisfying ineq. (8,2). If all the points z at which f (z) = h;(z) for at least one j
(j = 1, 2, , n) lie in a convex region K, all the points at which

(8,5) f(z) _ i m;h;(z)/ i m;
;=1 ;-

lie in the star-shaped region S(K, (ir - y)/p).

Th. (8,3) is due to Marden [4]. When y = 0, it reduces to the results of
Nagy [2] and when in addition h,(z) = const., it reduces to the results stated by
Jentsch [1] and proved by Fekete [2].

EXERCISES. Prove the following.
1. If the points a,k and b,2 lie in a convex region K, then in the region

S(K, (vr - y)/(p + q)) lies at least one of the points z1 , z2 , zn which satisfy

rn z; - a;1) z; - a,2) ... z; - a;,) = 0
(z, - b,1)(z; - b;2) ... (z1 - b;.)

where the m, satisfy (8,2). Hint: Assume the contrary.
2. If all the points at which a given pth degree polynomial f (z) assumes n

given values c1, c2 , , c,, are enclosed in a convex region K, and if the m;
are numbers satisfying (8,2), then all the points at whichf(z) assumes the average
value

c =I m2c;/im;
=1 9=1

lie in the star-shaped region S(K, (ir - y)/p [Marden 7 and 8; for cases y = 0,
Fekete 2 to 6 and Nagy 4].

3. Let K be a convex region which contains all the poles b, of

f(z) = (z - aj)(z - a2) ... (z - a9)/(z - b1)(z - b2) ... (z - b,,)

as well as all the points where f (z) assumes the values c1 , c2 , , c,, . Let the
m; be constants satisfying ineq. (8,2) and let c = Y", m;c;ll' 1 m, . Then
f(z) 0 c outside the star-shaped region S(K, (Tr - y)/(p + q)).

4. For the values r < t < s of the real variable t, let the equations z = a;(t)
and z = b,(t) represent Jordan curves which lie in a convex region K and
let z = m(t) represent a Jordan curve which lies in a sector with vertex at the
origin and with an angular opening of y <7r.

Let furthermore

f(z, t) = IT {[z - a;(t)]/[z - b;(t)]}
;=1

and F(z) = f r m(t) f (z, t) dt. Then, F(z) 0 0 outside the star-shaped region
S(K, (Tr - y)/(p + q)) [Marden 4].
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5. Let f (z) = Hk-1 (z - zk) and g(z) = f (z + A) - Bf(z - A) where A and
B are arbitrary complex numbers with, however, 0 < b = arg B < 7r. Then
no zero Z of g(z) may lie outside of all the lens-shaped regions defined by the
inequalities b/n < arg (z - zk + A)/(z - zk - A) < it, k = 1, 2, , n, or
may lie inside all these regions [Nagy 8].

If all zk lie in a strip H bounded by two parallel lines making angles of 0 with
the real axis, if arg A = + 7r/2 and if IBI = 1, then all zeros of g also lie in H
[Obrechkoff 4].

6. Let f(z) be a real polynomial of degree n having n distinct zeros c, which
consist of the p pairs of conjugate imaginary zeros c; , cD+j = c; (j = 1, 2, p;
2p < n) and the n - 2p real zeros cl (j = 2p + 1, 2p + 2, , n). Let fl(z)
be a real polynomial of degree n - 1 which relative to f(z) has the partial
fraction development

(8,6)
fiz) _ ( Yj + Yj + Yj
f(Z) ,=1 Z - C, Z - cj ,=2,+1 Z - Cj

where y. = mjezuj with m, > 0 and ,uj real for all j and u, = 0 for j > 2p. Let
it be assumed that I ,uj l < 7r/2 for j < 2p. Let K(c,, ,u) be the circle which
passes through the conjugate imaginary pair c, , e, and which has its center on
the real axis at the point kj such that angle c, , c, , kj is ,uj . Then (a) any interval
containing all the real zeros of f(z) and all the points k, (j = 1, 2, , p) also
contains all the real zeros of fl(z); (b) between two successive real zeros of f(z)
lie an odd number of zeros of fl(z); (c) any interval of the real axis not con-
taining any zero of f(z) and any interior point of any circle K(c, , ,u) contains
at most one zero of fl(z) [Marden 17].

7. In eq. (8,6), assume that m, > 0 for j > 2p but mj > 0 or < 0 for j < 2p.
Then each non-real zero of fl(z) lies either in at least one circle K(cj , ,u) corre-
sponding to m, > 0 or outside at least one circle K(c, , ,u.) corresponding to
m, < 0 [Marden 17].

8. In eq. (8,6) assume that all m, > 0. Let I: a < x < # be an interval of
the real axis such that neither a nor fi is a zero of f(z) or an interior point of
any circle K(c, , ,u). Let N be the configuration comprised of I and all the
circles K(c, , u,) which intersect I. Then, if N contains v zeros of f(z), it con-
tains at least v - I and at most v + I zeros of fl(z) [Marden 17].

9. Let fo(z), fl(z), , f,(z) be the set of real polynomials such that for k = 0,1,...,q-1
Jktl(Z) = r ( Yjk + Yjk ) + In_k

Yjk

fk(Z) j==lZ - CA Z - Cjk j=2pk+l Z - Cjk

where larg Yjkl < wk < 7r/2 for j = 1, 2, , n - k and yjk and Cjk are real
for j > 2pk . For convenience, take o(z) f(z) and cjo = c, for all j and set
Ak = cot [(7r/4) - (wk/2)] for all k. Let Ej, be the ellipse with center at the
point (c, + c,)/2 with a major axis M, lcj - cjl along the axis of reals and with
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a minor axis N, jc; - c;I where Nq = 2,2, Ap_, and MQ = Ik=1 Nk . Then
each non-real zero of f,(z) lies in at least one ellipse E,, (j = 1, 2, , p)
[Marden 17].

10. Let c(z, c) = [1/(z - c)]'+ (I/c) + (z/c2) + -1- (zk-i/ck) and let F be
the real meromorphic function

00F(z) =I Aio(z, a) +I [B,O(z, b) + Bi0(z, b)]
i=1 i=1

where A, and a, are real with (A,/ak,) > 0 for all j, where J,u,I < 7r/2 for ,u;
arg (B;/b;) (mod. 27r) and where the series Y'o 1 J 1 jB;/b;+ll are
convergent. Then each non-real zero of F(z) lies in at least one of the circles
K(b; , µ;), j = 1, 2, [harden 17].

11. Let K be the smallest convex region enclosing all the zeros of f, a poly-
nomial of degree n. Then all the zeros of the mth derivative of F(z) = 1/f(z)
lie in the star-shaped region S = S(K, 7r/m). Hint: Let f1(z) = f(wz + t) =
c III (1 - zkz). If t is any point outside S, w may be chosen so that 0 < arg zk <
7r/in for all k. But F(wz + t) = 1o c 1 I zi1zz2 . zk
and k1 + k2 + + k" = m. By Th. (1,1), F(-)(t) 0 0 [Obrechkoff 8].

12. In the hyperbolic non-Euclidean (N.E.) plane H: jzI < 1, the smallest N.E.
convex polygon containing the points ak also contains the critical points of the
"N.E. nth degree polynomial"

(8,7) f(z) = e"ri [(z - ak)/(1 - akz)],
k=1

Iakl < 1.

[Walsh 20, p. 157]. Hint: A "N.E. line" is a circle orthogonal to the unit circle.
The function f maps H, n to 1, upon itself.

13. If, in ex. (8,12), E is a closed set of at least n points in jzj < r (< 1) and if
p is a N.E. infrapolynomial on E (cf. sec. 5), then all the zeros of p lie in the
smallest N.E. convex set K containing E [Walsh 22].

9. Polynomial solutions of Lame's differential equation. In the previous section
we studied the generalization of the Lucas Theorem from rational functions
F(z) = g(z)/f(z) whose decomposition into partial fractions has the' form
57 m;(z - z)-1 involving real m, to those whose decomposition has the form
I m,g;(z)/ f; (z) involving complex m,. In this section we shall extend the
Lucas Theorem to systems of partial fraction sums. We shall be principally
interested in the systems which arise in the study of the polynomial solutions
of the generalized Lame differential equation

dew (57 a; )dw + 4D(z) W
= 0,(9,1)

dz2 + \i=1 z - a, dz 2)

H (z - a,)
i=1

where c is a polynomial of degree not exceeding p - 2.
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By a straightforward application of the method of undetermined coefficients
Heine [1] shows the existence of at most C(n + p - 2, p - 2) polynomials
V with deg V < p - 2 such that for D(z) = V(z) eq. (9,1) has a polynomial
solution S(z) of degree n. We shall call each V(z) a Van Neck polynomial
and the corresponding S(z) a Stieltjes polynomial in recognition of the fact that
Van Vleck [1] and Stieltjes [2] were the first to study the distribution of the
zeros of the polynomials V(z) and S(z) respectively. (Cf. ex. (9,1) and ex. (9,2).)

If S(z) = (z - z1)(z - z2) (z - z,,) is a Stieltjes polynomial, it follows
from (9,1) that

(9,2) S"(zk) + (II(zk - a;))S'(zk) = 0 (k = 1, 2, ... , n).
7-

If S'(zk) = 0 but S"(zk) 0 0, eq. (9,2) would be satisified only if Zk = a, for
some value of j. If S'(zk) = S"(zk) = 0, the differential equations obtained on
successively differentiating (9,1) would show that all derivatives of S(z) would
vanish at z = zk, an impossibility since S (z) is an nth degree polynomial. If
S'(zk) 0 0, we may write

and obtain
S(z) = (z - zk)T(z), T(zk) 0 0,

S"(zk) = 2T'%(--J/ 2

S'(zk) T(Zk) 7=1.j#k Zk - Z;

Consequently, every zero zk of S(z) is either a point a, or a solution of the system

(ail2)
n 1

(9,3) + = 0, k = 1, 2, , n.
i=1 Zk - a; 9=1.90k Zk - Z;

In the later case, the zero zk has an interpretation similar to that assigned to
the zeros of (6,2). The term 2a;(a; - 2J-1 in the conjugate imaginary of (9,3)
may be regarded as the force upon a unit mass at the variable point zk due to
the mass 2a; situated at the fixed point a, . The term (; - zk)-1 may be regarded
as the force upon the unit mass at zk due to the unit mass at the variable point
z, . In other words, the system (9,3) defines the zk as the points of equilibrium
of n movable unit particles in a field due top fixed particles a, of mass akl2.

Likewise, if tk is a zero of the Van Vleck polynomial V(z) corresponding to
S(z), then

(9,4) S"(tk) + [/(tk - a,)]S'(tk) = 0-

ThusThus tk is either a zero of S'(z), which we may write as

S'(z) = n(z - z)(Z - z2') ... (z - z'
or S'(tk) $ 0 and

l r
.I(tk - Z;)1 _ O.(9,5) a5I(tk - a;)i + Ly I

-1 7=1

We leave to the reader the physical interpretation of the tk .
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The location of the zeros of S(z) and of V(z) has been studied by Stieltjes,
Van Vleck, Bocher and Polya when all a, > 0 their results being given below in
exs. (9,1), (9,2) and (9,3). For the general case we shall now prove a theorem due
to Marden [5].

THEOREM (9,1). If

(9,6) larg %,l < y < r/2, j = 1, 2, ... , p,

and if all the points a; lie in a circle C of radius r, then the zeros of every Stielijes
polynomial and the zeros of every Van Neck polynomial lie in the concentric circle
C' of radius r' = r sec y.

FIG. (9,1)

To prove the first part of this theorem, let us suppose that the Stieltjes
polynomial

S(z) = (Z - Z))(Z - Z2) ... (Z - Z.)

has some zeros outside C' and that among these the one farthest from the center
of C is z1 . (See Fig. (9,1).) Then at z1 circle C would subtend an angle A1(z1)
of magnitude less than IT - 2y. Through z1 let us draw the circle F concentric
with C and let us draw the line T tangent to P at z1 . By the assumption con-
cerning z1 , all the points z1 lie in or on the circle P and hence the quantities
(2 - zl)-1 are represented by vectors drawn from z1 to points on the side of T
containing circle C. Furthermore, since the quantity (a, - 2i)-1 may be repre-
sented by a vector drawn from z1 and lying in the angle A1(z1), the quantity
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a;(a; - 2i)-1 may, due to (9,6), be represented by a vector drawn from z1 and
lying in the angle A2(z1) formed by adding an angle y to both sides of A1(z1).
The angle A2(z), being in magnitude less than 2y + (rr - 2y) = ir, lies on the
same side of T as does C. In short, both types of terms (2, - 2)-1 and
a;(a; - z1)-1 entering in eq. (9,3) are representable by vectors drawn from z1
to points on the same side of T. This means according to Th. (1,1) that the
left side of eq. (9,3) cannot vanish. Since this result contradicts eq. (9,3), our
conclusion is that the point z1 and consequently all z; must lie in C'.

With the first part of Th. (9,1) thus proved, it remains to consider the second

Fic. (9,2)

part that concerns the zeros of V(z), the Van Vleck polynomial corresponding
to S(z). Since we now know that all the zeros z; of S(z) lie in circle C', we may
infer from Th. (6,2) that all the zeros z,' of the derivative S'(z) also lie in C'.
Let us assume concerning V(z) that its zero tl , farthest from the center of C,
were outside C' and let us draw through t1 a circle F and its tangent T. By
then repeating essentially the same reasoning as in the first part, we can show
that our assumption concerning t1 implies the non-vanishing of the left side
of eq. (9,5) in contradiction to the hypothesis of the theorem.

In the case of real, positive a; , the part of Th. (9,1) that concerns Stieltjes
polynomials may be regarded as a generalization of the Lucas Theorem (Th.
(6,2)). For this same case, Walsh [8] has given the following generalization of
the Jensen Theorem (Th. (7,1)). (See Fig. (9,2).)

THEOREM (9,2). Let the a; in eq. (9,1) be positive real numbers and let the non-
real a; occur in conjugate imaginary pairs with ak = a; whenever a, = a;. Let
E,,n(a, a) denote the ellipse whose minor axis is the line-segment joining points a
and a and whose major axis is m%4 times as long as the minor axis. Then no non-
real zero of any Stieltjes polynomial having m pairs of non-real zeros may lie
exterior to all the ellipses Em(a, , a), j = 1, 2, , p.
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It is to be noted that E1(a, a) is the Jensen circle of the pair (a, a).
In the proof of this theorem, we shall use two lemmas. The first is one which

may be easily verified by elementary calculus; namely,

LEMMA (9,2a). The circles whose diameters are the vertical chords of the ellipse
a) lie in the closed interior of the ellipse E,,,(a, a) and have this ellipse as

their envelope.

For the statement of the second lemma, let us write S in the form

(9,7) S(z) = (z - z1)(z - z) ... (z - Zm)(z - Zm)(z - z2m+1) ... (z - zn)

with the z,, j > 2m, representing the real zeros of S(z). The second lemma is
then the following.

LEMMA (9,2b). If the non-real zero z1 of S(z) lies outside the Jensen circles
E1(a; , a), j = 1, 2, , p, it lies inside at least one Jensen circle E1(z; , 2,),
2<j<m.

For, eq. (9,3) becomes for (9,7) and for k = 1,

(9,8) y
a;

+ 2 + I ( 2 + 2 ) + 2 = 0.
J=1 Z1 - a; Z1 - fl i=2 Z1 - Z; Z1 - Z, i=2m+1 Z1 - Z;

Except for the term (z1 - eq. (9,8) has the form of eq. (6,2). If zl were
also outside the Jensen circles of the points z, , 2 < j < m, then we could apply
the reasoning used to prove Th. (7,1). Thus for all terms in (9,8), except possibly
(z1 - the sign of the imaginary part would be that of sg(-yl). But, since
(z1 - zl)-1 = -2i/y1, the sign of imaginary part of all terms would be that of
sg(-y1). That is, if zl were outside of the Jensen circles for all the a, , 1 < j < p,
and all the z, , 2 < j < m, then it would not satisfy eq. (9,8).

Now, to prove Th. (9,2), let us assume that point zl is exterior to all the
Jensen circles El(a, , a). By Lem. (9,2b) point zl is interior to, say, E1(z2 , z2).
If, then, z2 is also exterior to all the Jensen circles E1(a, , a), it lies interior to,
say, E1(z3, 23), and so forth. Eventually, we must come to a value of k, k < m,
such that, although the point zk_1 lies exterior to all the circles E1(a, , a;) and
thus lies interior to the circle El(zk , zk), the point zk lies interior to at least one
circle E1(a; , a,), say El(a1 , al).

Now applying Lem. (9,2a), we see that circle El(zk , zk) lies in ellipse E2(a1 , al) ;
that circle El(zk_l , zk_1) therefore lies in ellipse E3(a1 , al), etc., finally, that
circle E1(z2, z2) lies in the ellipse Ek(al , al). Since however, k < m, ellipse
Ek(al , al) lies in the ellipse Em(al , a). Thus we have completed the proof of
Th. (9,2).

Instead of assuming that the a; are positive real numbers, let us suppose that
the a; corresponding to a pair a,, a, form a conjugate imaginary pair. We
may then prove the following two theorems.



[§9] POLYNOMIAL SOLUTIONS OF LAME'S DIFFERENTIAL EQUATION 41

THEOREM (9,3). If the a, and the corresponding a, are real or appear in con-
jugate imaginary pairs and if larg x,I < it/2 for all j, then the zeros of every
Stieltjes polynomial and those of the corresponding Van Vleck polynomial lie in
the smallest convex region which encloses both all the real points a, and all the ellipses
having the pairs of points a; and a; as foci and having eccentricities equal to
cos (arg a).

THEOREM (9,4). Under the hypotheses of Th. (9,3), let S(z) be a Stieltjes poly-
nomial possessing k pairs of conjugate imaginary zeros and let V(z) be the corre-
sponding Van Neck polynomial. Corresponding to each conjugate imaginary pair
a, , a, let the real point e, be located such that angle a, , a, , e, is arg a, and let
E(a,, q) denote the ellipse with center at e,, with a minor axis m, = 2 la; - el
parallel to the imaginary axis and with a major axis q'"m; . Then every non-real
zero of S(z) lies in at least one of the ellipses E(a,, k) and every non-real zero of
V(z) lies in at least one of the ellipses E(a,, k + 2).

Th. (9,3) is a Lucas type of theorem which may be proved with the aid of
the lemma stated in ex. (9,5). The part which concerns the Stieltjes polynomials
was first proved in Vuille [1]. The theorem in its entirety was established in
Marden [5].

Th. (9,4) is a Jensen type of theorem which is a generalization of Th. (9,2)
and which may be established with the aid of ex. (8,6) and of the method of
proof used for Th. (9,2). Th. (9,4) is due to Marden [20].

EXERCISES. Prove the following.
1. If in eq. (9,6) y = 0 and if all the a; lie on a segment a of the real axis,

the zeros of every Stieltjes polynomial will also lie on a [Stieltjes 2].
2. Under the hypothesis of ex. 1, the zeros of every Van Vleck polynomial will

also lie on a [Van Vleck I].
3. If y = 0, any convex region K containing all the points a, will also contain

all the zeros of every Stieltjes polynomial [Bocher 1, Klein 1, and Pdlya 11.
4. Under the hypothesis of ex. 3, K also contains all the zeros of every Van

Vleck polynomial [Marden 5].
5. Let the "mass" a be at point z = Ai (A > 0) and the "mass" a at point

z = -Ai. The resultant force

&(-Ai - z1)-1 + a(Ai - z1)-1

at z1 due to these two masses has a line of action which intersects the ellipse
with ±Ai as foci and with cos (arg a) as eccentricity [Marden 5].

6. The zeros of the Legendre polynomials lie on the interval -1 <
z < 1 of the real axis. Hint: The Legendre polynomials P,,,(z) may be defined
as the solutions of the differential equation

(1 - z2)PZ(z) - 2zP;,(z) + n(n + 0.
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7. If the differential equation w" + A(z)w' + B(z)w = 0, where A(z) and
B(z) are functions analytic in a region R, has as a solution an nth degree poly-
nomial P(z), the zeros of P(z) in R are the points of equilibrium of n movable
unit particles in the plane field of force whose magnitude and direction at any
point z of R is that of the vector A(z). The movable particles attract one another
according to the inverse distance law [Bocher 4].

8. The zeros of the Hermite polynomials Hn(z) are all real and distinct. Hint:
By definition, w = HH(z) is a solution of the differential equation w" - zw' +
nw = 0. Use ex. (9,7) [Bocher 4].

9. The zeros of the Stieltjes polynomials S(z) are the critical points of the
function IGI, where

Inn
n ; nG(zl... Zn) = (11 11 (zk - ai) IT (zk - z,).

k=1 i=1 1=k+1

If a; > 0, I(a) = 0, a, < a,+1 for j = 1, 2, - - - , p, there are exactly C(n + p - 2,
p - 2) polynomials S(z); a unique S(z) corresponds to each of the C(n + p - 2,
p - 2) ways of distributing its n zeros z, among the p - 1 intervals (a,, a,+1)
[Stieltjes 2].



CHAPTER III

INVARIANTIVE FORMULATION

10. The derivative under linear transformations. In the last two chapters we
were interested in proving some theorems concerning the zeros of the logarithmic
derivative of the function

D

(10,1) f(z)=fl(z-z)''i, n=Im,,
j=1 j=1

and in extending these theorems to more general rational functions and to certain
systems of rational functions. We obtained these results largely by use of Th.
(1,1) and Th. (1,4).

We now wish to see what further generalizations, if any, may be derived by
use of the method of conformal mapping. For instance, we know by virtue of
Lucas' Theorem (6,2) that any circle C containing all the zeros of a polynomial
f(z) also contains all the zeros of the derivativef'(z) of f(z). Since we may map
the closed interior of C conformally upon the closed exterior of a circle C', can
we then infer that, if all the zeros of f (z) lie exterior to C', so do all the zeros of
f'(z)? Certainly not in general, as we see from the examplef(z) = z2 - 8 with C'
taken as the exterior of the circle Izi = 1.

Let us consider how to generalize Th. (6,2) so as to obtain a result which will
be invariant relative to the nonsingular linear transformations

(10,2) z = aZ +yZ+6, a

Y s
00.

Specifically, let us denote by Zj the points into which the zeros zj of f(z) are
transformed by (10,2) and by Zk the points into which the zeros zk of f'(z)/f (z)
are transformed; that is

(10,3) Zj = (aZ, + f)/(YZj + 6), zk = (oZ + #)/(YZZ + 6).

Clearly, the Zj are the zeros of F(Z), the transform off (z), where

(10,4) F(Z) = (yZ + a)"f
(aZ

+ i9)yZ+6
The Zk , however, are not in general the zeros of the logarithmic derivative of
F(Z). Let us inquire as to the choice of the m, necessary and sufficient for a
finite Zk to be such a zero.

The logarithmic derivative of F(Z) calculated from eq. (10,4) is

'(Z) = yn aZ + O +
(10'5) F(Z) yZ + 6 + (f \yZ + 6) (yZ 6)2 Lf (0Y1ZZ + 6 J

43
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We thereby obtain

[3]

F'(Zk) = yn

(10'6) F(Zk) yZ, + 6
Thus a necessary and sufficient condition for F'(Zk) = 0 if Zk s oo is that yn = 0.

This condition will be satisfied if we choose y = 0; that is, if we select for
(10,2) any nonsingular linear integral transformation

(10,7) z=AZ+B, A#0.
Thus, if we restrict the transformations to translations, rotations and those of
similitude, the zeros of f'(z)l f(z) transform into those of F'(Z)/F(Z) when the
m, are chosen as arbitrary positive or negative numbers.

To satisfy the condition when y 0 0 and Zk 0 oo, we must choose n = 0.
This implies that not all m, may be positive. In other words, under the general
transformation (10,2) the zeros of the logarithmic derivative of a polynomial
are not carried into the zeros of the logarithmic derivative of F(Z).

This does, however, suggest that, in place of the derivative f'(z) of a given
nth degree polynomial f (z), there be introduced the function

(10,8) fl(z) = nf(z) - (z - zo)f'(z).

The polynomial fi(z) is of degree at most n - 1. It generalizes the derivative
in the sense that, if for a given e > 0 and R > 0 we take

Izol > 1/c, M = max Inf(z) - zf'(z)I, F1(z) =fi(z)/zo,
IzI=R

then

IF1(z) -f'(z)I = Inf(z) - zf'(z)I/Izol < Me.
That is,

(10,9) lim [fi(z)/zo] = f'(z)
ZO -a0

uniformly with respect to z for IzI < R. The function fl(z) has been called by
Laguerre [1, p. 48] the "emanant" of f(z) and by Polya-Szego [1, vol. 2, p. 61]
"the derivative of f (z) with respect to the point zo ," but we shall call fl(z) the
polar derivative of f (z) with respect to the pole zo or simply the polar derivative
off (z).

The zeros of the polar derivative are:
(a) the point zo if f (zo) = 0;
(b) the multiple zeros off (z), and
(c) the zeros of the function

(10,10)
fi(z) = n - j m;

(z - zo)f (z) z - zo ,=i z - z;
Since (10,10) is the logarithmic derivative of

- f (z)(z - zo)-n,
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a function of type (10,1) with a total "degree" of zero, the zeros of (10,10) and
hence those of fl(z) are invariant under the general linear transformation (10,2).

In order to associate the polar derivative fl(z) with a more familiar invariant,
let us introduce the homogeneous co-ordinates 27) by substituting z
intof(z) and fl(z). Thus,

F(E, 7) = rlnf(lrl),
F1(, !) =

770 (E'lo -'7$0) F($,77)
77

j
710

Since, as a homogeneous function of degree n, F(E, 17) satisfies the Euler identity

nF(E, 17) _ a + 17

we find

(10,11) Fl(E, o aF + 720 aF
all

In short, upon the introduction of homogeneous co-ordinates, the polynomial
f(z) transforms into a homogeneous function F(E, 17) and fl(z) into 27), the
first polar of 21). This result provides further evidence of the invariant
character of the polar derivative.

EXERCISES. Prove the following.
1. If the zeros of a polynomial f (z) are symmetric in a line L, then between

two successive zeros of f(z) on L lie an odd number of zeros of its derivative
f(z) and any interval of L which contains all the zeros of f(z) lying on L also
contains all the zeros of f'(z) lying on L. Hint: Apply (10,7) to Rolle's Theorem.

2. Let z = g(Z) be a rational function which has as its only poles those of
multiplicities qr at. the points Q; with j = 1, 2, , k. Let furthermore
h(Z) = H7=1 (Z - Q)°; and F(Z) = h(Z)'nJ'(g(Z)), where f(z) is the function
(10,1). Then a given zero z,'. of f'(z)/f(z) is transformed by z = g(Z) into a zero
Z' of F'(Z)/F(Z) if h'(Z') = 0 whereas all zeros z' are transformed into zeros
Z'if n=0.

11. Covariant force fields. In order to throw some further light upon the
invariant character of the zeros, not merely of the polar derivative of a poly-
nomial, but also of the logarithmic derivative of any functionf(z) of type (10,1)
with n = 0, we shall use a physical interpretation similar to that in sec. 3 coupled
with the method of stereographic projection. (See Fig. (11,1).)

At the fixed points P, of a unit sphere S let us place masses m; which repel
(attract if m; < 0) a unit mass at the variable point P of S according to the
inverse distance law. Let us denote by c(P) resultant force at P.
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FIG. (11,1)

[3]

By drawing lines from the north pole N of S through the points P and P; let
us project P and P; stereographically upon the equatorial plane of S into the
points z and z, , respectively. At the points z, let us place masses m, which
repel (attract if m, < 0) a unit mass at z according to the inverse distance law.
Let us denote by O(z) the resultant force at z.

We ask: what is the relation between the resultant force (D(P) in the spherical
field and the resultant force O(z) in the corresponding plane field ?

The answer to the question, given by Bocher [4], is contained in

THEOREM (11,1). Let (D(P) be the resultant force upon a unit mass at a point P
Of a unit sphere S due to masses m; at the p points P; of S. Let z and z, be the
points into which P and P, are carried by stereographic projection upon the equa-
torial plane of S. Let O(z) be the resultant force upon a unit mass at z due to masses
m, at the points z, . If the total mass n = m1 + m2 + - + mD = 0, then the
force (D(P) may be represented by a vector which is tangent to S and which projects
into the vector [(1 + Izl2)/2]0(z)

To establish this theorem, we shall need

LEMMA (11,1). The lines of force in afield due to amass -mat a point Q1 and
a mass +m at point Q2 are circles through Q1 and Q2. The resultant force O(Q)
upon a unit mass at any third point Q has a magnitude m(Q1Q2)/(QQ1)(QQ2) and
is directed along circle Q1 Q Q2 towards the negative mass.
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To prove this lemma, let us introduce complex numbers in the plane determined
by the three points Q, Q1 and Q2 and denote their co-ordinates by z, z1 and, z2
respectively. According to sec. 3,

(11,1) O(Q)
m - m = m(z2 - zl)

Z - z2 z - zl (z - z2)(z - zl)
Obviously, O(Q) has the required magnitude. As to its direction,

arg c(Q) = arg m - arg (z2 - z) + arg (z - z2) + arg (z - z1),

whence (see Fig. (11,1))

arg (z1 - z) - arg q(Q) = arg (z1 - z2) - arg (z - z2) - arg m.
That is,

=a - argm.
Thus fi = a if m > 0, but i = a + IT if m < 0, so that O(Q) has also the required
direction.

We proceed now to the proof of Th. (11,1).
Let us place at the north pole N of S p additional masses (-m). Since by

hypothesis their total mass (-n) = 0, the resultant force due to the augmented
system consisting of these new masses and of the original masses, m, at P, is
the same as for the original system. The augmented system may, however, be
considered as comprised of the p pairs of masses, m; at P, and -m; at N.
According to Lem. (11,1) the jth pair acts upon a unit mass at P with a force

;(P) tangent to the circle C, through the points P, P. and N. Since for every
j the circle C, lies on the sphere S, the resultant force '(P) due to all p pairs
is tangent to the sphere S. Furthermore, since point N projects into the point
z = oo, the circle C, projects into the straight line through z and z; and vector
';(P) projects into the vector directed either from z; to z or from z to z; according
asm;>0orm;<0.

To compare the magnitudes of these vectors, let us recall the relation between
the co-ordinates of.P: 71, ) and those of its projection z = x + iy; namely,

(11,2) x=1 , Y=1 x2+Y2+1=(12 ).
Hence, for the square of the magnitude of the force 0,(z) due to the mass m, at
z; , we have

m,

(x - x,)2 + (Y - Yi)2
M;0 - x,)2(1 - V

((1- ;)-E,(1-0]2+In(,-P -rlP -0]2
On squaring out the denominator and on using the fact that, being on the sphere
S, the points and (c,, n, , i;) satisfy the equations

(11,3) 2+r7;
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we obtain

(11,4) 10j(z)I2 =
m2I(1 - 0(1

2(1

Similarly on using (11,2), we obtain

i (NPj)2
l 11(P)12 =

m2

(PP,)2(PN)2

__
p

y mi[ f + rliy-t -77 1)2)
yy[(S - $j)2 + (-I ry7j)2 + (S - Sj)2][S2 + 2 + (S - 1)2]

(11,5) VIj(P)12 =
m;(1 - W

2[1 -j - rlrlj - jl [1 - f)
From (11,2), (11,4) and (11,5) it then follows that

[31

2 1 (1 + x2 + y2)2

cj(z) (1 - 02 4

By applying this result to each pair N, Pj , we bring to completion our proof
of Th. (11,1).

From this theorem, we derive the important

COROLLARY (11,1). The points of equilibrium in the spherical force field project
into the points of equilibrium in the corresponding plane force field.

For obviously, '(P) = 0 if and only if O(z) = 0.

12. Circular regions. In the preceding two sections we were able to associate
with every nth degree polynomialf(z) an (n - 1)st degree polynomial called the
polar derivative off(z), namely

mi(z)
= of (z) + (b - z).f'(z),

whose zeros remain invariant under the linear transformations (10,2). Since
fl(z) is a generalization of the ordinary derivative, its zeros may be expected to
satisfy some invariant form of the Lucas Theorem (6,2) that any circle C con-
taining all the zeros of f(z) also contains all the zeros off '(z). In order to find
the corresponding theorem for the polar derivative, we need to consider the
class of regions which includes the interior of a circle as a special case and which
remains invariant under the transformation (10,2). As is well known, this is
the class of so-called circular regions, consisting of the closed interiors or exteriors
of circles and the closed half-planes.

In our subsequent work involving circular regions we shall find the following
lemma very useful.
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LEMMA (12,1). Let C(z) = Iz - ale - r2, so that C(z) = 0 is the equation of
the circle C with center at point a and radius r. Let z1, Z and w1 be any three points
connected by the relation w1 = (Z - z1)-1 and let C' be the circle with center at a'
and radius r', where

(12,1) a' = (Z - a)/C(Z) and r' = r/I C(Z)I.

Then the point w1 lies inside or outside the circle C' according as the circle C does
or does not separate the two points Z and z1.

To prove this (lemma, let us calculate (C'(w1) ((= Iw1 - a'12 - r'2.
7C'(w1) = [(Z - 21)-1 - (Z - a)C(Z)-1][(Z - z1)-1 - (Z - a)C(Z)-1]

- [r2/C(Z)2]

= IZ - z1I-2 -1= C(Z)-1

- [(Z - (X)(Z - Z1) + (Z - &)(Z - z1)] IZ - z11-2 C(Z)-1.

Using now the identity AD + AB = IAI2 + IBI2 - IA - B12 in the form

(Z - ac)(Z - 21) + (Z - a)(Z - Z1)
(12,2)

=IZ-a12+IZ-z1I2-Iz1-a12,

we obtain C'(w1) = Iw1I2 [C(z1)/C(Z)].
If one of the points z1 and Z is inside and the other is outside C, then

C(z1)/C(Z) < 0 and hence C'(w1) < 0, implying that w1 is inside circle C'. If,
however, the points z1 and Z are both inside or both outside circle C, then
C(z1)/C(Z) > 0 and hence C'(w1) > 0, implying that w1 is outside circle C'.
This completes the proof of Lem. (12,1).

EXERCISES. Using the above equations, prove the following.
1. If the circle C passes through the point Z, then C' is a straight line passing

through Z.
2. If C is the straight line C(z) = az + az + b = 0, b real, then C' is a circle

passing through Z.
3. If the circle C passes through the point z1 but not through the point Z, then

C' is a circle passing through the point w1.

13. Zeros of the polar derivative. We are now ready to state the invariant form
of the Lucas Theorem (Th. (6,2)) due to Laguerre [1].

LAGUERRE's THEOREM (Th. (13,1)). If all the zeros z; of the nth degree poly-
nomial f (z) lie in a circular region C and if Z is any zero of

(13,1) .fi(z) = nf(z) + ( - z)f'(z),
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the polar derivative of f(z), then not both points Z and may lie outside of C.
Furthermore, if f (Z) 0 0, any circle K through Z and % either passes through all the
zeros off (z) or separates these zeros.

Because of the importance of Laguerre's theorem to our subsequent investi-
gations, we shall give two proofs of it and also suggest a third in ex. (13,1).

The first proof will use the results of sec. 11 concerning spherical force fields.
Let us assume that Z and are'both exterior to the region C. Since all the zeros
of f(z) lie in C, it follows that f(Z) 0 0 and, hence, also Z s . Through Z
a circle P may be drawn which separates the region C from the point . As
a zero of fl(z), Z must satisfy the equation

(13,2) fi(Z)/[( - Z)f(Z)l = -[nl(Z - )] + [f'(Z)/f(Z)l = 0

and consequently must be an equilibrium point in a plane force field due to
particles of total mass zero. With this plane force field may be associated a
spherical force field in which points P, , P and Q and circles C' and P correspond
respectively to points zf , Z and i; and circles C and P and in which the mass at
P, is m, and the mass at Q is -n = - (ml + m2 + + mr). The force 1b;
at P due to the pair consisting of m, at F. and of (-m) at Q acts in the direction
of the circular arc P;PQ and hence towards the side of circle P' not containing
C'. The vectors (D; are consequently all drawn from P to points on the same
side of the tangent line to P at P. According to Th. (1,1) they cannot sum to
zero. This means that P cannot be an equilibrium point in the spherical field
and that consequently Z cannot be an equilibrium point in the corresponding
plane field. This contradiction to our assumption concerning Z proves the first
part of Laguerre's Theorem.

To prove the second part of the theorem, let us assume first that a circle K
through Z and has at least one z, in its interior, no z, in its exterior and the
remaining z; on its circumference. This corresponding circle K' through P and
Q on the sphere then has at least one P, in its "interior", no P; in its "exterior"
and the remaining Pi on its circumference. The forces (Di are then directed
from P along the tangent line to K' at P or to one side of this line and hence
cannot sum to zero. This contradicts the hypothesis that Z is a zero of fl(z)
and so at least one z; must be exterior to K. Since a contradiction would also
follow if K were assumed to have at least one zk in-its exterior and no z, in its
interior, we conclude that K must separate the z, unless it passes through all
of them.

While the proof which we have just completed was based upon the properties
of equilibrium points, our second proof of Laguerre's Theorem (13,1) will be
based upon the properties of the centroid of a system of masses. If Z is any
zero of (13,2), it satisfies the equation

n m;
(13,3) _

Z- t ;=i Z - z,
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On substituting into this equation

(13,4) w = (Z - 0-11 w; = (Z - z;)-1,

we derive the relation

(13,5) W = (m,w2)in, n = ± m;.
9-1 7=1
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Consequently, w is the centroid of the system of masses m; at the points w; .

As to the location of the centroid w, we have the

LEMMA (13,1). If each particle w; in a system of positive masses m; lies in a
circle C', then their centroid w also lies in C' and any line L through w either passes
through all the w, or separates the w; .

This lemma is intuitively obvious. In order to prove it analytically, let us
write eq. (13,5) as

(13,6) m1(w1 - w) + m2(w2 - w) + .. + mq(w9 - w) = 0.

If circle C' did not contain w, it would subtend at w an angle A, 0 < A < 9r,
in which would lie all the vectors w; - w. By Th. (1,1), therefore, the sum (13,6)
could not vanish.

Now, to prove the first part of Laguerre's Theorem, let us assume that point
Z is exterior to region C and consequently is different from all the z; . Using
Lem. (12,1), we then infer that each w; defined by (13,4) lies interior to some
circle C'; using Lem. (13,1), we infer that the centroid w also lies in C' and,
again using Lem. (12,1), we infer that the , defined by eq. (13,4), must also lie
in C. That is, not both Z and may lie exterior to C.

In the second part of Laguerre's Theorem we know by hypothesis that Z is
different from all the z; . Any circle K through Z and would transform into
a line L through w, the centroid of the w; . According to Lem. (13,1), either
L passes through all 'the w, or L separates some w; from the remaining w,.
Hence, either K passes through all the z, or it separates some z; from the remaining
z; . Thus, we have completed the proof of Laguerre's Theorem.

In our discussion of Laguerre's Theorem, we have implied that is a given
point and that the zeros Z of f1(Z) were to be found. Instead, we may consider
Z as an arbitrary given point and then define as the solution of the equation

(13,7) n/(Z - ) = f '(Z)/f (Z).

Thus C may be interpreted as the point at which all the mass must be concentrated
in order to produce at Z the same resultant force as the system of masses m; at
the points z; . That is, C may be interpreted as the center of force. Based upon
this interpretation, a theorem equivalent to Laguerre's Theorem has been given
by Walsh [lb, p. 102].
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Corresponding to a given nth degree polynomial f (z), let us construct the
sequence of polar derivatives

(13,8) fk(z) = (n - k + 1)fk-1(z) + Gk - z).fk_1(z), k = 1, 2, ... , n,

with fo(z) = f (z). The poles Sk may be equal or unequal.
Like the kth ordinary derivative f (k)(Z) of f(z), the kth polar derivative fk(z)

is a polynomial of degree n - k. Just as the position of the zeros of f (k)(z) may
be determined by repeated application of the Lucas Theorem (6,2) (see ex. (6,2)),
the position of the zeros of fk(z) may be determined by repeated application of
Laguerre's Theorem (13,1). The result [Laguerre 1b, Takagi 1] so obtained may
be stated as

THEOREM (13,2). If all the zeros of an nth degree polynomialf(z) lie in a circular
region C and if none of the points 1 , 2, - - - , k (k S n - 1) lies in region C, then
each of the polar derivatives fl(z), f2(z), , fk(z), in the eqs. (13,8), has all of its
zeros in region C.

For, by Laguerre's Theorem (13,1), all the zeros of f1(z) lie in C; hence, all
those off2(z) lie in C; hence, all those of f2(z) lie in C; etc.

Let us express the polar derivative fk(z) directly in terms of f (z) and 1,
2 , - - - , 4 if from eqs. (13,8) we successively eliminate f1(z), f2(z), ,

.fk-1(z), we find
k

fk(z) = (k - j)!C(n - j, k - j)S,(z) fcj)(z),
i=o

where S.(z) is the sum of all the products of the differences (tj - z) taken j at a
time, i= 1,

As is clear from this formula, fk(z) is a generalization of the kth derivative of a
polynomial in the sense that, as --> oo, j = 1, 2, , k,

lim
yy yy

fk(z)
yy

= f(k)(z).
(Sl - Z)(b2 - Z) ... Gk - Z)

Let us put fk(z) in still another form which will more clearly show the relation
of its coefficients to those of f (z). For this purpose, let us write f (z) and fk(z)
in the form

n n-k

(13,9)
f (z)

= j C(n, j)A,z', .fk(Z) = I C(n - k, j)A;k)z',
j=0 j=O

where we define Ai(k) = 0 for j < 0 and j > n - k.
Substituting into eq. (13,8) the expressions for fk_l(z) and fk(z), equating the

combined coefficient of z' on the right side of eq. (13,8) to that on the left side and
simplifying the resulting formulas, we find

(13,10) Ajk1 = (n - k + 1)(A,k-1 + A,+11)4)
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Let us now show that by repeated application of eq. (13,10) we may derive the
formula

k

(13,11) A;k1 = n(n - 1) (n - k 1) a(k, i)A2+;,
i=o

where a(k, i) is the symmetric function consisting of the sum of all possible
products of Sl , 2 , - ' ' , Sk taken i at a time. First we note that for k = 1 eq.
(13,11) is the same as eq. (13,10). We have merely to show then that, if (13,11) is
valid, A;k+1> will be given by eq. (13,11) with k replaced by k + 1. According to
(13,10) and (13,11)

Ck
A(k+1) = n(n - 1) ... (n - k) G [a(k, i)Ai+; + k+la(k, i)Ai+j+1]

=o
k y

= n(n - 1) ... (n - k) [a(k, i) + Sk}1a(k, i - 1)]Ai+j
i=0
k+1

i=o

Thus eq. (13,11) has been established by mathematical induction.

EXERCISES. Prove the following.
1. Laguerre's Theorem may be derived by assuming Z and as both exterior to

region C, by applying the transformation w = 1/(z - ) and finally by using the
Lucas Theorem (6,2).

2. If all the points z; lie on a circle C, the following is true: (a) Z and may not
be both interior or both exterior to C; (b) if Z is on C, is located on Cat a point
separated from Z by at least one z;; (c) if i; is on C, Z is located on C at a point
separated from t, by at least one z; .

3. Let z1 be any zero of an (n + 1)th degree polynomial g(z) and Z any zero of
its derivative. Then any circle through Z and i;, where

=Z-n(zl-Z),
must contain at least one zero of g(z) [Fejer2]. Hint: Writing g(z) _ (z - zl)f(z),
compute g'(Z)/g(Z) in terms off '(Z)lf(Z) and definer as in eq. (13,7).

4. The centroid of the zeros of the derivative of a polynomial f (z) is the same
as the centroid of the zeros off (z).

5. Let f(z) be an nth degree polynomial, t an arbitrary point for which
f (t) f'(t) 0 0, and L an arbitrary line through t. Let H be the half-plane bounded
by L and containing the point u = t - [f(t)lf'(t)] and let C be the circle which
passes through the points t and v = t - [pf(t)/f'(t)] and is tangent at t to L.
Then, if at least one and at most p zeros off (z), 1 < p < n, lie in H, at least one of
them lies in or on C. In order for all p zeros to lie on C, the remaining n - p
zeros must lie on L [Nagy 6]. Hint: Let H: Iarg (z - t) - wl < -/2; let z,
denote the zeros off with z, c- H for j = 1, 2, , q, 1 < q < p, and z; 0 H for
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Let

Re`(y'+W) = f(t)lf'(t), r,ei(4,+0)> = z, - t,
A=Rsecip, a,=r,sec0,

with a1 = min a,, 1 < j < q. Then show a1 < qA < pA with a1 = pA only
when q = p, and a-,' = 0 forj > p.

6. In ex. (13,5), let p of the derivatives f ( )(z), k = 1, 2, n, be different
from zero at z = t. Then at least one zero off (z) lies in or on each circle through
the points t and v [Fejer 2].

7. If z1, z2 , , z are the zeros of an nth degree polynomial f (z) and
zi , z2 , , zare those of its derivative, then

n-1 n

(n -1)-1 1Z(z;1 < n-1 I3(z)I
1 1

with the equality holding if and only if 3(z) > 0 or < 0 for all j. [De Bruijn 1;
De Bruijn-Springer 1; Erdos-Niven I]. Hint: If 3(z) > 0 for all j, use Th. (6,1)
and ex. (13,4). If Z(z) > 0 for j < k but Z(z,) < 0 for j > k, apply the same to
fk(z) = jji(z - z,)fk+1(z - 2,), noting that I f'(x)I < I fk(x)I for all real x.

8. If zl , z2 , , zn , C1, C2, - , Sk all lie on a circle C, then all the zeros of
fl(z), f2(z), : , fk(z) also lie on C. Hint: Use ex. (13,2).

9. Let C,: Iz - zoI = rv be the circle on which lie the p roots of the generalized
eq. (13,7); viz.,

n
(13,12) n/(zo - 01 =11/(z0 - zk)D = (-1)1-1F(v-1)(z0)/(P - 1)!,

k=1

where F(z) = f'(z)l f (z). Then either at least one zero of f (z) lies inside CD or
all the zeros off(z) lie on C, . Hint: Label the zeros zk in the order of increasing
distance from zo so that

Izo_z115Izo_z21 <... <Izo -'znl

and study the modulus of the left and middle members of eq. (13,12) [Nagy 6
and 12].

10. Let polar co-ordinates (r, 0) be introduced with pole at zo and with polar
axis along a ray from zo through a root C of eq. (13,12). Then at least one zero
off (z) lies in the curve with the equation r' = r9 cos po [Nagy 6,12].

11. Th. (13,1) may be generalized by replacing f1(z) by

F1(z) = J (z)G mk(S - zk)/(z - Zk)

where the Mk are arbitrary positive constants [Nagy 21 ].
12. If the nth degree polynomial f (z) has all its zeros on the unit circle C and Z

is any point on C where f(Z) 0 0, then If '(Z)lf(Z) I > n/2. Hint: In (13,3) let
IZ-I<2.



[§14] GENERALIZATION TO ABSTRACT SPACES 55

13. Let P be an nth degree polynomial, Q(z) = nP(z) - zP'(z) and C an open
or closed circular region not containing the origin. If P has a k-fold zero at the
origin, 0 5 k 5 n, and n - k zeros in C, then Q(z) has a k fold zero at the origin
and n - k - 1 zeros in C [Ballieu 1]. Hint: Apply Th. (13,1) with = 0.

14. The zeros of the distance polynomial given in ex. (6,10) are separated by any
sphere that passes through the points with position vectors p and 8 where
F(p)F'(p) 96 0 and

8 = p - 2n IvF(p)1-2 OF(p) [Nagy 18].

15. Let K be a circular domain in the z-plane and S an arbitrary pointset in the
w-plane. If the nth degree polynomial f is such that f (z) E S for all z e K, then

fl defined by eq. (13,1) satisfies the condition [ fi(z)ln] E S for all z c K and
E K [De Bruijn 2]. Hint: Take C as the complement of K and apply Th.

(13,1) to [f(z) - A] where A 0 S.
16. If the nth degree polynomial satisfies the conditions 1 f(z)1 < 1, f(z) 54 0

for lzl 5 1, then 1 f'(z)I <_ n/2 for lzi < 1 [Erdos-Lax, see Lax 1; De Bruijn 2].
Hint: In ex. (13,15) take K: lzl < 1 and S: 0 < 1w! < 1 and show S contains a
circle of radius 1 f'(z)1ln. Compare with Cor. (6,4).

14. Generalization to abstract spaces. We now proceed to extend Laguerre's
theorem (Th. (13,1)) to vector spaces. For this purpose we need to define an
abstract homogeneous polynomial and its polar derivative as well as an analogue to a
circular region.

Given a vector space E and an algebraically closed field K of characteristic zero,
we define P to be a homogeneous polynomial on E with values in Kif

n ,k
(14,1) P(sx + ty) _ Pk(X,

Y)Sktn-k = I Pk(y,
X)tkSn-k

k=0 k=0

for all x, y c- E and s, t e K, where Pk(x, y), k = 0, 1, - - - , n, have in K values
independent of s and t. If P,,(x, y) 0 0, P is said to be of degree n.

From (14,1) we infer that

(14,2) P(y) = P0(X, y), P(X) = Pn(x, y),

(14,3) Pk(x, Y) = P11-k(Y, x), k = 0, 1, 2, ... , n.
(14,4) P(sx) = s'P(x), Pk(Ax, IAY) =

AklAn-kpk(x,Y).

If E is an N dimensional vector space KN, we may introduce unit base vectors
of so that

with each x(°) E K. We may then use eq. (14,1) to write

(14,5) P(X) = I Aklk$ ... kN (x,)k1(x )k2 ... (X(N))kN

where the sum is taken for each k, = 0, 1, - - - , n and kl + k2 + + kN = n,
and where the Ak1k2 ... kN are constants with respect to the x(').



56 INVARIANTIVE FORMULATION [3]

By analogy with the formula for F1($, ?1) in (10,11), we define the first polar of
P(x) (with pole at x1) as

N
P1(x) _ (1/n)( XJ(J)D,)P(x), D, = a/ax(J)

This is a homogeneous polynomial of degree n - 1 in x if deg P = n. We define
also the mth polar with poles x1 , x2 , ,lxm as

(14,6) Pm(x) = [(n - m) !/n !] I H ix,(,J)D, P (x), 1 < m < n.
k=1 1

This is a homogeneous polynomial of degree n - m in x if deg P = n.
A direct calculation from (14,5) shows that

(14,7)
P1(x)

N
= (1/n) !r Aklk,...k,, (x,)ki(xa)k2 ... (x(N))kN k'x17)[x(i)]-1

1=r1

(14,8) 1 r r n u (N) (N)_ (n!)-' I k1) k2) ... kN! Akik2...kNxa1 ... xaklxpl ... xpk2 ... XVl
xyk2,

where k, > 0, all j, and k1 + k2 + + kN = n, and where the set (a1 , , ak, ;
#1 , ' ' ' , Pk2 ; ' ' ; v1, , vkN), assumes as values all possible permutations of the
set (1, 2, , n). Thus, the nth polar

Pn(x) = P(x1 , x2 ,
... xn)

where P(x1, x2 , , x,,) is an n-linear symmetric form (linear in each xk , sym-
metric in set {xk}) with the coincidence property

(14,9) P(x, x, , x) = P(x).

As shown in Hormander [1] and Hille-Phillips [1], even if E is not finite
dimensional, there corresponds to each homogeneous nth degree polynomial P(x)
a unique symmetric n-linear form P(x1, x2 , , with values in K for all
x, xi E E, such that P(x, x, , x) = P(x). This form may be defined as the nth
polar of P(x) when E is not necessarily finite dimensional.

For 1 < m < n the mth polar is the form obtainable from P(x1 , x2 , , xn) by
setting xm+1 = Xm+2 = = xn = x.

Having defined an abstract homogeneous polynomial and its polar form, we
next introduce a concept equivalent to "circular region". As an algebraically
closed field of characteristic zero, K contains a maximally ordered field Ko C K
so that, with the adjunction of i to Ko where i2 = -1 E K. , we obtain [Van der
Waerden 1, pp. 229-230] K0(i) = K. For a, j E Ko, y = a + i/ and y = a - ij9
are conjugate elements in K. The order relations (>_) and (>) apply, however,
only to the elements in K,. By a Hermitian symmetric form His meant a function
which has values H(x, y) E K for all x, y E E, and is linear in x for every fixed y
and whose conjugate hi is such that

(14,10) H (y, x) = H (x, y) for all x, y c- E.
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Now, in Euclidean two space we may specify a circular region by an inequality on
the complex variable z = x'/x"

(14,11) azz+bz+bz+c>O,
the left side of which involves a Hermitian symmetric form

H (x, y) = ax' y' + bx y" + bx "y + cx"y ".

a, c real,

Similarly, we may define a "circular region" in E by an inequality H(x, x) ? 0.
We now state a generalization of Laguerre's Theorem (Th. (13.1)) due to

Hormander [1].

THEOREM (14,1). Given a homogeneous nth degree polynomial P and a Hermitian
symmetric form H with P(x) e K and H(x,y) e K for all x c -E, y cE. Let

E1={x: xeE,x00,H(x,x)>_0}.
If P(x) # 0 for all x E El , then also the first polar P1(x) = P(xl, x, x, , x) 54 0
when both x E El and xl e El .

PROOF. Since K is algebraically closed, we may factor P(x):

7P(sx + txl) _ aksktn-k = 11 lsT; - ta)
k=0 7=1

where ak =
(-1)n-kyT;1T;2 . . . Tika;k+1 . a;n . The sum is taken for all possible

permutations (jl , j2 , , j,) of the set (1, 2, , n). For a finite dimensional E,

N N
(d/dt)P(sx + tx1) _ Akl ... k, (sxcr' + tx('))k; {k;x(')(sx(') + tx('))-1}

f=1 7=1

It follows from the above and (14,8) that

an-1 = {(d/dt)P(sx + tx1)}s=1. t.0 = P(x1, x, , x),

n

(14,12) an_I/a = nP(xl, x, ... , x)/P(x) (a;/T5)
9=1

This holds also when E is not finite dimensional. On the other hand, using
(14,10) and the linearity of H(x, y) in x, we find

H (ax + Ty, ax + Ty) = aH (x, ax + Ty) + TH (y, ax + Ty)

(14,13)

Now, 'if P(a,x + T;y) _
and so

= aH(ax + Ty, x) + TH(6x + Ty, y)

= avH (x, x) + a FH (x, y) + 8TH (x, y) + T H (y, y)
= avH(x, x) + 2i[aTH(x, y)] + T-rH(y, y).

0 with a;x + T;y 54 0, then by hypothesis ax + T;y 0 El

H(a,x+Ty,ax +Ty) <0
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This implies, since H(x, x) > 0 and H(y, y) > 0, that

91(QfT5H(x, y)) < 0

Dividing the left side by T;T; and summing, we find also

[31

for all j.

9 [H(x, Y) (oJ/T,)] < 0
f=1

and thus from (14,12) that P(xr , x, x, , x) 0 0 for x E E1i x1 E E1, as stated
in Th. (14,1).

The question now arises as to when the class 91 of homogeneous polynomials
not vanishing on E1 is an empty one. It will be empty if E1 has a two dimensional
linear subspace L. For then with the use of suitable coordinates in L, any P(x)
becomes a homogeneous binary polynomial and, as such in an algebraically closed
field, it has at least one zero in L.

To formulate conditions for this, we introduce the vector

(14,14) =x - xot
where t= H(x, xo) and H(xo, xo) = 1. Then from the linearity of H(x, y) in x
follows that

H x0) = H (x, x0) - tH (xo, x0) = 0,
(14,15) H(txo + txo +

s arbitrary. If 0 for some satisfying (14,14), then the left side of
(14,15) will be positive and hence the two dimensional space spanned by xo and

will belong to E1. For 91 not to be empty, must be negative definite
for every satisfying (14,14). Conversely, if this holds, then the left side positive
in (14,15) implies that t 0 0 and hence that the polynomial

P(x) = P(txo + ) = t" 0 0 for x E E1.

That is to say, a necessary and sufficient condition for 91 not to be empty is that
be negative definite for all a satisfying (14,14) [HSrmander 1].

For other generalizations of Laguerre's Theorem to abstract spaces, we refer
the reader to Zervos [5].

EXERCISES. Prove the following.
1. In the expansion

P(t1x1 + t2x2 + ... + t"xn) Ak1k2 ...kntkltk2 ... tk"

where t, c- K, x, c- E and where are independent of the t, , is a
symmetric n-linear form which reduces to n ! P(x) when x1 = x2 = = xn = x
and thus is n! P(x1i x2 , , xn). Thus also

(14,16)
P(x1, x2 ,

... , x")
= (1/n!)[8"lat1 ... atn)P(t1x1 + ... + tnxn)]E1=...-t.-0
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2. For x,yEEands,tEK,

(14,17) P(sx + ty) _ C(n, k)P(x, , x, y, y)sktn-k
k=0

59

[Hille-Phillips 1, p. 763]. Hint: Use induction based upon (14,1).
3. Any homogeneous polynomial P(x) may be expressed as a Newton interpola-

tion polynomial

(14,18) P(y + sx) _ C(s, k) AiP(y)
k-0

in terms of the kth difference AY where

k

L
P(y) = (-1)k-'C(k,J)P(y

-1-1x)
i=a

[Hille-Phillips 1, p. 761]. Hint: Show that the difference of the right and left
sides (14,18) is an nth degree polynomial that vanishes at the n + 1 points:

4. The nth polar may be written as

(14,19) P(x1, x2, ... , x,,) = (1/n!) Azyxa...x, P(Y)

[Hille-Phillips 1, p. 762]. Hint: Show that the right side of (14,19) is a symmetric
n-linear form satisfying (14,9).

5. If in eq. (14,5) K is the field of complex numbers and IP(x)l < 1 for 1x12 =
(X )2 + (x")2 + . . . + (x(``'))2 = 1, then JAkIk,...kn! < N! (k1! k2! ... kN!)-1
[Kellogg 1]. Hint: First prove result for N = 2 and then use induction, setting
x(J) = Py( ), j = 1, 2, ...

, N - 1, with (y') 2 + (y")2 + ... + (y(r-1))2 = 1.

6. In ex. (14,5) let DP denote the directional derivative of P. If IP(x)I < 1 for
JxJ = 1, then IDP(x)l < n for Jxj < 1 [Kellogg 1]. Hint: Use ex. (14,5).
Compare with Cor. (6,4).



CHAPTER IV

COMPOSITE POLYNOMIALS

15. Apolar polynomials. So far we have been concerned with the relative
position of the zeros of certain pairs of polynomials. In Chapters I and II, the
pair consisted of a polynomial and its ordinary derivative. In Chapter III,
the pair consisted of a polynomial and its polar derivative. We shall now apply
the results obtained to the study of the comparative location of the zeros of other
pairs or sets of related polynomials.

We begin with a pair of so-called apolar polynomials. Two polynomials
n n

(15,1) f(z) _ C(n, k)Akzk, g(z) _ C(n, k)BkZk, AnBn 9' 0,
k=0 k=0

are said to be apolar if their coefficients satisfy the equation

(15,2) A0Bn - C(n, 1)A1Bn_1 + C(n, 2)A2Bn_2 + ... + (-1)'AnBo = 0.

Clearly, there are an infinite number of polynomials which are apolar to a
given polynomial. For example, the polynomial z3 + 1 is apolar to the poly-
nomial z3 + 3az2 + 3#z + 1 for any choice of the constants a and ft.

Let us denote by z1, z2 , , z,, the zeros of f(z) and by t1, S2 , .. , n the
zeros of g(z) so that

f (Z)(z) = An(z - z1)(z - z2) ... (z - zn),
(15,3)

g(z) = Bn(Z - b)(z - S2) ... (Z - Sn)
In terms of the elementary symmetric functions

s(n,p)=z,1z;E ... z,,,
(15,4)

a(n, P) _

the sum of products of these zeros taken p at a time, we may substitute

C(n,P)A,,, = (-1)Ds(n,p)An,
(15,5)

C(n,P)Bn-,, = (-1)1'a(n,p)Bn
into eq. (15,2) and so obtain the following criterion for apolarity.

THEOREM (15,1). Two nth degree polynomials f(z) and g(z) are apolar if and
only if the elementary symmetric functions s(n, p) of the zeros off (z) and the ele-
mentary symmetric functions a(n, p) of the zeros of g(z) satisfy the relation:

n
(15,6) 1(-1)k[C(n, k)]-ls(n, n - k)a(n, k) = 0.

k=0

60
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A simple method for constructing a polynomial g(z) apolar to a given poly-
nomial f(z) is described in Szego [1], as follows.

THEOREM (15,2). If the polynomial f(z) = 1k=o akzk satisfies the linear relation

(15,7) L[f (t)] _ lkak = 01
k=0

then it is apolar to the polynomial

(15,8) g(z) = L[(t - z)n].

For, as

and thus

n
(t - Z)n =I(-1)n-kC(n, k)zn-'t'

k=0

g(z) = L[(t - z)n] 1)n-klkC(n, k)zn-k,
k=0

eq. (15,7) is seen to be of the form (15,2) with Bn_k = (-1)n-klk

Now, as to the relative location of the zeros of two apolar polynomials, we
have the fundamental result of Grace [1], also proved in Kakeya [3], Szego [1],
Cohn [1], Curtiss [1], Egervary [1] and Dieudonne [4].

GRACE'S THEOREM (Th. (15,3).) If f(z) and g(z) are apolar polynomials and tf
one of them has all its zeros in a circular region C, then the other will have at least
one zero in C.

Let us prove this theorem on the assumption that all the zeros z1 , z2 , ,

z. of f(z) lie in a circular region C. If the zeros 1 , C2, - - - , n-1 of g(z) were
all to lie exterior to C, all the zeros of each polar derivative fk(z), k = 1, 2,
n - 1, given by eqs. (13,8) would according to Th. (13,2) also lie in C.

In particular, let us consider fn_1(z) which according to eqs. (13,9) and (13,11)
we may write as

(15,9) fn-I(Z) = A(n-1) + A(n-1)Z
0 1 ,

where

A(on-1) = n! {A0 + a(n - 1, 1)A1 + a(n - 1, 2)A2 + ... + a(n - 1, n - 1)An_1},

Aln-1 = n ! {A1 + a(n - 1, 1)A2 + a(n - 1, 2)A3 + + a(n - 1, n - 1)An}.

In view of eqs. (15,4) and (15,9) and the relation

a(n - 1, k) + a(n - 1, k - 1)Cn = a(n, k),
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it follows that

J n-1(Sn)

= n! {A0 + a(n, 1)A1 + on, 2)A2 + ... + o(n, n)An}

(15,10)

[4]

!! {AOB,, - C(n, 1)A1Bn_1 + C(n, 2)A2Bn_2 - + (-1)"C(n, n)AnB0}.
B,,

Since f(z) and g(z) are apolar, eq. (15,10) implies that fn-1(Sn) = 0. The point
Sn is therefore the zero of fn_3(z) and must lie in C.

In other words, at least one of the zeros 1 , S2 , , n of g(z) must lie in any
circular region C containing all the zeros of f(z). Similarly, at least one of the
zeros z1, z2 , , zn of f (z) lies in any circular region containing all the zeros
of g(z).

From Grace's Theorem, we may deduce at once the following result due to
Takagi [I ].

COROLLARY (15,3). If f(z) and g(z) are apolar polynomials, any convex region
A enclosing all the zeros of f(z) must have at least one point in common with any
convex region B enclosing all the zeros of g(z).

For, if A and B had no point in common, we could separate them by means
of a circle C enclosing say A, but not containing any zero of g(z). This would
contradict Grace's Theorem.

From Grace's Theorem, we may also infer the following Coincidence Theorem
due to Walsh [6].

THEOREM (15,4). Let 1 be a symmetric n-linear form of total degree n in z1 ,
z2 , , Zn and let C be a circular region containing the n points zio), z2o) ... , z(o)

Then in C there exists at least one point C such that

b(zi°), z2°), ... , z(o)).

For, if 4)(zio), z(" .. , z;,°)) _ (Do , the difference 1(z1, z2 , , z,,) - (Do
is linear and symmetric in the z1, z2 , , zn . By the well-known theorem of
algebra, any function linear and symmetric in the variables z1 , z2 , , zn may
be expressed as a linear combination of the elementary symmetric functions
s(n, p) of these variables. That is, we may find constants Bk so that

D(Z1, z2, ... , zn) - (Do = Bos(n, 0) + B1s(n, 1) + . + Bns(n, n)

= A-1{B0An - C(n, 1)B1An_1 + ... + (-1)"C(n, n)B,,A0},

where f(z) = An n'n 1(z - z,) = J', C(n, j)A;z'. Consequently,

(z1(0), z(20), .. Z.
(0) (D0 = 0, )
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is a relation of type (15,2) and by Th. (15,2), f(z) is apolar to the polynomial

g(Z) _ C(n, k)Bkzk = I(z, z, ... , z) - (Do.
k=0

By Th. (15,3), g(z) must have at least one zero C in C.
Conversely, as may be shown by a reversal of the above steps, Th. (15,4) implies

Th. (15,3). In other words, as shown in Curtiss [1], Th. (15,3) and Th. (15,4) are
equivalent theorems.

A result similar to Th. (15,4) is also developed in Schaake-Van der Corput [1]
and De Bruijn [2].

Grace's Theorem (15,3) was derived by repeated application of Laguerre's
Theorem (13,1). Similarly, the following generalization of Grace's Theorem to
abstract spaces, due to Hormander [1], may be derived by repeated application of
Th. (14,1).

THEOREM (15,5). Let a homogeneous nth degree polynomial P(x), its nth polar
form P(x1 , x2 , , and a hermitian symmetric form H(x, y) be defined in a
vector space E with values in an algebraically closed field K. Let

E1={x: xeE,x00,H(x,x)>0}.
If P(x) 0 0 for x c E1 , then P(x1, x2 , , x,,) 0 0 when all x, c- El.

A further generalization, also due to Hormander [1], is the following:

THEOREM (15,6). Let P(x), a homogeneous polynomial defined in a vector space
E over a field K, assume values in a vector space G over K. Let H(x, y) and E1
be defined as in Th. (15,5). If M is a supportable subset of G such that P(x) E M
for x c- E1 , then also the corresponding polar P(x1 , x2 , .. , E M when all
x; EE1 .

By a supportable set M c G we mean a set M that is not intersected by any
hyperplane through the origin and any point E G - M.

To prove Th. (15,6) for a finite dimensional G, we choose some point 1: E G - M
and a hyperplane L (y) = 0 through and y = 0.

If G is spanned by the vectors el , E2 then for any y E G we may
write y = y1E1 + y2E2 +

L(y)

and

L(y) _ 21}1 + + ,Imym

where the constants A, are so chosen in K that

L(E) = 1122 + ... + Amem = 0.
Furthermore

P(X) = P1(x)E1 + P2(x)E2 + ... + Pm(X)Em

where each P,(x) is a homogeneous polynomial of degree n, with values in G.
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Since

[4]

L(P(x)) = 21P1(x) + 22P2(x) + ... + AmPm(X)1

L(P(x)) is an nth degree homogeneous polynomial whose polar is

L(P(x1 , X2 , ... , Xn))

Since P(x) E M for x e E1 , it follows that L(P(x)) ; 0 for x e E1 . By Th.
(15,5), also L(P(x1 , x2 xn)) .0 0 for all x; E E1 and hence

P(x1 , X2, ... , Xn) E M.

EXERCISES. Prove the following.
1. In Th. (15,3) if 2n - 1 of the 2n points z1 , z2 , , zn S2 , , in lie on

a circle C, then also the remaining point lies on C.
2. Let F(z) = Ik=o C(n, k)c zk and G(z) = Ik o C(n, k)/9kzk satisfy the relation

In=, (-1)kC(n, k)ak/k = 0. If all the zeros of F(z) lie in a circular region K,
then at least one zero of G (z) lies in the circular region K' obtained on inverting
K in the unit circle. Hint: Apply Th. (15,3) to

f(z) = znF(l/z) and g(z) = G(z).

3. If f(z) and g(z) are apolar polynomials with only real zeros, any interval A
containing the zeros of f(z) must have at least one point in common with any
interval B containing the zeros of g(z). Hint: Use Cor. (15,3).

4. In Th. (15,3), if no zero of g(z) lies in the interior of C, then all zeros of h(z) _
f(z)g(z) lie on the boundary 8C of C or h(z) has a zero of multiplicity exceeding
nonW.

5. If from the polynomials (15,1) we form

n

then

U(Z) = I(-1)kf(k)(Z)g(n-k)(Z)'
k=0 l

n

(-U(z) = n ! I 1)kC(n, k)AkBn-k
k=0

[Markovitch 4]. Hint: Show U'(z) = 0 and find U(0).
6. If f and g are given as in eqs. (15,1), let

(15,12)

n-k

fk,,(z) _ C(n - k, i)A,+,z',
i=0
n-k

$k.,(z) = C(n - k, i)B2+;z .

i=0

Then the first polar f1 off with respect to 1 and the first polar g1 of g with respect
to yi1 will be apolar for all 1 and '1 if and only if each polynomial fi.o , .f1.1 is
apolar to each polynomial g1,0 , g1.1 . Hint: Express f1 and g1 in terms of fi.0

Al , 91.0 , g1.1
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7. As given by (13,8) with bk = k , the kth polar fk with respect to 1 , 2 , ' , k
and the corresponding kth polar gk of g with respect to 711 , 172 , , 27k will be
apolar for all ti and 27, if and only if each fk,j in eq. (15,11) is apolar to each gk,,
in (15,12) for i, j = 0, 1, , k - 1 [Goodman 2].

8. If the polynomials f and g have the property specified in ex. (15,7), then any
circular region containing all the zeros of f or g contains at least k zeros of the
other polynomial [Goodman 2]. Hint: Use ex. (15,7), ex. (19,8) and induction.

9. Let H be a Hilbert space over the field C of complex numbers with the scalar
product (x y) and norm lxl = (x x)%z. Let B be a Banach space over C with
norm Il.f II Let P(x) be an nth /degree homogeneous poynomial and

P(x1 , x2 , . .. , Xn)

its nth polar with P(x) E B and P(x1 , x 21 xn) E B for all x E H and x; E H.
Then

sup [IIP(X)II/IXIn] = sup [IIP(X1, X2, ... , Xn)II/IXjI IX21 ... IX,I]
xEH x,EH

[Hormander 1 ]. Hint : Apply Th. (15,6) with E, G as the product spaces E = H x
C,G=BxC: and
IIEII < « ITl}. Since [P(x), t"] E M for (x, t) E E, H(x, t) > 0, t 0 0, then
IIP(x)II < oc ltln

CC

10. Let the polynomial f (x) _ Io akxk have only real zeros and satisfy a relation
G0 Akak = 0 where the Ak are real numbers. Let OAk = Ak - Ak+1, Oz 2k =
AAk - AAk+1 , .. Then f (x) has at least one zero on the interval 0 < x < 1 if
and only if the differences An-kAk are positive for k = 0, 1, , n [Obrechkoff 13].

11. In order that there exist a transformation (10,2) which carries f and g of
eqs. (16,1) into the pair c1(Zn + 1) and c2(Z" - 1) or the pair c1Zn and
c2Z"-1(Z + c3) with c1 , c2 , c3 constants, it is necessary and sufficient that all the
following be satisfied: AoB, + A,B0 - AkB;_k - A;_kBk = 0 for k = 1, 2, ,

[j/2]; j = 2, 3, ... , n, A,B,, + A"B, - AkBn+i-k - An+i-kBk = 0 for k = j + 1,
j + 2, , [(n + j)/2]; j = 1, 2, , n - 2 where [q] denotes the largest integer
not exceeding q [Goodman 3]. Hint: Decompose the transformation into those
of forms z= ccZ,z= 1/Z,z=Z+t.

16. Applications. We shall now apply Ths. (15,3) and (15,4) to the study of
polynomials h(z) which are derived in various ways by the composition of two
given polynomials f (z) and g(z). We shall first consider a result due to Szego [I].

THEOREM (16,1). From the given polynomials
n

(16,1)
f (Z)

_ Y C(n, k)Akzk, g(z) _ C(n, k)Bkzk,
k=0 k=0

let us form the third polynomial

(16,2) h(z) = I C(n, k)AkBkzk
k=0
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If all the zeros off (z) lie in a circular region A, then every zero y of h(z) has the
form y = -oc/4 where a is a suitably chosen point in A and 14 is a zero of g(z).

This follows from Th. (15,3). For, since the equation

"
h(y) = I C(n, k)AkBkyk = 0

k=0

defines a linear relation L(f'(t)] =-0 among the coefficients off(z), the polynomial

L[(t - z)"] _ (-1)kC(n, k)BkYkz"-k = z"g(-Ylz)
k=0

is apolar to f(z) and thus has at least one zero a in A. If the zeros of g(z) are
denoted by j3 , Y2 , , j" , the zeros of z"g(-y/z) will be -v/i41, -Y/f2

, -y/fl . One of these will be a. That is, y = -afl; for some j.
Th. (16,1) leads at once to the following result of Cohn [i] and Egervary [1].

COROLLARY (16,1a). If all the zeros of f(z).lie in the circle lzl < r and if all
the zeros of g(z) lie in the circle Izl < s, then all the zeros of h(z) of eq. (16,2) lie
in the circle Izl < rs.

For, by hypothesis jai < r and 1#1 < s and thus IYI = Iaf4I < rs.
From Th. (16,1) we may also deduce what is essentially a converse of Lucas'

Theorem (Th. (6,1)). We state it for a circular region, though it may be easily
proved [Biernacki 4] for any closed bounded convex region [see ex. (16,17)].

COROLLARY (16,1b). Let A: Iz - al < r, let E A and let E(A, ) be the
envelope of the circles passing through and having their centers in A. If an nth
degree polynomialf(z) has all its zeros in A, then the polynomial F(z) = f z f(t) dt
has all its zeros in E(A, ). Furthermore E(A, ) cannot be replaced by a smaller
region containing all the zeros of each F(z).

To deduce this corollary from Th. (16,1), we writef(z) as in eq. (16,1), take for
convenience = 0 and make F(z) = zh(z) by choosing all Bk = 1/(k + 1). That
is,

g(z) = (1/z)fo (1 + t)" dt = [(1 + z)"+i - 1]/[(n + 1)z].

Thus the zeros of g(z) are & = -1 + exp [27rki/(n + 1)], k = 1, 2, , n.
Since each zero y of F(z) has the form y = -aq where a e A and P for
some k, it lies on the circle through the origin with center at a. Hence, all zeros
of F(z) lie in E(A, 0).

That this region cannot be replaced by a smaller one may be seen by taking n
odd and f(z) = (z - b)" for all b e A. In fact, the zeros of F(z) lie on the
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boundary aE(A, ) of E(A, 0 and, as n - oo, become everywhere dense on
E(A, t ).

It may be easily verified that E(A, i;) is bounded by a Pascal limacon and that,
when A is an arbitrary bounded convex region, E(A, ) is star-shaped with respect
to C.

Another consequence of Th. (16,1) is the following due to De Bruijn [2].

COROLLARY (16,1c). Given the polynomials f, g and h in eqs. (16,1) and (16,2)
and a subset S of the wplane, let f (z) E S and g(z) 0 O for IzI < 1. Then h(z) E BoS
for IzI < I where BS = {Bos: s c- S}.

To prove Cor. (16,1 c), we replace f (z) by F(z) = f (z) - A and h(z) thus by
H(z) = h(z) - AB,. If A 0 S, then F(z) 961 0 for IzI < 1. Hence, in Th. (16,1),
lal > 1 and I#1 > 1 so that also lyl > 1 and thus H(z) # 0 for IzI > 1. If
therefore AB, is a value assumed by h(z) in IzI < 1, A is a value assumed byf(z)
in IzI < 1, as was to be proved.

As an application of Cor. (16,1c), we shall prove the following result due to
De Bruijn [2].

COROLLARY (16,1 d). If the polynomials f and gin eqs. (16,1) have the properties:

I.f(z)I < 1, lg(z)l < 1 for lzl < 1,

then the polynomial h in eq. (16,2) has the property

lh(z)I < 1 - IIAoI - IBoIl.

For, if JAI > 1,

G(z) = [g(z) - A]/(Bo - A) ; 0 for IzI < 1.

Using Cor. (16,1c) with S: IzI < 1 and g(z) replaced by G(z), we find

lh(z)-AA0I/IBo-AI<1,

Ih(z)l < IAA0I + IBo - Al.

Since this equality holds for all A, JAI > 1, it holds in the limit for all JAI = 1.
Recalling that IBoI = Ig(0)I < 1, we may choose A = A0 = exp (i arg Bo) and thus

lh(z)I:5 1A01+1-IB0I.

Using the symmetry of the hypotheses in f and g, we may show

Ih(z)I < IBoI + 1 - IAOI.

This result completes the proof of Cor. (16,1d).
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The next two theorems, which are due to Marden [12], deal with a different
variety of composite polynomials than those treated in Th. (16,1). They are
generalizations of the results stated in exs. (16,7), (16,8), (16,9) and (16,10).

THEOREM (16,2). From the given polynomials

(16,3)
m

/ n

f (z) =I akZk, g(z) = j bkZk,
k=0 k=0

let us form the polynomial
m

(16,4) h(z) = I akg(k)'k
k=0

If all the zeros off(z) lie in the ring Ro

(16,5) R0:0<ri<IzI<r2<co,
and if all the zeros of g(z) lie in the annular region A

(16,6) A:0<pi<IzI/Iz-ml :p2:co,
then all the zeros of h(z) lie in the ring Rn

(16,7) R,,: rl min (1, pi) < IzI < r2 max (1, p').

It is to be observed that the region A has as boundary curves the circles

IzI = Pi Iz - ml and IzI = P2 Iz - ml,

each of which is the locus of a point which moves so that its distance from the
origin is a constant times its distance from the point z = m. The region A in
Fig. (16,1) typifies the case 0 < pi < P2 < 1. We leave to the reader to sketch

FIG. (16,1)
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A in the cases 0 < p1 < 1 < P2 and I < P1 < P2 , as well as in the cases in which
either p, or p2 or both assume the values 0, 1 or co.

To prove Th. (16,2), we shall need

LEMMA (16,2a). If fl1 0 m and if all the zeros of f(z) lie in a circular region C,
then every zero Z of the polynomial

(16,8) fl(z) = -zf'(z) + fl1f(z)

may be written in the form Z = or in the form

(16,9) Z = [fl1/(91 - MW

where is a point of C.

This lemma follows from Th. (15,4). For, since f1(Z) is linear and symmetric
in the zeros of f(z), there exists in C a point t such that

yy0 = {{ 1(Z) = -mZ(Z - 0" '+ N1(Z - S)m,
whence Z = or Z has the form (16,9).

We shall need also the

LEMMA (16,2b). If fl1 is a zero of g(z) and if the hypotheses of Th. (16,2) are
satisfied, then all the zeros of the f1(z) in (16,8) lie in the ring R1 ,

(16,10) R1: r1 min (1, p1) < IzI < r2 max (1, p2).

By the hypotheses of this lemma,

(16,11) P1:6 I#1I/A -mIcP2
Since all the zeros off(z) lie in the region IzI < r2, it follows from Lem. (16,2a)
that

(16,12) ICI < r2

Either Z whereupon IZI < r2 or Z has form (16,9) whereupon IZI < p2r2 .

Hence, IZI < max (1, p2)r2 . Similarly, since all the zeros off(z) lie in the region
IzI > r1 , it follows by use of Lem. (16,2a) that IZI > min (1, p1)r1 . This verifies
Lem. (16,2b).

Finally, we shall need the

LEMMA (16,2c). Let j1 , 1 2 , be the' zeros of g(z) and let { fk(z)} be the
sequence of polynomials

(16,13) f0(Z) = f(Z), fk(Z) = Nkfk-1(Z) - ZJ k-1(Z), k = 1, 2, ... , n.

If f(z) and g(z) satisfy the hypotheses of Th. (16,2), then all the zeros of lie
in the ring R. .
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This lemma is clearly true for n = 1, for then it is identical with Lem. (16,2b).
Let us assume its validity for n = k - 1; i.e., that the zeros of fk_1(z) lie in the
ring Rk_1 :

(16,14) r; = r1 min (1, pi-1) < Iz1 < r2 max (1, p2-') = r'

Applying Lem. (16,2b) with r1 and r2 replaced by ri and r2 , we find that all the
zeros of fk(z) lie in the ring Rk since

r,'. min (1, pl) = r1 min (1, pi), r2 max (1, p2) = r2 max (1, p2).

That is, Lem. (16,2c) has been established by mathematical induction.
Now, to prove Th. (16,2), we have only to show that fn(z) is essentially h(z).

For this purpose, let us define

gk(z) = bn(31 - z)(92 - Z) ... (Nk - Z), bn # 0,

and compute f1(z) from eqs. (16,13) as F'

m in

.f1(z) =I ai(fl1 - .%)z' = bn'j a,g1(.1)z'
i=0 1=0

If we now assume that
m

(16,15) Jk-1(z) =
bn1

aigk-1(I)z',
9=0

we may compute fk(z) from eqs. (16,13) as

fk(z) = bn1{ a,gk-1(1)(F'k - f)z'1 = bn' m a,gk(.l)Z'
l 7= 0

In other words, h(z) = (-1)nbn fn(z) and thus by Lem. (16,2c) all the zeros of
h(z) lie in the ring Rn, as was to be proved.

As an alternative to the above, we may write

g(z) = (i9 - z)(F'2 - Z) ... (F'n - z),
apply Lem. (16,2a) repeatedly and thus arrive at the following result also due to
Marden [12].

THEOREM (16,2).' If all the zeros of the polynomial f in eq. (16,3) lie in the ring
(16,5) and if g is a polynomial of degree n, all the zeros of the polynomial h in eq.
(16,4) lie in the ring

(16,15)' rl min [1, Ig(0)1g(m)I] < IzI < r2 max [1, Ig(0)/g(m)I]

Another theorem of Marden [12] involving the same polynomials f(z), g(z)
and h(z) as in Th. (16,2) is

THEOREM (16,3). Letf(z), g(z) and h(z) be the polynomials defined in Th. (16,2).
If all the zeros off (z) lie in the sector 9' :

(16,16) w1 argz<w2, w2-w1=w<ir,
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and if all the zeros of g(z) lie in the lune Y:

(16,17) 01 arg [z/(z - m)] <_ 02, 1011 + 1021 < (i - w)/n,

then all the zeros of h(z) lie in the sector 2,,:

(16,18) w1 + min (0, n01) 5 arg z < w2 + max (0, n02).
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Here the boundary curves of 2,

arg z/(z - m) = 01 and arg z/(z - m) = 02 ,

are the arcs of circles, each of which is the locus of a point in which the line-
segment z = 0 to z = m subtends a constant angle 0. The region Yin Fig. (16,2)

0

Fio. (16,2)

I
typifies the case that 01 < 02 < 0. We leave to the reader to sketch 2 in the
cases 01 < 0 < 02 and 0 < 01 < 02 as well as in the special cases when either
or both 01 and 02 are 0 or ir.

The proof of this theorem is similar to that of Th. (16,2), except that the
argument of the Z in eq. (16,9) instead of its modulus is used. The necessary
lemmas paralleling Lem. (16,2b) and (16,2c) are given in ex. (16,7).

ExExclsEs. Prove the following.
1. Th. (16,1) is valid if A is assumed to be an arbitrary convex region [Takagi 1].

Hint: Use Cor. (15,3).
2. If f (z) has only real zeros and g(z) has only real zeros of like sign, then the

h(z) of eq. (16,2) has only real zeros. Hint: Use ex. (16,1).
3. If f (z) has only real zeros with a sign of a and g(z) have only real zeros with a

sign E', then the h(z) of eq. (16,2) has only real zeros of sign (-ee') [Takagi 1].
4. If f (z) has zeros only in the sector 0 5 arg z < 0', where 0 5 0' - 0 < 7r

and g(z) has zeros only in the sector 0 < arg z 5 ¢' where 0 < 0' - 0 < ir, then
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the h(z) of eq. (16,2) has zeros only in the sector 0 + c -7T < arg z 5 0' + 0' -7T
[Takagi 1 ].

5. If f (z) has zeros only in the above sector 0 5 arg z 5 0' and g(z) has only
real zeros, then the h(z) of (16,2) has all its zeros in the double sector 0 <
arg (±z) < 0'.

6. The theorems in the above exs. 2 to 5 remain valid when h(z) is replaced by

either

or

h1(z) _ k! [C(n, k)Ak][C(n, k)Bk]zk
k=0

n

h2(Z) = G [C(n, k)Ak][C(n, k)Bk]zk.
k=0

Hint: Use Cor. (18,2c). The results thereby obtained are due to the following:
h1(z): ex. 2, Schur [2]; exs. 3 and 4, Takagi [I]; ex. 5, Takagi [1] and Weisner [3];
h2(z): ex. 2, Malo [1]; ex. 4, De Bruijn [3]; ex. 5, Weisner [3].

7. If the hypotheses of Th. (16,3) are satisfied, all the zeros of the f1(z) of
eq. (16,8) lie in the sector Y, . By induction, all the zeros of the f,'(z) of eq.
(16,13) lie in Yn [Marden 12].

8. If all the zeros of f(z) lie in the circle IzI 5 r2 and if all the zeros of g(z)
lie in the half-plane bounded by the perpendicular bisector of the segment z = 0
to z = m and containing the origin, then all the zeros of the h(z) of eq. (16,4)
also lie in the circle Izl 5 r2 [Obrechkoff 7, Weisner 4]. Hint: Set r1 = pi = 0
and p2 = 1 in Th. (16,2).

9. If all the zeros of f(z) lie exterior to the circle IzI = r1 and all the zeros of
g(z) lie in the half-plane ¶71(z) ? m/2, then all the zeros of the h(z) of eq. (16,4) lie
exterior to the circle IzI = r1 . If all the zeros off(z) lie on the circle IzI = r1 and
those of g(z) lie on the line 9?(z) = m/2, then all the zeros of h(z) lie on the circle
IzI = r1 [Obrechkoff 7, Weisner 4].

10. If all the zeros of f(z) are real and positive and if all the zeros of g(z) are
real and exterior to the interval 0 < z 5 m, then all the zeros of h(z) of eq. (16,4)
are real and positive [Laguerre 1, pp. 200-202; Pblya 6].

11. In Th. (16,2), we may write symbolically

(16,19) h(z) = g(z(d/dz)) f (z).

12. Letf(z), g(z) and h(z) be defined by eqs. (16,1) and (16,2). Let K denote
a circle or straight line and Kl and KE the two closed regions bounded by K.
Let a1 , a2 , , ocp (p 5 n) denote the zeros off (z) in Kl and ap+1 , a,,+2 ,
an those not in Kl . Let further

p
{'

n
Tfl(z) = A7, 11 (z - a;) H (z - a*)[(K - a,)/(K - aj )],

i=1 7=p+1

{ 7p n

fE(z) = An 11 (Z - a*)[(K - ai)/(K - a*)] 1 (z - a,)
7=1 i=p+1
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where a* denotes the image of point a; in K and K denotes an arbitrary but fixed
point on K. Then

(a) all the zeros of f1(z) lie in Kr and all those of fF(z) in KE
(b) Ifi(z)I = IfE(z)I = If(z)l on K;
(c) Ifr(z)I ? If(z)I in KI, and IfE(z)l ? f(z)I in KI

[De Bruijn-Springer 2].
13. If { f, g} denotes the left side of eq. (15,2), then, in the notation of ex.

(16,12), I{ f, g}I < I {fE , gI}I. Hint: Using Grace's Theorem, show that
{fE - Af, gI - Ag} 0 0 for all JAI < I [De Bruijn-Springer 2].

14. Let D(z, L) denote the distance of point z to line L and let al , a2 ,

F'1 , i32 , ' ' ' , #n ; Y1 , Y2 , - - - , y,1 denote respectively the zeros of the f (z), g(z)
and h(z) defined by eqs. (16,1) and (16,2). Then, if -1 < Nk < 0 for all k,

[D(y , L) - D(0, L)] < (B.n-1/B,,) [D(oc L) - D(0, L)]

[De Bruijn-Springer 2].
15. Let O(x) = max (1, Ixi). Then, for the a, and y; of ex. (16,14) and

for r1 > 0 and r2 > 0 (not necessarily -1 < Nk < 0),
n it

TI 0(rlrz/Y) < 11
j=1 i=1

Hint: Take the K of ex. (16,12) as the circle IzI = r; apply to fE(z), 9E(z) and
hE(z) the Jensen Formula

(16,20)
f2ff log

I f (re'B)/f (0)I dO = 2i log 0(r/«,),
j=1

and use exs. (16,12) and (16,13), noting that h(u) = { f(uz), zng(-]/z)} [De Bruijn-
Springer 2].

16. Let N(r) denote the number of zeros of the nth degree polynomialf(z) _
Io akzk (where aoan 0 0) on the disk IzI < r. Let

M(r,f) = max If(z)I,z 5r
A = n-' log {[M(l,f)]2/Iaoanl}, to = A"'

Then
1 + n'[N(e ') - N(ew)] < co [Rosenbloom 1].

Hint: Use the Jensen Formula (16,20) as modified in Rosenbloom [1].
17. Cor. (16,lb) is valid for arbitrary, closed convex regions A. The region

E(A, t) is then star-shaped with respect to .

18. If in ex. (16,17) A is the line segment joining given points a and b, then
E(A, ) consists of the closed interior of the two circles whose diameters are the
line-segments joining to a and to b [Biernacki 4]

19. In Cor. (16,1b) E(A, a) is the disk Iz - al < 2r. This limit is attained by
the zeros of F when n is odd, but may be replaced by the smaller disk Iz - al <
2r cos {7r/2(n + 1)} when n is even [Biernacki 4].
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20. If all the zeros of the nth degree polynomial f (z) lie in a convex region K
containing point a, then all the zeros of F(z) =f.3 f(t) dt, lie in the domain
bounded by the envelope of all the circles passing through a and having centers
on the boundary of K [Biernacki 4]. Hint: Take a = 0, apply ex. (16,1) with
g(z) = (1/z) fo (1 + t)n dt and h(z) = F(z)/z.

21. If all the zeros of the polynomial f(z) lie on the disk 1z - al < r, all the
zeros of the polynomial

Z ty t9 t2f
Ja

f f(t1) dt1 dt2 .. dta

a
F(z) =

a

lie on the disk Iz - al < (p + 1)r. This is the best result as is shown by the
example f (z) = 1 + z, a = 0, r = 1 [Biernacki 4].

22. In Cor. (16,1c) let S = (f(z); JzI < 1}. Then also Fk(z) E S where Fk(z)
is the Fejer sum of f(z) defined by

k

(k + 1)Fk(z) = I (k - j + 1)C(n, j)A,z', , k > n - 1
j=o

[De Bruijn 2]. Hint: Choose

g(z) = (k + 1)-1[(k - n + 1)z + k + 1](z + 1)k-1.

17. Linear combinations of polynomials. Our next application of the theorems
of sec. 15 will be to linear combinations of the polynomials

(17,1) .fk(z) = znk + aklZnk-I + ... + aknk , k = 1, 2, ... p.
We shall assume that the zeros offk(z) lie in a circular region Ck . Unless other-
wise specified, the region Ck will be bounded by a circle Ck with center ck and
radius rk. Our general result is embodied in the

THEOREM (17,1). The zeros of the linear combination

(17,2) F(z) = Atf1(z) + A2f2(z) + ... + Attf2,(z),

where A, 0 0, j = 1, 2, , p, lie in the locus r of the roots of the equation

(17,3) Al(z - at)nl + 22(z - a2)n2 + ... + 1,(z - av)nv = 0

when the at , a2 , , aD vary independently over the regions C1 , C2 , ... , C,,
respectively.

This result follows almost at once from Th. (15,4). For, if C is any zero of
F(z), the corresponding equation F(C) = 0 is linear and symmetric in the zeros
of each f (z). On the strength of Th. (15,4), equality F(C) = 0 may be replaced by
the equation for i; obtained from F(C) = 0 when all the zeros of each f(z) are
made to coincide at a suitably chosen point a, in the region C, . This leads to
eq. (17,3) for C. To find all possible positions of , we must allow each a, to
occupy all possible positions in its circular region C,. In other words, all the
zeros of F(z) lie in the locus 17 as defined in Th. (17,1).
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It is to be noted that in Th. (17,1) the regions C, may be half-planes as well
as the interior or exterior of circles.

The particular case p = 2 and n1 = n2 = n is one in which we can readily
determine F. For that case we write A2/A1 = -A and denote by w1 , 0)2, ,

w,,, the nth roots of A with w1 = 1 when A = 1. Eq. (17,3) is the same as the
equations

(17,4) (z-oc1)-wk(z-a2)=0, k= 1,2,---,n,

whose roots are

(17,5) zk =
a1 - wka2

1 - wk

where k = 1, 2, , n when A01 and k = 2, 3, , n when A=l. The
locus r will then consist of the ensemble of loci I'k of the zk when al and a2 vary
over their circular regions Cl and C2, respectively.

In order to find Pk , we shall need three lemmas which essentially concern the
location of the centroid of a system of particles possessing real or complex masses.
The first lemma is due to Walsh [lc, pp. 60-61] and [6, p. 169]. All three lemmas
are proved in Marden [10].

LEMMA (17,2a). If the points a1 , a2 , . , a9 vary independently over the closed
interiors of the circles C1 , C2 , , CV respectively, then the locus of the point a,

D

(17,6) a m,a,,
=1

where the m, are arbitrary complex constants, will be the closed interior of a circle
C of center c and radius r, where

(17,7)
9 9

c=jm,c,, r=I Im,Ir,
J=1 j=1

and c, and r, denote respectively the center and radius of the circle C, .

In the case of exclusively positive real m,, we may deduce Lem. (17,2a) from
the theorem of Minkowski [1] which states that the convex point-set K whose
support function (Stiitzfunktion) is H = 9 1 m,H, is the locus of the point a =
1,=1 m,a, when for each j = 1, 2, , p the point a, has as locus the convex point-set
K, whose support function is H,. For, on taking K, = C, and setting c,' =
91(c), c'' = 3(c,), c' = 91(c) and c" = Z(c), we find that, since by definition of
H, the equation ux + vy = H, must represent the family of lines tangent to C,,

and thus that
H = c'u + c"v + r(u2 + v2)

.
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To prove Lem. (17,2a) as stated, let us note that

D

x m;(a; - c,)

which means that every point a defined by (17,6) lies in C. Conversely, if a is
any point in or on C, we may write

cc = c + ureae, 0 < ,u < 1,
and associate with this a the points a;

a, = c, + u(I m,l /m,)r,eie

Each point a; lies in or on C, and together they satisfy eq. (17,6). In other words,
the locus of the point oc of eq. (17,6) is the closed interior of circle C.

We turn next to

LEMMA (17,2b). If the point al describes the closed exterior of the circle Cl but
the remaining a, describe the closed interiors of the circles C; , then the locus of
the point a of eq. (17,6) is the closed exterior of the circle C of center c and radius r,
where

D

(17,8) cm;c;, r=lmilrlIm,ir,
provided in (17,8) r > 0, and is the entire plane if r < 0.

;=i

D D

< Im;I Ia; - c,I < I m,I r, = r,

To prove this lemma when r > 0, let us note that now

Ia - cI =
D

l m;(a; - c;)
D

Imil lai - cil Im;l Ia; - c;I
;=z;=i

>Imilr, -Im,Ir,=r.
;=2

Conversely, with every point a
a = c +,ure'B, ,u > 1,

which lies on or outside C, we may associate the points a; defined by the equations

ml(al - c1) = [Im.I rl + (,u - 1)r]e`B,

m;(a;-c) =-Im,I r,ee, j = 2, 3...,P
These a; satisfy eq. (17,6). Furthermore, this point al lies on or outside circle
C, , whereas the remaining points a; lie on their respective circles C, . That is,
every point a of the locus lies in C and every point of C is a point of the locus.

If r = 0, the locus C is obviously the entire plane.
If r < 0, let us choose a circle Cl' concentric with C, of radius ri such that

r' = Imil ri -Im;l r,=0.
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Thus r,' > r, and hence the exterior of C,' is contained in the exterior of C1 and
the locus C' of a corresponding to the circles C,' , C2 , C3 , , C, is contained
in the locus C of a corresponding to the circles C1, C2, , CD . Since C' is
the entire plane, so is C.

To complete the discussion of the locus of a, we add

LEMMA (17,2c). If two or more of the a; vary over the closed exteriors of'their
circles C; , then the locus of point a is the entire plane.

For example, let us suppose that al varies over the closed exterior of the circle
C, with center c, and radius r, and oc2 varies over the closed exterior of C2 while
the remaining a; vary over the closed interiors of the circles C; . We may then
choose a circle C2 whose interior lies exterior to C2 and whose radius r2 satisfies
the inequality

D

Im,Ir,-Im21rz-I Im;Ir,<<=0.
j=3

The locus C' of a corresponding to the exterior of C, and the interiors of C2 ,
C3 , , C. is by Lem. (17,2b) the entire plane. As CZ lies exterior to C2 , the
locus C contains C' and hence is also the entire plane.

Returning now to discussion of the locus of the points zk of eq. (17,5), we may
on the basis of Lems. (17,2a) and (17,2b) deduce from Th. (17,1) two theorems, of
which the first is due to Walsh [6].

THEOREM (17,2a). If all the zeros of f1(z) = z" + a1z"-' + + a" lie in or
on the circle C1 with center c1 and radius r1 and if all the zeros of f2(z) = z" +
b1z"-' + + b" lie in or on the circle C2 with center c2 and radius r2 , then each
zero of the polynomial

(17,9) h(z) = f1(z) - Af2(z), A 96 1,

lies in at least one of the circles Pk with center at yk and radius Pk , where

(17,10)
Yk=C,wk_ Pk=rl+IwkIr2

1wk I1-()kl
and where the (ok (k = 1, 2, , n) are the nth roots of A. If A = 1, the same
result holds provided the root wk = 1 is omitted and provided the closed interiors
of C1 and C2 have no point in common.

THEOREM (17,2b). If in the notation of Th. (17,2a) each zero of f1(z) lies on or
outside circle C1, if each zero of f2(z) lies in or on circle C2 and if r, > r2 IAI'/",
then each zero of h(z) in eq. (17,9) lies on or outside at least one of the circles Pk
with center yk and radius Pk , where

(17,11) Yk =
c1 - wkc 2

,
r1 - I(ukI r2

1 -wk
Pk = I1-()kI
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So far we have obtained, by use of Lems. (17,2a) and (17,2b), some results
concerning the location of the zeros of the linear combination h(z) given in eq.
(17,9). For this same function h(z), we may obtain an altogether different set of
results if we write eqs. (17,4) in the form

(17,12) (Zk - c1) - (0(1 - c1) = cuk
(Zk - c2) - (a2 - c2)

The new results will be in terms of the ellipse E with points c1 and c2 as foci and
Jr, - r2l as major axis, the hyperbola H with c1 and c2 as foci and (r1 + r2) as
transverse axis, and the conic K having JAI1/" as eccentricity, c1 as focus and the
line 91(z) = K as directrix, with

(17,13) K = o - r1 IAI-11

These new results will be embodied in the following three. theorems, which are
due to Walsh [3c] in the case the parameter A = I in eq. (17,9) and to Nagy [10]
for other values of A.

First we shall prove

THEOREM (17,3a). In Th. (17,2a), if each zero of f1(z) lies on or outside circle
CI , if each zero off2(z) lies in or on circle C2 and if circle C2 is contained in circle
CI , then no zero of the polynomial h(z) = fi(z) - Af2(z), IAl < 1, lies interior to
the ellipse E.

By the hypothesis of Th. (17,3a), a1 lies on or outside C1, a2 lies in or on C2
and

(17,14) Ic2 - c1I <r1 -r2

Furthermore, since IAI ::5 1, IWUkI < 1 for all k. From (17,12) it then follows that

(17,15) 1 > I wk I >
I ai - C11 - I Zk - c1I > r1 - Izk - c1I
I a2 - C21 + Izk - c21 = r2 .+ I Zk .- C21

and, consequently,
Izk-c1l+Izk-c21>rl-r2>0.

In short, zk must lie on or outside E.
Next, we shall prove

THEOREM (17,3b). If each zero of f1(z) lies in or on the circle CI , if each zero
off2(z) lies in or on the circle C2 and if CI and C2 have no common points, then no zero
of the polynomial h(z) = f1(z) - Af2(z) may lie interior to HI if IAl > 1, and none
interior to H2 if JAI < 1, HI and H2 being the branches of hyperbola H containing
respectively c1 and c2 .
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In this theorem a point "interior to a branch H5" of a hyperbola means one
from which no real tangents to H, can be drawn; in contrast, a point outside H,
means one from which two real tangents to H, can be drawn.

By hypothesis, a, lies in or on C,, a2 lies in or on C2 and

(17,16) Ic1 - c21 > r, + r2 .

If JAI >_ 1 and thus IwkI ? 1, we find from (17,12)

(17,17) 1<Iwkl<Izk-cll+lal-cilclzk-ell +r,

I4 -c21-Ia2-c11 Izk-c21-r2
provided Izk - c21 - r2 > 0; that is, provided zk lies outside C2. From (17,17),
we deduce that

Izk-c21-Izk-cil<-r,+r2
which means that zk is on or outside of H1 . Similarly, if JAI < 1 and thus
IwkI < 1, we find from (17,12) that

(17,18)
1>_Icokl>>Izk-c11 -Ial-c1i>Izk-c1i-r1
IZk - C21 + J a2 - C2I

_
IZk - C21 + r2

This implies that

(17,19) Izk - c11 - Izk - c21 < r, + r2

and therefore that zk lies on or outside of H2 .
Finally, we shall establish

THEOREM (17,3c). If each zero of f1(z) lies in or on the circle C1 , if each zero
off2(z) lies in a closed half-plane S satisfying the relation 91(z) ? a > 0 and having
no points in common with C1 , then each zero of h(z) = f1(z) - Af2(z), exterior to S,
lies on the opposite side of conic K as its focus c, .

By hypothesis, a, lies in C1 , a2 lies in S and a - 91.(c1) > r1 . From eq. (17,12)
we have for any point Zk exterior to S and C,

IAIi/n=lwkl<_Izk-cii+Ial-cilcIzk-cil+r,

IZk - a21

_
J91(a2 - zk)I

(17,20)
ciZk-c1I+r1

a - 91(zk)
and hence,

(17,21) { JAIL/n + a - 91(zk)} < Izk - c1i/i2I1/n .

Since the expression on the left side of (17,21) is the distance of zk to line 91(z) _
K (see (17,13)), each point zk lies on the side of conic K which does not contain the
focus c1 .
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EXERCISES. Prove the following.
1. If all the zeros of a polynomialf(z) = ao + a1z + + anzn lie in a circle

IzI < r, then all the zeros of F(z) =f(z) - c lie in the circle IzI < r + Ic/a,,Iiln.
Hint: Use Th. (15,4) and in eq. (17,1) take f1(z) =f(z), n2 = 0 and p = 2
[Walsh 6].

2. If all the points a; are exterior to circle C1 with center at c1 and radius r,
and if all the points f; are interior to a concentric circle C2 of radius r2 , IAI,/nr2 <
r1 , then no zero of h(z) in (17,9) lies inside the concentric circle r of radius
p = (r1 - r2 I2Ii'n)/(l + I2Ih/n) [Nagy 10]. Hint: Use Th. (17,2b).

3. If i is any zero of h(z) = ao + a1z + + an_1zn-1, then at least one zero
of f1(z) = ao + a1z + - + zn lies in any circular region containing
all the points zk = (1 - et2,rkln), k = 0, 1, 2, , n - 1. Thus at least one
zero of f1(z) lies in the circle IzI < 2 I,=1 and, if n is odd, at least one in the circle
IzI < 2 IAI cos (ir/2n). Note: limit is attained by f1(z) _ (1 + z)n [Szego 1].
Hint: Apply Th. (17,2b).

4. The trinomial eq. 1 - z - czn = 0 has at least one root in every circular
region containing all the points zk = 1 - e2nkt/n, k = 0, 1, , n - 1. Thus,
it has at least one root in the circle IzI < 2; if n is odd, at least one root in the circle
IzI < 2 cos (IT/2n). Hint: Apply ex. (17,3) [Szego 1].

5. An equivalent statement of the result in ex. (17,3) is that, if f1(z) 0 0 in
IzI < R, then h(z) 0 0 in IzI < R/2 if n is even and in IzI < (R/2) sec (7T/2n) if n
is odd. The example f1(z) = (z - R)n shows that these are the best possible limits.

6. Let fi(z) = zn + Akzn-k + Ak+JZn-k-1 + ... + An and h(z) = Ak+izn-k-1 +

+ An . If h(z) has at least one zero in IzI < r, then fi(z) has at least one zero
in IzI < 2r + (Ak) 1/k Hint: In ex. (17,2) take f2(z) = zn + Akzn-k, and
h(z) = fi(z) -f2(z) [Nagy 10].

7. Let ri , r2, , r be any positive numbers and A any complex number such
r , . = Let C;: Iz - z;I = r, , j = 1, 2, , n, and let f(z) _

(z - z1)(z - z2) ... (z - zn). Then among the A-points of f(z) (that is, the
points where f(z) = A) none lies inside or outside all the circles C, . If IBI < IAI,
each B-point lies in at least one circle C, concentric with C, and of radius r, =
IB/Al i/nr5 ; p B-points lie in any point-set K comprised of the closed interiors of p
circles C,, provided K has no point in common with the closed interiors of the
other n - p circles C, . Hint for last result: Study the variation of the Z-points
as Z decreases continuously from A to 0 [Nagy 11 ].

8. Let u1, u2 , , u,, be n distinct points inside a circular region C and let
v1 , v2 , , vn be n distinct points outside C. Then the determinant I(u; - vk)'I,
j, k = 1, 2, , n, cannot vanish. Hint: f(z) = (z - u1)(z - u2) (z - un)
is, due to the linearity of eq. (15,2) in the A, , not only apolar to (z - u,)n for
each j, but also apolar to the polynomial g(z) = c;(z - u,)" for arbitrary
constants c, . Choose c, so that g(vk) = 0 for k = 1, 2, , n [Szego 1].

9. If f(z) = ao + a,z + . + anzn o0 for IzI <r and if 0 < p <n, then
fl(Z) = ao + a1z + + an_gzn-' # 0 for IzI < r/(p + 1) [Biernacki 4].

10. If in ex. (17,9) zn and z,_1 are the zeros, smallest in absolute value, off(z)
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and f1(z) respectively, then Iznl < 2 Izn_1I. Hint: Show the product of the zeros
of g(Z) = f (zn_1 + Z) is (-1)"zn_1 and thus, if Zn is the zero, smallest in absolute
value, of g, then IZnJ < Izn-1I

11. If f(z) = ao + a1z + + anzn 0 0 for IzI < 1 and if q(z) = A1an1 znl +
+ Akank znk where 0 < n1 < n2 < ... < nk < n and IA;I <- 1 for j = 1, 2, , k,

then F(z) =f(z) + q(z) # 0 for IzI < p where p is the positive root (p < 1) of
the equation k

(1 - p)' C(n, n,)pni [Rahman 1].
=1

Hint: Apply Ths. (15,2) and (15,3) with L[ f (t)] = F(Z) = 0 where Z is any zero
of F.

12. Let f(z) = a(z - z) .. (z - zn), let Ck be the circle Iz - Zk + hi =
IAk1 Iz - zk - hl with JAkI > 1 and let K be the intersection of the interiors of all
the Ck, k=1, 2, n. Then F(z)=f(z+h)+Af(z-h)00, A=
AIA2 An, z E K [Kuipers 3]. Hint: Show I f(Z + h)/f(Z - h)i > JAI for Z E K.

13. Let S1(a, 0, 0) : 0 < arg (z - a) < 0 + 0, 0 < 0 < 'zr and S2(a, 0, 4) _
S1(a, 0, 4) U S1(a, 0 + a, 0). Let f (z) = a(z - z1) ... (z - zn) and

F(z)=f(a+b(z-a))-Af(a+fl(z-a))
where (Al = 1, = e2iab 0 b. Then, if all the zeros off lie in S1(a, 0, 0), all the
zeros of F lie in S2(a, 0 - a, 0) [Han-Kuipers 1]. Hint: If z 0 S2(a, 0 - a,
show ia+b(z-a)-zkJ/Ja+l4(z-a)-zk(> 1 or < 1forallk.

14. Let f and g be two polynomials of exact degree n and let F(z) = f(z)lg(z).
If a and # are respectively a finite zero and a finite pole of F and if C = f (fl)/g(a),
then F assumes every value A with JAI < (Cl either at least once inside the circle

K: Iz - aI = JA/C111" Iz - #I
or only on K. If 0 < co = Jarg (-A/C)I < ir, then F assumes the value A either
at least once inside the region S or only on the boundary of S, where S is the set of
all points from which the line segment from a to 9 subtends an angle of at least
win [Nagy 19b]. Hint: Consider h(z) =f(z) - Ag(z).

18. Combinations of a polynomial and its derivatives. We conclude the present
chapter with the application of the theorems of sec. 15 to linear and other
combinations of a polynomial and its derivatives.

We begin with a theorem due to Walsh [6].

THEOREM (18,1). Let

nn

(18,1) f(z) =Ia;z'=anll(Z-a),

(18,2) g(z) _
n n

b;z' = bn II (z -
(18,3) h(z) =

n

(n - j)! bn-;.f'''(z) = (n - j)! an_;g(Az).
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If all the zeros off (z) lie in a circular region A, then all the zeros of h(z) lie in the
point set C consisting of the n circular regions obtained by translating A in the
amount and direction of the vectors P; .

To prove this theorem, we shall assume Z to be any zero of h(z); i.e.,

n

(18,4) h(Z) = Dn - j)! bn-;fcii(Z) = 0.
i=o

Since eq. (18,4) is a linear expression in the coefficients off(z), we infer from Th.
(15,2) thatf(z) is apolar to the polynomial obtained on replacingf(z) in eq. (18,4)
by (Z - z)"`; that is,

(n - j)! bn-i dci'(Z - z)" /(dZ)' = n ! g(Z - z).
i=0

According to Th. (15,3), at least one of the n zeros Z - fl; of g(Z - z) must lie
in the circular region A containing the zeros of f(z). That is, Z = a +
where a is a point of A.

An interesting special case under Th. (18,1) is the one in which

(18,5)

and thus

g(z) = z"-1(z - n 1)

h(z) = n! f(z) - (n2l)(n - 1)! f'(z).

Since in this case Nl = n.1 , and fla = fla = = P. = 0, we obtain the following
result [Walsh 6, 9; Marden 3, 10].

COROLLARY (18,1). If all the zeros of an nth degree polynomial f(z) lie in a
circular region A, all the zeros of the linear combination

(18,6) A(z) =.f(z) - AlPz)
lie in the point-set comprised of both A and A' = T(A, nd1), A' being the region
obtained on translating A in the magnitude and direction of the vector (nA1).

When used in conjunction with Cor. (15,3), the apolarity off(z) and g(Z - z),
which led to Th. (18,1), permits us to infer that any convex region A containing
all the zeros of f (z) must overlap every convex region B' containing the zeros of
g(Z - z). Since B' may be considered as the locus of the point z = Z - ,B
when 9 varies over a convex region B containing the zeros of g (z), each zero Z
of h(z) is expressible in the form Z = a + ,9 where a and # are points of A and
B respectively. In other words, the following result of Takagi [1] has been
proved.

THEOREM (18,2). Let the polynomials f(z), g(z) and h(z) be defined by the eqs.
(18,1), (18,2) and (18,3). If all the zeros of f(z) lie in a convex region A and all
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the zeros of g(z) lie in a convex region B, then all the zeros of h(z) lie in the convex
region C which is the locus of the points y = a + f when the points a and j3 vary
independently over the regions A and B respectively.

If g(z) is taken as the polynomial (18,5), the convex region B may be taken
as the line-segment joining the points z = 0 and z = n.11 . We thereby derive
a result due to Takagi [1].

COROLLARY (18,2a). If all the zeros of an nth degree polynomial f(z) lie in a
convex region A, then all the zeros of the polynomial

(18,7) fi(z) =f(z) - Aif'(z)

lie in the convex region Al swept out on translating A in the magnitude and direction
of the vector n2,, . That is, A(v) = U,,, T(A,,u1n a1), 0 < u1 < v, Al = A(1).

Since Al c A* = A(oo), we conclude from Cor. (18,2a) that all the zeros of fl
lie in A*, a result due to Fujiwara [2].

We have stated Cor. (18,2a) because, though weaker than Cor. (18,1), it is
better suited than Cor. (18,1) to iteration. Let us define the sequence of
polynomials

fk(Z) = fk-1(Z) - Akfk-1(Z),

with fo(z) = f (z). Let us also define the sequence of regions

A0 = A, Ak = U T(Ak-1, n2kf'k),

k= 1,2,...,p,

0 - I.IkS 1 .

Clearly, Ak = U T(A, n(,u1A1 + 142 + - - - + ,ukAk)), the union being taken for
0 < lAj < 1, j = 1, 2, , p. Fig. (18, 1) illustrates the case k = 2 when A

FIG. (18,1)
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is a circle. By Cor. (18,2a), region Ak contains all the zeros of fk(z) if the region
Ak_1 contains all the zeros of fk_1(z). But, as we may write symbolically,

fk(z) = (1 - DAk)fk-1(z), D = d/dz,
we may write

f,(z) = (1 - DA,)(1 - DA,_1) ... (1 - DA1)f(z).
This establishes the following result due to Takagi [1].

COROLLARY (18,2b). Let f(z) be an nth degree polynomial having all its zeros
in a convex region A and let A(z) be the polynomial

A(z) = (1 - A1z)(1 - A2z) ... (1 - A9z).
Then all the zeros of the polynomial

(18,8) F(z) = A(D)f(z),
lie in the above-defined convex region A,.

D = d/dz,

Of special interest is the case that f (Z) = z"' and that A(z) is an nth degree
polynomial for which the points Ak lie in a convex sector S with vertex at the
origin. Since each point nAk also lies in S, each region Ak will lie in S provided the
preceding region Ak_1 lies in S. Now, the region A may be taken as the point
z = 0. Since the corresponding region Al will be the line-segment joining the
points z = 0 and z = nA1, the region Al lies in S and hence all the subsequent
regions A2 , A3 , ... , A, lie in S.

Since the Ak are the zeros of the polynomial

g(z) = znA(1/z)
we have proved

COROLLARY (18,2c). If all the zeros of the polynomial

g(z) = bo + b1z + ... + bnzn
lie in a convex sector S with the vertex at the origin, then so do also all the zeros of
the polynomial

G(z) = bo + b1z + (b2z2/2!) + ... + (bnzn/n!).

Cor. (18,2c) as stated is due to Takagi [1], but, in the special case that S is
the positive or negative axis of reals, it had been previously proved by Laguerre
[1, p. 31].

Thus far, we have considered linear combinations of a single polynomial and
its derivative. Let us now study the linear combinations of the products
[ f('')(z) f zn-')(z)] of the derivatives of two given polynomials f1(z) and f2(z). The
first result which we shall prove is the following one due to Walsh [6]:

THEOREM (18,3). Let the zeros of a polynomial fl(z) of degree m1 have as locus
the closed interior of a circle C1 of center al and radius r1 and let the zeros of a
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polynomial f2(z) of degree m2 have as locus the closed interior of a circle C2 of center
a2 and radius r2 . Let the polynomial g(z) be defined by the equation

n D

8(z) _ C(m1, j)C(m2, n - j)Bizn-i = bz° H (z - 13i)
i=U i=1

where the binomial coefficient C(k, j) = 0 if j > k or j < 0, where p + q < n <
m1 + m2 , and where Pi 0 0, i 54 1 for j = 1, 2, , p. Then the zeros of
the polynomial

n

li(z) _ C(n, J)Bi f I' (Z)f2'-
4=0

have as locus the point-set P consisting of the closed interior of C1 if m1 > n, the
closed interior of C2 if m2 > n and the closed interiors of the p circles F, of center
yi and radius p, , where

al - F'ia r1 + I NiI r2
yi 1fli ' Pi=

11 ail
,

j=1,2,...,p

To establish that F is the locus of the zeros of h(z), we must show first that
every zero of h(z) lies in F and, secondly, that every point of F is a possible
zero of h(z). Let Z be any zero of h(z). By Th. (15,4) the equation h(Z) = 0
being linear and symmetric in the zeros of both f1(z) and of f2(z) may be re-
placed by an equation obtained by coalescing all the zeros of f1(z) at a point
S1 in circle C1 and coalescing all the zeros of f2(z) at a point b2 in circle C2 .

That is,

n

C(n, j)C(m1, j)C(m2, n - j)j! (n - j)! Bi(Z - C1)""`(Z -
J=0

= n! (Z - C1)m1-n(Z

- S2)'"eg[(Z - )/(Z - C2)1 = 0.

The possible values of Z are therefore

Z = S1 if m1 > n, Z = S2 if m2 > n
and

(18,9) Z = \S1 - Wk)/\l - flk)-

In the first case Z is a point in or on C1 and in the second case Z is a point in
or on C2. In the third case Z is a point in or on the circle rk, as may be de-
termined by use of Lem. (17,2a).

Conversely, if Z is any point of IF, it is a possible zero of h(z). For, we may
take f1(z) = (z - S1)"tl and f2(z) = (z - S2)n`2, choosing i;1 and b2 as follows.
If m1 > n and if Z lies in C1, we choose S1 = Z and 2 as an arbitrary point in
C2. Similarly, if m2 > n and if Z lies in C2, we choose 2 = Z and S1 as an
arbitrary point in C1. If, however, Z lies in rk , we may according to Lem.
(17,2a) so choose S1 in C1 and S2 in C2 that eq. (18,9) is satisfied.
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Thus we have completely established that the point-set F is the locus of the
zeros of h(z).

As an application of Th. (18,3), let us prove

COROLLARY (18,3). If all the zeros of an nth degree polynomial f(z) lie in the
circle C: IzI < r and if all the zeros of the polynomial

(18,10) O(z) = Ao + C(h, l)Alz + ... + C(n, n)Anzn

lie in the circular region K:

(18,11) IzI <sIz - TI, s >0,

then all the zeros of the polynomial

V(Z) = A0J (Z) + A1f,(Z)[(TZ)Il !] + ... + 2n f(n)(Z)[(TZ)"/n!]

lie in the circle P : J

(18,12) IzI < r max (1, s).

The polynomial V(z) is of the form of the h(z) given in Th. (18,3) with

fl(z) =_ /(z), f2(z) _ (Tz)", Bk = AkTk/n!TnC(n, k)

and consequently the corresponding g(z) is

g(Z) = (ZIT)n0(TIz)In!.

If 1, 2, , n are the zeros of O(z), the zeros of g(z) are flk = TISk . Here
circle C1 is the same as circle C but circle C2 is merely the point z - 0. According
to Th. (18,3), the zeros of ip(z), not in C, lie in the circles IF, centers at z = 0
and radii

Pk = rI I l- Pk I= r I S k/( k- T) I

From condition (18,11) on the zeros of O(z) it now follows that Ipkl < rs. The
zeros of ip(z), including those in C, therefore satisfy condition (18,12).

EXERCISES. Prove the following.
1. In Th. (18,1) if all the zeros of f(z) lie in the circle IzI < r1 and all the

zeros of g(z) lie in the circle IzI << r2, then all the zeros of h(z) lie in the circle
IzI < r1 + r2 [Kakeya 3].

2. In Cor. (18,2c) if all the zeros of polynomial g(z) are real, then all the zeros
of G(z) are also real [Laguerre 1, p. 31].

3. In Cor. (18,3) f(z) is apolar to the polynomial (Z - z) no[ZT/(Z - z)]
if o(Z) = 0. Hence, if all the zeros of f (z) lie in a convex region A and all the
zeros of O(z) lie in a region B whose inverse in the circle IzI = 1 is convex, then
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every zero Z of ip(z) has the form Z = afl/(# - r) where a is a point of A and
is a point of B. If m > n, assume B contains z = oo.
4. In ex. (18,3) if all the zeros of f(z) lie in the sector A:y < arg z < y +

to :5 y + Tr and if all the zeros of O(z) lie in the lune B: A < arg z/(z - r) < ,u
with - A < 7r, then all the zeros of V(z) lie in the sector y + A < arg z
y + w + It. If m > n, assume µA < 0.

5. If the zeros of f(z) = eazP(z), where P(z) is an nth degree polynomial and
a is a constant, lie in a circular region C, the zeros off '(z) lie in region C and
in the region C' obtained on translating C in the magnitude and direction of
the vector (-na-1). Hint: Use Cor. (18,1).

6. If the pth degree polynomial P(z) and the qth degree polynomial Q(z) have
all their zeros in the same circular region C, then the zeros of the derivative of
f(z) = ey(z)Q(z) lie in region C and the p circular regions C; obtained on
translating C in the magnitude and direction of the vectors [w,(-q/ap)11p]
(j = 1, 2, , p) where co, are the pth roots of unity and a is the coefficient of the
pth degree term in P(z) [Walsh 6].

7. If all the zeros of the kth degree polynomial f1(z) lie inside a circle K and
all those of the rth degree polynomial f2(z), r < k, lie outside K, then inside K
lie all the zeros of the polynomial

h(z) = I(-1)'C(k - r +j,j)f(')(z)f(,''-')(z), 0 :5j < r [Curtiss 1].

8. Let F(z) and G(z) be polynomials which have all their zeros in the strip
I3(z)I < a, a > 0. Then all the zeros of H(z) _ 1o (tklk!)F)k)(z)G(k)(z), t < 0,
also lie in this strip [De Bruijn 3]. Hint: Let

f(z) = I zkFck)(w)/k! = F(z + w) and g(z) _ I ZkG(k)(w)lk! = G(z + w)
0 0

l

and apply ex. (16,6) taking h(z) as h1(z).
9. If all the zeros of f(z) = Io (aklk!)zk, n > 2, lie on the disk C:Iz - zol < r

and if Hk(z) is the Hermite polynomial of degree k, then all the zeros of the poly-
nomial F(z) = Io akHk(z) lie in the convex region C1 = Uµ T(C, ,u?7) where
T(A, a) is defined in Cor. (18,1), is the supremum of the zeros of Hn(z) and
-1 < µ < 1 [Specht 6]. Hint: H;,+1(z) = Hn(z).

10. If f, g, h are polynomials of degree n, p, q respectively and if all the zeros of
f lie in the upper half-plane, necessary and sufficient conditions for all the zeros of

F(z) = g(z)f(z) + h(z) f'(z)

to lie in the upper half-plane are that (1) Z[g(z)/h(z)] ? 0 for Z(z) = 0; (2) all
zeros of h(z) lie in the upper half-plane; (3) either p < q or both p = q + 1 and
lim [g(z)lzh(z)] = a, real negative, as z -* oo [Dieudonne 9].

11. Let H be the convex hull of the zeros of g(z) = IT" (z - zk), y a complex
number, {Ak} a set of non-negative reals with k= Ak = 1, and zo any zero of
g1(z) = g(z)[1 - yIk=1 Ak& z - zk)-1]. Then z0 has the form c + Ay where
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c e H and 0 < A < 1 [Shisha-Walsh 1]. Hint: Apply Lem. (13,1) choosing
c E H so that Ii Ak(zo - Zk)-1 = ,1(ZO - c)-1

12. Let Pn be the class of polynomials ao + a1z + + with a,,, 0, and
a,, and a,n_1 prescribed and let p* be an infrapolynomial on finite set E _
{z1, z2, , zn} relative to P* [see ex. (5,7)]. Then every zero of p* has the
form c + Ay where c c H(E), the convex hull of E, and where 0 < ).:5 1 and
Y = -(an-1/an) - k=1 Zk [Shisha-Walsh 1]. Hint: Use ex. (18,11).



CHAPTER V

THE CRITICAL POINTS OF A RATIONAL FUNCTION WHICH HAS
ITS ZEROS AND POLES IN PRESCRIBED CIRCULAR REGIONS

19. A two-circle theorem for polynomials. The Lucas Theorem which we
developed in sec. 6 states that any convex region K enclosing all the zeros of a
polynomial f (z) contains also all the critical points of f (z). Furthermore, as we
remarked in sec. 6, every point interior to or on the boundary of K is the critical
point of at least one polynomial which has all its zeros in K.

Let us now consider the class T of all polynomials f(z) of degree n which have
n, zeros in or on a circle C, , n2 zeros in or on a circle C2, etc., and n

V
zeros in

or on a circle C9 , with n, + n2 + - - - + n,, = n. If K denotes the smallest
convex region enclosing all the circles C, (j = 1, 2, , p), all the critical
points of every f(z) in T will lie in K, but not every point of K will necessarily
be a critical point of some f(z) in T. Let us now determine the precise locus of
the critical points of the polynomials of class T.

We begin with the case p = 2 which was first studied by Walsh [2]. We shall
state his result as

WALSH'S Two-CIRCLE THEOREM (Th. (19,1)). If the locus of the zeros of the
n,-degree polynomial f,(z) is the closed interior of the circle C, with center c, and
radius r, and the locus of the zeros of the n2-degree polynomial f2(z) is the closed
interior of the circle C2 with center c2 and radius r2, then the locus of the zeros of
the derivative of the product f (z) = f,(z) f2(z) consists of the closed interiors of C,
if n, > 1, of C2 if n2 > 1 and of a third circle C with center c and radius r where

(19,1) c =
n,c2 + n2C1 r = n,r2 + n2r1
n, + n2 n, + n2

In a sense, the third circle C is the weighted average of the two given circles
C, and C2. (In Fig. (19,1) C = C3 , r = r3 and c = c3 .) It has with C, and C2
a common center of similitude and its center is the centroid of the system of
two particles, one of mass n2 at c, and the other of mass n, at c2 .

To prove Th. (19,1), let us note that, if Z is any zero off '(z),

(19,2) 0 =1'(z) =1i(Z)f2(Z) +.f1(Z)f2(Z).
This is an equation which is linear and symmetric in the zeros of fl(z) and in
the zeros of f2(z). By Th. (15,4), Z will also satisfy the equation obtained by
substituting into eq. (19,2)

/ yy

fi(Z) = (Z - Yl)nl' f2(Z) = (Z - S2)n2

where i;, and S2 are suitably chosen points, the first in C, and the second in C2.

89
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That is, Z satisfies the equation

n1(Z - C1)1''_1(Z - C2)"2 + n2(Z - 1)"'(Z - W"2-1 = 0
and thus has the values of

Z= S1,ifn1> 1; Z= S2,ifn2> 1;
Z = (n2C1 + n1C2)/(n2 + n1).

Obviously the first Z is a point in C1 and the second Z is a point in C2. That
the third Z is a point in C may be verified by setting p = 2, m1 = n2/(n1 + n2)
and m2 = n1/(n1 + n2) in Lem. (17,2a). Thus we have proved that every zero
Z off'(z) lies in at least one of the circles C1 , C2 and C.

Fto. (19,1)

Conversely, as in the proof of Th. (18,3), we may show that any point Z in
or on the circle C1, C2 or C is a zero of the derivative of f(z) = f1(z) f2(z) for
suitably chosen polynomials f1(z) and f2(z) having all their zeros in C1 and C2
respectively. We thereby complete the proof of Th. (19,1).

Concerning the number of zeros off'(z), we may as in Walsh [2] deduce the
following result.

COROLLARY (19,1). If the closed interiors of the circles C1 , C2 and C of Th.
(19,1) have no point in common, the number of zeros off'(z) which they contain is
respectively n1 - 1, n2 - I and 1.

For, if S1 is any point in C1 and 2 any point in C2, then we may allow all
the n1 zeros of f(z) in C1 to approach 1 along regular paths entirely in C1 and
similarly allow all the n2 zeros of f(z) in C2 to approach 52 along regular paths
in C2. Thus 1 and i2 become zeros of f'(z) of the respective multiplicities
nl - 1 and n2 - 1, the remaining zero off'(z) then being a point of C. During
this process, no zero off '(z) can enter or leave C1, C2 or C. Hence, the number
of zeros in C1 , C2 and C was also originally n1 - 1, n2 - 1 and 1.

By a similar method we may establish the following somewhat more general
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result concerning the function F(z) _ [m2/(z - z)], where the m; are arbitrary
positive numbers.

THEOREM (19,2). If all the points z; , 1 < j < p1 , lie in or on the circle C1
and if all the points z, , p, + 1 < j < p1 + p2 , lie in or on a circle C2 , then
any zero of the function

Dl+D9

F(z) = m' m; > 0, all j,
2=1z-z;

if not in or on C, or C2, lies in the circle C defined in Th. (19,1) with

D1 Di+D2

n1 = l m2 and n2 = I m;.
J=1 1=D1+1

As an application of Th. (19,2), we shall derive the following Mean-Value
Theorem for polynomials.

THEOREM (19,3). Let the circle C1 with center c1 and radius r1 enclose all the
points in which a pth degree polynomial P(z) assumes the value A and let the circle
C2 with center c2 and radius r2 enclose all the points in which P(z) assumes the
value B. Then, if n1 and n2 are arbitrary positive numbers, the circles C1 and C2
and a third circle C with center c = (n1c1 + n2c2)/(n1 + n2) and radius r =
(nlr1 + n2r2)/(nl + n2) contain all the points at which P(z) assumes the average
value M = (n1A + n2B)/(n, + n2).

This theorem is stated and proved in P61ya-Szego [1, vol. 2, p. 61] in the
case that n1 and n2 are positive integers. To prove it in the more general case,
let us denote by z; , 1 < j < p, the points where P(z) = B and by z; , p + 1 :5-

j < 2p, the points where P(z) = A. Thus,

D 22)

(19,3) P(z) - B = H (z - z;), P(z) - A = 11 (z - z,).
i=1 i=D+1

If Z denotes any point at which P(z) = M, then

(n1 + n2)[P(Z) - M] = n1[P(Z) - A] + n2[P(Z) - B] = 0.

Hence,

(19,4)
n1P'(Z) n2P'(Z) = 0.

P(Z) - B
+

P(Z) - A

Substituting from eq. (19,3) into eq. (19,4), we find

D 2Dn1 + L n2 = 0.s=1Z-z; ,=D+1Z-z;

According to Th. (19,2), therefore, point Z must lie in at least one of the circles
C1, C2 and C.
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EXERCISES. Prove the following.
1. Th. (6,2) is the special case of Th. (19,1) in which Cl = C2.
2. Let ml'): m2'> (j = 1, 2, , q) denote the ratios in which the line-seg-

ment (cl , e2) is divided by the q distinct zeros of the kth derivative of the
g(z) = (z - cl)n,(z - C2 )n2. Let K, denote the circle with center at
(m 2'>ci + m2')) and radius (mz11rl + mi')r2)/(mi') + m2')). Then
the locus of the zeros of the kth derivative of the f(z) of Th. (19,1) is
composed of the circle Cl if k < nl , the circle C2 if k < n2 and the q circles
K; . If any K, is exterior to all the other K, , it contains a number of zeros of
f(k)(z) equal to the multiplicity of the corresponding zero of g(k)(z) [Walsh 6,
pp. 175-176].

3. Th. (19,1) and ex. (19,2) are special cases of Th. (18,3).
4. If every zero of an nl-degree polynomial fl(z) lies in or on the circle

Cl: Izl < rl and if every zero of an n2-degree polynomial f2(z) lies on or outside
the circle C2: IzI > r2 , where r2 >_ (n2rl/nl), then every zero of the derivative
of the productf(z) = fl(z)f2(z) lies in or on Cl , on or outside C2 or on or outside
the circle C: IzI > r = (nlr2 - n2rl)/(nl + n2). Furthermore, if r > rl , exactly
nl - 1 zeros off'(z) lie in Cl and exactly n2 lie on or outside C [Walsh 2].

5. If an nth degree polynomial f (z) has a k-fold zero at a point P and its
remaining n - k zeros in a circular region C, then f'(z) has its zeros at P,
in C and in a circular region C' formed by shrinking C towards P as cen-
ter of similitude in the ratio 1: k/n. If C and C' have no point in common,
they contain respectively n - k - 1 zeros and one zero of f'(z) [Walsh 1 b,
p. 115].

6. Let F(z) be an nth degree polynomial whose zeros are symmetric in the
origin 0. Let 0 be a k-fold zero of F(z) and let all the other zeros of F(z) lie
in the closed interior of an equilateral hyperbola H with center at 0. Then,
except for a (k - 1)-fold zero at 0, all the zeros of F'(z) lie in the closed interior
of the equilateral hyperbola obtained by shrinking H towards 0 in the ratio
n%i:k' . Hint: Apply ex. (19,5) to f(w) = f(z2) = [F(z)]2, taking the circular
region C as the half-plane ¶R(w) > a > 0 [Walsh 17].

7. Given the disks Ck:lz - ckl < rk, k = 1, 2, with Icl - c21 > jr, - r2l and
the class of disks C: Iz - c1 < r where c = Alcl + 2202 , r = Alrl + A2r2 , with
Al > 0, A2 > 0, Al + A2 = 1. If E is a closed set some points of which lie in
Cl and the remainder in C2 , and if an infrapolynomial p E In(E) has a zero zo
outside Cl and C2, then zo lies in some disk I' c C. If no disk r c C con-
taining zo intersects Cl or C2 , then no other zero of p lies outside Cl and C2
[Motzkin-Walsh 4, Th. 8.2]. Hint: Use Ths. (5,2), (19,2) and the reasoning
behind Cor. (19,1).

8. If an nth degree polynomial f has n - k (0 < k < n) zeros on the disk
IzI < 1 and k zeros in the region r: IzI > r (> 1), then for a suitable with
1 < ICI < r the polar derivative fl off as given by eq. (13,1) has exactly k - 1
zeros in P. Hint: Apply the mapping w = (1 + zC)/(z - C) and use Cor.
(19,1).
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20. Two-circle theorems for rational functions. The question raised in sec. 19
concerning the derivatives of a product of two polynomials may also be asked
concerning the finite zeros of the derivative of their quotient. Here the answer,
also due to Walsh [lb, p. 115], reads as follows.

THEOREM (20,1). If the polynomial f1(z) of degree n1 has all its zeros in or on
a circle C1 with center c1 and radius r1 , and if the polynomial f2(z) of degree n2
has all its zeros in or on a circle C2 with center c2 and radius r2 and if n1 0 n2 ,

then the finite zeros of the derivative of the quotient f(z) = f1(z)/f2(z) lie in C1,
C2 and a third circle C with center c and radius r where

n2C1 - n1C2 n2r1 + nlr2c= r=
n2 - n1 In2 - n1

Under these hypotheses if n1 = n2 and if the closed interiors of C1 and C2 have no
point in common, then these two circles contain all the zeros off'(z).

The proof of Th. (20,1) is similar to that of Th. (19,1) and will be left to the
reader. He should, however, note that, if n1 = n2 and if the closed disks C1
and C2 did overlap, the zeros of both f1(z) and f2(z) could be made to coincide
at the common points of C1 and C2. The corresponding quotient f(z) would
then be constant and its derivative identically zero. That is, if n1 = n2 and
if C1 and C2, originally without a common point, are allowed to expand, the
locus of the zeros of f'(z) changes abruptly to the entire plane when C1 and C2
become tangent.

Th. (20,1) is essentially a proposition concerning the finite zeros of the rational
function

2

F(z) =2)1+2)1 m'
=1 Z - z;

in which m, > 0 for 1 < j < p1 and m, < 0 for pl + 1 < j < P + p2 and in
which all the z; , 1 < j < pl , are points in or on the circle C1 and all the z, ,

pi + 1 < j < pi + P2, are points in or on the circle C2. The numbers n1 and
n2 are here

D1

n1 =1m;
i=1

D1+D2

and n2= I m; .
7=P1+1

In the case n1 = n2 , we are dealing with the logarithmic derivative of a function
of type (10,1) in which the total "mass" is zero and therefore of which, according
to sec. 10, the zeros are invariant under linear transformations. We may there-
fore replace the interiors of circles C1 and C2 by arbitrary circular regions C1
and C2 . We may also introduce the binary forms

n

(20,1)
L.

akkrin-k =
k=0
n

(DAt, r)) = I
k=0
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The jacobian of these forms is

a(1a(D2 a(1)2a(D1

= n?j2(n-3)[f /'])f2(S/'1) - f81
n?7 2(n-1)P07)[AW22)]2

where f(z) = f1(z)/f2(z). Since the zeros of J($, ij) are the finite zeros of f
and possibly the point at infinity, we may restate the last part of Th. (20,1) in
the form due to Bocher [4].

THEOREM (20,2). If each zero of the form q) lies in a circular region Cl ,
if each zero of the form 77) lies in a circular region C2 and if the regions C1
and C2 have no points in common, then no finite zero of the jacobian of the two
forms lies exterior to both regions C1 and C2 .

Th. (20,2) has the following generalization to abstract spaces [Marden 24].

THEOREM (20,3). Let E be a vector space over an algebraically closed field K
of characteristic zero. Let HY(x, y), i = 1, 2, be two Hermitian symmetric forms,
defined on E with values in K, such that there are subsets Ej = {x: x E E,
HH(x, x) > 0, x 0 0}, i = 1, 2, with the property that (E - E1) t, (E - E2) =
0. Let P5(x), j = 1, 2, , q, defined for x E E with values in K, be homo-
geneous polynomials of degree n, and let Pj(x1 , x) be the first polar of Pj(x) with
respect to x1 , x1 E E. Let {m1} be a set of real numbers with mj > 0 if j e J1 =
(1, p <q), with mj<0 if jEJ2=(p+1, q) and with
1 i mj = 0. Let b(x1, x) = Y;=1 m,P1(x) ... Pj-1(x)Pj(x1, x)Pj+1(x) . . . P (x).
If Pj(x) 0 0 for x c- E1 when j e J1 and for x e E2 when j c- J2 , then (D(x1 , x) 54 0
when x E El t) E2.

We may prove Th. (20,3) by an adaptation of the proof of Th. (14,1). Letting

n;

Pj(sx + tx1) = 11 (TikS - 0)kt),
k=1

where Tjk 0 0, k = 1, 2, , n, , we infer from eq. (14,12) that

n;

Pj(x1, x)lP,(x) _ -(1 /nj)I Pik,
k=1

Pjk = (6jklTjk),

(D(x, x1) = -M H P,(x)
s=1

where
Q ,a

M = I (m)nj)I Pik
j=1 k=1
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We infer also from eq. (14,13) that

hi,k = (TikT1k)-1 Hi(t1ikx + TAXI , Qikx + T1kx1)

= PJkP1k Hi(x, x) + 25R[P1k Hi(x, x1)] + Hi(xl , x1),
ni ni 71i

I hilk = Hi(x, X) I P1kP1k + 291 Hi(x, x1) P1k] + n1Hi(x1, x1),
k=1 k=1 k=1

Si = G (m,/n,) L, hilk
1=1 k=1

0 9t1

= Hi(x, x) (m1/n1)I P1k1ik + 291[MHi(x, x1)].
i=1 k=1

Since P,(a5kx + T1kx1) = 0 for k = 1, 2, , n,, it follows from the hypothesis
of Th. (20,3) that

vlkx + T1kx1 0 E2, 0,kx + Tikx1 E E9

with a= 1,9=2ifjEJ1but a=2,#= 1 if jEJ2. Hence,

h11k G 0,

h11k > 0,

h21k > O if j cJ1,

h2,k<_Oifje"2,

and therefore S1 < 0, S2 > 0 . Since both H1(x, x) > 0 and H2(x, x) > 0 when
x e E1 n E2, we conclude that

0 > H2(x, x)S1 - H1(x, x)S2

= 29R{[H2(x, x)H1(x, x) - H1(x, x)H2(x, x1)]M}.

Thus M 0 0 and consequently'(x1 , x) 0 0 as was to be proved.

EXERCISES. Prove the following.
1. In Th. (20,1), if f2(z) has no multiple zeros, if n1 0 n2, and if the circles

C1, C2 and C have no point in common, then f '(z) has in these circles respectively
n1 - 1, n2 - 1 and 1 zero(s) [Walsh 1b, p. 115].

2. Laguerre's Theorem (Th. 13,1) is a special case of Th. (20,1).
3. Let positive particles of total mass n be placed at certain points of a circular

regions C1 on the unit sphere S and negative particles of total mass (-n) at
certain points of a circular region C2 on S. If the regions C1 and C2 have no
common points, then no point on S exterior.to both regions C1 and C2 can be
a point of equilibrium in this field. Thus, obtain another proof of Th. (20,1)
in the case n1 = n2 [Bocher 4]. Hint: cf. sec. 11.

4. If the circle C1 with center c1 and radius r1 contains all the points where
a pth degree polynomial P(z) assumes the value A and if the circle C2 with
center c2 and radius r2 contains all the points where P(z) assumes the value B,
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then the points where P(z) assumes the value (n1A - n2B)/(n1 - n2), n1 > n2 > 0,
lie in C1, C2, and the circle C of Th. (20,1). Hint: cf. Th. (19,3).

5. Letf(z) be a polynomial of degree m and g(z) a polynomial of degree n 0 M.
Let all the zeros of g(z) lie in circular region R bounded by a circle C. Let w
be any point on C and let be defined by the equation

Af'(w) g'(w) _ Am - n

f(w) g(w) w - C

Then, if also lies on C and if A > 0 and A 0 n/m, at least one zero of f (z)
lies in R. Hint: Apply Th. (15,4) and Lem. (17,2a) [Obrechkoff 4].

6. If in Th. (20,1) the loci of the zeros off, and f2 are respectively the closed
interiors (assumed disjoint) of C1 and C2, and if n1 0 n2, then the locus of the
finite critical points of f consists of the closed interior of C1 if n1 > 1, the open
interior of C2 if n2 > 1 and the closed interior of the C [Walsh lb, 20]. Hint:
The multiple zeros off2 are not critical points off.

21. The general case. In generalization of secs. 19 and 20, we shall now study
the derivative of a rational function which has its zeros and poles distributed over
any finite number of prescribed circular regions. The results which we shall
obtain are due to Marden [3] and [10]. We begin with

THEOREM (21,1). For j = 0, 1, , p let f(z) denote a polynomial of degree
n; having all -of its zeros in the circular region a,C1(z) < 0 where a, = -+I and

(21,1) C.(z) = Iz - c,12 - r; .
Then every finite zero Z of the derivative of the rational function

(21,2) f(z) =
fo(z)f1(z) ...4(z) 0 < q <

P,
fv+1(Z)fa+2(Z) ... f,(Z)

satisfies at least one of the p + 2 inequalities

a,C5(Z) < 0, j = 0, 1, ... , P,
(21,3)

E(Z) - I nm, - I m,mkr;k c 0
C0(Z)C1(Z) ... CD(Z) j=0 Cj(Z) j=O.k=j+1 Cj(Z)Ck(Z)

wheremj =nj or -n, according asj <gorj>q,n = Jom,,

Tjk = 1cj - ckl2 - (u,rj - lukrk)2, Iuj = aj sg n7j .

{{

In applying Th. (21,1) to the case q = p, we assume that (21,2) reduces to

f(z) = fo 1(Z) ... f9(Z).

Before taking up its proof, let us interpret Th. (21,1) from a geometric stand-
point. According as aj = 1 or -1, the region C, defined by the inequality
ajC,(z) < 0 is the closed interior or the closed exterior of the circle with cj as
center and rj as radius. According as uj,uk = 1 or -1, the quantity Tjk when



[§21] THE GENERAL CASE 97

positive is the square of the common external or internal tangent of the circles
C,(z) = 0 and Ck(z) = 0. When n 0 0, the equation E(x + iy) = 0 may be
written in the form

(x2 +. y2)v +. O(x, y) = 0

where O(x, y) is a real polynomial with a combined degree of at most 2p - 1
in x and y. Being of this form, E(z) = 0 represents a so-called p-circular
2p-ic curve, a curve of degree 2p which passes p times through each circular
point at infinity. As such, the curve E(z) = 0 consists of at most p branches,
each of which is a bounded closed Jordan curve. In short, when no 0, Th. (21,1)
implies that each zero Z off '(z) lies in at least one of the given circular regions
C, or lies in one of the regions bounded by the p-circular 2p-ic curve E(z) = 0.

For example, when p = 2, equation E(z) = 0 becomes

nmOCl(z)C2(z) + nm1C2(z)CO(z) + nm2CO(z)CI(Z)
(21,4)

-mom1TOIC2(z) - mIm2TI2CO(z) - m2mOT2OC1(z) = 0.

For n o 0, (21,4) is the equation of a bicircular quartic, a result which for the
m, positive integers and the C, interiors of circles coincides with the result due
to Walsh [5]. With subscripts 1, 2, 3 replacing 0, 1, 2 respectively, Fig. (21,1)
illustrates the case that mI = m2 = m3 and that regions CI , C2 and C3 are the

FIG. (21,1)
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interiors of circles of radii r., = r2 = r3 = 10%6 with centers at. the points
cl = -3 - i, c2 = 3 - i and c3 = 2i. In that case, curve E(z) = 0 consists of
two nested ovals.

When n = 0, we may give a similar interpretation of Th. (21,1). The equation
E(z) = 0 then represents in general a (p - 1)-circular 2(p - 1)-ic curve. In
this case, we must take the precaution that not all the regions C, have a point
in common. For, if t were such a point, we could reduce f (z) to a constant
by concentrating at t all the zeros of all the f (z), whereupon f'(z) _- 0 making
every point in the plane a possible position of Z. In other words, if we wish
a nontrivial result in the case n = 0, we must assume that no point is common to
all the regions C,.

Proceeding now to the proof of Th. (21,1), let us denote the numerator in
eq. (21,2) by F1(z) and the denominator by F2(z). For any zero Z of f'(z), the
expression F(Z) = F2(Z)F,'(Z) - F1(Z)FF(Z) = 0 is one which is linear and
symmetric in the zeros of each By Th. (15,4), we may select a point C,
in each region C; such that Z will also satisfy the equation obtained from
F(Z) = 0 by setting f(z) = = (z - C;)". Thus we find that either Z = C; for
some value of j for which n; > 1 or Z satisfies the equation

9
(21,5) 1 [m,I(Z - 0] = 0.

?=o

In the first case Z lies in a region C, and thus satisfies the jth of the inequalities
(21,3). In the second case Z lies in the locus R described by the roots of equation
(21,5) when o , 1..... C9 are allowed to vary independently over the circular
regions Co , C, , , C,, , respectively.

For the purpose of determining R, let us establish

LEMMA (21,1). If the points , lie in the circular regions C, (j = 0, 1, , p),
and if the m, are real or complex constants, then every root Z of eq. (21,5) lies in a
region C, or satisfies the inequality

V m,(c,-z) 2 Im;lr;l2<(21,6)
=o C,(z) ( o I C;(z)I I = o.

Let us first choose Z as any fixed point which lies exterior to all the regions
C; . Then by Lem. (12,1) the point w, lies inside the circle r,
with center y, and radius p, where

Yi = (Z - c,)IC,(Z), P, = r,I!C,(Z)I
Hence, by Lem. (17,2a), the point w = Y-1 m,w, lies in the circle r with center y
and radius p where

(21,7)

(21,8)

'l, 9

Y = I m,Y, = I [mr(Z - c,)IC,(Z)],
jso i=o
D D

P = I l m;l Pi = [Im,l r,IIC,(Z)I].
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That is,

(21,9) Iw-yi2-p2<0.

99

Now, let us specialize Z to be a root of eq. (21,5). Then, as the points ,
vary over the regions Cj, point w assumes the value of zero at least once. That
is, w = 0 must satisfy ineq. (21,9); viz.,

(21,10) Iy!2 - p2 < 0.

On substituting from eqs. (21,7) and (21,8) into (21,10), we finally obtain in-
eq. (21,6).

To complete the proof of Th. (21,1), we need now to show that the left sides
of ineqs. (21,3) and (21,6) are identical. Using the identity

(Z - C)(Z - Ck) + (G - C)(Z - Ck) = IZ - Cjl2 + IZ - Ckl2 - I cj - CkI2,

we find from (21,7) that

IYI2m3IZ-c,12+ mjmk(IZ-cj12+IZ-ck12-Icj-ckl2)
j=0 Cj(Z)2 j=0.k=7+1 C,(Z)Ck(Z)

Using the notation of Th. (21,1) and the hypothesis that c,C,(Z) > 0 and thus
IC5(Z)I = C,(Z)/oj, we infer from (21,8) that

2 _ v m,r, 2mjmkfrjfLkrjrk
p CJ(Z)2 +j=O.kj+l C,(Z)Ck(Z)

Finally, using eq. (21,1), we conclude that

IYI2 - p2 = m f + ± m,mk[CI(Z) + Ck(Z) - Tjk]
j=0 C,(Z) j=0.k=j+1 C,(Z)Ck(Z)

which reduces at once to the expression in ineq. (21,3) for E(z).
We shall now establish the following converse of Th. (21,1).

THEOREM (21,2).' Let Z be any point which satisfies the inequality

(21,11) 6v1... v9E(Z) < 0.

Then Z is a zero of the derivative of a function of type (21,2) with each fj(z) _
(z - c,)nj and with C, a suitably chosen point in the region aIC5(Z) < 0.

First, let us suppose that Z lies exterior to all the regions C, , i.e., that
o,C,(Z) > 0 for all j. Then ineq. (21,11) is identical with ineq. (21,6). We also
note that Lem. (17,2a) concerns the locus of point w and that in Lem. (12,1)
the locus of point w1 , as Z remains fixed and as z1 varies over the interior or
exterior of circle C, is the interior or exterior of the circle C'. In this case,
therefore, we may, without difficulty, retrace the steps which lead to Lem. (21,1)
and thus prove Th. (21,2).
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Secondly, let us suppose that Z lies interior to one region, say C0 , and exterior
to the remaining C,. Using Lem. (12,1) and Lem. (17,2b) and the notation
employed in the proof of Lem. (21,1), we find that n'0 lies outside the circle
PO and the remaining w; lie inside the circles r,. The locus of point w =
1;=0 m;w, is then the region

(21,12) Iw_y12-p2>0

where
P D

Y = m;Y; _ [m;(Z - 0lC;(Z)],
j=0 j=0

D D

P = Imol Po - I m;I p, = (Imol r0/IC0(Z)I) - J(I m;l ri/I C,(Z)I ),

provided p > 0. Since here

(21,13) voC0(Z) < 0; v,C,(Z) > 0 for j = 1, 2, ,p,

we may write
D

i=o

If we insert these values of y and p and also w = 0 into ineq. (21,12), we find
(21,12) becomes

E(Z)/C0(Z)C1(Z) ... CD(Z) > 0

which, because of (21,13), reduces to (21,11). Hence, if p > 0, ineq. (21,11)
implies that point w = 0 satisfies (21,12) and therefore that points i, may be
chosen in the regions C, making Z a root of eq. (21,5). If p < 0, the locus of
w is the entire plane; the point w = 0 is surely a point of the locus and Z is a
root of eq. (21,5) for a suitable choice of points i;; .

Finally, by Lem. (17,2c), if Z lies in two or more regions C, , the locus of point
w is the entire plane and again the point Z will be a root of eq. (21,5) for suitably
selected , .

Thus, we have completed the proof of Th. (21,2).
Ths. (21,1) and (21,2) do not in all cases completely specify R, the locus of the

roots of eq. (21,5) when the , have the circular regions C, as their respective
loci. For example, in the case that the bicircular quartic (21,4) consists of two
nested ovals, the requirement (21,11) of Th. (21,2) merely ensures that the region
between the ovals belongs to R.

It is clear, however, from the proof of Th. (21,2) that the inequality opposite
to (21,11), namely X061 6E(Z) > 0, may be satisfied only under one of the
following two circumstances. Either the point Z lies in just one region C; and
simultaneously

D

(21,14) 1 [m;,uir,/C,(Z)] > 0,
;=o

or it lies at a point common to at least two regions C, .
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That the locus R may in fact possess a component which is not a simply-
connected region is illustrated by the following example suggested by Professor
Walsh. Let us take m, = I for j = 0, 1, , p. Let us choose the region Co
as merely the origin and each region C, , j = 1, 2, , p, as the circle with a
center at the point z = e2aiill' and with a radius r such that sin (ir/p) < r < 1.
Each circle C, , j = 1, 2, . , p, obviously overlaps its two neighboring circles
C. but does not contain the origin. Being but a simple zero off (z), the origin
cannot be a zero of f'(z) no matter what the positions of the remaining zeros
of f(z) may be within the regions C, , j = 1, 2, , p. Clearly, therefore, the
locus R completely surrounds the origin but does not include it. Thus, R
consists of at least one region which is not simply-connected.

EXERCISES. Prove the following.
1. Ifm1=m2=m3,ifc1= -3-i,c2=3 -iandc3=2i, andifr1=r2

r3 = r, then the bicircular quartic (21,4) consists of (a) two ovals, neither
enclosing the other, if r < 3" - 1; (b) a single oval if 311 - 1 < r < 3%4 + 1;
(c) two ovals one enclosing the other, if r > 34 + 1.

2. If Z is taken as a root of the equation A + Yi [m;/(Z - c;)] = 0, then
(21,6) must be replaced by the inequality

(21,15) I A + m'(c' - 2) I2- Im51 'r')2< 0.
,=1 C;(Z) ,-1 C;(Z)

Hint: w = -A must satisfy eq. (21,9).
3. If the hypotheses of Th. (21,1) are satisfied, and if F(z) = f(z)/fo(z), then

each zero of the linear combination F'(z) + AF(z) lies in one of the regions
C1 , C2, , C, or in the point set S bounded by the branches of p-circular
2p-ic curve

p IAI2 m'I,'(z) 0,(21,16)
nC,(z) j=1,k=,+1 Ci(z)Ck(z)

where
P;(z) = Iz - (c; - nA-1) 12

Hint: Use Th. (15,4) and ex. (21,2) [Marden 10].
4. A result similar to Th. (21,1) is valid when one or more of the regions C.

are half-planes a,L,(z) < 0 where a; 1 and where L,(z) = 93i(zei") - h,
with oc; and h, real.

5. Let each F,(p) be an n, degree distance polynomial [cf. ex. (6,10)] and
R(p) = 111-a F;(P)/J°-Q+1 F,(P), 0 < q < p. If all the zeros of each F;(p) lie in
the spherical region

a,S,(P)=c';[IIP-c,(12-r;]<0, r,>0,o;=+1,
j = 0, 1, , p, then every finite zero of R' _ (R/4) 11 p log R11 satisfies at least
one of the inequalities a,S,(p) < 0 or

p

j [NN,/S,(P)] - I [N,NkT,k/S,(P)Sk(P)] 0
,=0 1=0, k=,+1
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where N,=v;n,; v;=1 for j<q and v;=-1 forj>q; N=JoN1 and
T;k = 11C, - ck112 - (v;a;r; - vkakrk)2 [Schurrer 1]. Hint: Prove 3-space analogies
to Lems. (12,1) and (21,1).

22. Some important special cases. We shall now consider under Th. (21,1)
a number of special cases which involve three or more polynomials f(z) and in
which the p-circular 2p-ic curve E(z) = 0 degenerates into one or more circles.

We begin with the case p =.2. When n = 0, eq. (21,4) with all subscripts
increased by one reduces to the equation

(22,1) m2m3T23C1(Z) + m3m1r31C2(Z) + m1m2T12C3(Z) = 0,

the equation of a circle. On the other hand, for this special case eq. (21,5)
becomes on replacing Z by z

(22,2)
m1 + m2yy + -(m1 +m2) = 0

Z-S1 Z-S2 Z-C3
which, solved for -m1/m2 , may be written as

(22,3) (z - S2)(S3 - CC1)

-
- m2

(Z - C1)(S3 - S2) ml

In other words, the region bounded by circle (22,1) is the locus described by a
point z which forms with C2 and i;3 the constant cross-ratio (22,3), as the

describe their regions C, .

These results may be summarized in the form of two theorems both due to
Walsh [1].

WALSH'S CROSS-RATIO THEOREM (Th. (22,1)). If the points C11 C2, S3 varying
independently have given circular regions as their loci, then any point z forming a
constant cross-ratio with C1, C2 and b3 also has a circular region as its locus.

THEOREM (22,2). For each j = 1, 2, 3, let f(z) be a polynomial of degree n;
having all its zeros in a circular region C; . If n1 + n2 = n3 and if no point is
common to all the regions C, , then each finite zero of the derivative of the function

f(Z) =f1(Z)f2(Z)1f3(Z)

lies in at least one of the circular regions C1 , C2 , C3 or in afourth circular region C.
This fourth region is the locus of a point Z whose cross-ratio (22,3) with the points
S1 , S2 and S3 has the constant value (-n2/nl) a.: C1 , C2 and C3 describe the regions
C1 , C2 and C3 respectively.

Regarding Th. (22,2), we may draw the same conclusion for the zeros of the
derivative of the reciprocal f3(z)/ f1(z) f2(z) of the above function. Furthermore,
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since the total "degree" of f (z) is n = n, + n2 - n3 = 0, we may restate Th.
(22,2) in terms of the jacobian of the binary forms (20,1), as is done in Walsh
[lb, pp. 112-113].

The p-circular 2p is curve E(z) = 0 also degenerates into a number of circles
in the case that m, > 0 and that the regions C; are the interiors of circles having a

FIG. (22,1)

common external center of similitude. (See Fig. (22,1).) The result in this case
is due to Walsh [lc] and is embodied in

THEOREM (22,3). If each zero of the polynomial j(z) of degree n, lies in the
closed interior of a circle C; and if the circles C, have an external center of similitude
0, then each zero of the derivative of the product f (z) = f,(z) f2(z) ... f,(z) lies
either in the closed interior of one of the circles C, (j = 1, 2, , p) or in the closed
interior of one of the circles Pk (k = 1, 2, , p - 1). The circles Pk have also
the external center of similitude 0; their centers are the zeros of the logarithmic
derivative of the polynomial

(22,4) g(Z) = (Z - C,)11(Z - C2)'n2 . . . (Z - C,)%

where c, is the center of C; for j = 1, 2, , p.

Let us verify this theorem in the case p = 3. Without loss of generality,
we may take 0 at the origin and take the centers c, , c2 and c3 of the circles
on the x-axis. (See Fig. (22,1).) The equation of each circle C, has then the
form

(22,5) C;(z) = Iz - c;I2 - (Ac;)2 = x2 + y2 - 2c;x +,uc

and the square of the common tangent of two such circles is

(22,6) T;k = IC; - Ck12 - 22(C, - Ck)2 = 1u(C; - Ck)2.

,u=1- A2,

If eqs. (22,5) and (22,6) are substituted into eq. (21,4) after all subscripts have
been increased by one, we obtain the equation

(22,7) n2(x2 + y2)2 - 2Ax(x2 + y2) + B(x2 + y2) + 4Cx2 - 2Dx + E = 0
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where m. = n; and

A = n[(n - n1)c1 + (n - n2)c2 + (n - n3)c3],
B = ,u{(n - n1)2c1 + (n - n2)2c2 + (n - n3)2c3 + 2n1n2c1c2

+ 2n2n3C2C3 + 2n1n3C1C3},

C = n(n3C1C2 /+ n2C1C3 + n1c2c3),

D = r4{n3C1C2[(n - n1)C1 + (n - n2)c2] + n2C1c3[(n - n1)c1 + (n - n3)c3]

+ n1C2c3[(n - n2)C2 + (n - n3)C3] + 2(n1n2 + n1n3 + n2n3)C1C2C3},

E = u2{n3C1C2 + n2C,2 2 2 2 2
C3 + n,C2C3 + 2c1C2c3(n2n3c1 + n1n3C2 + n1n2C3)}.

On the other hand, the zeros of the logarithmic derivative of (22,4) in this case
satisfy the equation

(22,8) n3(z - c1)(z - c2) + n2(z - c1)(z - c3) + n1(z - c2)(z - c3) = 0.

Denoting the roots of (22,8) by y1 and Y2, we have the relations from eq. (22,8)

(22,9)
Y1 + Y2 = 1 [(n - n1)c1 + (n - n2)C2 + (n - n3)C3],

n

Y1Y2 = 1 [n3C1C2 + n2C1C3 + n1c2C3]
n

The circles P1 and F2 with centers y1 and Y2 and with 0 as center of similitude
have the equations of form (22,5)

(22,10) F,(z) = x2 + y2 - 2y;x + ,uy = 0.
Multiplying together these two equations, we obtain

r1(Z)r2(Z) = (x2 + y2)2 - 2(yl + y2)x(x2 + y2) +,u(Yl + Y2)(x2 + y2)
(22,11)

+ 4Y172x2 - 2Y1Y2Y(Y1 + 72)x + u2yly2 = 0.
Using eqs. (22,9) and other symmetric functions of y1 and y,, we may show
that eq. (22,11) is the same as that obtained by dividing eq. (22,7) by n2. In
other words, the bicircular quartic (22,7) degenerates into the two circles r1
and r2 as required in Th. (22,3) with p = 3.

Th. (22,3) may be generalized to rational functions of the form (21,2). If
the regions C, are the interiors of circles and if, exterior to all the circles C, ,

there is a point P which is an external center of similitude for every pair C1 ,

C, when i and j are both less than k + 1 or both greater than k, but which is
an internal center of similitude for all other pairs Ci , C; , then the curve
E(z) = 0 again degenerates into a set of circles with P as an internal or exter-
nal center of similitude. For further details, the reader is referred to Walsh
(lc, p. 45].

EXERCISES. Prove the following.
1. Th. (19,1) is a special case of Ths. (21,1) with p = 1 and (22,3) with p = 2

and of Th. (22,2) with region C3 taken as the point at infinity.
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2. Let the circles C, (j = 1, 2, , p) have the collinear centers c, and equal
radii r. Let the polynomial f(z) of degree n; have all its zeros in the closed
interior of C, . Let C; denote the circles of radius r, which have their centers
at the zeros of the logarithmic derivative of the g(z) of eq. (22,4). Then the
zeros of the derivative of the product f (z) =f1(z)f2(z) f ,,(z) lie in the
point set consisting of the closed interiors of the circles C, (j = 1, 2, , p) for
which n, > 1 and the circles C; (j = 1, 2, , p - 1). Hint: Use Th. (21,1)
or allow point 0 in Th. (22,3) to recede to infinity [Walsh lc, p. 53].

3. Let the r in ex. (22,2) be a sufficiently small number. Then the zeros of
f (')(z) lie in the point set consisting of the closed interiors of the circles C,
(j = 1, 2, , p) and Cl.' (j = 1, 2, , p - k), the latter being of radius r and
having their centers at the zeros of g(c)(z)/g(z) [Walsh lc, p. 53].

4. For m1 = m2 = mo , r1 = r2 = ro and the centers c; at the vertices of an
equilateral triangle whose center is 0, bicircular quartic (21,4) degenerates into
two circles concentric at 0, the larger of which has the radius (rl + hr1)112, h being
the distance from 0 to c, [Walsh 5].

5. For m; = m, r, = r (j = 1, 2, , p) and the c; as the roots of the equation
zD = by where 0 < h, the curve E(z) = 0 of Th. (21,1) (with all subscripts in-
creased by one) degenerates into a set of circles concentric at z = 0 having as
radii the roots R of the equation

D 9J(3t) - I 4h2t;tk sine (i(j - k)p 1) = 0,
1 7=1.k=7t1

where 1/t, = R2 + h2 - r2 - 2hR cos (21rjp-1) [Marden 3, p. 98].
6. Let a, b, c1 , c2 , c3 , be real numbers and let each zf be a point in or

on the circle C, with center at cf and with radius r. Then the zeros of the de-
rivative of the entire function of genus zero or one

00

.f(z; z1, z2, z3, ...) = exp (az + b) IT (1 - z/zk)
k=1

lie in the circles C,'. of radius r with centers at the zeros of the derivative of

.f(z; c1 , c2 , c3 , ... ) [Walsh 11 ].
7. Let C1, C2 1 ... , C. be circles of equal radius r with centers at the collinear

points c1, c2 , , C' . Assume in eq. (9,1) that the a, are positive and denote
by s(z) a Stieltjes polynomial corresponding to a; = c, , j = 1, 2, , p. Let
Ci , C2 , , C, denote the circles of radius r with centers at the zeros of s(z).
If no circle C,: has a point in common with any other C' or with any circle C,,
then the locus of the zeros of the Stieltjes polynomial S(z) as the point a, varies
over the closed interior of the circle C, (j = 1, 2, , p) consists of the closed
interiors of the circles C; (j = 1, 2, , n). Furthermore, each Q contains just
one zero of S(z) [Walsh 8].

8. The curve (21,16) reduces to one or more circles in the following cases:
(a) p = 1 (cf. Cor. (18,1)); (b) A real and the regions C, taken as the closed in-
teriors of equal circles with centers on a line parallel to the axis of reals [Walsh 9].
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9. Let Cl : IzI < rl , C2: IzI ? r2 (> r1), C3: IzI r3 (> r2) and

r4 = (nlr2r3 - n2r3r1 - n3rlr2)/(n2r2 + nary - nlr),

where nl , n2, n3 (= nl + n2) are respectively the degrees of polynomialsf1 , f2 , f3
If all the zeros of fl , f2, fs respectively lie in Cl , C2, C3 , then no critical point
off (z) = fl(z) f2(z)/ f3(z) lies in the annulus rl < IzI < r4 if rl < r4 < r3 and none
lies in the annulus rl < IzI < r3 if r4 > r3 .



CHAPTER VI

THE CRITICAL POINTS OF A POLYNOMIAL WHICH HAS ONLY
SOME PRESCRIBED ZEROS

23. Polynomials with two given zeros. In Chapters II and V we developed
several theorems on the location of all the critical points of a polynomial f(z)
when the location of all the zeros of f(z) is known. In the present chapter we
shall investigate the extent to which the prescription of only some of the zeros
off (z) fixes the location of some of the critical points off (z).

A first result of this nature is the one which we may derive immediately from
Rolle's Theorem by using eq. (10,7) to transform the real axis into an arbitrary
line L. This result states that, if the zeros of a polynomial are symmetric in a
line L, then between any pair of zeros lying on L may be found at least one zero
of the derivative.

We now ask whether or not, given two zeros of a polynomial f(z), we may
locate at least one zero off '(z) even when no additional hypothesis (such as that
of symmetry in a line) is placed upon the remaining zeros. An affirmative
answer to this question, as given first by Grace [1] and later by Heawood [1],
is stated in the

GRACE-HEAWOOD THEOREM (Th. (23,1)). If z1 and z2 are any two zeros of an
nth degree polynomial f(z), at least one zero of its derivative f'(z) will lie in the
circle C with center at point [(z1 + z2)/2] and with a radius of [(1/2) 1z1 - z21(cot 7r/n)].

In proving this theorem we may without loss of generality take z1 = + 1
and z2 = -1. (See Fig. (23,1) for the case n = 8.) By hypothesis, we have upon

f'(z) = a0 + a1z + a2z2 + ... + z"-1

the requirement that

(23,1) 0=.f(1)-f(-1)=J 1f'(t)dt=2ao+232+25'+...

Since eq. (23,1) is a linear relation among the coefficients of f'(z), we may apply
Th. (15,3). Thus at least one zero off'(z) lies in every circular region containing
the zeros of the polynomial

g(z) = J (z - t)"-1 dt = (1/n)[(z - 1)' - (z + 1)"].+1
1

But the zeros of g(z) are 2k = -i cot (kvr/n), k = 1, 2, , n - 1. This
means not only that at least one zero of f'(z) lies in the circle C of Th. (23,1)

107
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FIG. (23,1)

FIG. (23,2)
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but also that at least one zero of f'(z) lies in every circle C' (see Fig. (23,1))
through the two points z = ±i Cot 171n.

That the radius r of the Grace-Heawood Theorem may not be replaced by a
smaller number may be seen from the polynomial

A z)
=f-Z

(t - i cot 7r/n)'-1 dt
i

' {[z - i cot (7T/n)]n - [-1 - i cot (Tr/n)]n}
n

which has the zeros z = 4-1 and the derivative of which,

f'(z) = [z - i cot (7r/n)]i-1,

has its only zero at z = i cot (Tr/n).
Let us now allow the points z1 and z2 to vary arbitrarily within circle IzI 5 R

and inquire regarding the envelope (see Fig. (23,2)) of the corresponding circle
C of Th. (23,1). It is clearly sufficient to consider the envelope of the circle
when Izil = Iz2I = R. Any point on the circumference of C may be represented
by the complex number:

(23,2) Zl
+ z2 + ei° IZi - Z2I

cot (f).
n

Corresponding to point two points z1 and z2 on the circle Izl = R may be
found so that either zi = z2eiv' or z2 = zlei" with 0 < ip < IT and so that eq.
(23,2) is satisfied. Thus,

ICI < (R/2) It + ei°'I + (R/2) 11 - eitil cot (7r/n),

ICI < R[cos (v'/2) + sin (y,/2) cot (Ir/n)]

R sin (7r/n + ip/2) csc (Ir/n) < R csc (Ir/n).

We have thereby proved the following result due to Alexander [1], Kakeya [2]
and Szego [1].

THEOREM (23,2). If two zeros of an nth degree polynomial lie in or on a circle
of radius R, at least one zero of its derivative lies in or on the concentric circle of
radius R csc (Ir/n).

This is again the best result, as may be seen by choosing

f:
f(z) =J [u + ieni1' csc (IT/n)]"-i du.

For, this polynomial has on the unit circle the zeros z1 = +1 and z2 = -el"irn
and its derivative has a zero on the circle IzI = csc arln at the point z =

csc (a/n).
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EXERCISES. Prove the following.
1. if f'(z) 0 0 in Izi < r,f(z) has at most one zero in IzI < r sin (Ir/n). Hint:

Use Th. (23,2).
2. If the derivative f'(z) of an nth degree polynomial f (z) is different from

zero in a circle C of radius r, then f(z) cannot assume any value A twice in the
concentric circle C' of radius r sin 7T/n. In other words, f (z) is univalent in C'.
Hint: Apply ex. 1 to f(z) - A [Alexander 1, Kakeya 2, Szego 1].

3. Let f (z) = aozno alz" + .....+ akZnk, 0 < no < nl < ... < nk, anal ... ak
54 0. If f(l) = f(- 1) = 0, then at least one zero of f'(z) lies on the disk
Izi < 2k [Fekete 4]. Hint: Apply ex. (34,6) to (23,1).

4. In the notation of sec. 5, let E be a finite set of points; a and (3 zeros of
an infrapolynomial p E In(E); H any hyperbola having segment afl as diameter;
q(z) = p(z)l[(z - a)(z - fi)]; E' _ {z: z e E, q(z) 0 0}. Then E' cannot lie
wholly interior or exterior to H [Motzkin-Walsh 2].

24. Mean-Value Theorems. We may derive results similar to those of sec. 23
on using the following two Mean-Value Theorems. In the form stated below,
these theorems were first proved by Marden [7] and [8], but in certain special
cases they had been previously treated in Fekete [2-6] and Nagy [4]. Both
theorems employ the notation S(K, 0) as in sec. 8 for the star-shaped region
comprised of all points from which the convex region K subtends an angle of at
least 0.

THEOREM (24,1). Let P(z) be an nth degree polynomial and let zl , z2 , , z'
be any m points of a convex region K. Let or, the mean-value of P(z) in the points
z; , be defined by the equation

(24,1)

where

m

aIa, = la,P(z,)
2=1 2_1

µ<arga;<1u+y<,u+IT, J= 1,2,...,m.

Then the star-shaped region S(K, (Ir - y)/n) contains at least one point s at which
P(s) = a.

We may similarly describe the location of point a. If H denotes the smallest
convex region of the w-plane containing the points w = P(z,), P(z2), , P(z),
then, according to Th. (8,1) applied to F(w) _ a,(w - P(z)), a is some point
of the region S(H, Tr - y).

THEOREM (24,2). Let P(z) be an nth degree polynomial and let C: z = V(t)
(t real; a < t < b) be a rectifiable curve drawn in a convex region K. On curve C,
let a(t) be a continuous function whose argument satisfies the inequality

,u<_arga(t)<,u+y<,u+7r, teC.
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Then, the star-shaped region S(K, (ir - y)/n) contains at least one point s for which

(24,2) f dt = P(s) J dt.
a a

Ths. (24,1) and (24,2) could be combined into a single theorem if Stieltjes
integrals were introduced into eq. (24,2).

The proofs of both Ths. (24,1) and (24,2) are essentially the same. For example,
to prove the first, let us write eq. (24,1) in the form

(24,3) 1a,[P(zj) - a] = 0.
7=1

Denoting by a1 , a2 , , a the points at which P(z) assumes the value a, we
may set up the equation

(24,4) P(z) - a = A(z - a1)(z - a2) . . (z - an).

If every ak were to lie exterior to S(K, (a - y)/n), the region K would subtend
in each ak an angle less than (ir - y)/n. That is, a constant bk could be found
so that

(24,5) 0:5arg(z5-ak)- 5k<(IT-y)/n, k=1,2,...,n;1=1,2, ,m.

Adding the inequalities (24,5) for k = 1, 2, , n and substituting from eq. (24,4),
we conclude that

0<arg[P(z;)-a]-argA-6k<a-y, j = 1, 2, ,m.
k=1

Hence, by Th. (1,1)
M

1a5[P(z5) - a] 0 0
i=1

in contradiction to eq. (24,3).
We shall now apply Th. (24,2) to the determination of the zeros of P(z); that

is, the points s for 'which P(s) = 0. Since f d a[y,(t)] dt 0 0 in Th. (24,2), we
deduce at once a result which for y = 0 is due to Fekete [5] and [6] and for y
arbitrary is due to Marden [7].

THEOREM (24,3). Let P(z) be an nth degree polynomial; let C: z = ?P(t)
(t real; a < t < b) be a rectifiable curve drawn in a convex region K and let a(t)
be on C a continuous function whose argument satisfies the inequality

y<arga(z)<,u+y<µ+Ir.
Then, if

(24,6) f bP[ip(t)]a[V(t)] dt = 0,

P(z) has at least one zero in the star-shaped region S(K, (7r - y)/n).
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As an application of Th. (24,3), let us choose

y = 0, a(z) - 1, a = 0, b = 1,

V(t) _ (1 - t)e + t1/.

Let us denote by Q(z) an nth degree polynomial which assumes the same values
at the points a and i. If now we replace n by n - 1 in Th. (24,3) and if we set
P(z) - Q'(z), then we find

0

That is, eq. (24,6) is satisfied. Hence, at least one zero of Q'(z) lies in
S(K, 7r/(n - 1)). Since K may be taken as the line-segment joining the points

and ?1, we have established the following result due to Fekete [5].

THEOREM (24,4). If the nth degree polynomial P(z) has the two zeros z = and
z = 71, its derivative will have at least one zero in the region comprised of all points
from which the line-segment ?j subtends an angle of at least [ir/(n - 1)].

EXERCISES. Prove the following.
1. Let a0b,A0B,0<0<ir, and C#A, C0 B, Iarg(C-B)/(C-A)I
q. If an nth degree polynomial P(z) assumes the value A at z = a and B at

z = b, it assumes the value C at least once in S (segment ab, #/n) [Fekete 7].
Remark: For 0 = it, this result is analogous to the Bolzano Theorem that,
if a real continuous function f(x) of the real variable x assumes the value A at
x = a and the value B 0 A at x = b 0 a, it assumes every value between A
and B at least once on the line-segment a < x < b.

2. Let C: z = t(t) (t real, a < t < b) be a rectifiable curve drawn in a convex
region K and let a(z) be a function which is continuous on C and assumes on
C only values in a sector A with vertex at the origin and with an opening y < 1r.
Let p and q be positive integers with m = max (p, q) and let S be the star-
shaped region consisting of all points from which K subtends an angle of at
least (ir - y)/(m + q). Finally, let P(z) and Q(z) be polynomials of degree p
and q respectively such that R(z) = P(z)/Q(z) is irreducible and has no poles in
S. Then in S there exists at least one point s such that for z = p(t)

J bR(z)a(z) dt = R(s) J ba(z) dt [Marden 7].
a a

3. Let q be a positive continuous function on the finite interval I: a < x < b.
Let {Qm(x)}, m = 0, 1, 2, , be a sequence of orthogonal polynomials of degree
m satisfying the relation

fa q(x)Qm(x)Q (x) dx = 0 for m 96 n.
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Then at least n zeros of the polynomial
y-1

g(x) = I akQn+k(x)
0

lie in S = S(1, Tr/l), the region comprised of all points from which the interval 1
subtends an angle of at least 7r/I [Vermes 1]. Hint: Apply Th. (24,3) assuming
the zeros ; to lie in S for 1 < j < k < n - 1 and outside S fork + 1 < j < n +
p - 1 and taking

n-1 n+v-1

a(x) = q(x) n (x - C,)(x - c,), P(x) = II (x - 0.
1 n

4. In the notation of ex. (24,3), all the zeros of the Wronskian determinant

Qn(x) Qn+1(x) ... . Qn+D-1(x)

Qn(x) Qn+i(x) Qn+v-1(x)

Qn
-1)(x)

Qn+1 fi(x)

lie also in S(I, inll) [Vermes 1]. Hint: Apply ex. (24,3).

25. Polynomials with p known zeros. As a generalization of Ths. (23,2) and
(24,4), we shall now consider the problem: given that p zeros of a polynomial
f(z) of degree n (n > p) lie in a circle C of radius R, to find the radius R' of the
smallest concentric circle C' which contains at least p - I zeros of the derivative
.f '(z)

This problem was first proposed by Kakeya [1]. He showed that there exists
a function 0(n, p) such that R' = R/(n, p). Lucas' Th. (6,2) shows that 0(n, n) = 1.
Furthermore, as in Th. (23,2), Kakeya established the result that 0(n, 2) = csc (-,,In),
but did not succeed in obtaining an explicit formula or an estimate for 0(n, p)
for other values of p.

Subsequently, Biernacki [1] derived an estimate for q(n, n - 1); namely,
0(n, n - 1) < (1 + 1 /n)'".

In order to throw light upon the general question, we shall, as in Marden [11],
first extend Th. (24,4) to polynomials having a given pair of multiple zeros.

THEOREM (25,1). If zi and z2 are respectively ki-fold and k2 fold zeros of an
nth degree polynomialf(z), then at least one zero (d fferent from z1 and z2) of the
derivative lies in the circle C with center at the point [(z1 + z2)/2] and with a radius
[(1/2) Izi - z21 cot (ir/2q)], where q = n + 1 - k1 - k2 .

If we set p = ki + k2 and N = 1 + (n/2) we note that the limit in Th. (25,1)
is smaller than, same as or larger than that in Th. (23,1) according as p > N,
p=Norp<N.
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In proving this theorem we suffer no loss of generality in taking z1 = -1
and z2 = + 1. Let us apply Th. (24,3), choosing

a(z) = (1 + z)ki-1(1 - a)k2_1, P(z) = f'(z)la(z), 'V(t) = t.

For these choices arg a(z) = 0 = y on the straight line z = V(t), - 1 < t < 1,
and P(z) is a polynomial of degree q. According to Th. (24,3) at least one zero
of P(z) lies in the star-shaped region comprised of all points at which the seg-
ment -1 < z < 1 subtends an angle not less than it/q. The smallest circle
which encloses the latter region is clearly the circle described in Th. (25,1).

We now ask: what is the envelope of the circle C of Th. (25,1) when the
points z1 and z2 vary independently over a circle of radius R? To answer this
question, we may employ the method used in the proof of Th. (23,2). We thus
obtain the following result due to Marden [11].

THEOREM (25,2). If a circle C of radius R contains a k, -fold zero and a k2 fold
zero of an nth degree polynomial, then the concentric circle C' of radius R csc IT/2q,
q = n + 1 - k1 - k2, contains zeros of the derivative with a total multiplicity of
at least k1 + k2 - 1.

In order to generalize this theorem to the case that the circle C contains p
zeros which are not necessarily concentrated at just two points, we shall employ
the following identity which connects any p zeros of a polynomial with any q =
n - p + 1 zeros of its derivative.

THEOREM (25,3). Among the n + 1 distinct numbers al , a2 , , aD , #1 ,
2 , , flv , p + q = n + 1, let the a, be zeros of an nth degree polynomial and

let the Nk be zeros of its derivative. Then

(25,1) 1
R( RQ

Diiis...,Q
!(

= 0
(F'1 - aii)(N2 - ail) . . . (Yv - a,)

where j, J2, J,, run independently through the values 1, 2, , p and where

D.132...ia = k1! k2! ... kD!

with ki equal to the multiplicity of ai as a zero of the polynomial ( - ail)(# - ail)
... (9 - ai).

This identity, which is due to Marden [11], is a generalization of the formula

(25,2) 1 = 0
i=1 b'k - ai

which connects any one zero flk of f'(z)/f(z) with the n zeros
of f(z).

al , a2 , ... 2 an
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For example, if q = 2, we may eliminate a from two equations

and thus obtain

1 =0, 1 =0
j=1 #1 - a; f=1 P2 - a;
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1-1

(//
1

qq

1 I 1

+
_

7=1 (Nl - a1)(#2 - a;) 1=1 #1 - a; f=1

(

F'2 - a;
0

which reduces to (25,1) with q = 2.
To establish Th. (25,3), it is necessary to eliminate the q - 1 numbers a9+1 ,

a9+2 , , a from the q equations (25,2), k = 1, 2, , q. As this elimination
is quite involved, we shall omit the details and proceed immediately to the proof
of a result due to Marden [11].

THEOREM (25,4). If a circle C of radius R contains p zeros of an nth degree
polynomial f (z), the concentric circle C' of radius R csc (ir/2q), q = n - p + 1,
contains at least p - 1 zeros of the derivative f'(z).

Let us suppose, on the contrary, that at most p - 2 zeros off '(z) lie in or on
C' and hence at least (n - 1) - (p - 2) = q zeros off'(z) lie outside C'. Let us
denote these zeros off '(z) by Nl , fit , , fa and let us denote the zeros off(z)
lying in C by al , a2 , , aD . Obviously, no a; , 1 < j < p, may equal a j3k ,
1 < k < q. At each 1'k , the circle C subtends an angle less than 7r/q. This
means that a point Ek on C may be found so that

(25,3) 0 < arg k /#/ < r/q, j = 1, 2, ... , p.
a;Nk

If now the sum in eq. (25,1) be multiplied by (fl1 - E1)02 - E2)
the resulting sum would have the terms of the form

(25,4) (E1 -i9)(E2-N2). .(SG-N4)
(a, - N1)(a1, - 1'2) ... (a,Q - Na)

Because of (25,3), each term (25,4) would be representable by a vector drawn
from the origin to a point in the sector

0<argz<7r,
and hence by Th. (1,1) the sum cannot vanish. This result, being in contra-
diction to eq. (25,1), affirms that at least p - 1 zeros off '(z) must lie in circle C'.

By the same method of proof, we may establish a more general theorem than
Th. (25,4) in which we replace circle C by an arbitrary convex region K and circle
C' by the star-shaped region S(K, it/q) comprised of all points from which K
subtends an angle of at least iT/q. [See ex. (25,1).]

In the case some or all of the a; are multiple zeros off, the term (Nk - a;)-1 in
eq. (25,2) is replaced by [V,(/9k - a)-1] where v, is the multiplicity of a; . If we
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again eliminate the zeros aP , av+1 , , a , we secure an identity between the
sets al , a2, , a9 and Nl , , #v , which identity we may more conveniently
derive by a limiting process from (25,1). The identity has the same form as
(25,1) but-with different positive coefficients D,1;E. . ;Q .

We thus obtain a generalization of Th. (25,4); namely,

THEOREM (25,5). If a polynomial f has n distinct zeros of which p (0 < p < n)
lie in a convex region K, it has at most n - p distinct critical points on or outside
the star-shaped region S(K, 1r/q), where q = n - p + 1.

Let us now develop for infrapolynomials [see secs. 5, 6, 7] a result analogous to
Th. (25,5). This theorem is concerned with the location of just some critical
points of a polynomial f (z) when the position of only some zeros off (z) is known.
Our analogy must similarly be concerned with just some zeros of an infrapoly-
nomial when the location of the pointset E is only partly specified. The following
is such an analogy, due to Marden [22].

THEOREM (25,6). Let E = E0 + El , where Eo is a closed bounded pointset
and E1 is a set of k points 0 < k < n. Let To be the set comprised of all points
from which Eo subtends an angle of at least 7r/(k + 1). Ifp E 9, is a nonvanishing
infrapolynomial on E, then p has at most k zeros outside To irrespective of the
location of El.

Proof. If Z0, Z1, , Zk are any k + 1 distinct zeros of p outside To, then
by Th. (5,2)

M
(25,5) 1 7 = 0, i = 0, 1, , k,

7=O Zi - Z;

where zo , z1 , , zm are points in E. Among the latter, let us say that only
Zm, zm_1 , , zm_8+1 are points of El with 0 < s < k - 1. From the k + 1
equations (25,5) we may theoretically eliminate zm , Zm-1 , ... , Zm-k+l but
practically this is very difficult. Instead, we use the fact that the Zi are continuous
functions of the A, . For a given e > 0 we can find a b > 0 such that for rational
numbers p, with Ip; - 2 < b, j = 0, 1, , m, the equation

(25,6)
m

G [p,/(Z - z;)] = 0
f=o

has roots o, 1 ,
...

, 4"With ISi - Zil < E for i = 0, 1, , k. Hence the
points also lie outside To . If N is taken as a sufficiently large integer so that
each v; = p;N is an integer, the equation

(25,7) [vAZ - z;)] = 0,
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also having the roots o , S1 , - - - , Ck , is satisfied by the zeros of the logarithmic
derivative of the polynomial

ire

f(z) = II (z - z,)"f .
=o

We may now apply Th. (25:5), with the ai and Ni replaced by the zi and Z; and
with the circle C replaced by a convex region K as in ex. (25,1). Thus we complete
the proof of Th. (25,6).

EXERCISES. Prove the following.
1. If a convex region K contains p zeros of an nth degree polynomial f (z),

the star-shaped region S(K, 7r/q), q = n - p + 1, contains at least p - 1 zeros
of the derivativef'(z). Hint: Use Th. (25,3) [Marden 11].

2. If f'(z) has at most p - 1 zeros in a circle of radius p, f (z) has at most p
zeros in the concentric circle of radius p sin [?r/2(n - p)]. Hint: Assume the
contrary [Marden 11].

3. If the derivative of an nth degree polynomial f(z) has at most p - 1 zeros
in a circle C of radius p, then f(z) assumes no value A more than p times in the
concentric circle C' of radius {p sin [rr/2(n - p)]}; that is, f(z) is at most p-
valent in C'. Hint: Apply ex. (25,2) to f(z) - A [Marden 11].

4. The polynomial

f(z) = Cz2 - 2zi n ) +
11rl'Lz - 1 (n(2n - p))

]n-v

2n-p J L P

with p a positive even integer has two zeros on the unit circle, each of multi-
plicity (p12). Its derivative has at the same points zeros each of multiplicity
(p - 2)12 and has a double zero at the point z = (2 - p/n)%I. Thus, for p
even the 0(n, p) defined at the beginning of sec. 25 satisfies the inequality

(25,8) 0(n, p) ? (2 - p/n)% [Marden 11].

5. Let Z1 , Z2, , Z, be zeros of the function

D-1 n

F(z) _ A,z' + m,/(z - z;),

where the A. are arbitrary complex constants. Then

(25,9) F(z) [m,/(z - z;)] 11 [(Zk - Z)/(Zk - Zi)]
7=0 k=1

Hint: Eliminate the A, from F(z) by using the eqs. F(Zk) = 0, k = 1, 2, , p
[Marden 19].

6. If in ex. (25,5) all the poles z; lie in a convex region K and if the m; are
points in a convex sector with vertex at the origin and with an aperture ,u, then
at most p zeros of the function F(z) lie exterior to the star-shaped region
S(K, (7r - u)/(p + 1)). Hint: Assume the contrary and consider the argument
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of each term in the eq. F(Z,, 1) = 0 obtained from eq. (25,9) with Z1 , Z2,
all taken exterior to S [Marden 19].

, Z1_;.1

7. With n = oo the results in exs. (25,5) and (25,6) are valid for the mero-
morphic function

-1
go

M(z) _ B,z' + [mo/(z - zo)] + m, [1/(z - z;)] + (z/zj)k
=0 ,=1 l k=1

where the B; are arbitrary complex constants, if Y', Im,l/Iz;l' converges. Hint:
In ex. (25,5) take A, = B; + lk=1 mk(1/zk)'. Then, as n -> oo, F(z) -> M(z)
absolutely and uniformly in every finite closed region not containing any z;
[Marden 19].

8. Let zo = 0, z1 , z2 , be the zeros of an entire function E(z) of genus p so
that E(z) may be written in the Weierstrass form

E(z) = eI(z)zm0 1TT (1 - z/z9) exp I [(zl z,)kl k]l.
7=11 Il k=1

Then, if Z1 , Z2, , Z, are any p zeros of E'(z), and if m, = 1 for 1 < j,

00E'(z) = E(z) y-{[m,/(z - z;)] 11 [(Zk - z)/(Zk - z,)]}
,=0 k=1

If all the zeros of E(z) lie in a convex infinite region K, at most p zeros of E'(z)
lie exterior to the region S(K, it/(p + 1)). Hint: Apply ex. (25,7) to E'(z)/E(z)
[Marden 18].

26. Alternative treatment. As in sec. 25 let us denote by R the radius of a
circle containing p zeros of an nth degree polynomial f (z) and by R' the radius
of the concentric circle containing at least p - 1 zeros of f'(z). We shall now
obtain another upper bound on R', this time by using ex. (19,4) and ex. (19,5)
and induction.

As a first step, we shall prove

THEOREM (26,1). If an nth degree polynomial f(z) hasp zeros in or on a circle
C of radius R and an (n - p) fold zero at a point C, then its derivative has at least
p - 1 zeros in the concentric circle C' of radius R' = R[(3n - 2p)/n].

Without loss of generality in the proof, we assume that C is the unit circle
IzI=1.

If ICI < 1, then all the zeros of f(z) lie in circle C and by Th. (6,2) all n - 1
zeros off '(z) lie in C. In such a case, surely p - 1 zeros off'(z) lie in C'.

If 1, ex. (19,5) informs us that (see Fig. (26,1)) the zeros of f'(z) lie in
circle C and in a circle F with center y = pi In and radius c = (n - p)/n. If
C and F (closed disks) do not overlap, exactly p - 1 zeros of f'(z) lie in C and
hence in C'. If C and r do overlap, but if I' does not enclose , precisely p zeros
of f'(z) lie in the region comprised of C and 17 and hence in the circle C' with
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center at the origin and radius

1 + [2(n - p)/n] = (3n - 2p)/n.

Finally, if C and F overlap and if r contains , then all the zeros of f(z) lie in
C' and hence all n - 1 zeros off '(z) lie in C'.

In all cases, therefore, circle C' contains at least p - 1 zeros off '(z).
Let us now consider polynomials which have p zeros in a circle C, but do not

have the remaining zeros necessarily concentrated at a single point. For such
polynomials, we shall prove a result due to Biernacki [3].

FIG. (26,1)

THEOREM (26,2). If an nth degree polynomial f(z) has p (p < n) zeros in a
circle C of radius R, its derivative has at least p - 1 zeros in the concentric circle
C' of radius

m-v

(26,1) R' = R IT [(n + k)/(n - k)].
k=1

Our proof will use the method of mathematical induction. Without loss of
generality, we may assume that C has its center at the origin and that the zeros
c off(z) have been labelled in the order of increasing modulus

(26,2) 10(11 < Iaz1 < ... < lanI.

We begin with the case p = n - 1. Since only one zero a is exterior to C,
we learn from Th. (26,1) that at least p - 1 zeros off'(z) lie in the circle

IzI <_ (1 +2)R< (1+n 2

1)R
(nn + R;

that is, in the circle C' with the radius R' as given by eq. (26,1) for p = n - 1.
Let us now suppose that Th. (26,2) has been verified for the cases p = n - 1,
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n - 2, , N + I and let us proceed to the case p = N where
n-N+1

R' = R[(2n - N)/N] H (n + k)/(n - k).
k=1

[6l

If in this case'aN+1I > (2n - N)R/N, we may apply ex. (19,4) with n1 = N,
n2 = n - N, r1 = R and r2 > (2n - N)R/N. We thus find that

r > (1/n)(N[(2n - N)R/N] - (n - N)R} = R

and that f'(z) has exactly N - 1 zeros in the circle C1 - C and hence in the
circle C'.

If, on the other hand, la,v+11 < (2n - N)R/N, the circle C : Izi < p =
(2n - N)R/N contains the N + 1 zeros al , a2 , , a,v+1. Hence, according
to Th. (26,2) applied with p replacing R and N + I replacing p, at least N zeros
off'(z) lie in the circle

(26,3) z
N J L(n - 1) (n - 2) ... (N + 1) JR

But this is the circle C': jzI < R', with the R' given by eq. (26,1) for p = N.
In all cases in which p = N, there are therefore at least N - 1 zeros of f'(z)

in the circle C'. In other words, Th. (26,2) has been established by mathematical
induction.

However, neither Th. (25,4) nor Th. (26,2) gives the complete answer to the
question raised at the beginning of sec. 25. For, as a critical examination of
their proofs will reveal, neither theorem gives in general the least number q(n, p)
with the property: if p zeros off(z) lie in a circle of radius R, then at least p - 1
zeros off'(z) lie in the concentric circle of radius Ro(n, p).

EXERCISES. Prove the following.
1. If the derivative of an nth degree polynomial f (z) has at most p - 1 zeros

in a circle C of radius p, then f(z) has at most p zeros in the concentric circle C'

FIG. (26,2)
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of radius
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n-P-1

(26,4) p' = p II [(n - k)/(n + k)].
k=1

2. The f (z) of ex. (26,1) is at most p-valent in Izj < p'.
3. Th. (6,2) is the special case p = n of both Ths. (25,4) and (26,2).
4. In the case p = 2, Th. (23,2) is better than Ths. (25,4) and (26,2).
5. Let a be a p-fold zero of the nth degree polynomial f (z) and let C, a circle

of radius R, pass through a but not contain any other zeros of f (z). Let C', a
circle of radius R' = (p/n)R, be tangent to C internally at a. (See Fig. (26,2).)
Then f'(z) 0 0 in C'. Hint: Apply ex. (19,5).

Remark. The radius R' may, as shown in Nagy [5], be replaced by the larger
number R" = p/(S + p), where S is the maximum number of zeros of f (z) to
either side of the line tangent to C at a.



CHAPTER VII

BOUNDS FOR THE ZEROS AS FUNCTIONS OF ALL
THE COEFFICIENTS

27. The moduli of the zeros. So far we have studied the location of the zeros
of the derivative of a polynomial f (z) relative to the zeros of f (z). The results
which we obtained led to corresponding results concerning the relative location
of the zeros of various other pairs of polynomials. In short, we may regard
the preceding six chapters as concerned with the investigation of the zeros
Z1, Z2 , , Z,, of a polynomial F(z) as functions Zk = Zk(zi , z2 , ... , z,,,)

of some or all of the zeros z, of a related polynomial f (z).
In the remaining four chapters, our interest will be centered upon the study

of the zeros zk of a polynomial

(27,1) .f (z) = ao + a1z + ... + anzn

as functions zk = zk(ao , a1, , of some or of all the coefficients a; of f (z).
Our problems will fall mainly into two categories:

(I) Given an integer p, 1 < p 5 n; to find a region R = R(ao , a1 , , an)
containing at least or exactly p zeros of f (z). For instance, we shall try to find
the smallest circle I z I = r which will enclose the p zeros.

(II) Given a region R, to find the number p = p(ao , a1 , , an) of zeros
in R. An example of such a problem is that of finding the number p of zeros
whose moduli do not exceed some prescribed value r.

While the regions R to be considered will be largely the circular regions,
usually half-planes and the interiors of circles, we shall also consider other regions
R such as sectors and annular rings.

Just as some of the preceding results were complex-variable analogues of
Rolle's Theorem, so will some of the succeeding results, particularly those con-
nected with the problems of the second category, be complex-variable analogues
of the rules of sign of Descartes and Sturm.

Let us begin with a problem of the first category: to find an upper bound for
the moduli of all the zeros of a polynomial. A classic solution of such a problem
is the result due to Cauchy [1]; namely,

THEOREM (27,1). All the zeros of the polynomial f(z) = ao + a1z + +
anzn, a,, 0 0, lie in the circle IzI < r, where r is the positive root of the equation

(27,2) laol + jail z + ... + Ian-1I zn-1 - land zn = 0.

Obviously, the limit is attained when f (z) is the left side of (27,2).

122
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The proof hinges on the inequality, obtained from eq. (27,1),

(27,3) If(z)I ? la"I IzI°` - (laoI + Iall IzI + ... + la.-,I IzI"-1).

123

If IzI > r, the right side of (27,3) is positive since the left side of eq. (27,2) is
negative for r < z <- + co. Hencef(z) 0 0 for IzI > r.

From ineq. (27,3), there follows immediately a second result also due to
Cauchy [1]; namely,

THEOREM (27,2). All the zeros of f(z) = ao + a1z + + a"z", a" 34 0, lie
in the circle

(27,4) IzI < 1 + max lak/a"1, k = 0, 1, 2, , n - 1.

For, if M = max Iak/a"l and if IzI > 1, we may infer from ineq. (27,3) that

If(z)I ? la"1 zl"{1 - M lzI-f}

> la"1 zI"ll - Mi IzI-'}
1=1

> la"I zI"{1 - M } = la"I
IzI"{IzI - 1 - M}.

IzI-1 IzI-1
Hence, if IzI > 1 + M, then If(z)I > 0. That is, the only zeros of f(z) in
IzI > 1 are those satisfying ineq. (27,4). But, as all the zeros of f(z) in IzI < 1
satisfy ineq. (27,4) also, we have fully established Th. (27,2).

Let us arrange the zeros zk off in the order

Izll? Iz21>>...> Iz"I

From the a, expressed as the elementary symmetric functions of the zk, we infer
that [see eqs. (15,4). and (15,5)]

(27,5) Ian-k/a"I < C(n, k) Iz11k,

(27,6) max Ia"-k/a"C(n, k)11ik < Izll
16ksn

On the other hand, from eq. (27,2) with z = r, we infer that

(27,7) r" < a" + C(n, n - l)a"-'r + + C(n, 1)ar"-' = (a + r)" - r".

Hence,

(27,8) (21t" - 1)r < a.

In other words, we have established the following result due to Birkhoff [1],
Cohn [1] and Berwald [3]; namely,
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THEOREM (27,3). The zero z1 of largest modulus off (z) = a0 + a1z + + anzn,
an 54 0, satisfies the inequalities

(27,9) (211n - 1)r < a < Izil < r < a/(21In - 1),

where r is the positive root of eq. (27,2) and a is defined in (27,6).

The lower limit in (27,9) is attained by f(z) = (z + 1)n. For, eq. (27,2) is
then (z + 1)n - 2zn = 0 and r = 11(21/n - 1). The upper limit in (27,9) is
obviously attained byf(z) _ (z + 1)n - 2z".

By the above reasoning we may also show that, if z,, is the zero of f (z) of
smallest modulus, then Iznl < (21/n - 1)r. (See also ex. (27,1).)

A further improvement in bound (27,9) may be developed on use of the well-
known Holder inequality

n n 1/' n 1/4

(27,10) < oD a

where of > 0, ,B; > 0 for all j and p > 1, q > 1 with (11p) +(11q) = 1. When
applied to (27,3), ineq. (27,10) yields the results

n-1 n-1 /' n-1 1/4

(27,11) Ia,I IzI' ( Ia,l' Izl,gl
,=0 o

(27,12) If(z)I >_ Ianl Izln{1 -
j=0 IzI

where

(27,13) A. = (I Ia,Ianl')1/

i=0
Since, if IzI > 1,

(27,14)
n-1

1 °° 1 1

5= Izl(n-,)4

IZI'q
1z1° - 1

we learn from (27,12) that

(27,15) If(z)I > lanl Iznl{1 - gA,
1/v} > 0

(IzI 1)
provided Izlq - 1 > (A,)0; i.e.,

(27,16) IzI [1 + (AD)q]1/4

The relations (27,15), (27,16) and (27,13) lead thus to the result of Kuniyeda
[1], Montel [2] and Toya [1], which we state as

THEOREM (27,4). For any p and q such that

(27,17) p > 1, q> 1, (l/P)+(l/q)= 1,
the polynomial f (z) = ao + a1z + . + anzn, an 5A 0, has all its zeros in the circle

Ia,I'Ilanlp]41'1}11/4` (1 + ngl'Mq)114
(27,18) Izl < {1 +

[n

7=0

where M=maxla;/a,,I,j=0, 1.
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Thus, if p = q = 2, ineq. (27,18) becomes

(27,19) IzI < { 1 + lajl2/Ian12
l j=0

the bound derived in Carmichael-Mason [1], Kelleher [1] and Fujiwara [1].
Results analogous to the above have been found for expansions of a given

polynomial f in terms of certain orthogonal polynomials lpk(z) with deg IVk = k,
n

(27,20) f (z) =I a jz bkVk(z)
j=0 k=0

For example, when yjk(z) are the Hermite polynomials

(27,21) Hk(z) = (-1)kez2(dk/dzk)(e "),

Turan [4] established the following analog to Th. (27,2).

THEOREM (27,5). In the expansion

(27,22)

where anbn 0 0, let

n n
f (z) _ a z? = G bkHk(z)

J=0 k=0

M*=maxlbk/bnl, 0<k5n-1.
Then all the zeros off lie in the strip

(27,23) I(z)I < (1/2)(1 + M*).

To prove Th. (27,5) we note that the zeros xjk , of Hk(z) (j = 1, 2, , k), are
all real. If we make use of the identity [Szego 4]

H,(z) = 2kHk-1(z),
we may write

Hk-1(Z) - I H,(z) - 1 k 1

Hk(z) 2k Hk(z) 2k z - xjk '
Hk-1(z) c l 1 1

Hk(z) 2k j=i lz - xjkI < 2 IYI
Iz - xjkI > IyI for all j. The equality holds only whensince z = x + iy and

R(z) = xjk. Thus

Hk(z)

Hn(z)
Hk(z) Hk+1(z) ... H.-1(z) I < 1

Hk+1(z) Hk+2(z) Hn(z) 2n-k
IYIn-k

Now, from (27,22) we find for z xjn , j = 1, 2, , n,

n-1
If(z)I > I b.,Hn(z)I it - I I bk/bnl I Hk-1(z)/Hn(z)I

n--1

(27,24) If(z)I > I bnHn(z)I 1 - M* L (2 IYI)-n+k
,

k=0

If(z)I > I bnHn(z)I {1 - M*[1/(2 IYI - 1)]}.
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Clearly I f(z)I > 0 if 2 lyl - 1 - M* > 0. Hence all zeros of f(z) must satisfy
ineq. (27,23).

EXERCISES. Prove the following.
1. The zero of smallest modulus of f(z) = ao + alz + + anz", ao 0 0,

lies in the ring R < IzI < R/(2 V" - 1), where R is the positive root of the
equation

laol-1a11z-la2lz2-...-lanlz"=0.

Hint: Apply Th. (27,3) to F(z) = z"f(1/z).
2. All the zeros of thef(z) of ex. (27,1) lie on or outside the circle

IzI = min [laol/(laol + lakl)], k = 1, 2, ... , n.

3. Asp oo, the right side of (27,18) approaches the limit 1 + max Ia,I/ lanl,
j = 0, 1, , n - 1, and thus Th. (27,2) is a limiting case of Th. (27,4).

4. All the zeros of f(z) = ao + alz + - + az", an 0, lie in the circle

(27,25) IzI < [1 +
ao

an

2

+ a1 - ao

an

an - an_1

an

2]

Hint: Apply (27,19) to F(z) _ (1 - z)f(z) [Williams 1].
5. All the zeros of f(z) = ao + alz + + anz", an 0 0, lie in the circle

(27,26) lZl C I an_,/anll/j

Hint: Apply ex. (17,1) successively to the polynomials Pk(z) = anz"-k +
an_1z"-k-1 + .. + an-k-lz, with k = n - 1, n - 2, , 0 and with -c = an_k
[Walsh 7].

6. If z1 and z2 are zeros of f (z) = ao + a1z + + anzn, alan 0 and if
Izll < 1 < Iz21, then

n n-2

lao + a1z11 Jail, lanz2 + an-11 Jail.
7=2

'i=0

7. Let M = max Iz;l of the zeros z, (j = 1, 2, , n) off(z) = z" + alzn-1 +
+ an. Then

n

M > (1/n)l la,/C(n,i)I"'
9=1

Hint: Add the n relations (j = 1, 2, , n)

I C(n, j)-la, Ill' = I C(n, j)-1 I z1z2 z; I' < M [Throumolopoulos 1 ].

8. Let f(z) = Io akzk and g(z) = 100 bkzk with bk > 0 for all k. Let ro be
the positive root of the equation Mg(r) = laol, where M = max laklbkl, k = 1,
2, , n. Then all the zeros of f(z) lie in IzI > ro . Hint: For any zero
z = re" off (z),

laol 8(r)-1 < G = [ n laklbkl bkrk]
/[n

bkrk] < M
1 1



[§27] THE MODULI OF THE ZEROS 127

since G is a mean value of the quantities Iak/bkI for k = 1, 2, , n [Marko-
vitch 3].

9. For any given positive t, let M = max Iakl tk, k = 1, 2, , n. Then all
the zeros of f(z) = Yo akzk lie in IzI Iaol t/(lao1 + M). Hint: Choose
bk = t-k in ex. (27,8) [Landau 4; Markovitch 3].

10. The zeros of the polynomial h(z) = Jo akbkzk lie on the disk IzI 5 Mr,
where r is the positive root of eq. (27,2) and M = max Ibk/bk+lI1/(n-k) for 0 5
k < n - 1 [Markovitch 7].

11. All the zeros off (z) = z" + aqz"-" + + a,, aq 0 0, p < n, lie on the
disk IzI < r, where r > 1, r" - r1-1 = la41, IaQI = max Iakl, p < k < n [Guggen-
heimer 2]. Hint: r and any zero Z off satisfy

IZI" < Iaj (IZI"-p+1- 1)(IZI - l)-1,
r" = Iavl r"-P+1 (r - 1)-1 > Iaal (r"-,,+1 - 1)(r - 1)-1.

12. All the zeros off in Th. (27,5) lie in the strip

"-1

IZ(z)l 5 (1/2) 1 Ibk/b"11/k = B
k=o

[Turin 4]. Hint: If 13(z)I > B, then l bklb"I < (2 Iyl)"-k for all k and I f(z)I > 0
from ineq. (27,24).

13. Let {on(z)} form a set of orthonormal polynomials; that is,

"4n(z) = anO + 0C"1Z + ... + a"nZ
withwith

f0

JO

2w

dO = Smn

where w(O) is a Lebesgue integrable,

positive

weight function and b.,, = 0 or 1
according as m # n or m = n. Let a given nth degree polynomialf(z) be written
as

f(z) = booo(z) + b1o1(z) + ... + bno"(z)

Then all the zeros ' of f(z) lie in the disk

Ibnl IZI < (lb012 + Ib112 + + Ibnl2)1/2 = Ib"IB

[Specht 5, 10]. Hint: Let Z be any zero off. Solve f (Z) = 0 for b"0n(Z). Use
(27,10) with p = q = 2 and the inequality

100(Z)12 + . . . + Itn-1(Z)I2 < (IZ12 - l)-110"(Z)12.

14. If p is the positive root of the equation

Iaolx"=Iak+1lX"-k-1+ +Ia"-1Ix+la"I

and w; , 1 5 j 5 k, are the zeros of the polynomial fk(z) = aoZk + alzk-1 +.... +

ak, then any zero of f,, not on the disk K: IzI 5 p lies on at least one disk
D,: Iz - a,I < p, j = 1, 2, , k [Specht 12]. Hint: If fn(Z) = 0, IZI > P,
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then

Ifk(Z)I = IZk-n[fi,(Z) -fk(Z)]I < laol Pk.

28. The p zeros of smallest modulus. An important generalization of Cauchy's
Th. (27,1) is the one published in 1881 by Pellet [1].

PELLET'S THEOREM (Th. (28,1)). Given the polynomial

(28,1) f(z)=ao+a1z+...+aDzD+...+anzn, aD00.
If the polynomial

(28,2) FD(z) = laol + jail z + ... + laD-11 zP-1- laDI zD
+ laD+1I ZD+1 + ....+ l a.1 zn

has two positive zeros r and R, r < R, then f(z) has exactly p zeros in or on the
circle IzI < r and no zeros in the annular ring r < Izl < R.

Our proof, like Pellet's will be based upon Rouche's Theorem (Th. (1,3)).
Let us take a positive number p, r < p < R. In view of the facts that sg FD(z) =
sg FD(0) = 1 for 0 < z < r and sg FD(z) = sg FD(+ co) = 1 for R < z < co, it
follows that for e a sufficiently small positive number

(28,3) F,(p)<0, r+e<p<R-E.
This means according to eq. (28,2) that

v-1 n

(28,4) IaDl PD > I ail p' + I jail p'.
i=0 i=D+1

At this point we shall apply Rouche's Theorem to the polynomials

(28,5) P(z) _ a,zi, Q(z) = aDzD.
i=0, i # D

Since, on the circle lzl = p, we have from (28,5) and (28,4)

n

IP(z)I Iail p' < Ia,,l pD = IQ(z)l 0 0,
i=0, i # D

our conclusion is that, in the circle IzI < p, f (z) = P(z) + Q(z) has the same
number p of zeros as does Q(z). Since p is an arbitrary number such that r <
p < R, it follows that there are precisely p zeros in the region IzI < r and no
zeros in the region r < IzI < R.

Pellet's Theorem, the proof of which we have just completed, may be sup-
plemented by two theorems due to Walsh [10]. The first concerns the case that,
instead of the distinct zeros r and R, FD(z) has a real double zero r while the
second is a converse of Pellet's Theorem.
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THEOREM (28,2). If F9(z) has a double positive zero r, then f(z) has 6 (6 > 0)
double zeros on the circle IzI = r, p - b zeros inside and n - p - 6 zeros outside
this circle.

THEOREM (28,3). Let ao , al , , a,, be fixed coefficients and e0 , El , , e"
be arbitrary numbers with Ieol = ]Ell = = Ie"I = 1. Let p be any positive
real number with the two properties:

(1) p is not a zero of any polynomial

O(z) - aoeo + alelz -}- ... -r- a,e"z",

(2) every polynomial O(z) has p zeros (0 < p < n) in the circle IzI = p.
Then F9(z) has two positive zeros r and R, r < R, and r < p < R.

For the proof of Th. (28,2), the reader is referred to Walsh [10], but for the
proof of Th. (28,3) the reader should also consult Ostrowski [2].

Another set of bounds due to Specht [2] on the p absolutely largest zeros is
furnished by

THEOREM (28,4). If the zeros z; of a polynomial f(z) = z" + alzn-1 + + a"
are arranged so that

then

IZ1I>>=IZ21>...>IzDI> 1>1ZD+,I>...>>-Iz"L

Izizz ... z,l < N, Iz,,l < N11

where N2 1

PROOF. Let Sk = 1/Zk , k = 1, 2, , p, be the zeros of

g(z)=z"f(1/z)=1+alz+...+a"z", IzI<r=1-e<1
with a chosen so that g(re'O) 0 0 for 0 < 0 < 27r. Applying Jensen's Formula
[see ex. (16,15)] to.g(z), we have

log 2 ... Cpl =
(1/27)f2,,

1/21T)f z,,log

I g(re'B)l d0.
0

According to Polya-Szego [1, vol. I, p. 54]

2a

Ir"zlzz ... z,,l = exp [(1/2,r) log I g(reie)I dO
0

< (1/2rr) f2AIg(re'B)I d0.
0

Now by Schwarz' inequality

Ir°zlzz . zpl < (1/2ir)[ f zRdO N.
0 0

By allowing e -* 0 and hence r - 1, we obtain Th. (28,4).
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ExERcisEs. Prove the following.
1. Th. (27,1) is the limiting case of Th. (28,1) in which all a, , p < j < n, are

allowed to approach zero.
2. If then f(z), de-

fined by eq. (28,1), has exactly p zeros in the unit circle [Cohn I].
3. In Th. (28,4)

Iziz2... zkI < max (1 + Ak , la")

where Ak = max If =1 laY;l for 1 < ii < < ik < n [Mahler 1, Mirsky 2].
4. In Th. (28,4),

Iz1z2 ... Zml2 + IZm+lZm+2 ... Z"12 < N2

[Vicente Goncalves 1, Ostrowski 8].

5. Let with a0= 0, a,=0forr>n. Let
a0 MI a2

... am-1

ai ao ai ... am-2
N2

n a2 a1 a0 .. . OCm-3

I am-1 am-2 am-3 ... OC0 I

Then, in Th. (28,4), Iziz2 Zml < Nm/Nm_i < N 1"" [Specht 3].
6. At least k zeros of f(z) = 1k=0akzk, with aoa" 0` 0, n > 2, lie in IZI >

(1 + c1 + + c")-[11("-k)1 where ck = lak/aol [Zmorovic 1].

29. Refinement of the bounds. In secs. 27 and 28, we took into consideration
only the moduli of the coefficients of f(z) in constructing some bounds for the
zeros off (z). We shall now try to sharpen those bounds by taking into account
also the argument of the coefficients.

Let us divide the plane into 2p equal sectors Sk having their common vertex
at the origin and having the rays

B=(ao+kir)/p, k=1,2, ,2p,
as their bisectors. Let us denote by G(ro , r; p, a0) the boundary of the gear-
wheel shaped region formed by adding to the circular region Iz1 < r0 those
points of the annulus ro 5 IzI < r which lie in the odd numbered sectors Si ,

S3
1

, S2,,-i . (See Fig. (29,1).)
Following Lipka [6] in the case p = n and Marden [15] in the general case,

we now propose to establish a refinement of Pellet's Theorem (Th. (28,1)).

THEOREM (29,1). If the polynomial

(29,1) .f (z) = ao + a1z + .. . + a,z" + ... + a"z"

with

(29,2) aoala,a 0 0 and ao = arg (a0/a9)
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be such that the equation

(29,3) F,(z) ° laol + 1a11 z + ... + la9-11 z9-1 - 1a,1 z''
+la,+11z°+1+,...+la,, z" = 0

has two positive zeros r and R, r < R, then the equation

(29,4) I,(z) = lall + 1a21 z + ... + laq-11 zP-2 - iaDl z9-1
+ lag+11 ZD + ... + la,,l Zn-1 = 0

has two positive zeros ro and Ro with ro < r < R < Ro . Furthermore, the poly-
nomial f (z) has precisely p zeros in or on the curve G(ro , r; p, ao) and no zeros in
the annular region between the curves G(ro , r; p, ao) and G(R, Ro ; p, ao + ar).

y

Fiu. (29,1)

As to the existence of the roots ro and Ro , let us note that, according to (29,3)
and (29,4),

(29,5)

Thus,

F9(z) = laol + z'DD(z).

(29,6) (Dv(r) laollr, CD(R) laol/R.

Since
(D,(0) = lall > 0 and (DD(+ oo) > 0,

it, follows that (D9(z) = 0 has two roots ro and Ro such that 0 < ro < r < R < Ro
and that, for e > 0 and sufficiently small,

(29,7) c9(P) < 0 for ro + e < p < Ro - e.
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Let us now set z = pei° and

(29,8) ak/a2 = Akeaki, Ak > 0, k = 0, 1, 2, , n.

For the real part of [pPf(z)la2z2], we then have

(29,9) ¶[p2f(z)la2z2] _ A,p' cos [(p - j)0 - aj] + pP.
j=0.j#P

On the other hand, inequalities (28,4) and (29,7) may be written as

(29,10)
n

r+E<p5R-E,

(29,11)

pD > I Ajp',
j=0.7#P

n
pP> Ajp', ro+E<p<R0-E.

j=1, j # P

Substituting these into (29,9), we have

(29,12) 91[p"f(z)la,z3] > j Ajp'Sj ,
j=0,j#P

r+E<p<R-E,

(29,13) 91[p2f (z)l a3z"] > A0 cos [p0 - ao] + A, p'S, ,
j=1.j#P

ro+E<p5Ro-E,
where 6, = 1 + cos [(p -j)0 - aj]. It is clear that the right side of inequality
(29,12) is non-negative for all angles 0 and that the right side of inequality (29,13)
is non-negative for angles 0 in the ranges

-4r/2 + 27rk < p0 - ao _5 7r/2 + 27rk, k = 0, 1, , p - 1;

that is, in the ranges

(29,14) 10 - (ao + 2k7r)lp I < 7r/2p, k= 1, 2, , p,

constituting the even numbered sectors S2,.
Furthermore, we see thatf(z) has no zeros on the rays

0 = [2ao + (4k + 1)Ir]/2p, k = 0, 1, , p - 1,

inside the annular region ro < IzI < Ro
Let us now apply ex. (1,9), taking as C the curve G(ro + Ei , r + E2 ; P, ao)

where 0 < El < Ro - ro and 0 < E2 < R - r. Due to the fact that
.R[pvf (z)la,,z"] > 0 along this curve for any of the above values of El and E2 ,

we may infer that f (z) has the same number p of zeros as a3z2 inside the curve
G(ro, r; p, ao) and no zeros between curves G(ro, r; p, ao) and G(R, Ro ; p, ao + 9r).

Incidentally, if in ex. (1,9) we take as C any circle Izi = p, r < p < R, we
obtain another proof of Pellet's Theorem, since 9R[p1'f(z)la3zv] > 0 along this
circle.
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EXERCISES. Prove the following.
1. All the zeros off (z) = ao + a1z + + anz", an 54 0, lie in the gear-wheel

region G(ro , r; n, ao) where ao = arg (ao/an), r is the positive root of eq. (27,2)
and ro the positive root of the equation

fall + la2l z + ... + Ia"-1I Z"-2 - Ian1 z"-1 = 0 [Lipka 6].

2. If in Th. (29,1) f (z) = Io akzk with akaD 96 0 and arg ak/aD = Lx, is such
that FD(z) has two positive zeros r and R, r < R, then the polynomial

Wk(z) = FD(Z) - lakl Zk, k op,

has two positive zeros rk and Rk with rk < r < R < Rk, and the polynomialf(z)
has precisely p zeros in or on the curve G(rk , r; p - k, o(k) and no zeros between
the curves G(rk , r; p - k, ock) and G(R, Rk ; p - k, ak + Tr) [Marden 15].

3. If the power series f (z) = 1
o

a,z' with akaa 0 0, arg ak/ar = ak , and
with a radius of convergence p > 0 is such that each polynomial

F',")(Z) = laol + fall z + . . . + IaD-ll ZD_" - l al zD + . . .

l + Ia0+1I zD-f'1 + . . . + l aril z"

has a positive zero r(") < p, then the function FD(z) = limn=. FFn)(z) has a
positive zero r < p; the function

Tk(z) = FD(Z) - lakI zk, k op,
has a positive zero rk < r, and the function f(z) has p zeros in or on the curve
G(rk, r; p - k, ak) and, hence, in the curve G(rk , p; p - k, a),) [Marden 15].

30. Applications. As a first application of Th. (29,1), we shall establish a
result due to Marden [15].

THEOREM (30,1). Let

(30,1) f(z) = boe'00 + (b1 - bo)e'Plz + ....+ (bn_1 - b"_2)eiIn_Izn-1

- bn_lei#"zn,

where

Let

and let

(30,2)

bD-1 < bD-2 < ... < bo < 0 < bn_1 < b"_2 < ... < bD.

Po=flo - fD --'r

g(z) = bo + b1z + ... + "bn_lzn-1,

Let ro be the smaller positive root of the equation

(30,3) IDD(z) ° (bo - b1) + (b1 - b2)z + .. + (b.-2- bn_1)z"-2
+ bn_1zn-1 = 0.
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Then, if g(1) > 0, f (z) has exactly p zeros in the curve G(ro , 1; p, #o) and g(z)
hasp zeros in the curve G(ro , 1; p, vr). If g(1) < 0, f (z) has exactly p zeros in or
on the curve G(ro , 1; p, ,o) andg(z) hasp - 1 zeros in or on the curve G(ro , 1; p, 7r).

Insofar as it concerns the zeros of g(z), Th. (30,1) reduces to a result due to
Berwald [2] when the curve G(ro, 1; p, vr) is replaced by the circle IzI = 1.
Thus Th. (30,1) is a refinement of Berwald's result.

To prove this theorem, we make use of the fact that corresponding to the
f(z) in (30,1), the polynomial (29,3) is

(30,4) FF(z) = -bo + (bo - bj)z + . + (bv-2 - bv_1)zD-1 - (bv - bv-1)zv

+ (bv - b,,+1)zv+1 + ....+ (b,,,_2 - b"-1)z"-1 + bn_1z' .

This function may also be written as

(30,5) F,(z) = (z - 1)g(z).

Clearly F,(1) = 0. Since F,,(1 + 6) = Sg(1 + 6), FF(z) changes from - to +
or from + to - at z = 1 according as g(1) > 0 or g(l) < 0. In the notation
of Th. (29,1),

(30,6) ro<r<1=R<R0 if g(l) > 0;
(30,7) ro < r = 1 < R < Ro if g(1) < 0;

(30,8) ao=/o-flv-Ir=#o-
Since f (z) hasp zeros in or on the curve G(ro , r; p, 9o) according to Th. (29,1),
it hasp zeros in G(ro , 1; p, jo) if g(1) > 0 and p zeros in or on G(ro , 1; p, fo)
if g(1) < 0. This proves Th. (30,1) as far asf(z) is concerned.

To prove Th. (30,1) with respect to g(z), we need merely note that the zeros
of g(z) are those of F,(z) except for z = 1 and that, considered as a special case
of (30,1), F,,(z) has its flo = 7T and jv = -a and thus its oco = IT.

As our second application of Th. (29,1), we shall establish a result somewhat
more general than the one given in Marden [15].

THEOREM (30,2). Let A,, A1, ... , Ao-1 and u1 , lug , , .uQ_1 be any two sets
of positive numbers such that

a-1 a-1

(1/lu) = 1; yj Aj, j = 1, 2, ... , q - 1.
1=o 2=1

For the polynomial

(30,9) f (z)(Z) = ao + a1Z", + a2Z"$ + ... + a0z"a,

where
anal. a,00 and 0= no<n1<n2<<n.=n,
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let

(30,10) M = max [Ak Iakl/IaQI]11(--"k), k = 0, 1, , q - 1;
(30,11) Mo = max [,uk Iakl/Iaal]1/("-"k), k = 1, 2, , q - 1.

Then all the zeros off (z) lie in or on the gear-wheel curve G(M0 , M; n, oco) where

oc0 = arg (ao/ aa).

PROOF. From eqs. (30,10) and (30,11), it follows that 0 < M0 < M and
also that

Hence,

(30,12)

(30,13)

2k I akl < l a.1 M"-"k, Ilk lakl < Iaal M0-"k_

a-1 a-1

Iakl M"k (iRRk) l a0I M" = laal M",
k=0 k=0

a-1 a-1

laki Mok - I (1/uk) Iaal Mo = Iaal Mn
k=1 k=1

From an equality in (30,12), we would infer that M is the positive root r of the
equation

(30,14) laol + Ia1I z"1 ..+.....+
Iaa-1I z"4-11 - Iaal z" = 0,

whereas from an inequality in (30,12), we would infer that M > r. Similarly,
from an equality in (30,13) we would infer that M0 is the positive root r0 of the
equation

(30,15) fall z"' + Ia21 Z"$ + ... + laa-1l z"°-1- laal z" = 0,

whereas from an inequality in (30,13) we would infer that M0 > r0 . Since
we recognize eqs. (30,14) and (30,15) to be respectively F"(z) = 0 and "(z) = 0,
we conclude from Th. (29,1) that all the zeros off (z) lie in or on G(ro, r; n, oc0)
and therefore in or on G(MO, M; n, oc0), thus establishing Th. (30,2).

If in (30,9) each nk = 1 + k and if the curve G(MO, M; n, oc0) is replaced
by the circle Izl = M, then Th. (30,2) reduces to a result of Fujiwara [3]. Thus
Th. (30,2) is both a generalization and refinement of Fujiwara's result.

Of special interest, are the following two sets of the A,, and the u; :

(30,16)
A,=q, j=0,1,...,q-1;

k=1,2,...,q-1;

a-1

(30,17)

A, =I laYl/la;l, j = 0, 1, ... , q - 1;
V=0

a-1

Ilk = laYl/lakl, k = 1, 2, , q - 1.
V=1

On use of the set (30,16), we deduce at once from Th. (30,2) the following
result.
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COROLLARY (30,2a). For the polynomial f (z) in eq. (30,9), let

M = max [q
and

Mo = max [(q - 1) lakl/laQl]1/(n-nk)' k=1,2,...,q-1.
Then all the zeros of f (z) lie in or on the curve G(Mo, M; n, ao) where
ao = arg (ao/aa)

On use of the set (30,17), we see on setting

(30,18)

that

(30,19)

We thereby derive

a-1 a-i

P = la,l/laal, Po =I Ia,l/Iaal,
,=1

M = max pi/(n-nk) = max (p, p'/n)

MO = max p1/(n-nk) = max (Po, piicn-ni)).
o

COROLLARY (30,2b). For the polynomial f(z) of eq. (30,9), let p and po be
computed from eqs. (30,18) and let

K = max (p pain) K = max (po, onn-nl)

Then all the zeros off (z) lie in or on the curve G(KO , K; n, ao) where ao = arg a0/a, .

Various other corollaries may be deduced from Th. (30,2) on making other
special choices of the A; and ,u; , as will be seen in the exercises below.

One of the most important of these [see ex. (30,1)] is the following:

ENESTROM-KAKEYA THEOREM. (Th. (30,3)). Given the real polynomial f(z) _
ao+a1z+...+anzn. Ifao>a1>...>an>0,thenf(z)0OforIzI<1.

Furthermore, we may extend the device used in eq. (30,5) so as to describe the
location of the zeros of a polynomial

(30,20) f(z) = ao + a1z + + anz", aO > 0,

in terms of various linear combinations of the a; .

Thus, if we multiply f (z) by

(30,21) A(z) = AO + A,z + ... + Amzm, 1 < m < n,

where AO > 0 and Am 54 0, the product

(30,22) F(z) = A(z)f(z) = A0 + A1z + ... + A m+nzm+n

has coefficients

(30,23) Ak = AOak + .leak-1 + ... + Akao, k = 0, 1, ... , m + n,
where a;=0forj>nandA;=Oforj>m.
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Since

m+n

IF(z)I > Aoao - IAkI Izlk,
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k=1

no zero off (z) lies on the disk IzI < R, where R is the positive root of the equation

M+n
(30,24) 2oao - I JAk1 zk = 0.

k=1

This method is illustrated in some exercises given below.

EXERCISES. Prove the following.
1. Enestrom-Kakeya Theorem. (Th. (30,3)) [Enestrom 1, Kakeya 1, Hurwitz 3].

Hint: Use Th. (30,1). Alternatively, construct polygon Z0Z1 -
-
. Zn+1 with

Zo = 0, Zk+1 = Zk + akrketko. Let Sk consist of all points from which segment
ZkZk+1 subtends an angle of at least 0/2. Show Sk - Sk_1 and Zo 0 Sk for all

k > 0 [Tomic 1].
2. All the zeros of the polynomial f(z) = ao + a1z + + anzn having real

positive coefficients a, lie in ring p1 < IzI < p2 where Pl = min (aklak+l), P2 =
max (ak/ak+1) for k = 0, 1, , n - 1 [Kakeya 1, Hayashi 1, Hurwitz 3]. Hint:
Apply Th. (30,3) to g1(z) =f(P1z), g2(z) = znf(P2/z)

3. The real polynomial

h(z) = ao + a1z + ..+ akZk - ak+lzk+l azn, a, > 0, all j,

has no non-real zeros in the annular ring Pl < Izl < p2 where p, = max (a;/a;+1),
How

many zeros does f (z) have in the circle IzI < p1 [Hayashi 2, Hurwitz 3] ?
4. All the zeros of f (z) = ao + a1z + + anzn lie in or on the curve

G(MO , M; n, oco) where ao = arg (ao/an),

M = max plan-k/anll/k, k= 1,2,---,n,
Mo = max Po Ian-k/anlIlk, k = 1, 2, . , n - 1,

and p (0 1) and po (0 1) are the positive roots of the equations

Pn+l-2p"+ 1 = 0, po -2po-1+ 1 = 0
Hint: Choose .1k = pk and Ilk = po and apply Th. (30,2).

5. All the zeros of f (z) = ao + a1z + + anzn lie in or on the curve
G(MQ , M; n, o:,) where a.o = arg (ao/an) and where

M = 2 max {Ian-1/anl, Ian-2/an11/2, ... , lal/an111(+'-1)'

lao/2an11/n},

Mo = 2 max {Ian-1/ant, Ian-2/an1112, ... ,
l

a2/an11/(n-2),
lal/2an11/('n-1)}.

Hint: In Th. (30,2), choose Ak = 2k, k = 1, 2, , n - 1; 7n = 2n-1; ,uk = 2k,
k= 1,2,...,n-2; ,un_1=2n-2.

6. All the zeros of f(z) = ao + a1z + + anzn lie in the circle IzI < r,
r = max (Iaol/1a11, 2 l aklak+11), k = 1 , 2, , n - 1. Hint: Show that
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lax+1J rk+1 , 2 lakl rk for k > 1; Jail r > la0l and thus lanrnl laol + - +
Ian-11

rn-1 Remark: The limit is attained by f(z) = 2 + z + z2 + +
Zn-1 - zn [Kojima 1, 2].

7. Let A, be positive numbers such that Y".1 (1/A) = 1. If there exists an
r > 0 such that

max [A; lao_;/a,l]" < r :5 min [A,-t+,, la,la,kl] Ilk

for j = 1, 2, , p and k = 1, 2, , n - p, then there are p zeros off (z) in
Jzl <r.

8. All the zeros of the polynomial f (z) = ao + a1z + + a,n_1zn-1 + zn lie

in the circle Izl 5 max (L, Ll/(n+1)), where L is the length of the polygonal line
joining in succession the points 0, ao, a1, , a,,-,, 1. Hint: Apply Cor.
(30,2b) to g(z) = (1 - z)f(z) [Montel 2, Marty 1].

9. If a, > 0, j = 0, 1, , n, a_1 = an+1 = 0, and if pl and p2 can be found
(P2>Pl>0) so that, for j = 0, 1, , n, 0<p5N; b,=P1P2a,+1-
(P1 + P2)a1 + a,,, > 0 for j 0 p and b9 < 0, then p zeros of f in eq. (28,1)
lie in lzl < pl and n -p zeros lie in Izl > p,. Hint: Apply Th. (28,1) to
(P2 - z)(P1 - z) f (z) [Egervary 4].

10. The real polynomial f (z) = ao + a1z + + a ,Zn, ao > a1 > ? an ,
has a non-real zero z1 of modulus one if and only if the a; fall into sets of m
successive equal coefficients; that is, defining a, = 0 for j > n, we have

(30,25) a0 = a1 = ... = am-1 > am = am+1 = . = a2m-1

Hint: Obviously, z1 9& 1 and g(z1) = (1 - z1) f(z1) = 0;

a0 =
n+1

k
L, (ak-1 - ak)zI

> a2m=a2m+1= '

n+``1

< L. (ak-1 - ak) = a0 ,

unless all the terms (ak_1 - ak)zl are real and positive. Let m be the least
number for which zl = 1. For the converse, note that eq. (30,25) implies that
I + z + z2 + + zm-1 is a factor of f(z) [Hurwitz 3, Kempner 1]. Alter-
natively, show for r = 1 the polygonal line of ex. (30,1) must reduce to one or
more regular polygons if z = e'o is to be a zero off (z) [Tomic 1].

11. All the zeros of the polynomial

f(z) = ao + a1zn1 + ... + akznk,

0 = i0 <1 < <n2, lie on the disk jz( r where

all a, 54 0,

r = max [I ao/a1I ml, l2a,1as+11
m;], m, = (n, - nf_1)-1, j = 2, 3, ... , k - 1.

[Kojima 1, 2.] Hint:

Ia,+1I r"- > 2 Ia,I rnf, Ia1l rnl ? laol

Thus lakl rnk ? 1 lafl r'. Alternatively, set all r, = 1 in ex. (30,12).
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12. Let ro = 0, rk = 1; rl , , rk_1 be arbitrary positive constants. Then in
ex. (30,11) f has all its zeros in the disk

jzI 5 M = max {[(1 + r,-1)/rj] Jaj/aj+1l}m,, j = 1, 2, ...
, k.

[Cowling-Thron 1.] Hint: Let vk = 1; v7_1 = 1 + (aj/a9_1) z"f-"i-lv, for
IfIzI>M,show

13. If in eq. (30,20) f (z) is a real polynomial with bk = k=1 ak_j > 0, k = 1,
2, , n, m ? 1, no zeros of f(z) lie in the disk Izi < r where r is the positive
zero of

where
O(z) = 1 - cz(1 + z + . + z""-1)

c = max (ak/bk), k = 1, 2, , n

[Heinhold 1]. Hint: In eqs. (30,21)-(30,24) set Ao = 1 and A, = -c for j = 1,
2, , m and note that eq. (30,24) has one positive root which must be r.

14. If in eq. (30,20) f(z) is a real polynomial, then all its zeros lie in the annulus
M'< Izi 5 M, where M and M' are respectively the maximum and minimum
values of the fraction

Aoak + Alak-2Q + ... + Anak-205

A0ak+1 + Alak-2p+1 + * , , + A,,ak-2DC+1

for k = 0, 1, , n + 2pq - 1, where q and p are positive integers and the
positive parameters A., (s = 1, 2, , p) are chosen so as to make all the denomin-
ators in the fractions positive [Heigl 1].

15. Given the operators E, T and V2 such that Eak = ak, Tax = ak+1 and

00V2 = (E - T-')* = I (-1)"4C(oc, m)T-'".
ra=0

If ao>O,ak?Oand Vaak50for for agiven a,0<a51,
then f(z) _ 'Jk=o akzk 0 0 for Izi < I [Cargo-Shisha 1]. Hint: Show that
(cf. ex. (30,1))

00

SR{(1 - z)af(z)} = J(V°ak)SR(zk - 1) > 0.
k=1

16. Given the operators E, T, and Va such that

Eak, ... ky = ak, ... ky , Tjak1 ... k,, = ak, ... k1-1kl+lki+l ... k9 ,

and Va = (pE - J 7;1)a. Let 0 < a 5 1, if ak, ... k, 0 and V2akl...k <= 0
fork,=0, Then
F(zl , ... , z") = Gky 0 ... Lkl-0 ak, ...,, (Z1)k' . (Z ,)kv 0 0 if 1z51 < 1 for j = 1,
2, , p [Mond-Shisha 1]. L

31. Matrix methods. Unless otherwise specified, each matrix A = (ai,) in the
sequel is a n x n square matrix. Let us recall that, if E = (Si,), where 8i, = 0 or
I according as i 0 j or i = j, is the identity matrix, the determinant det (A - zE)
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of the matrix A - zE is called the characteristic polynomial of A and its zeros are
called the characteristic roots (abbreviated "c.r.") of A.

Given an nth degree polynomial

(31,1) f(z) = zn + alzn-1 + ... + a,n

we may write f in the fo rm

I-z 1 0 .. 0 0

0 -z 1 ... 0 0
(31,2) f(z) = (-1)n

0 0 0 -z 1

-an -an_1 -an_2 -a2 -(a1 + z)

Therefore f is the characteristic polynomial of the n x n matrix

0 1 0 ... 0 0

0 0 1 0 0

(31,3) F=
0 0 0 0 1

L-an -an_1 -an_2 ... -a2 -a1

called the companion matrix of f. We may therefore use the various known
results on the c.r. of matrices as an aid to determining the zeros of a given
polynomial (and vice-versa).

A number of these results are consequences of the following theorem of Hada-
mard [See Levy 2, Desplanques 1, Parodi 11.

THEOREM (31,1). In then x n matrix A = (ai;), det A : 0 if

(31,4) Iaiil > Pi = Iai5I, i = 1, 2, - , n.

PROOF. If on the contrary det A = 0, then the system of linear equations

(31,5) ai;x; = 0, i = 1, 2, , n,
i=1

has a non-trivial solution {xk} of which let xm be the xk of the maximum modulus.
Then from the mth equation in (31,5)

Iammxml s 1 Iam,I Ix,l < P. Ixml

Since xm 0 0, ineq. (31,4) is contradicted. Hence det A 96 0.
On applying Th. (31,1) to matrix A - zE, we obtain immediately a result due

to Gerchgorin [1].
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THEOREM (31,2). The c.r. of the matrix A lie in the union of the disks

Pi : Iz - a=il :5 Pi,
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i= 1,2,---,n.

As to the number of c.r. in a given Pk, we have the following result due to
A. Brauer [2].

THEOREM (31,3). If in Th. (31,2) for a given in

(31,6) l a,t - amml > Pt + P.

for all j -A m, then one and only one c.r. lies in the disk Pm .

To prove this theorem, we introduce the n x n matrix B(t) = (bit) where
bmm = amm ; bit = ait for i # m; and bmt = tart , the parameter t being real
with 0 < t < 1. All the c.r. of B(t) lie on the union K of the disks Pi, i 0 in,
and on the disk

Yr(t) Iz - amml < t I Iamtl = tPm

which clearly is contained in Fn = y.(1). By (31,6), P,n n K = 0. Hence,
as t varies continuously from 1 to 0, no c.r. of B(t) can enter or leave r,,,,. But
the c.r. for B(O) are am,n and the c.r. of an (n - 1) x (n - 1) matrix whose c.r.
lie in K. Since B(0) has only one c.r. in Pm , we infer by continuity that also
B(1) = A has exactly one c.r. in rm. [Cf. Th. (1,4).]

Ths. (31,1), (31,2) and (31,3) remain valid if in (31,4) the Pi are replaced by

n

Qi = latil
t=1, t # i

that is, if rows and columns are interchanged. Th. (31,1) remains valid if
Pi < laiil for all i and Pi < laiil for at least one i provided A is irreducible; that
is, provided A cannot, by applying the same permutation to the rows or columns,
be reduced to the form

All A12

O A221

where A11 and A22 are square matrices and 0 is the zero matrix. It remains valid
also [Ostrowski 3] when in (31,4) the Pi are replaced by P2Q2_' for real s, 0 < s < 1.

Another valuable result is the following one given in Perron [1].

THEOREM (31,4). If A = (Al , A2 , , An) is an arbitrary set of positive numbers,
then all the c.r. of the matrix A = (ait) lie on the disk IzI < M. where

(31,7) Mx = max (At/Ai) 1a231.
15i;9 n j=1
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PROOF. For any c.r. p of A the system of equations

(31,8) atixj = Pxi , i= 1,2,...,n.

has a non-trivial solution (x1 , x2 , . , x,,,). Let us set x, = Ay, and denote by
ym they; of maximum modulus. Then, using the mth equation in (31,8) we infer
that

I PAmYmI lamil A; IYjI (iiam,i 2,) lYmI
i=1 l=1

Hence, IPI 5 MI.
Th. (31,4) is also valid when A is a set of non-negative numbers A, not all zero,

provided we redefine M. as

(31,7)' M,A = inf
it

> lai,l A,, 1 < i < n}.
111 ;=i 1

This definition reduces to (31,7) when all A, > 0. Th. (31,4) is also valid if we
interchange i and j in (31,7).

From Th. (31,4) it follows that all the characteristic roots lie in the disk
IzI 5 R where R = min Mx for all sets A of non-negative numbers. If all a,, > 0,
then R is a c.r. of A as is stated in the following result due to Perron and Frobenius
for the proof of which we refer to Gantmacher [1, pp. 66-69].

THEOREM (31,5). If all elements ai; of an irreducible matrix A are non-negative,
then R = min Mx is a simple c.r. of A and all c.r. of A lie on the disk IzI 5 R.
Furthermore, if A has exactly p characteristic roots (p < n) on the circle IzI = R,
then the set of all c.r. is invariant under rotations of 21T/p about the origin.

A less general, but easier to prove result than Th. (31,5) is the following:

THEOREM (31,5)'. If A = (ai;) is a positive matrix (i.e., a,, > 0, all i, j), then
A has a positive c.r. A, and all its c.r. satisfy IzI 5 A,.

Our first proof (cf. [Ullman 1]) will be based upon a theorem of Pringsheim
[Hille 1, p. 133] : If the series Yo am. > 0 for n > N 2: 0, has R > 0 as
radius of convergence, then it converges for IzI < R to a function which has z = R
as a singular point.

Denoting the c.r. of A by Al i A2 , ... , A,,, and max (IA1I, . . , JAJ) by A,, we
write

ao

AA) = (A - A;)-1 = n A-' +
.

mkA-k_ 1.

1=1 k=1

Here m, = Y 1 A; = trace Ak > 0 since all a,, > 0. The infinite series converges
to f(A) for all IAl > Ao . This means that A0 is a singularity of f(A), and that
Ao = A, for some j, as was to be proved.
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Another proof, due to Ostrowski [14], introduces p the c.r. of maximal modulus,
V = (x1, x2 , . , x,) the corresponding characteristic vector and the vector
V O = (IxjI, Ix2l, - - -I IxJ). If all non-vanishing x, did not have the same argu-
ment, we learn from eq. (31,8) that

IPI Ixil <Iai, Ix,I,
,-1

written symbolically as V o < I P1-1A V, . Thus, for a sufficiently small E > 0 and an
arbitrary positive integer m

Vo<(IPI+E)-1AVo< (IPI+E)-mAm Vo.

It follows that [(IPI + E)-1 A]'"+9 0 as m -- oo, which implies that at least one
c.r. of matrix [(Ipl + E)-1 A] is greater or equal to one in modulus. As these c.r.
are however A;/(IPI + E) and as p = max IAII, we are led to a contradiction.
Therefore all the x, have the same argument and in particular can be taken as
positive real. From eq. (31,8) we now infer that p > 0, which establishes
Th. (31,5)'.

We also state a comparison theorem due to Wielandt [1] for the proof of which
we refer to Gantmacher [1, pp. 69-71].

THEOREM (31,6). If the matrix A and the number R satisfy the hypotheses of
Th. (31,5) and if in matrix C = (ci,)

ai,, i,j=1,2,...,n,
then any c.r. y of C satisfies the inequality I yl < R. The equality sign holds only
when there exists a matrix D = (f Sii) such that 8,, = 1 for all j, Si; = 0 for all
i j, and

C = (y/R) DAD-1.

APPLICATIONS. Let us apply the above theorems to the matrix F in (31,3) and
thus obtain some results on the location of the zeros of the polynomial f given by
(31,2).

From Th. (31,2) thus follows [Parodi 1]:

THEOREM (31,7). The zeros of the polynomial f lie in the union of the disks

n

Izl < 1, Iz + a1I : Ia,i
i=2

From Th. (31,3) follows

THEOREM (31,8). If
n

la11 > 1 +1 Ia,I
,=2



144 THE ZEROS AS FUNCTIONS OF ALL THE COEFFICIENTS [7]

then one and only one zero off lies on the disk

n

Iz + ail < la,l
1=2

We now apply Th. (31,4) [Wilf 2, Bell 1] to the transpose of matrix mod F = F+
where

0 1 0 0 00 0 1 ::: 0 0
(31,9) F+ _

0 0 0 0 1

l and Ian-1I Ian-21 ... 1a21 jail

We are led at once to a result due to Ballieu [2] :

THEOREM (31,9). For any set A = (A7 , A2 , , An) of positive A, , let Ao = 0
and

(31,10) MA = max [(Ak + A. Ian-kl)/2k+1]
05k;5n-1

Then all the zeros off lie on the disk IzI < MZ .

In this theorem we may require A; merely to be non-negative if we redefine
Mx as

(31,10') Mx=inf{,u: uAk+1>Ak+An
Among the important special cases of Th. (31,9) is Cauchy's Th. (27,2) obtained

by setting A7 = Al = . . . = An = 1 and Kojima's bound in ex. (30,6) obtained by
setting At = An lan_kI, k = 1, 2, , n.

Also it is to be noted that F+ is the companion matrix for the polynomial
zn _ Jail Zn-1 - ... - lanl,

so that Ths. (31,5) and (31,6) yield at once Cauchy's bound given in Th. (27,1).
Many additional applications are possible if we make use of the fact that the

matrix C-1AC has the same c.r. as A for any non-singular matrix C. This fact
follows from the relation

C-1AC - zE = C-1(A - zE)C.

For further theory and applications we refer the reader to Parodi [1] and Marcus-
Ming [1].

EXERCISES. Prove the following.
1. All the zeros of the polynomial f in (31,1) lie in the union of the disks

Ia1 + zl < 1; IzI <_ 1 + Jail, i = 2, ... , n - 1; IzI < Janl

Hint: Apply Th. (31,2) with Pi replaced by the Qd.
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2. If Ak = p"-k, p = max l a;/cu;I1/' and each w, > 0 with w1 + w2 + +
co,, = 1, then M., in (31,7) reduces essentially to M in (30,10).

3. The zeros of the Polynomial f in (31,1) lie on the disk K:

Iz + (a1/2)I < la,/21 + Ia2I" + Ia31,s + ... + Ia"I1/"
[Walsh 7, Bell 1]. Hint: Use the diagonal matrix A = (2,d,,) to form G =
A-1FA where F is given by (31,3). Apply Th. (31,2) and show Pi K for all i.

4. Let A* be the transpose of the conjugate of a given matrix A = (ai;). All
the c.r. of A lie in the annular region m < Iz12 < M where m and Mare respectively
the smallest and largest c.r. of the matrix AA* [Browne 1, Parodi 1].

5. All the zeros of f in (31,1) lie in the annular region m < IzI < M where
m2 = max {0, min15,5 _1 [1 - Ia;I, Ia"12]} and M2 = max {1 + ]all, la"12 +
2 , Ia,12}. Hint: Apply ex. (31,4) to matrix Fin (31,3).

6. In the notation of Ths. (31,1) and (31,2) each c.r. of matrix A lies in or on at
least one of the Cassini ovals Ki;

Iz - affil <PiP;, i,j=1,2,...,n
[Brauer 2; 11]. Hint: If w is a c.r., the system

(co - akk)xk = akixj (k = 1, 2, ... ,
n)

has a non-trivial solution {x,}. Multiply corresponding sides of the pth and qth
equations where Ix,,I > Ixg1 > max Ix,I (j 0 p, j 0 q) and use reasoning similar to
that in the proof of Th. (31,1).

7. In ex. (31,6) let Gi; be the simply connected region bounded by the part of
Ki; that encloses focus aii and let Hi = UJ 1 G23 . If Hi n Hk = 0 for k = 1,
2, , i - 1, i + 1, , n, then Hi contains one and only one c.r. of A
[Brauer 6; 11]. Hint: Use a proof similar to that for Th. (31,3).

8. In the notation of ex. (31,6), Th. (31,5) may be generalized to read that all
of the c.r. of matrix A are interior to the Cassini oval

Iz - a,,I Iz - aggl < (R-aDD)(R-a,Q)
where I a,,I < Iaoo1 :5 min Iaiil, i 0 p, i 0 q, p s q [Brauer 9; 11].

9. Th. (31,5)' holds if all a2, > 0 provided that for each k there exists at least one
non-vanishing product of the form a,192a,,,3 ... afk,k+1 [Ullman 1]. Hint: Show
Mk > 0 for each k in the first proof of Th. (31,5)'.

10. In the notation of Th. (31,5)', the n - 1 c.r. A. 0 Ao satisfy the inequality
IA;I < Ao[(M2 - m2)/(M2 + m2)] where M = max ail, m = min ail ; 1, j = 1,
2, , n. [Ostrowski 13].

11. In the notation of Th. (31,1), let m = min Pi and M = max Pi, i = 1,
2, , n. For every given e > 0, there exists a matrix which is similar to A and for
which the corresponding quantities m* and M* satisfy the relation M* - m* < e
[Brauer 9; 11]. Hint: Multiplying all elements in certain rows by a suitable
constant c s 0 and dividing corresponding columns by c, is a transformation
which decerases the difference M - m.
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12. Let Al , Aa , , A,, be the c.r. of a positive nth order matrix A. For every
positive e, there exists a positive generalized stochastic nth order matrix S(e)
whose c.r. wl , w2 , , w,, can be so ordered that Ico, - A;I < e for j = 1,
2, , n [Brauer 9; 11]. Hint: A matrix S = (se,) is said to be generalized
stochastic if 1 si; = s for'i = 1, 2, , n; stochastic if s = 1. Apply ex.
(31,11).



CHAPTER VIII

BOUNDS FOR p ZEROS AS FUNCTIONS OF p + 1 COEFFICIENTS

32. Construction of bounds. In the preceding chapter we obtained several
bounds which were valid either for all zeros or for p, p < n, of the zeros of the
polynomial

(32,1) f(z) = ao + a1z + ... +

In either case the bounds were expressed as functions of all the coefficients.
While clearly the bounds for the moduli of all n zeros should involve all n + 1 a,,
it is natural to ask whether there exist for the p zeros of smallest modulus, p < n,
some bounds which would be independent of certain a, .

This question was first raised in 1906-7 by Landau in connection with his
study of the Picard Theorem. In [1] and [2] Landau proved that every trinomial

ao + alz + a1a,,, 0 0, n > 2,

has at least one zero in the circle lzl < 2 la/all and that every quadrinomial

ao + alz + a,mz'n + aj", alama,, 0 0, 2 m < n,

has at least one zero in the circle Izl < (17/3) la,/a11 These two polynomials
are of the lacunary type

ao + a1z + . . . + ayzv + a,,,,z"' + . . . + a,, kZ"k,

with a0a,., . a,,,, 0 0 and 1 < p < n1 < n2 < < nk, which will be treated in
secs. 34 and 35. In those sections we shall establish the existence of a circle
Izl = R(ao , a1, a,, , k) which contains at least p zeros of every such poly-
nomial.

In order to gain some insight into the problem under discussion, let us first
prove that if in eq. (32,1) one of the coefficients ao, a1 , , a2,_1 is arbitrary,
then at least n - p + I zeros of polynomial (32,1) may be made arbitrarily
large in modulus. Let us select p as an arbitrary, but fixed, positive number.
If an lakl, 0 < k < p - 1, is arbitrary, then we may choose that Iakl so large
that irrespective of the values of the other Ia;I, j 0 k,

k-1

lakl pk > I l a,i p' + I l a,l p'.
f=0 f=k+1

It follows from Pellet's Theorem (Th. (28,1)) that n - k zeros off (z) exceed p in
modulus. That is, at least n - p + 1 zeros off(z) surpass p in modulus.

Let us also show that, even though ao , a1 , , ap-1 are all fixed, n - p + 1
zeros of polynomial (32,1) may be made arbitrarily large if all the remaining

147
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coefficients a, , j > p, are arbitrary. This becomes clear if we consider the
reciprocal of polynomial f

F(z) = znf(l/z) = a Zn + alzn-1 + ... + a,-1Zn-'+1 + a2zn-p + ... + an .

If for all j ? p we choose the Ia;I sufficiently small, then by Th. (1,4) the zeros
of F(z) may be brought as close as desired to the zeros of

Fo(z) = aozn + alzn-1 + ... + a9_lzn-v+1

and thus at least n - p + 1 zeros of F(z) may be made to lie in an arbitrarily
small circle IzI = 1/p. That is, at least n - p + 1 zeros of f(z) may be made
to lie outside an arbitrarily large circle IzI = p.

Finally, let us use the reasoning in Montel [3] to show that, if the coefficients
ao , a1 i , a9_1 and a,+,, for some h, 0 < h < n - p, are fixed with a9.,_,d 0 0,
then p zeros of f (z) are bounded. Were the contrary true, we could select a
monotonically increasing sequence of positive numbers p,,,, , with pm - oo as
m -* oo, and corresponding to each pm , we could select a polynomial

fm(z) _ a;m)z5, having a;m) = a,. for j 0, 1, , p - l,p + h
j=o

and having at most p - 1 zeros in the circle Izi < pm . Defining Am as
max Id )I for j = 0, 1, , n, we distinguish two cases according as Am does or
does not remain bounded as m --* oo. In the first case, the fm form a normal,
compact family of functions and so we may select a subsequence of the fm ap-
proaching uniformly as limit a polynominal of degree at least p + h. In
the second case, we may introduce the normal, compact family of polynomials
gm(z) = fm(z)/Am , which have the same zeros as the fm(z) and in which for m
sufficiently large the coefficient of the maximum modulus one is that of a term of
degree at least p. Thus we may select a subsequence of the gm approaching uni-
formly as limit a polynomial p of degree at least p. However, we learn from
Hurwitz' Theorem (Th. (1,5)) that neither 0 nor y' can have more than p - 1
zeros and hence neither can have a degree greater than p - 1. Thus, the
assumption that p zeros of f(z) are not bounded has led to a contradiction and
must therefore be false.

Our first bounds upon the p zeros of smallest modulus as functions of the first
p + 1 coefficients will be constructed by modification of the previously developed
bounds upon all n zeros of f (z) as functions of all n + 1 coefficients a,. The
method to be used is one due to Montel [3].

Let us label the zeros a, of an nth degree polynomial

(32,1) f (z) = ao + alz + ... + anzn

in the order of decreasing modulus :

(32,2) I0C1I > Ia2I > ... > Ianl
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Then, in or on the circle IZI < rD = lan_D+ll lie the p smallest (in modulus)
zeros of (j = n - p + 1, n - p + 2, , n) of f (z). These of are the zeros
of the polynomial

(32,3) .fn-'(Z) =/ .f (Z) = G a;n-v) Z,
\a1 - Z)(a2 - Z) ... (OCn-D - Z) i=0

It is to fn_D(z) that we now shall apply the results of the previous chapter, so
as to obtain some estimates on the size of rD .

For this purpose, we need first to derive expressions for the coefficients a(n-D)
in terms of the a; and the a3 . Let us note that for IzI < rD < la,l, j = 1,2,...,n-p,

n-2) Z Y1 ft-2) ao

(32,4) II (1 _
(zjc- _ Skzk

,=1 oc; ,=1 k=0 a; k=O

where Sk is the sum of all possible products of total degree k formed from the
qualities (1/oc,). Thus,

So = 1, S1 = I (1/«,1),

1 1S2= + ,

a,1 0,10,2

52= 1 1 1 I-
1 +- 1

0C a,la,2 a,1 a,2 a,lai2a,8

where j1 = 1, 2, , n -p, but jt+1 = j2 + 1, ji + 2, , n -p for i = 1,
2,---.

Using this notation, we express eq. (32,3) as

1

(32,5) f-D(Z) _ (Ia,z2)(ISkzk).
OC10C2 ... an_, ,=o k=0

Since fn_,,(z) is a polynomial of degree p, the series expansion of (32,5) converges
to fn_D(z) for all z and the combined coefficient of each term in zk, k > p, is zero.
That is to say,{1 D
(32,6) Jn-D(Z) = {L. (ak + ak_1S1 + ... + aoSk)zk

OC10C2 ... on-D k=0

The general coefficient in (32,3) according to (32,6) is
k`

(32,7) akn-DJ = 1
Lr ak-,S,o1a2 ... OCn_D ,=o

For k = p, we obtain from eq. (32,3) the simpler formula

(32,8)

Thus we have

(32,9)
k

akn-D)I (rD)-n+DI
lak-,I IS1I

,=0
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In order to find a bound for SkI, let us observe that Sk is a kth degree,
symmetric function of the a, 1, j = 1, 2, , n - p, with I a;l > r9 . For the
values al = as = = an-9 = 1, eq. (32,4) becomes

(32,10) (1 - z)-n+v _ C(n - p + k - 1, k)zk.
0

Hence C(n - p + k - 1, k) is the number of terms in Sk . Since each term
is of modulus not greater than 1/r9 ,

(32,11) Ski < C(n - p + k - 1, k)r;k.

It now follows from ineq. (32,9) that

k

(32,12) lake-2))j < (rD-n+v C(n - p + j - 1, j) Iak_,I
0

As a first application of this formula, let us set

(32,13) MD = max la;/anl, j = 0, 1, , p - 1.

From ineq. (32,12) we then obtain
k

(32,14) lk-D)I < M9 IanI r.n+v I C(n - p + j - 1, j)r;5, k < p - 1.
0

If rD > 1, we may replace the right side of (32,14) by a convergent infinite series
which may be evaluated by setting z = 1/r9 in eq. (32,10). Thus,

(32,15) Iakn-')I < M, anl rDn+D(1 - rql)-n+v

On use of eq. (32,8), we may write ineq. (32,15) as

(32,16) Iakn-z))I < M,
I

aDn-D)I (rv - 1)-n+D.

This inequality permits the immediate application of/Th. (27,2) to the polynomial

Jn-D(z) = ak-O) + a(n-9)z + + a(n-D)z"

By Th. (27,2), the zeros of fn_9(z) all lie in the circle

IzI < 1 + max [Iakn-2))
I/Ia9n-9)I], k = 0, 1, ... ,

p - 1;
that is, in the circle

(32,17) IzI < 1 + M9(r, - 1)-n+2).

Among these zeros is an_9+1 whose modulus is r9 . This means that

(32,18)

i.e., that

(32,19)

r9 < 1 + M9(r9 - 1)-n+D ,

(r9 - 1)n-9+1 < M9
r9 < 1 +



[§33] FURTHER BOUNDS 151

We have proved (32,19) on the assumption that rD > 1. Since (32,19) is
surely satisfied when rD 5 1, we have established a result of Montel [3] and
[5], as follows.

THEOREM (32,1). At least p zeros of the polynomial f(z) = ao + alz + +
azn lie in the circle

(32,20) Izi < 1 + max I aflanlll(n-D+1)' j=0, 1, ... , p - 1.

EXERCISES. Prove the following.
1. If the coefficients a, off(z) satisfy p linear equations,

Ajoao+A,1a1+...+Ainan=0, j = 0, 1, ...,p- 1, p5n,

v. `H a nonvanishing determinant IA;kl, j, k = 0, 1, , p - 1, then f(z) has
p zeros in a circle IzI = R, where R is a function only of the A;k [Dieudonne 11,
p. 22].

2. Let f (Z) = Io akzk, g(z) = Io bkzk and F(z) = f (z)/g(z). If f (z) hasp
zeros in the circle IzI 5 R = R(ao , a1, , am) for fixed p and m, 0 5 p 5
m and 0 5 m 5 n, and for arbitrary a,, j > m, and if bk = Aak for 0 5 k 5 m,
then F(z) assumes every value Z at least p times in IzI 5 R [Nagy 17]. Hint:
Study the zeros of h(z) = f (z) - Zg(z).

3. Th. (32,1) is a generalization of Th. (27,2).
4. If ao 96 0, the polynomial f (z) has at most p zeros in the circle

IzI 5 [1 + max (Ian-;I/Ia0U1/(D+1)]-1, j = 0, 1, ...., n -p -1.

Hint: Apply Th. (32,1) to F(z) = znf(llz).
5. If q is an arbitrary positive integer, at least p zeros off (z) lie in the circle

D-1 1/p

IzI <_ 1 + la,lanI° , k = 0, 1, ... , p - 1.
9=0

Hint: Apply the Holder Inequality (27,10) to ineq. (32,12).
6. Let Pk(z) denote a polynomial of degree pk having all its zeros in the disk

IzI < rk , let p' < p2 < ... < Pm and letfm(z) = P1(z) + a2P2(z) + ... +amPm(z)
where the ak are arbitrary parameters. At least pl zeros of f2 lie in the disk

IzI C max [r2 , (P2r1 + p1r2)/(p2 - Pl)]

[Biernacki 1]. At least pl zeros of f13 lie in IzI < R(p...... pm ; rD , ... , rm)
for m = 3, 4 [Jankowski 1]. Hint: The best choice corresponds to a double zero
of f2(z). Use Th. (15,4).

33. Further bounds. We shall now make some additional applications of
ineq. (32,12). The first will be to the proof of a result due to Montel [3], a
result similar to those in Van Vleck [3].
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THEOREM (33,1). At least p, p < n, zeros of the polynomial f (z) = a0 + alz +
+ a,,z" lie in or on the circle IzI = p, where p is the positive root of the equation

v-1

(33,1)
Ia"Iz" - I C(n-k-1,p-k-1)Iakl zk=0.

k=0

For this purpose, let us observe from eq. (32,3) that

(33,2) I1'"-D(z)I ? I aP" I IzI' -- (IQp"19'I IzID-1 + ... + Iao"-D,I).

On use of (32,8) and (32,12), this inequality becomes

v-1 k

(33,3) If"-D(z)I Ia"I Iz"I - ry"+92: Izlk I C(n - p + j - 1,j) I ak-,I rD'.
k=0 i=0

After multiplication by rq D and substitution of IzI = rq , the right side of (33,3)
becomes

v-1 k

F,-,(r,) = I and r9 - 2: 2: C(n - p + j - 1, j) I ak-f l ri-j.
k=0 i=0

A reversal of the order of summation in the sum with respect to j and a subse-
quent interchange of this sum with the sum with respect to k permit us to write
F"-9(r9) as

v-1 D-1-1

F"-v(rv) = l a.1 rq - Ia,I r, I C(n - p + k - 1, k).
1=0 k=0

By mathematical induction, the last sum is seen to have the value C(n - 1 - j,
p - I -j). Thus,

v-1

Fn-v(rv)=Ianl r,IC(n-1-j,p-1-j)Ia,I r,'.
j=0

Let us now introduce p, the positive root of eq. (33,1). Then Fn-,,(p) = 0.
Furthermore, since eq. (33,1) has only one positive root and since F"_9(00) > 0,
it follows that rq-v Ifn-1,(a"-v+1)I > F"_,,(r9) > 0 for r,, = Ioc"_9+1i > p in con-
tradiction to the hypothesis that oc,,_9+1 is a zero of f"_9(z). From this result,
we infer that f(z) has its p zeros of smallest modulus in or on the circle IzI = p,
as was to be proved

As another application of the above inequalities, let us set

(33,4) N9 = max I a;/a9I

By the reasoning similar to that leading to ineq. (32,16) we may infer that for
r9> 1

(33,5) Ia1a2 ... oc"-9aki < N9 Iapl r,, "(r9 - 1)v-", k = 0, 1, ...
, p - 1.

When used in conjunction with the ineq. (33,11) presented in ex. (33,1) below,
ineq. (33,5) leads to the result

Iala2 . .. a"Q9I > Ia9I j 1 - N9 C(n - p + k - 1, k)r9k},
l 1
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and thus to
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(33,6) Ia102 .. . a"-Da9"-D)I > Ia9l {1 - ND[r D(r, - 1)-"+D - 1]).

The division of the corresponding sides of ineqs. (33,5) and (33,6) produces
the inequality (if the right side of (33,6) is positive)

(33,7) NDr9-D[(1 + ND)(r2 - 1)"-D - NDr9-"I-1.

We now conclude on the basis of Th. (27,2) that all the zeros of f"_ ,(z) lie in
the circle

(33,8) IzI < 1 + {NDr9-D[(1 + ND)(rD - 1)"-D - NDr9 D]-1}.

Among these zeros is a"-D+1 whose modulus has been denoted by r". Replacing
IzI by rD in (33,8), assuming the denominator on the right side of (33,8) to be
positive and clearing of fractions in (33,8), we find that

(1 + ND)(rD - 1)"-2'+1 < NDr9-D+1'

and thus with Q, = ND/(1 + Ni,) and q = 1/(n - p + 1) that

(33,9) rD < 1/(1 - QP).

As may easily be verified, ineq. (33,9) is valid even if the right side of ineq. (33,6)
is zero or negative.

In summary we may state another result of Montel [3], namely

THEOREM (33,2). At least p zeros of the polynomial f (z) = ao + alz + +a"z"
lie in the circle

IzI < 1/(1- QP),

where ND = max Ia;/aDI, j = 0, 1, 2, , p - 1; Q, = ND/(1 + ND) and
q=1/(n-p+ 1).

Another result which is instructive to establish is the following one due to
Van Vleck [3].

THEOREM (33,3). The polynomial

f (z) = 1 + aDzD + aD+1zD+1 + .. . + anZ", p < n, aD 0 0,

has at least p zeros on the disk

IzI < [C(n, p)ll aDl ]11D.

This limit is attained by the polynomial
p-1

fo(z) = (z - b)"-' 1I C(n - p + 1, J)(z/b)'
0

where b is a pth root of [(-1)D-1 C(n, p)/a,].
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To prove this theorem, we introduce

and write .

n

F(z) = z"f(-l/z) = z" +j(-1)ja,z'-'

7=P

D-1 R Q'

F(z)=[f(z-Y1)
711(z-Y),

q=n-p+1,
5=1 i=1

with II lvll?
Denoting by bk the sum of all the products of the j, taken k at a time and by gk

the corresponding sums of the y, with gk = 0 when k > q, we have

0=g1+b1,
0=g2+big, +b2,

0 = gP-1 + b1g9-2 + b2g,3 + ... + bP-1,

aP = gP + b1g1 + b2g9-2 + . + b9-1g1

Eliminating the bk and thus the Nk , we obtain the equation connecting the q + 1
absolutely smallest zeros of F:

(33,10) A, + (-1)Pa, = 0

where

g1 1
0 .. 0 0

A
g2 g1 1 0 0

P

gP-1 gP-2 gP-3
...

gl
1

gP gP-1 gP-2 g2 g1

From the recurrence formula

OP = g1A2;-1 - g2OP--2 + ... + (-1)Pg,

and the relation g1 = 10 y,, we may establish by induction that &, is the sum of
the products of the y, taken pat a time, repetitions of they, being allowed. Since
therefore i

)
involves C(q + p - 1, p) = C(n, p) terms, we deduce from (33,10)

that
I aP l < C(n, p) I Yl I

The equality sign can occur if and only if each of the C(n, p) terms in O, has
the same argument and a modulus of IY1I1' This implies that

Y1 = Y2 = ... = YQ = [(-1)1'-1aP/C(n, p)]1/P.

Solving the above system of equations, we find

bf = (-1)5i, = (-1)'C(n - p + j, j)Yi
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Hence, the limit [I a2,I /C(n, p)]1/2 is attained by thepth largest zero of the polynomial

D-1

F0(z) _ (z - Y1)°j(-1)'C(n -.1,1)Yiz'-l-f

j=0

If we now replace z by (- l/z), we may complete the proof of Th. (33,3).

EXERCISES. Prove the following.
1. At least p zeros of f(z) _ Io akzk lie in the circle IzI 5 p where p is the

positive root of the equation
9-1

Ia9Ip9-C(n-k,p-k)Iakl Pk=0.
k=0

Hint: From eq. (32,7), deduce the inequality

D

(33,11) Ia1a2 ... a"_qa("-D) I = Ia9I - C(n - p + k - 1, k)I aD---kI r9k
k=1

and substitute it into the right side of inequality (33,2) [Van Vleck 3].
2. At least p zeros of the polynomial

g(z) = ao + a2z" + aD+lz9+1 + ... + a"z", aoagan # 0,

lie in the circle IzI 5 [C(n - 1, p - 1) Ia0/a"I]1/" This limit is attainable [Van
Vleck 3].

3. Th. (33,2) reduces to Th. (27,2) when p = n.
4. At least p zeros of f(z) = Io akzk lie in the circle IzI 5 2(n - p + 1)A

where a, 0 0 and A2, = max Iak/ak+lI for k = 0, 1, 2, , p - 1. Hint: Apply
Th. (33,2) to the polynomial P(C) = f (A, ), noting that, since

1/2 5 [1 - (1/2q)]Q for q = 1, 2, ,

we may write
(1 - 2-1/0)-1 5 2q [Montel 3].

5. At least one zero of the polynomial f (z) = ao + alz + + a"z", ao 0 0,
lies in each of the four circles IzI 5 rk with

r, = Inao/a1I, r2 = Inao/(2aoa2 - ai)I''`t,

r3 = Inao/(3aoa3 - 3aoa1a2 + ai)ft ,

r4 = I naol(4aoa4 - 4aoala3 - 2aoa2 - 2aoaia2 - ai)IN.
Hint: Use ex. (13,9); evaluate right side of eq. (13,12) and thus rD for zo = 0 and
p = 1, 2, 3, 4 [Nagy 6 and 12].

6. At least one zero of f (z) = ao + a,.z + ak+lzk+l + ak+2zk+2 + ... +
a1 0 0,, lies in the circle IzI 5 n1/k Iao/a1I [Nagy 12].

7. At least one zero of f (z) = ao + a,z" + a9+lzn+1 + + a"z", 1 5 p,
a,+h 9& 0, lies in the circle IzI 5 Inao/(p + h)a9+hl11(P+h), h = 0, 1, 2, , p - 1
[Carmichael-Mason 1, when h = 0; Nagy 12, when 0 5 h < p].
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34. Lacunary polynomials. In secs. 32 and 33, we found that, when the coeffi-
cients ao , a1, , aD are fixed but the remaining a, , j > p, are arbitrary, there
exist various circles IzI < r which contain at least p zeros of the polynomial.
If in addition we were to fix some of the coefficients a,, j > p, we should obviously
find that the resulting polynomials have p zeros in circles Izl < r1 , with r1 < r.

An important class of such polynomials are those of the lacunary type

(341)

f (z) = a0 + a1z + ... + a,z3 + af,kznk,

' 0<no=p<n1<n2<...<nk,

'k 0 0.

Here, relative to eq. (32,1), the coefficients a; , 0 < j < p, are fixed; the coefficients
ant , j = 1, 2, , k, are arbitrary and the remaining coefficients a, are zero.

As we stated in sec. 32, Landau [1] and [2] initiated the study of polynomials
of this form in 1906-7. He considered the cases p = 1, k = 1 or 2, proving for
these cases the existence of a circle Izl = R(ao, a1) containing at least one zero of
f (z). He also raised the question as to whether or not a - circle with this same
property existed in the case p = 1 and k arbitrary.

An affirmative reply was given in 1907 by -Allardice [1] who proved that,
when p = 1, at least one zero off (z) lies in the circle

k

IzI < lao/ail II [n;/(n, - 1)]
j=1

and by Fejer [1] who proved that, when a1 = a2 = = a9_1 = 0, at least
one zero off(z) lies in the circle

k

(34,2) lzI < {Iao/a,I [ [n,l(n, -
i=1

About sixteen years later, Montel [1] proved that for any polynomial (34,1)
there exists a circle IzI < R(ao , a1 , , a,, , k) containing at least p zeros of
f(z) and Walsh [10] proved that, when a1 = a2 = = a,_1 = 0 and a.00
for some u = n,, , 0 < h < k, there exists a circle Izi < R(ao , a,, , k) containing
at least p zeros of f(z). As to the specific determination of the radii of these
circles, Montel [1] showed that, when p = 2 and a1 = 0, at least two zeros of
f (z) lie in the circle (see Th. (34,2))

IzI < [lao/a1I (k + 1)(k + 2)/2]'¢ = b,

the limit being attained for ao = a2 = 1 by each of the two polynomials
{(1 f iz/b)k+l [1 T i(k + 1)z/b]}. In 1925 Van Vleck [3] established that, when

and a,+,,00for some
h, 0 < h < k, at leastp zeros off(z) lie in the circle [cf. Th. (33,3)]

IzI < [C(p + h - 1, p - 1)C(n, p + h) Iao/aD+hl ]1R'+n),

the limit being attained for h = 0 by the polynomial
D-1

(z - b)n-2)+1 I C(n - p + j, j)(zl b)'
0
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where b is a pth root of [(-1)D-1C(n, p)ao/aD]. In 1928 Biernacki [1] proved
that, when a1 = a2 = = a9_1 = 0, at least p zeros of f (z) lie in the circle
(34,2), the limit being attained for n, = p + j, j = 1, 2, , k, and that, if all
the zeros of the polynomial

fo(z)=ao+a1z+...+aDz'

lie in the circle Izl < Ro , at least p zeros off(z), eq. (34,1), lie in the circle

(34,3)
k

I z 1 < Roll [n,l (n, - p)],
5=1

the limit being attained only for p = k = 1.
These results are in agreement with that of Dieudonne [7] which for fixed

ao , a1 , a,_1 and a, , u = nh , states that the smallest circle Izl < r containing
q < p zeros of f(z) has a radius of the order of magnitude r0(n) = 0(n1l(D-1+v)

in general as n oo.
The more general of the above limits, however, require complicated deriva-

tions. For this reason we shall devote this and the next sections to the con-
struction of alternative limits which, though less exact, are much simpler to
establish.

Our first theorem in this direction will be obtained by the use of some previous
results on the zeros of the derivative of a polynomial, specifically ex. (6,4),
Th. (25,4), Th. (26,2) and ex. (25,2). These results state in effect, first, that,
if z1 is a zero of f'(z), at least one zero of f(z) lies in the region Izl >_ Izll, and,
secondly, that, if at most p - 1 zeros off'(z) lie in a circle Izl < r,Ithen at most
p zeros off (z) lie in the circle

(34,4) Izl < rl o(n, p + 1).

Among the known bounds for functions 0(n, p) are those given in Ths. (25,4) and
(26,2); namely,

(34,5) 0(n, p) < csc or/2(n - p + 1)

and
n-D

(34,6) 0(n, p) < IJ (n + j)l (n - j).
J=1

We shall apply these theorems to the polynomial

D k

(34,7) F(z) = z"f(llz) _ aiz'k=i + aniZnk-nt

i=o i=1

and to the other polynomials of the sequence F,(z) defined by the equations

(34,8) Fo(z) = F(z),

(34,9) F,(z) = Znk-i-nk-i-1-1F,+1(Z), j = 0, 1, ... , k - 1.
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By straightforward computation, we may show that

F7(Z) = ± (nk - i)(nk-1 - i) . .. (nk-5+1 - i)aiZnx_1-i

(34,10)
i=0

k-4
+Y_(nk- ni)(nk-1 a-n)an;z

i=1
In particular, we find that

(34,11) Fk(z) _ (nk - i)(nk-1 - i) ... (n1 - i)aiz"i.
i=0

Let us also define
9

(34,12) fk(z) = zvFk(1/z) _ (nk - i)(nk-i - i) ... (n1 - i)aizi.
i=0

Since a0 0, fk(z) does not vanish at the origin. Let us denote by pi the
largest and P2 the smallest positive number such that all the zeros of fk(z) lie
in the annular ring 0 < p1 < IzI < p,. Being according to (34,12) the re-
ciprocals of the zeros offk(z), the zeros of Fk(z) lie in the ring 1/p2 < Izl < 1/P1,
with at least one zero of Fk(z) on each of the circles IzI = 1/P2 and Izl = 1/P1
According to (34,9) the zeros of Fk_i(z) are those of FF(z) and a zero of multiplicity
n1 - p - 1 at z = 0; thus FF_i(z) has at least one zero on Izi = 1/p1 and
exactly n1 - p - 1 in IzI < 1/p2 . By ex. (6,4), Fk-1(z) has at least one zero
in IzI > 1/pi and at most n1 - p zeros in (see ex. (25,2))

(34,13) IzI < [P2001 , n1 - p + 1)1-1.

Similarly, since the zeros of Fk_2(z) are the zeros of Fk_1(z) and a zero of multi-
plicity n2 - n1 - 1 at z = 0, Fk_2(z) has at least one zero in IzI > 1/pi and at
most n2 - p - 1 zeros satisfying (34,13). Consequently, F7,_2(z) has at least
one zero in IzI > 1/p1 and at most n2 - p zeros in

(34,14) IzI < [P20(ni , n1 - p + 1)0(n2, n2 - P + 1)]-1

Continuing in this manner, we may by induction demonstrate that F(z) has at
least one zero in IzI > l/pi and at most nk - p zeros in

(34,15) IzI < [P2#01, n1 - p + 1)#(n2 , n2 - p + 1) ... #(nk , nk - P + 1)1-i

Finally, in view of eq. (34,7) by which the zeros of f (z) are defined as the recip-
rocals of the zeros of F(z), we conclude thatf(z) has at least one zero in IzI < pl
and at most nk - p zeros in

IzI>P20(n1,n1-P+1)#(n2,n2-p+1)...s6(nk,nk-p+1).

Hence, f (z) has at least p zeros in

(34,16) IzI < P20(n1 , n1 - p + 1)0(n2, n2 - p + 1) ... 0(nk ,
nk - p + 1).
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These results which are due to Marden [14] may be summarized in the form of

THEOREM (34,1). Given the polynomial

(34,17) f (z) = ao + a1z + ... + a,z9 + a,1znl + an,z°i2 + +

with 0<no =p<n1<n2 <... <nkandaoa, 96 0. Let

(34,18)
fk(z) = nlnz ... nkao + (n1 - 1)(n2 - 1) ... (nk - 1)a1z + .. .

+ (n1 - p)(n2 - p) ... (nk - p)a,z9.
If S denotes the set of zeros of fk with p1 = min (IzI : z c- S) andP2 = max (IzI : z E S),
then f(z) has at least one zero in the circle IzI 5 Pl and at least p zeros in the circle

(34,19) IzI < Pz0(nl , nl - p + 1)q(nz , nz - p + 1) ... #(nk , nk - p + 1).

Using the known 0(n, p) as given in (34,5) and (34,6) we deduce the following
limits due to Marden [14].

COROLLARY (34, la). In the notation of Th. (34,1), at least p zeros of f (z) lie
in each of the circles

(34,20) IzI < Pz csck(ir/2p),
k y--1

(34,21) IzI < Pz (nt + J)/(n: - J)
i=1 1=1

In particular if a1 = a2 = = a,_1 = 0, the zeros of fk(z) all have the
modulus

nlnz... nk ao

L(nl - P)(nz - P) ... (nk - p) a,
Thus, from Th. (34,1) and Cor. (34,1a) we infer

1/y

P1=Pz

COROLLARY (34,lb). At least one zero of the polynomial

(34,22)

lies in the circle

f (z) = a0 + a,z' + a,,,z", + ... + ankz"ik,

0<p<nl<n2 <...<nk, aoa, 0,

(34,23) IZI < 1(n, nln2 .. nk

- p)(n2 - P) ... (nk - P)
and at least p zeros lie in each of the circles

a0

av

(34,24) IzI < R csck(ir/2p),

I1/9

=R

k v-1
(34,25) IzI 5 R H H (ni +.1)/(ns - j).

7=1 i=1
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Limit (34,23) is due to Fejer [1 ] and (34,24) and (34,25) are due to Marden [14].
The inequalities (34,23) to (34,25) may be replaced by inequalities which are

simpler though not as sharp. We note that

N(p,
k) = n1n2 ... nk

(n1 - P)(n2 - P) ... (nk - P)

= C(1-.n)(1 n)...(1-n)J -1

and that accordingly the fraction may be maximized by giving the nk their
minimum values nk = p + k; viz.,

(34,26) N(p, k) < C(p + k, k).

Furthermore, if p < k, the right side of (34,16) may be written as

C(p+k,P):!5 [(k+ 1)(2k+2)...(pk+p)/1.2...p]=(k+ 1)p,

the equality sign holding only when p = 1. The right side of (34,26) may be
treated similarly when p ? k. Thus, in all cases,

(34,27) N(p, k) < (k + 1)p,

the equality sign holding only when p = 1.
Taking (34,26) and (34,27) into consideration, we may restate Cor. (34,lb),

following Marden [14], as

COROLLARY (34,1cc). The polynomial

f (z) = ao + apzp + a,y1Znl + . . . + a,nkznk

p<nl<n2<...<nk,

has at least one zero in the circle

Izl < [C(p + k, k) lao/apl]11v = R1 < (k + 1) lao/apll"p = R2

and at least p zeros in the circles

Izi < R1 csck(Tr/2P) < Rz csck(ir/2P),
k p-1 k p-1

Izl < R1 IT IT (ni + J)I(nY - .l) < R2 (na + 1)/(nz -1)
i=1 9=1 i=1 2=1

aoap00,

In the case p = 2, the following result due to Montel [1] is an improvement
over that in Cor. (34,1c). Without losing generality we may state it with
ao=a2=1.

THEOREM (34,2). Let 9k denote the class of polynomials

g"(z) = 1 + z2 + b1Znl + b2zn2 + ... + bkznk
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where the nk are integers with 2 < nl < n2 < < nk and the b, are arbitrary
constants. If gk E TA: , then gk has at least two zeros l and 4 on the disk:

(34,28)

such that

(34,29)

IzI < [(1/2)(k + 1)(k + 2)]4 = p(k)

Z(1/C) > [P(k)]-1, (1/W :-:-: -[P(k)]-1

The limits are attained by the two polynomialspk(±z) where

(34,30) pk(z) = {1 + [iz/p(k)]}k+1{l - [(k + 1)iz/p(k)]}.

The proof will be by induction. We begin with the case k = 1 writing

G1(z) = z"1gl(1/z) = Zn1 + z-1-2 + bl ,

G'(z) = z'"1-a[nlz2 + (n1 - 2)].

Since the zeros of G,(z) are z = ±i[(nl - 2)/n1]''i and since [1 - (2/n1)] > 1/3,
we conclude from Lucas' Theorem (6,1) that G1(z) has zeros zl and z2 such that

3(zl) ? 3-14, Z(z2) < -3-%i.

Taking l = l/zl and 2 = 1/z2, we see that (34,29) is valid for k = 1 since
p(l) = 31.

Let us assume that (34,29) is also valid for 1 < k < K - 1 and turn to the case
k = K. Let us write

GK(z) = Z IN + zfK-2 + blzns-'n1 + b2zng-"2 + ... + bK
,

(34,31) Gj(z) = z"K-"x-1-1[nKZnK-1 + (nK - 2)Zng-1-2

On setting
+ (nK - n1) b,z"x-1-n1+ ... + (nK - nK-1) bK-1]

(34,32) z = [1 - (2/nK)]4Z,
we may write the bracket in eq. (34,3 1) in the form coHK_1(Z) where co is a constant
and

HK_l(Z) = Z' -1 + ZnS-1-2 + ClZnx-1-'nl + . . . + CK_1 .

If we set hK_l(z) = z"K-1 HK-l(1/z), we see that hK_l E WK-1 and hence hK_l
has two zeros satisfying (34,29) with k = K - 1. Hence, HK_l has two zeros
l and 2 such that
(34,33) [p(K - 1)]-1, Z(e2) < - [p(K - 1)]-1.

Since nK > K + 2 and

[1 - (2/nK)]"[P(K - 1)]-1 ? {1 - [2/(K + 2)]}'I[P(K - 1)]-l
[K/(K + 2)]'1[P(K - 1)]-1 = [P(K)]-1,

we conclude from (34,32) and (34,,33) that G' (z) has two zeros n1 and 22 such that

(n1) [P(` )]-1, 3072):_55 -[P(K)1-1-
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From Lucas' Theorem (6,1), we now conclude that GK(z) has two zeros z1 and z2
such that

3(z-11) ? [P(K)]-1, 3(z2 I ) < - [P(K)]-1

and hence that (34,29) is valid also for k = K as was to be proved.
Finally, we may easily verify by computation that the pk in (34,30) satisfy the

relations

Pk(O) = 1, Pk(0) = 0, pk(0) = 2

and thus that pt c- Wk. We may also immediately verify that p,, attains the limits
specified in Th. (34,2), thus completing the proof of Th. (34,2).

ExERcisEs. Prove the following.
1. The polynomial (34,17) has at least p zeros in the circle

IzI < Pa0(nl , nl - P + 1)002, na - p + 1) ... S6(nk , nk - P + 1),

where pa is the positive zero of the polynomial

V(z; nl, na, ... nk) = nlna ... nk Iaol + (n1 - 1)(na - 1) ... (n, - 1) Ia1I z + .. .

+(n1-p+ 1)(n2-p+ 1)...(nk-P+ 1) Ia,1Izv-1

- (nl - P)(na - P) ... (nk - P) Ia,I z9
Also pa < r, where r is the positive zero of the polynomial

V(z;p+1,p+.2,...,p+k)=k!(-laIz'+IC(p+k-j,k)Iaflz').
j=0

Hint: Use Ths. (27,1) and (34,1); cf. ex. (33,1) [Marden 14]. Also use ineq. (34,26)
2. The polynomial (34,17) has at least p zeros in the circle

IzI 5 P20(n1,n1-p+ 1)...S(nk,nk-P+ 1)
where

k
(34,34) Pa = 1 + max Llar/a,I n (n, - j)/(ni - P)], j = 0, 1, ... , P - 1.

i=1

Hint: Use Ths. (27,2) and (34,1) [Marden 14].
3. The Pa in eq. (34,34) satisfies the inequality

P2 <1+MC(P+k,k)<1+(k+1)'M9
where M9= max la,/a9I,j=0, 1, ,p- 1.

4. At least one zero of polynomial

(34,35) f (z) = a0 + a1z"l + a2Z" + ... + akznk

lies in the circle IzI < p where

p = min (lao/a,III n1+il(n;+i - n,)]1 n j = 1, 2, . . , k - 1 [Fekete 4].
i=1
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5. All the zeros of eq. (34,35) lie in the circle

IzI < r, r = max [lao/alllt"l, I2a,/a;+1I1/nni+1-np>], j = 1, 2, ... , k - 1.
Hint: Use the method of ex. (30,6).

6. If in ex. (34,5) the coefficients a, satisfy a linear relation 2oao + 21a1 + +
Akak = 0, with Ao # 0, then f(z) has at least one zero in the circle IzI < 2kM,
where M = max (1, 12;/20I), j = 1, 2, , k. Hint: Show la0/a;I < 2"M
for at least one j, since otherwise Iaol > Ia01 (2-n1 + 2-n" + ... + 2-nk) >
M(Ia1I + 1a21 + ... + lakl) in contradiction with the relation I A,a; = 0
[Fekete 4].

7. At least one zero of the polynomial (34,17) lies in each circle which has
as diameter the line-segment joining point z = 0 with any of p zeros of (34,18).
[Fejer la].

8. The polynomial

{
D

/ // a,zn', a0 0 0,J (z) = a0 [z51(n1 - j)(n2 - I) ... (r7 - .l)] +
k

=o ;=1

has at least p zeros in the circle IzI < esck (7r/2p).

35. Other bounds for lacunary polynomials. A theorem similar to Th. (34,1)
but in which the polynomialfk(z) in eq. (34,18) is replaced by one involving the
first p + 1 terms off(z) will now be established with the aid of Th. (16,2)'.

In Th. (16,2)' let us choose m = p, n = k, f(z) = P(z) = ao + alz + +
a2,z9, and g(z) = (n1 - z)(n2 - z) . (nk - z). Then h(z) =fk(z) and

k

I S(0)/S(m)I = II n,/(n; - p) > 1.
;=1

If R is the radius of the smallest circle IzI = R which contains all the zeros of
P(z), we learn from Th. (16,2)' on setting r1 = 0 and r2 = R that all the zeros
offk(z) lie in the circle

k

IzI :5 RIIn;I(n;-P)=R'.
j=1

In view of the definition of p2 as the radius of the smallest circle IzI < r con-
taining all the zeros offk(z), we conclude that p2 < R'.

In place of Th. (34,1), we may therefore state the following theorem, in some
respects simpler, but''not sharper than Th. (34,1).

THEOREM (35,1). If all the zeros of the polynomial

(35,1) P(z)=ao+a,z+...+a,,z'

lie in the circle IzI < R, at least p zeros of the polynomial

f(z)`z) = a0 + a1z + ... + a,,z + anlz"il + ... + afkznk,

0 <p < nl < ... < nk , a0a9an1... ank 0 0,
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lie in the circle
k

(35,2) Izl < R IT n1o(n,, n, - p + 1)/(n5 - p)
i=1

Using the values of c(n, p) in eqs. (34,5) and (34,6), we may replace ineq.
(35,2) by the more specific ones

(35,3) IzI < R[n n.f(n, - P)] csck(Tr/2P);

(35,4) jzI<Rf n' IT n'+1=RIT IT of+
=1 n; - pi=i n; - i i=ii=o n; + i - p

the latter being due to Biernacki [3]. The right sides of (35,2) and (35,3) both
have values in excess of R. That they may not be replaced by values less than
R is clear from the fact that P(z) is one of the polynomials f(z); that is, the
f(z) with a; = 0, all j > p.

It is known, however, that the right side of ineq. (35,3) may be replaced by
the smaller bound (34,3), a bound whose derivation is quite complicated. But
neither this bound nor those given in (35,3) or (35,4) is known to be attained
by at least one of the p zeros of smallest modulus for at least one polynomial
f(z) of type (34,17). In other words, none of the bounds is as yet known to be
the best possible one.

Of the two bounds (35,3) and (35,4), the second has the advantage that, as
k -* oo, it approaches a finite limit, provided the series I 1/n5 converges. This
fact suggests the following theorem of the Picard type, due to Biernacki [1]
and [3].

THEOREM (35,2). If the series 1/mi converges, the entire function

f (z) = a0 + amzm1 + a,m$Zm2 + ... , 0 < ml < m2 < .. .

if not identically zero, takes on every finite value A an infinite number of times.

To prove this theorem, let us choose p as any of the numbers ml , m2 ,
and form the polynomial

Qk(z) = (ao - A) + am3Zml + ... + a,zv + an,Zn1 + ... + a,, kZnk

in which the last k terms are the k terms following a,z" in f (z). Let us denote
by R the radius of the circle IzI < R in which lie the zeros of the polynomial

Q0(z)=(a0-A)+amizml+...+a,,zl.

By Th. (35,1), Qk(z) has at least p zeros in the circle (35,4). The right side of
(35,4) may be written as

k v-1 9-1 co
R HIT[1 - (PI(n, + i))rl < R IT [1 [1 - (PI(n, + i))]-l = Rl .

2=1i=0 i=0 1=1
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The infinite products occurring in R1 converge due to the convergence of the
series Y 1/m5 . That is, Rl is a number independent of k such that in the circle
IzI = Rl lie at least p zeros of Qk(z).

On the other hand, the terms in Qk(z) are the terms of f (z) - A up to that
in z"k. Since f (z) is an entire function, Qk(z) converges uniformly to f (z) - A
in any circle IzI < Rl + E, e > 0. But, by Hurwitz' Theorem (Th. (1,5)), given
any sufficiently small positive e, there is at least one zero of f(z) - A in each
of the p circles of radius E drawn about the p zeros of Qk(z) in IzI < R,. Hence,
there are at least p zeros of f(z) - A in the circle IzI < Rl + E. Due to the
fact that p is an arbitrary m; , we conclude that f (z) - A has an infinite number
of zeros. That is, f (z) assumes the value A an infinite number of times.

EXERCISES. Prove the following.
1. At least p zeros of each of the two polynomials

1

1 + zP + a1z'n1 + ... + akz"k,

1 z+z2+... +zP+alz"1+... +akz"k+

lie in each of the circles (35,3) and (35,4) with R = 1.
2. The polynomial

P(z) = 1 + ZP + alzP+9 + a2ZP+24 + . + a,z k9,

where p > po and q is not a factor of p, has at least po zeros in a circle IzI <
R(po) [Landau 2, case po = 1; Montel 1, po arbitrary].

3. The trinomial 1 + zP + az" has at least one zero in each of the sectors

I(arg z) - (2k + 1)(7r/p)I < ir/n, k = 0, 1, ... , p - 1.
The limits are attained when a= p(n - p)("-P)'Plw"n"l' where co is any pth
root of (-1) [Nekrasoff 1, Kempner 5, Herglotz 1, Biernacki 1].

4. If n2 ? 3n1/2, the quadrinomial

1+zP+a1z"1+a2z"E, p<nl<n2,
has at least one zero in each of the sectors

I(arg z) - (2k + 1)/(7r/p)I < (Ir/nl), k = 0, 1, ... , p - 1.

The limits are attained when for k = 1, 2

ak = -{(-1)kp[(nl - p)(n2 - p)]nk/P}/{(n2 - nl)(nk - p)(nln2)('"k-P)/Pnk(o "k),

where co is a pth root of (-1) [Biernacki 1, pp. 603-613].
5. Every quadrinomial 1 + azv + Z2P + bz", n > 2p, a and b arbitrary, has

at least p - 1 zeros in the circle IzI < 1 [Dieudonne 6].



CHAPTER IX

THE NUMBER OF ZEROS IN A HALF-PLANE OR A SECTOR

36. Dynamic stability. The problem discussed in the last two chapters, the
determination of bounds for some or all of the zeros of a polynomial f (z), may
be regarded as that of finding a region which will contain a prescribed number
p of zeros off (z). The converse type of problem is of equal importance. It is
the problem of finding the exact or approximate number of zeros which lie in a
prescribed region such as a half-plane, a sector or a circular region.

In order to see how this problem arises in applied mathematics, let us, as in
Routh [1] and [2], consider the example of a particle of unit mass moving in the
x, y plane subject to a resultant force with the x-component X(t, x, y, u, v) and
y-component Y(t, x, y, u, v), where (x, y) and (u, v) denote respectively the co-
ordinates and the velocity components of the particle at time t. Let us assume that
X and Y possess continuous first partial derivatives in the neighborhood of some
value (0, xo , Yo , uo, vo). The equations of motion are then

(36,1) du/dt = X(t, x, y, u, v), dv/dt = Y(t, x, y, u, v).

Let us denote by x = x1(t) and y = y1(t) the solutions corresponding to the set
of initial conditions x(0) = xo , y(0) = yo , u(0) = uo , v(0) = vo , and by
x = x1(t) + e(t) and y = y1(t) + n(t) the solutions corresponding to the slightly
altered set of initial conditions x(0) = x0 +o y(O) = yo + rlo , u(0) = uo + ao ,

v(0)=vo+T0.
Substituting these solutions into eqs. (36,1), subtracting eqs. (36,1) from the

resulting equations and setting a = and r = d,/dt, we find for and ?I the
differential equations

da/dt = X(t, xl + , yl +'7, ul + a, v1 + T) - X(t, x1 , Y1 , u1, v1)
= Xx + X'n + X.a +

dT/dt = Y(t, x1 + , Yl + 17, u1 + Or, V1 + T) - Y(t, x1 , Y1 , u1 , v1)

= Yv77+ Yua+

where the partial derivatives X,, X , X., X,,, Yx , Y,, Y., Y of X and Y are
formed for the intermediate value (t, x1 + O , yl + 027, ul + Oa, vl + 0T) with
0 5 0 5 1. If o , 710 , ao and ro are all sufficiently small, we may with good
approximation compute and 27 by means of the equations

(36,2) da/dt = Alb + A,77 + A3a + A4T, dT/dt = B1 + B2r1 + B3a + B4T,

where the coefficients are the real constants obtained on evaluating the above
partial derivatives for (0, x0, yo, uo, vo). As is well known, eqs. (36,2) have

166
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solutions of the form

167

= Ae''t, '2 _ ,ue''t.

On substituting these into eqs. (36,2), we obtain for y, A and It the equations

A(y2 - A3Y - A,) = ,u(A4Y + A2), A(B3y + B,) = u(y2 - B4y - B2),
and, by eliminating ,u and A, we obtain for y a fourth degree equation with real
coefficients

f (y) = ap + a,Y + a2y2 + a3Y3 + a4y4 = 0.

Let us assume the roots to be distinct complex numbers yk = ak ± iflk , k = 1, 2,
so that the general solution of the system (36,2) will be

(363)
= ealt(A, sin fl ,t + A2 cos #,t) + e°2t(A3 sin i2t + A4 cos ,62t),

' '2 = eel'(It, sin #,t+ Iu2 cos #,t) + ea2t(u3 sin fl 2t + 94 cos #2t).

The original solution x = x,(t), y = y,(t) is said to be stable if the disturbance
functions e(t), q(t) approach zero as t --> oo. According to eqs. (36,3), this occurs
if al < 0 and a2 < 0. For stability it is therefore sufficient that all four roots
of fly) = 0 have negative real parts. That is, it is sufficient that all four zeros of
the characteristic polynomial f lie in the left half-plane.

A refinement is to compare the degrees of stability and of damping of two
systems S, and S2 having the characteristic polynomials f, and f2 respectively.
If all the zeros off,, lie in the half-plane 931(z) < a, and those of f2 in the half-plane
bi(z) < a2 , the system S2 may be regarded as more stable than S, if a2 < al < 0.
If all the zeros of f, lie in sector Iarg (-z)I < 9, and those of f2 in sector
Iarg (-z)J < #21 the system S2 may be regarded as having better damping than
S, if 0 < #2 < i, < ,/2 [Cypkin-Bromberg 1, Grossman 1, Koenig 1, Bothwell 1,
Fuller-Macmillan 1, Schmutz 1].

For a more detailed review of the problem of stability in relation to the dis-
tribution of the zeros of a polynomial, the reader is referred to Bateman [1].

EXERCISES. Prove the following.
1. In sec. 36 let z = x + iy, C = + i'2, w = dz/dt, p = dC/dt and

Z(t, Z, W) = X(t, X, y, u, v) + i Y(t, X, y, u, v).

If Z is an analytic function of z and w in the neighborhood of (zo, 0, wo), then
eqs. (36,2) may be replaced by an equation of the form

(36,4) dp/dt = Mp + NC

where M and N are complex constants. The particle will have a stable motion
if both zeros of the polynomial f(y) = y2 - My - N lie in the left half-plane.

2. If all the zeros of a real polynomial f (z) = 1o C(n, k)akzn-k lie in half-plane
bi(z) < - p < 0, then pk < a,n+k/a for m = 0, 1, , n - k [Zajac 1]. Hint:
Express the a, in terms of the elementary symmetric functions of the zeros off.
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37. Cauchy indices. We shall now proceed to the determination of the number
of zeros of a polynomial in a given half-plane. For simplicity we shall start
with the upper half-plane s(z) > 0.

Our method will consist in applying Th. (1,6) to the case that line L is the
axis of reals and the direction for traversing L is from z = - oo to z = + oo.
Hence, if an nth degree polynomial f has no zeros on the real axis, the numbers
p and q,

(37,1) P = (l/2)[n + (1/")OL argf(z)], q = (l/2)[n - (1/71)oL argf(z)],

are the number of zeros which f has in the upper and lower half-planes respectively.
We shall find it convenient to throw f into the form

f (z) = a0 + a1z + ... + an-1Zn-1 + Zn
and write

(37,2) ak=ak+iak, k = 0,
where ak and ak are real and not all ak are zero. Then on the x-axis

(37,3)

where

f (X) = Po(x) + iP1(x),

Po(x)=ao+aix+.+a'lx n-1+xn,
(37,4) Pl(x) = a0 + "x + .. + Qn-1xn-1.
Furthermore, on the x-axis, using the principal value of arc cot p(x),

(37,5) argf(x) = arc cot p(x), p(x) = Po(x)/P1(x).

In order to calculate the net change in argf(x), let us denote the real distinct
zeros of Po(x) by x1 , x2 , , x, (v < n) and let us assume that these are arranged
in increasing order,

(37,6) x1<x2< <x,,.
Since f(x) 0 0, no xk is also a zero of P1(x). From the graph of arc cot p or
otherwise, we may infer that, e being a sufficiently small positive number, the
change Ok arg f(z) in arg f(z) as z = x varies from xk + a to xk+1 - e, will
according to eq. (37,5) have the values

Ak argf(z) = -Ir if p(xk + e) > 0 and p(xk+l - e) < 0,

Ak argf(z) = +ir if p(xk + e) < 0 and P(xk+1 - e) > 0,
Ak argf(z) = 0 if P(xk + E)P(xk+l - e) > 0.

In brief, fork= 1, 2, , v - 1,
(37,7) Ak argf(z) = (ir/2)[sg P(xk+1 - e) - sg P(xk + E)]

We shall now compute the changes Do arg f (z) and Dv arg f (z), as z = x varies
from - oo to x1 and from x, to + oo respectively. Since x1 and x,, are the smallest
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and largest zeros of Po(x),

sg P(xi - E) = sg P(- cc), sg P(xv + E) = sg P(+ 00),

provided P1(x) # 0 for x < xl and x > x,,. In this case

(37,8) Do argf(z) _ (Tr/2) sg P(x1 - E), A, argf(z) _ -(ir/2) sg p(x, + E)
Let us suppose however that Pl(yk) = 0 for k = 1, 2, , ,u with It < n - 1

and

-cc = Y0 < Y1 < Y2 < ... < ya < x1 < ya+l < ...
< .yp < x,, < ye+1 < ... < Y, < .yu+1 = 00.

Then there is no net change in arg f (z) as z = x varies fromyk to yk+1 for 0 < k < a
or fi < k < ,u. Also

sg P(xl - E) = sg P(ya + E), sg P(x,. + E) = sg P(yp+l - E)

for sufficiently small positive E. Hence, eq. (37,8) remains valid even if Pl has
zeros for x < x1 or x > x, .

From (37,7) and (37,8) we may compute the net change AL argf(x) as x varies
from - oo to + oo. This net change is

v 1

AL arg f (z) = 2 I1 [sg P(xk+l - E) - Sg P(xk + E)]

+ sg P(xl - E) - sg P(x' + E)}

That is,

(37,9) AL arg f (z) = 1,sg P(xk - E) - sg P(xk + E)
k=1 2

Defined as the Cauchy Index of the function p(x) at the point x = xk [Cauchy 2],
the bracket in eq. (37,9) has the values - 1, or + 1 or 0 according as p(xk - e) < 0
and p(xk + E) > 0, P(xk - E) > 0 and p(xk + E) < 0 or P(xk - E)P(xk + e) > 0.
If, therefore, a is the number of xk at which, as x increases from - 00 to 00, p(x)
changes from - to + and r the number of xk at which p(x) changes from + to -,
then eq. (37,9) may be rewritten as

(37,10) AL arg f (z) a).

In view of eqs. (37,1) and (37,10) we may state the Cauchy Index Theorem
essentially as presented in Hurwitz [2].

THEOREM (37,1). Let

(37,11) f (z) = ao + alz + ....+ z" = P0(z) + iP1(z)

where P0(z) and P1(z) are real polynomials with P1(z) 0. As the point z = x
moves on the real axis from - oo to + oo, let a be the number of real zeros of Po(z)
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at which p(x) = Po(x)/Pj(x) changes from - to +, and T the number of real
zeros of Po(z) at which p(x) changes from + to -. If f (z) has no real zeros, p zeros
in the upper half-plane and q zeros in the lower half-plane, then

(37,12) p = (1/2)[n + (T -q)], q = (1/2)[n - (T - v)].

EXERCISES. Prove the following.
1. All the zeros of the f(z) of Th. (37,1) lie in the upper (lower) half-plane if

Po(x) has n real zeros xk and if, at each xk , p'(xk) < 0 ( > 0).
2. Let F(z) = A0 + Alz + ... + A.n_1zn-1 + (-i)nzn,

Po(z)=aO+a,z+...+a'n_1 zn-1+Zn

n-1Zpl(Z) = an O + an1Z + ... + an n-1

where ak = 91(ikAk) and ak = 3(i%). Let a be the number of real zeros of
Po(y) at which the ratio p(y) = P0(y)/Pl(y) changes sign from - to + and T
the number of real zeros of Po(y) at which p(y) changes sign from + to -, as
y varies through real values' from - oo to + oo. If F(z) has p zeros in
the left. half-plane SR(z) < 0 and q zeros in the right half-plane 91(z) > 0 and
if p + q = n, then p and q are given by eqs. (37,12). Hint: Apply Th. (37,1)
to f (z) = F(iz).

3. If in Th. (37,1) Po(x) has n real zeros xk and Pl(x) has n - 1 real zeros
Xk with x1 < X1 < x, < X2 < < Xn_1 < x,,, then p = 0 and q = n if
(-1)nPl(xl) < 0, but p = n and q = 0 if (-1)nPl(x1) > 0.

4. If p = q - n = 0 or p - n = q = 0, then for arbitrary real constants A
and B the polynomial AP0(z) + BP1(z) has n distinct real zeros [Hermite 2;
Biehler 1; Laguerre 1, pp. 109 and 360; Hurwitz 2; Obrechkoff 6].

5. If Po(x) has n real zeros xk with xl < x2 < < xn and if P1(x) > 0 for
x1 < x < xn, then p = m and q = m or q = m + 1 according as .n = 2m or
n = 2m + 1. If P1(x) < 0 for xl < x < xn , the values of p and q are interchanged.

6. If the f(z) of Th. (37,1) has exactly r real zeros 1 , z , , , and if in
computing or and r the sign changes of p(x) at the points k be not included, then

p=(1/2)(n-r+T-a) and q=(1/2)(n-r-T+a).
7. If P(z) is an nth degree polynomial and P*(z) =,P(-z), then the (n - 1)st

degree polynomial
P1(z) = [P*(zl)P(z) - P(z1)P*(Z)]/(Z.7- zl),

where IP*(zl)j > IP(zl)I, has one less zero than P(z) at points z for which
SR(z)91(zl) > 0 and has the same number of zeros as P(z) at points z for which
91(z)91(zl) < 0. Hint: Use Rouche's Theorem (Th. (1,3)) to show that P(z)
and P(z) + AP*(z) where Al I< 1 have the same number of zeros in both half-
planes 91(z) > 0 and 9R(z) < 0 [Schur 3; Benjaminowitsch 2; Frank 2].

8. Let f (z) = r17, (z - z) = zm + a1zm-1 + ... + a.,
m m

g(Z)=11 (z-Zf-Zk)=Zn+blzn-1+... +bn,
1=1 k=5+l
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where n = m(m - 1)/2. If all the a, are real, all the zeros of f(z) lie in the half-
plane 9i(z) < 0 if and only if of > 0 for j = 1, 2, , m and bk > 0 for k = 1,
2, , n [Routh 1, 2; Bateman 1].

9. In Th. (37,1), if all the real zeros xk (k = 1, 2, , v) of Po(x) are distinct,
then

p = (1/2)[n - sg P'(xk)], q = (1/2)[n + v sg P'(xk)]
1 1

where p'(x) = (d/dx) p(x). If v = n, then p = n or q = n according as p'(xk) < 0
or p'(xk) > 0 for all k.

10. In ex. (37,3), Po(x) and P1(x) have interlaced zeros if and only if (1) G(x) _
P1(x)2(d/dx)[P0(x)/P1(x)] has real zeros of only even multiplicity and (2) every zero of
G(x) is an mo-fold zero of Po(x) and an ml-fold zero of P1(x) where Imo - m11 < 1
[Horvith 1].

38. Sturm sequences. By -Th. (37,1) we have reduced the problem of finding
the number of zeros off(z) in the upper and lower half-planes to the problem
of calculating the difference r - a. In the case of real polynomials this differ-
ence has been computed in Hurwitz [2] by use of the theory of residues and
quadratic forms and in Routh [1] and [2] by use of Sturm sequences. We shall
follow the latter method. (Cf. Serret [1].)

Let us construct the sequence of functions Po(x), P1(x), P2(x), , P, (x) by
applying to Po(x) and P1(x) in (37,4) the division algorithm in which the remainder
is written with a negative sign; viz.,

(38,1) Pk-1(x) = Qk(x)Pk(x) - Pk+l(x), k = 1, 2, ... , ju - 1,
and in which Pk-1(x), Pk(x), Pk+l(x) and Qk(x) are polynomials with

deg Qk(x) = deg Pk_1(x) - deg Pk(x) > 0 (deg - degree of).

The algorithm is continued until, for ,u sufficiently large, PM(x) - Cg(x) where
C is a constant and g(x). is the greatest common divisor of Po(x) and P1(x). If
g(x) is not a constant, its zeros are non-real since f (x) # 0 at points x of the
real axis. In any case, therefore, for all real x

(38,2) sg P,(x) = const. # 0.

As x varies from - oo to + oo, let us consider

(38,3) {Pk(x)} - 7 '{Po(x), PA(x), , P,,(x)},Yl'

the number of variations of sign in the sequence Po(x), P1(x), , P,(x). This
number cannot change except possibly at a zero of some Pk(x).

If 0 < k <,a, then 0 implies according to eq. (38,1) that Pk-1($) =
This in turn implies that 0, for otherwise Pk_1($) =

0 and consequently P,() = 0 for all j > k including j = a, in con-
tradiction to eq. (38,2). In brief, Pk($) = 0 with 0 < k < ,u does not entail
at x = $ any change in r{Pk(x)}.
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In the case that P0($) = 0, we have already indicated that for any sufficiently
small positive number e, sg P1(e) = sg P1( - E) = sg P1( + e) 0 0. If also
sg Po( - = sg Po( + E), no change in Y,-{Pk(x)} occurs at x = $. If, however,

(38,4) Po( - E)Pi( - E) > 0, P0( + E)Pi( + E) < 0,

(38,5)

'V{Pk(x)} will increase by one at x = ; whereas, if

(38,5) Po( - E)P1( - E) < 0, P0( + E)P1( + E) > 0,

*-{Pk(x)} will decrease by one at x = . But, as Po(x)P1(x) = p(x)[P1(x)]2,

(38,6) sg [Po(x)P1(x)] = sg P(x)

in the neighborhood of any zero xk of Po(x). In terms of the numbers a and T
defined in Th. (37,1), ineqs. (38,4) are satisfied by r zeros x, of P0(x) and in-
eqs. (38,5) are satisfied by or zeros xk of Po(x). This means that

(38,7) T - a = YV'{Pk(+ co)} - 'V'{Pk(- 00)1-

In view of this result, we may restate Th. (37,1), as

THEOREM (38,1). Let

(38,8) f(z) = a0 + ajz + ... + a"_1z"-1 + z" = P0(z) + iP1(z),

where Po(z) and P1(z) are real polynomials and P1(z) 0 0, be a polynomial which
has no real zeros, p zeros in the upper half-plane and q zeros in the lower half-
plane. Let Po(x), P1(x), , P, (x) be the Sturm sequence formed by applying
to Po(x)/P1(x) the negative-remainder, division algorithm. Then

(38,9) p = (1/2)[n + Y"{Pk(+ co)} - YI{Pk(- oo)}],

(38,10) q = (1/2)[n - ''V{Pk(+co)} + 1"{Pk(- co)}].

In order to compute the right sides of eqs. (38,9) and (38,10), let us write
the term of highest degree in Pk(x) as bkxmk, bk 0 0, and that in Qk(x) as Ckx"k.
Clearly, bo=1, b1=a'm1; m0=n, m1<n-1, m2<n-2, m3<n-3,

mµSn-,u; n1=n-m1; n2=m1-m2, n3=m2-m3i...,nµ=

m,,_1- mµ . By equating the coefficients of xmk on both sides of eq. (38,1), we
find that

(38,11) Ck = bk-1/bk # 0.

Obviously, s/g Pk(+ oo) = sg bk and sg Pk(- oo) = (-1)mk sg bk . In consequence,

{Pk(+ co)} - Y'{Pk(- 00)}
_-Yi'{1,b...... bµ}-7i'{(-1)",(-1)m'b1i...,b,}

(38,12) , C1C2 , C1C2C3 , ... , C1C2 ... Cµ}_ "//,{II, C1
( "-ml "-"' "-"+l }. .-{1, ( 1) 0102 ,C, , (- 1) )(, µC102... 0µJ

\/_ V{C1 , C2, ... , Cµ} - K{(- 1)"IC1 , (- "'C2
,

. . . , (_ 1)"µ0µ}
1)
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where A2 , , Aµ} denotes the number of negative A; in the set Al ,

A2i ,Aµ
Of special interest is the case that ,u = n when each nk = 1. In that case,

eq. (38,12) becomes

Y{Pk(+ co)} - 'V{Pk(- 00)} = .(c1 , C2 , ... , Cn) - 9(c1 , C2, ... , Cn)

where 9(A1 , A2 , , An) designates the number of positive A. in set {A,}. In
this case,

.K(c1,C2,...,c,,)+J'(c1,c2,...,c,)=n=p+q
so that Th. (38,1) becomes

COROLLARY (38,la). If in Th. (38,1) ,u = n and if ck denotes the coefficient of
the linear term of the quotient Qk(x) in eq. (38,1), then

(38,13) p = .N'{c1 , c2 , .. , c7,} and q = 9(c1 , c2 , cn).

A further simplification in the case ,u = n results from the fact that Qk(x) _
ckx + dk with ck 0 0. T'iis permits us to write eq. (38,1) in the form

(38,14) Pk-1(x) =
CkX

+ dk _ Pk+1(x) k = 1, 2, ... , n - 1.
Pk(x) Pk(x)

From eqs. (38,14) we may eliminate P2(x), P3(x), , P,,(x) and put the answer
in the continued fraction form

Pl(x)
PO(x) clx + d1 -

(38,15)

c2x+d2-

1

c3x+d3--
1

1

1

1
cn_1x + d,,,-, -

c,,,x + d m

Conversely, if Pl(x)/P0(x) can be expanded in such a continued fraction,
then u = n in the negative-remainder, division algorithm. Writing the con-
tinued fraction (38,15) more compactly, we may reformulate Cor. (38,la) as

COROLLARY (38,lb). If for the Po(x) and P1(x) of Th. (38,1) there exists the
continued fraction expansion (38,15) abbreviated as

38 1
P1(x) 11 1 1

( , 6)
-

P0(x)

- -
(clx + d) (c2x + d2) (cax + d3) (cnx + dn)
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where c ; 0 0 for j= 1, 2, , n, then p = .iV(c1, c2 , ' ,) and q=
.q(c1 , C2 , ...

,
Cn).

This result is due to Wall [1] in the case of real polynomialsf(z) and to Frank
[1] in the case of complex polynomials f(z).

EXERCISES. Prove the following.
1. All the zeros of f (z) have positive imaginary parts if and only if

'Yl'{Pk(+ oo)) - '''P,(- oo)) = n, or if and only if all c, < 0 in eq. (38,15).
(Cf. Wall [1] and Frank [1].)

2. If F(z), Po(z) and P1(z) are defined as in ex. (37,2), the number p of zeros
of F(z) in the half-plane 91(z) < 0 and the number q of zeros of F(z) in the half-
plane 91(z) > 0 are given by the eqs. (38,9), (38,10) and (38,13) and Cor. (38,lb).

3. If F(z) = A0 + Alz + ... + An_1zn-1 + e nziZn, po(z) = ao + alz +.... +
ar n-1 + zn , kaiA,l +0 . a" zn-1 wheren_lz where ak = 93(e k) and P&) = a,o + a1Z + n-1
ak = ,(ek"1Ak), and F(z) 0 0 for arg z = a or a + ir, then the number p of zeros
of F(z) in the sector a < arg z < a + IT and the number q of zeros of F(z) in the
sector a + IT < arg z < a + 27r, if p + q = n, are given by eqs. (38,9), (38,10)
and (38,13) and Cor. (38,1 b).

4. Let the f (z) of Th. (38,1) have exactly r real zeros S2 , , , , let
g(z) = (z - W(z - W . . (z - Sr) and define P0(z) + iP1(z) = f (z)/g(z). Then

p = (1/2)[n - r + 'V{Pk(+ oo)) - Y,"{Pk(- oo))]

and q = (1/2)[n - r - *-{Pk(+ oo)} + YI{Pk(- co)}].

5. Let f(z) = Ik=OakZn-k be a real polynomial, f*(z) = (-1)n+lf(-z), and
f1(z) = f(z) - Az{ f(z) + f *(z)}, where A = ao/(2a1). Then deg fl = n , 1 and
AL arg { f1(iy)/f(iy)} = -7r sg A, where L: 91(z) = 0. Hint: Write f1(z) =
(1 - Az){1 - #(z)}, where 4(z) = {Az/(1 - Az)} { f*(z)/f(z)}. Show I0(iy)I < 1
for all real y. [Brown 2.]

6. In the notation of ex. (38,5) define the polynomials f(z) = In-i akj)zn-,-k by

the relations f (z) f 3 (z)}, A, = ao')/(2a1'1), j = 0, 1, ,

n -- 1. Let p, and q; be the number of zeros off in the right and left half-planes
respectively. Then po - qa = J!', sg (ao')ao7-1)). Hint: Use ex. (38,5) to show
that

[Brown 2.]
(q1+l - P,+1) - (q, - p,) = sg (a0(j)a('+')).

39. Determinant sequences. Continuing the discussion of the case ,u = n treated
in Cor. (38,1a) and Cor. (38,1b), we observe that p and q have been expressed as
functions of the c, which in turn we shall now express as functions of the coefficients
off(z) (cf. [Routh 1, 2] and [Frank 1]).
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Let us write

(39,1) Pk(x) = bn-k.o + bn-k.1x + ... + bn-k,n-kXn_k2 bn-k.n-k 34 0

with b.,k = 0 if j < 0 or k < 0. Comparing (39,1) with eqs. (37,4), we see that

(39,2) b,n.n = 1; bn,J = a' ; bn-1,J = a" , j = 0, 1, ... , n - 1.

On substitution from eq. (39,1) into eq. (38,1) we obtain the relation

G
bn-k+l.Jx7 = (ckx + dk) G

bn-k.JXj

G bn-k-l.Jx'
J=0 J=0 J=0

Equating corresponding powers of x on both sides leads us to the following
system of equations for the ck .

(39,3)

(39,4)

bn-k+l,n-k+l - ckbn-k,n-k - 0,

bn-k+l,n-k - ckbn-k,n-k-1 - dkbn-k,n-k = 0,

bn-k+l.J - ckbn-k.J-1 - dkbn-k,J + bn-k-1,J = 0,
(39,5)

j=0,
Let us define

(39,6) Bn-k.J+i = bn-k+1,J+1 - ckbn-k,J

From (39,3), (39,4) and (39,5) it follows that

(39,7)

(39,8)

(39,9)

Ck = bn-k+l,n-k+1/bn-k.n-k ,

dk = B.-k, n-kl bn-k, n-k ,

Let us define the matrix M2n_1 with 2n - 1 rows and columns as

bn-,,n-1 bn-l,n-2 bn-,.,n-a ' bn-1,o 0 0 ... 0

bn,n bn.n_1 bn,n-2 ... bn.l bn.o 0 ... 0

0 bn_1,n-1 bn-1,n-2 bn-l,o 0 .. 0

0 bn,n bn,n-1 ' ' bn,2 bn,1 bn,o ... 0

0 0 bn_1,n-1 ... bn-1.2 bn-1.1 bn-1,o ... 0

0 0 bn.n .. bn,3 bn.2 bn,l ... 0

0 0 0 ... bn-l,n-1 bn-1,n-2 bn-l,n-3 '
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We shall now show that by a succession of elementary row operations we may
reduce M2n_1 to the matrix Men-1 defined as

bn-l.n-1 bn-1,n-2 bn-i,n-3 bn-l.n-4 bn-1 0 0 0 . . 0

0 bn_1,n-1 bn-l,n-2 bn_1,n-3 bn-11 bn-10 0 ... 0

0 0 bn_2,n-2 bn-2,n-3 ' bn-2 1 bn-2 0 0

0 0 0 bn-2,n-2 ... bn-2.2 bn-2,1 bn-2,0

0 0 0 0 . . bn-3.2 bn-3,1 bn-3,0

LO 0 0 0

Let us define the row matrices with 2n - 1 elements:

0

0

0

.. bo.0

r;,k = [0, 0, ... , 0, bn-i.n-j , bn-1,n-j-1,
... , bn-i.0 , 0, 0, ... , 01,

R,,k = [0, 0, .. , , 0, Bn-i,n-J , Bn-i,n-j-l . , Bn-i,o , 0, 0, ... , 01,

in which the first k - 1 and last n - k + j - 1 elements are zeros. Then
from eqs. (39,6) to (39,9) it follows that

r,_1,k - c,r9.k = Ri.k+l , d rJ,k - R1,k = r7+l,k+l .

We may then write

ri,l
ro,l

r1,2

r0, 2

M2n-1 =

rl, n-1

ro, n-1

L r1.n

MZn_1 =

r1,1

r1,2

r2,3

r2,4

rn-1, 2n-3

rn-1, 2n-2

L rn,2n-1

Starting with M2n_1, let us construct the following sequences of matrices by
applying the indicated row operations.
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r1,1

r1,2

ro,2

Lrl,n J
rl,1

r11

ro,l - cir1,1

r1,2

ro,2 - c1r1,2

ro.n-1 - crl,n-1

Lrl.n

r1.1

r1,2

d1r1,2 - R1.2

r1,3

d1r1,3 - R1.3

ri.1

R1,2

r1.2

R1.3

r1.1

r1,2

r2.3

r1.3

r2.4

rl.n I I rl,n I I
ri.n

177

L-R,,. J Ldlrl.n - R1,nJ Lr2,n+1J

The latter matrix has the same first three rows as M2n_1 and on omission of
the first two rows and columns would have the same form as M2n_3 . It could
therefore be reduced to M2n_1 by repetition of the above row operations.

Let us denote by. At the determinant formed from the first 2k - 1 elements
of the first 2k - I rows and columns of matrix M2n-1 and let us denote by Ok
the corresponding determinant of matrix M2n_1. It is well known that the
above operation on the rows of M2n_1 make Ok = Ok. Thus

(39,10) Ol = Ai = bn-1.n-1 ,

(39,11) 4k = Ok = bz

n-l,n-1b
zn2-2,n-2 b2

n-k-1,n-k-lbn-k.n-k
for k = 2, 3, n. Since b,,, 0 0 for j = 0, 1, . , n, it follows then that
sg bn-k,n-k = Sg Ok for k = 1, 2, , n.

Due to eq. (39,7) and due to the relation bn,n = 1, we find that

(39,12) .NV [c1 , c2 , ...
, c,,] = 'Y-[l, bn-1.n-1, bn-2,n-2 ,

... , bo,oj,

and hence from eqs. (39,10) and (39,11) and Cor. (38,1a) that

(39,13) p = *-[I, Al, 02 , ... , On], q = 'V [1, -Al, 02 ,
...

, (-1)"Onl
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As a summary of the preceding results, let us state

THEOREM (39,1). Let the coefficients of the polynomial f(z) = a0 + a1z +
+ an-1zn-1 + zn be written in the form ak = a, + iak, where ak and ak are

real. Assume f(z) 0 0 for z real. Let Ak denote the determinant formed from the
first 2k - 1 elements in the first 2k - 1 rows and columns of the matrix

a1 an-2 an-3
arr

n-4 a0 0 0 0

1
ra_1 ra_2 ra_3 ... r

al
r

ao 0 ... 0

0 a
rra aall alla

an
n_1 n_2 n_3 1 0

o 1
r

an_1
r

an-2
ar
2

r
al

r
ao 0

L 0 0 0 0 an-1 an-z an-3 ... a0J
Then if Ak 0 0 for k = 1, 2, 3, , n, the number p of zeros off (z) in the upper
half-plane is equal to the number of variations of sign in the sequence 1, Al , A2 ,

, An, whereas the number q of zeros of f(z) in the lower half-plane is equal to
the number ofpermanences of sign in this sequence.

For the practical purpose of finding the numbers p and q for a given poly-
nomial, the computation of the determinants Ok may prove to be quite laborious.
Particularly when the computation is to be done by machine, the use of the
method leading to the proof may be preferable to the use of the theorem. That
is to say, it may be more convenient in such a case to reduce the given matrix
M2n_1 to the canonical form MZn_1 by successive steps each of which (especially
when the aj are real) can be readily performed on a computing machine. The
bk,k needed in eq. (39,12) are the elements in the main diagonal of matrix M2n_1 .

EXERCISE. Prove the following.
1. Let Dk denote the determinant formed from the first 2k elements in the

first 2k rows and columns of the square matrix (2n x 2n)

1 an_1 an-2 an-3 a0 0 0 ... 0

1 an_i an-2 an_3
...

do
0 0 ... 0

0 1 an-1 an-2 a1 a0 0 ... 0

0 1 an_1 an-2 a1 as 0 ... 0

0 0 1 an_1 a2 a1 a0 0

0 0 1 an-1 a2 a1 do ... 0

LO 0 0 0 ... an-1 an-2 do-3 ... aoJ

Then the &k of Th. (39,1) may be written as Ok = (i/2)cDk .
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40. The number of zeros with negative real parts. We now return to the problem
which, as we indicated in sec. 36, is of importance in the study of dynamic
stability. Given the polynomial

F(z) = z" + (Al + iBl)z'a-1 + ... + (A" + iBn)

where the A. and B, are real numbers, we wish to find the number p of its zeros
in the half-plane 91(z) > 0 and the number q of its zeros in the half-plane 9i(z) < 0.
In particular, we wish to find the conditions for q to be n.

Let us form the polynomial

f(z) = i"F(-iz) = ao + a1z + ... + a,,_lz"-i + z"

where ak = ak + iak = in-k(A,,i_k + Thus for m = 0, 1, 2, ... ,

an-4m = A4m , an-4m-1 = -B4m+1 ' an-4m-2 = -A4m+2 , an-4m-3 = B4m+3
rr w n uan-4m =B4m' an-4m-1 =A4m+1 an-4m-2 = -B 4m+2 , an-4m-3 = -A4m+3

If we further define
Al = Bf = 0 for j> n,

we ma write the determinant O of Th (39 1) asy k . ,

Al' -B2' -A3 , B4' A5, ...
, (-1)k+l A2k--1

1, -B1, -A2' B3' A4, .
, (-1)k+l A2k-2

0, Al, -B2, -A3, B4, ...
, (- 1)k+l B2k-2

0, 1, -B1 , -A2, B3 , ...
, (- 1)k+l B2k-3

(40,1) 0, 0, Al, -B2' -A3, ... (-1)k A2k_3

0, 0, 1, -B1 , -A2 , (-1)k A2k-4

By shifting certain rows and columns and changing the signs of certain rows and
columns, we may change (40,1) to the form given in Th. (40,1) below.

Since the substitution -iz for z corresponds to a rotation of the plane by an
angle 7r/2 about z = 0, f(z) has p zeros in the upper half-plane and q zeros in
the lower half-plane. According to Th. (39,1), F(z) has therefore as many
zeros in the half-planes 91(z) > 0 and 91(z).< 0 as there are variations and
permanences respectively in the sequences of the determinants (40,1).

Thus, we have proved

THEOREM (40,1). Given the polynomial having no pure imaginary zeros

F(z) = z" + (Al + iB1)z"-l + + (A,+ + iB") (A,, B, real),
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let us form the determinants Al = Al and

Al , As , A5 , ...
, A2k-19 -B4 , **q -B2k-2

1, A2, A4, ..., A2k-2, -Bl, -B2k-3

A
0, 0, 0, , Ak, 0, 0, - Bk-1

k

0, B2 , B4 , B2k-2 , Al , A3, A2k-3

0, B1 , B3 , B2k-3 , 1, A2, A2k-4

0, 0, 0, ... , Bk , 0, 0, ... , Ak-1

fork=2, 3, , n, with A, = Bt = 0 for j > n. Let us denote by p and q the
number of zeros of F(z) in the half-planes 91(z) > 0 and 'R(z) < 0 respectively.
IfAk00fork= 1,2, ,n, then

p = *^(1,'&1 ,
and

q = V(1, -A1 , A2 ,

In the case Ak > 0, k = 1, 2, , n, this theorem is stated explicitly in Frank
[1] and in Bilharz [3], the latter with the Ak in the form (40,1).

Of special interest is the case that F(z) is a real polynomial. In that case,
B, = 0 for all j; Al = b1 and Ok = bkbk-1, where bk is the determinant defined
in Th. (40,2) below.

Since sg A1A2 = sg b2 and sg AkAk+l = sg (bk-1bk+1) for k = 2, 3, , n - 1,
we may state the following theorem.

THEOREM (40,2). Given the real polynomial

F(z) = z" + A1zn-1 + ....+ A,,,

let us form the determinants b1 = Al and

Al , A3 , A5 , ...
, A2k-1

1, A2, A4, ...
, A2k-2

b - 0, Al , A3 , ...
, A2k-3

k - 0, 1, A2, ...
, A2k-4

0, 0, 0, ... , Ak

for k = 2, 3, , n, with A. = 0 for j > n. Let us denote by p and q the number
of zeros of F(z) in the half-planes 9R(z) > 0 and 91(z) < 0 respectively, where
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p + q = n. Furthermore, let us define r = 0 or 1 according as n is even or odd and
let us set

E2k-1=(-1)k82k-1
E2k=(-1)k 62k

p = ) (l, 61 , 63 , ... , 6n_i+r) + "(1, a2 ' 64 ' ... ' b.n-r)/q = ,
7"(1, E1 , E3 , ... , En-I+,) + 7(1, E2 , E4 , ... , En-r)

In particular, if 6k > 0 for all k, then p = 0 and q = n. This leads us to the
well-known result due to Hurwitz [2] which we state as the

HURWITZ CRITERION (Cor. (40,2)). If all the determinants 8k defined in Th.
(40,2) are positive, the polynomial F(z) has only zeros with negative real parts.

Real polynomials whose zeros all lie in the left half-plane are called Hurwitz
polynomials. The class of all such polynomials will be denoted by .

If f E , all the coefficients a, off may be taken as positive, since we may write

f(z) = ao fJ(z + yj) H[(z + oc,)2 + j2] = aozn + alzn-1 + ... + a
where ao > 0, y, > 0, oc, > 0. The converse is not necessarily true as is shown
by the example

x3+x2+4x+ 30=(x+ 3)[(x- 1)2+9].
Nevertheless, if we know that all a, > 0, we need to calculate only half the number
of the determinants 6, if we use the following result due to Lienard-Chipart [1].

THEOREM (40,3). In Th. (40,2), F E . if and only if the following three con-
ditions are satisfied:

(1) An > 0;
(2) either An_2; > 0, j = 1, 2, , [n/2] or An_2j+1 > O, j = 1, 2, , [(n + 1)/2];
(3) either 82, > 0, j = 1, 2, , [n/2] or 827_1 > 0, j = 1, 2, , [(n + 1)/2].

In this statement [k/2] denotes the largest integer not exceeding k/2.
This theorem is an immediate consequence of the following.

THEOREM (40,4). In Th. (40,2), let us write

where
F(z) = G(z2) + zH(z2)

G(u) = An + An_2u + An_,u2 +
H(u) = An_1 + An_3u + An_5u2 + .. .

Let also assume 8n 0 0 and set

o 6s , a5 ... ), r e = 7v(1, S2 , 64, 66, ... ).
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Then, if G(u) 0 0 for u > 0,

(40,2) p = 2'7v'o for n = 2m,
(40,3) p=2Y,"0-(1/2)[1-sgA1] forn=2m-1,
whereas, if H(u) 0 0 for u > 0,

(40,4) p = 2"-0 + (1/2)[sg Al - sg (A"-1A")] for n = 2m,

(40,5) p = 2'Y/-o - (1/2)[1 - sg (An_1A")] for n = 2m - 1.

REMARK. Corresponding results involving Y, instead of )" may be obtained
by use of the relation Yl'o = p - -r. given in the Th. (40,2).

PROOF. Let us show that we can determine p by finding the number p1 of
zeros that a certain polynomial of degree in has in the right half-plane.

We begin with the cases n = 2m when

G(u) = Urn + Alum-1 + A4um-2 + ... + A,,

H(u) = Alum-1 + A3um-2 + ... + A,n_1.

Let us set
f(z) = i"F(-iz) _ (-1)m[G(-z2) - iz H(-z2)].

Thus in (37,3) and (37,5)

(40,6)

P0(x) = (-1)'G(-x2), P1(x) = (-1)'"+1xH(-x2),

p(x) = -G(-x2)/[xH(-x2)].

Now from (40,6) it follows that

(40,7) sg p(x) = F sg [G(-x2)/H(-x2)] according as sg x = f 1.

Case I. G(u)00foru>0andn=2m.
We may write

(40,8) G(u) (u + uk)Go(u),
k=1

where 0 < u1 < u2 < . < u, and G0(u) jA 0 for real u. Hence

k
Po(x) _ (-1),n 1-1 (-x2 + uk)Go(-x2).

k=1

In the notation of (37,6)

xk = -u-k) k=1 92 3 ,1 1 4 ; xk = u1;t , k _ ,u + 1, ,u + 2, ... , 2,u.

Thus (37,9) becomes

(40,9) AL argf(z) = (ir/2)(Sl + S2)
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where

Sl = I In P(-Uk - E) - sg P(-U4 + E)l,
k=1

S2 = .L.. In P(uk - E) - Sg Auk + 01-
k-1

Let us set

(40,10) w(u) = G(u)/H(u).

Then from (40,6) and (40,7)

sg P[±(uk + E)l = fsg w(-uk - rl),

Sg P[f(k - e)] = :FSg w(-Uk + 7'i),
where

(40,11) 0<j=2Eu1- E2<2EUk±E2 for 0<e<2u1.
Hence,

A

S1 = S2 = I Isg w(-uk - i) - sg w(-uk + n)]
k=1

Comparing (40,10) with (37,5), we conclude that

AL arg O(z) = (ir/2)Si
where

(40,12) (z) = G(z) + iH(z)

and thus from (37,9), (37,10) and (37,12) [applied to f and then to 0] and (40,9) we
conclude that

(40,13) p = (1/2)[2m + (2/7r) AL arg #(z)] = 2p1

where p, is the number of zeros of O(z) in the upper half-plane.
To determine pl ; we rotate the plane about the origin 7r/2 radians clockwise,

setting
I(z) = (-i)'n0(iz) = (-i)m[G(iz) + iH(iz)].

Since
(-i)mG(1Z) = zm - iA2zm-1 - A4zm-2 + iA6zm-s + A8zm-4 + ,

(-i)m-1H(1Z) = A1zm-1 - iA3zm-2 - A5zm-s + iA7zm q + ...
,

we infer that
m

(40,14) c(z) = zm + I (ak + i1k)zm-k

k=1
where

a2k-1 T i1'2k-1 = (-1)k-lA4k-3 + 1(-1)kA4k-2 ,

a2k + 02k = (-1)k A4k + i(-1)kA4k-1
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for k = 1, 2, 3, . On substituting these values of ock and fl, for the Ak and Bk
respectively in (40,1), we find

I A1 A3 A5

Ak-

1 A2 A4

0 Al A3

0 1 A2

A4k-s

AU-4

A4k-5

A4k_6
= S2k-1

By Th. (40,1). pl =o and thus (40,2) follows.
Case II. H(u):AOforu>Oandn=2m.
Since G may now have positive zeros vk , we modify (40,8) by writing

7v

Go(u)
T= 11 (u - vk)G1(u)

k=1

where 0 < v1 < v2 < < vv and G1(u) 0 for real u. Since H(u) 0 0 for
u>0,

Sg w(vk + E) = Sg w(vk+1 - E)

for sufficiently small E > 0. Hence,

V

S3 = [Sg w(vk - E) - Sg W(Vk + e)]
k=1

= sg w(v1 - E) - sg w(vv + E)
= sg (0(+0) - sg co(cc)
= sg (A"/A"-1) - sg Al .

However, since

Go(-x2) = 11 (-x2 - vk)Gl(-x2) 0 0
k=1

for real x, there are no additional terms in (37,9) corresponding to S3 . Accord-
ingly, we must modify (40,13) to read

p = (1/2) {2m + (2/7T)[OL arg 0(z)l - S3}

= 2P1 + (1/2)[sg Al - sg (A"-1A")],
as in (40,4).

We next consider the cases n = 2m - 1, where

.f(z) = i"F(-iz) _ (-1)m-1 [zH(-z2) + iG(-z2)l

so that
H(u) = um-1 + Alum-2 + A4um-3 + ... + A"-1 ,

G(u) = Alum-1 + A3um_2 + ASum-3 + ... + A, ,
Po(x) = (-1)m-1xH(-x2), P1(x) _ (- 1)m-1 G(-x2),

p(x) = xH(-x2)/G(-x2),
(40,15) sg p(x) = ± sg [H(-x2)/G(-x2)] according as sg x = f 1.
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Case III. H(u) 0 0 for u > 0 and n = 2m - 1.
Let us write

M

(40,16) H(u) _ IJ (u + uk)HO(u)
k=1

with 0 < u1 < u2 < < uu and H0(u) 0 0 for u real. Then, as Po(x) has a
zero at x = 0, we must modify (40,9) to read

(40,17) (2/1r) AL argf(x) = sg p(-e) - sg p(+ e) + S1 + S2.

Let us set

(40,18) a(u) = uH(u)/G(u).

Then, defining q as in (40,11), we find from (40,15) that

sg P[±(uk + E)] = ±sg [H(-uk - rl)/G(-uk - rl)] = =Fsg a(-uk - 01
sg P[+(uk ± e)] = Fsg [H(-uk + r])/G(-uk +'7)] = ±sg a(-uk + 7]),

µ
S1 = 7- [+sg a(-uk - n) - sg a(-uk + n)],

k=1

A

S2 = I [-sg a(-uk + rl) + sg a(-uk - ,1)] = S1 ,
k=1

sg P(-e) - sg P(+e) _ -2 sg sg a(- t1) - sg a(j)
Hence, for p(z) = zH(z) + iG(z),

(40,19) (2/or) AL arg p(x) = S1 - 2 sg

From (37,9), (37,12), (40,17) and (40,19) we now deduce :

p = (1/2)[2m - 1 - sg (A,,-1A,,) + S1]
= (1/2)[2m - 1 + sg (A,,-1A,,) + (2/Ir) AL arg 'fi(x)]
= 2p1 - (1/2)[1 - sg (An-1A.)]

Finally, since i(u) is identical with 0(u), we again find that pl = Y'0 and so we
have established (40,5).

Case IV. G(u) 0 O for u > 0 and n = 2m - 1.
Since H may now have positive zeros vk , we modify (40,16) by writing

v

Ho(u) _ 11 (u - vk)Hl(u)
k=1

where 0 < v1 < v2 < < v and H1(u) 0 0 for real u. As in Case II, we
calculate

S3 = I [sg a(vk - 77) - sg a(vk + rl)]
k-1

= sg a(+0) - sg a(co) = +sg sg Al

which added to (40,19) leads to the formula

(2/Tr) AL arg y'(x) = S1 - sg (A.-1/An) - sg Al .
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Since AL arg f (x) is the same as in (40,17), we find that

p=(1/2)[2m- 1 +(2/rr)OLargV(x)+sgA1]
= p1 - (1/2)[1 - sg A1].

This establishes (40,3) and completes the proof of Th. (40,4).
Clearly, the Hurwitz Criterion, Cor. (40,2), is an immediate consequence of

Th. (40,3). For other proofs of Cor. (40,2) we refer the reader to Bompiani [1],
Orlando [1] and [2], Fujiwara.[1] and [4], Schur [3], Vahlen [1], Obrechkoff
[6] and [12], Wall [1], Neimark [1], Gantmacher [1], Bueckner [1], and Talbot [1].

Regarding the practical computation of the 6k , the reader is referred to the
remarks following Th. (39,1). In the cases that some of the bk are zero, a useful
formula is the following due to Orlando [1]:

n'T k-1

(40,20) bn = (-1)n(n+1)/2

ZiZ2 ... Zn 11 11 (z,+ zk) = An 6n-1
k=2 ,=1

where z3 are the zeros of F(z). Eq. (40,20) may be established by a mathematical
induction on n. By (40,20) the condition Sn_1 = 6n = 0 implies that either
z; = 0 for some j or z; = -zk for some j and k, and conversely. If, however,
bn 0, we refer to the result given in Gantmacher [1, p. 239] to the effect that, if
b,n 54 0, bm+1 = bm+2 = ' ' ' = bm+2h-1 = 0, 6m+2h 54 0, m < m + 2h < n, then
in the expression

P = Y"'11, 61, 62/61 , ... , bn/bn-1]

we take

/ [bml bm-1 , 6 n+1/bm , 6m+2h+1/6m+2h]

= h + (1/2){1 - (- 1)h sg [(6m/6m-1)(6m+2h+1/6m+2h)]

We refer also to the discussion in sec. 44.

EXERCISES. Prove the following.
1. Th. (40,2) is valid for the number of zeros of the real polynomial

#(z) = a0 + a1z + ... + anzn, a0 > 0,

in the half-planes 91(z) > 0 and 91(z) < 0, when the 6k are replaced by the
determinants

al a3 a5 0(I
...

0(2k-1

a0 0(2 0(4 a6 ' ' ' 0 2k-2

0 a1 0(3 a5 ' . ' 0(2k-3

bk -
0 a0 0(2 0(4 . ' ' a2k-4

10 0 0 0 ... 0(k

Hint: Apply Th. (40,2) to F(z) = (zn/a0)0(l/z).
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2. Let ao>0 and bo>0 be real
polynomials. Let h(z) = f (z) + Ag(z). If f c- , then

d=sup{JAI ; A real, h c- *'I

has the value d = min [b0lao, Pk lyk], k = 1, 2, , n, where y,r 1 is the sum of the
absolute values of the elements in the inverse of the matrix with determinant 8k
[see Th. (40,2)] and Nk is the max Ib;I over all b; occurring in the determinant
form 6k computed for g(z) [Parodi 2b].

3. If in Th. (40,1) F has a pure imaginary zero, then 0" = 0. If in Cor. (40,2)
F has a pair of conjugate imaginary zeros, 6"a_1 = 0. Hint: Show that is,, in Th.
(39,1) is the discriminant of the polynomials (37,4).

4. The real parts of the zeros of F(z) in Th. (40,2) are the zeros of D,,,_1((X), the
determinant 6"_1 corresponding to the polynomial F(z - a) [Koenig 1]. Hint:
Use ex. (40,3).

5. In the cases n = 4 and 5, the hypotheses of Th. (40,3) imply those of Cor.
(40,2) [Fuller 1]. Hint: For n = 4 show that A3S2 = 63 + Ai and for n = 5 that
A36362 = A26, + 83 + A1A562 .

6. If the division algorithm (38,1) is applied to the F of Th. (40,2), then the
corresponding Pk(z) has the form

(40,21) Pk+l(z) = Sk-1(z)Po(z) + Tk(z)Pl(Z)

involving the real polynomials
k k

Sk-&) _ I ak,Zk-i, Tk(Z) =I q
I'kfZk-j-

1=1 i=0

If the coefficients of zv on both sides of (40,21) are equated for v = n + k - 1,
n + k - 2, , n - k - 1, the resulting system of 2k + 1 equations in the
2k + 1 unknowns ak, and 14kg has 6k as its determinant [Talbot 1].

7. If the polynomials

g(z) = (z - a1)(z - a2) ... (z - a"), h(z) = (z - b1)(z - b2) ... (z - b")

have real zeros with 61 < bl < ... < a" < b" , then the polynomial f(z) _
g(z) + (A + iu)h(z), u 0 0, has all its zeros in the upper (lower) half-plane
if ,u > 0 (,u < 0) and A is real [Han-Kuipers 2].

8. If P and Q are real polynomials and if f(z) = P(z) + iQ(z) has p zeros in
the upper and q in the lower half-plane with p > q, then F(z) = P(z) + AQ(z)
has also p zeros in the upper half-plane if _I(A) > 0 and at least p - q real
distinct zeros if (A) = 0 [Montel 7]. Hint: Allow A to vary continuously
from A = i to A real. A zero of F can leave the upper half-plane only by first
crossing the real axis-an impossibility.

9. The zeros of F(z) = det (a;k + z11k), where b;; = 1 and S,k = 0 for j # k,
all lie in the left half-plane if Rt(akk) > 0 and lakkI > J1,1k Ia,kI, k = 1, 2, , n
[Parodi 1]. Hint: Apply Th. (31,1).

10. Let f (z) _ Ik=o akZk, g(z) = 1k=0 bkZk (ak , bk real ),

'V(z) = Af (z) + (1 - A)g(z), A real.
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If deg y, = m = n for 0 < A < 1 and if ip(iy) 96 0 for all real y, then f has the same
number of zeros as g for 91(z) > 0 (91(z) < 0). Hint: The zeros of V are continu-
ous functions of A.

11. For f as in ex. (40,10) let F(z) = ao + amzm. If f (iy)F(iy) s 0 for all real
y and if c[f(iy) +f(-iy)] > 0 for all positive y and for some constant c of
modulus one, then f has the same number of zeros as Ffor 91(z) > 0 (91(z) < 0)
[Bueckner 1]. Hint: Apply ex. (40,10) with g(z) - F(z) and show IV(iy)I >
I9R[y,(iy)]l > 0 for positive y.

12. For f and g of ex. (40,10) with m = n - 1, form

2n-1

O(Z) ={ J (-Z)g(z) = L Ckzk,
k=0

'(z) = CO + c2n_1z2n-1

If q(iy)t(iy) 0 0 for all real y and if 0 has the same number of zeros as cD both
for 91(z) > 0 and for SR(z) < 0, then g c- *' implies f c- A. Conversely, all
bk > 0 and f E' implies g c- .' [Bueckner 1]. Hint: The zeros of (D are the
vertices of a regular polygon centered at z = 0 so that their numbers in the right
and left half-planes differ at most by one.

13. The conditions on g and fin ex. (40,12) are satisfied by the following two
polynomial pairs:

rnn n-1
(a) F(z) = G An-kzk, G(z) _ Bn-1-kZk,

k=0 k=0

where
A0= 1,An_,>O,A,,>OandA,=Oforj<0orj>n,

Bk=Af_lAk - AfAk-l fork=n-2,n-4,...;

(b) any g such that g(z) and g(-z) have no common zeros and the f with
deg f < n - 1 such that f(z)g(-z) + f(-z)g(z) = 2 for all z [Bueckner 1].

14. If f E ° and f(0) = 1, then f has the form

+clz -1 0 0 .. 0 0

f(Z)

1 c2z -1 0 . . 0 0

0 1 c3z -1 ... 0 0

0 0 0 0 1 cnz

where c; > 0 for j = 1, 2, , n [Frank 1, 4; Bueckner 1].
15. Let f0 in ex. (38,6) be chosen as the F in Th. (40,2). Let bk'1 denote the

determinant bk for the ff in ex. (38,6). Then bk = b;bk'!, , j, k = 0, 1, , n,
j < k [Brown 2].
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41. The number of zeros in a sector. The right half-plane is the special case
9'(7r/2) of the sector ,9'(y) comprised of all points z for which

(41,1) Jarg zj < y < 7x.

In extension of our previous results on the number of zeros of the polynomial

(41,2) f (z) = ao + a1z + ... + anzn, aean 0 0,

in the right half-plane, let us now outline the methods of determining the number
of zeros off(z) in the region .9'(y).

For this purpose, let us set

ak/an = Akeiak, 0 < ak < 27r, z = reie,
and

(41,3) F(z) = f (Pe:e)/ane`ne = Po(r, 0) + iP1(r, 8)
where

(41,4)
Po(r,8)=A0cos[ao-n8]+A1r, cos [a1-(n-1)8]+

+ An_1rn-1 cos + rn,

(41,5)
P1(r, 0) = A0 sin [ao - n8] + A1r sin [a1 - (n - 1)0] +

+ An_1rn-1 sin 0].

Let us denote by r1 i r2 , , r, , ,u < n, the distinct positive zeros of P0(r, y) and
by ri , r2 , , r, , v < n, the distinct positive zeros of Po(r, - y), these being
labelled so that

(41,6) 0<r1<r2<...<r,,, 0<ri<r2' <...<r,'.
Let us assume that

(41,7) Po(0, y)Po(0, -y) = Ao cos (ao - ny) cos (ao + ny) 0 0,

which means, since. A0 0 0, that for any integer m

(41,8) ao ± ny 0 (2m + 1)(7x/2).

In this case the Principle of Argument (Th. (1,2)) leads to

THEOREM (41,1). Let the polynomial f(z) = ao + a1z + + a,,,zn have p
zeros interior to the sector .9'(y) and no zeros on the boundary s of this region. Let
A, arg f (z) be the net change in arg f (z) as point z traverses s in the positive direction.
Then

(41,9) 21Tp = 2ny + A, argf(z).

In terms of the ratio

(41,10) p(r, 0) = Po(r, 8)/P1(r, 0)
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we may derive a formula similar to (37,9); namely,

2ny + Os argf(z) = 7r(K + K) + 7rI Csg P(r; e, y) - sg P(rj - e, y)]
i=1L 2

(41,11)

- 7r P(r; + e, -y) - sg P(r - e, -Y)1[sg

2 J

where K and K' are integers (or zero) such that

(41,11)' loco - ny + K7rl < 7r/2, loco + ny - K'7TI < 7r/2.

For, let us note that, since f(0) = ao 0 0, also f(z) 0 0 for all lzl < e, a being
a sufficiently small positive number. Hence, the number of zeros of f(z) in
.So(y) will be the same as in the region Y*(y) comprised only of the points of
ma(y) for which Izi > e. Let us denote by F the arc of the circle Izi = e lying
in ,"(y) and by fi the complete boundary of 9 *(y). Then.

1-T

µ-1
arg F(z) _ -sg P(r,+1 - e, y) + sg P(r2 + e, Y)]

2 ,=1
°-1

+ - j [+sg P(r',+1 - e, -y) - sg P(rr + e, -Y)]
2 ;-1

+ A. arg F(z) + Do arg F(z) + Or arg F(z)

+ Ao arg F(z) + A' arg F(z),

where the last five terms denote respectively the increments in arg F(z) as point
z moves along the ray 0 = y from r = oo to r = rµ and from r = r1 to r = e,
along P, and along the ray 0 = -y from r = e to r = r' and from r = rv to
r = oo. It is clear that

A. arg F(z) = (7T/2) sg P(rµ + e, Y),

Do arg F(z) = oco - ny + K7r - (7r/2) sg P(r1 - e, y),

Lo arg F(z) = (7T/2) sg P(ri - E, -Y) + K'7r - ao - ny,

0', arg F(z) = -(7r/2) sg P(rv + E, -y),
Or arg F(z) = 2ny.

These formulas lead now to equation (41,11) since

AP arg f (z) = /. arg F(z) - 2ny.

Let us denote by a and T the number of r, at which, as r increases from 0 to 00,
p(r, y) changes from - to + and from + to - respectively and by o' and z
the number of r,'. at which, as r increases from 0 to oo, p(r, -y) changes from -
to + and from + to - respectively, then (41,9) may be written, due to (41,11), as

(41,12) P=(112)[(a-T)-(a'-T)+(K+K)].
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Since the differences (a - T) and (a' - r') may be computed by constructing
Sturm sequences, we may state a theorem analogous to Th. (38,1) (cf. Sherman
[1] and J. Williams [1]).

THEOREM (41,2). Let f (z) = ao + a1z + + a"z" be a polynomial which
has p zeros in the sector .°(y) and no zeros on its boundary s. Let P0(r, 0) and
P1(r, 0) be the real polynomials in r such that

f (reE°)/a"et"e = Po(r, 0) + iP1(r, 0)

and let P2(r, 0), P3(r, 0), , P, (r, 0) = K(B) be the Sturm sequence in r obtained
by applying the negative-remainder, division algorithm to Po(r, 6)/P1(r, 0). Finally,
let the number of variations in sign in the sequence Po(r, 0), P1(r, 0), , P,(r, 0)
be denoted by V(r, 0). Then

(41,13) p = (1/2){[V(0, Y) - V(co, Y)] - [V(0, -Y) - V(oo, -Y)] + K + K')

where k and k' are integers satisfying (41,11)'.
Th. (41,2) is a generalization of the Sturm theorem giving the exact number

of zeros of a real polynomial

f (z) = ap + a1z + ... + a"Z"

on a given interval of the real axis. This suggests that we also attempt to
generalize Descartes' Rule of Signs to complex polynomials.

Before we can proceed to generalize this Rule, we must first formulate a
suitable generalization of the concept of the number of variations of sign in a
sequence of numbers a; to cover the case that the a; are complex numbers. Let
us denote by 19(y) the double sector consisting of the two sectors (see Fig. (41,1))

(41,14) D1(Y) : -y < arg z < y < 7r/2,

(41,15) D2(Y) : or - y < argz < 7T + y.

We shall say as in Schoenberg [1] that a variation with respect to _q(y) has
occurred between ak and ak+1 if ak lies in one of the sectors D1(y) or D2(y) and
ak+1 lies in the other sector.

This concept permits us to state the following result due to Obrechkoff [2] in
the case y = 0 and to Schoenberg [1] when 0 < y < it/2.

THEOREM (41,3). If all the coefficients a, of the polynomialf(z) = ao + a1z +
+ a"z" lie in the double sector _9(y), then in the sector 9(V) defined by the

inequality

(41,16) Iarg zi < < (a - 2y)/n

the zeros off (z) number at most T(ao, a1, , a"), the number of variations with
respect to _9(y) in the sequence ao , a1 , , an .



192 THE NUMBER OF ZEROS IN A HALF-PLANE OR SECTOR [9]

To prove Th. (41,3) let us set z = rez°, ak = Ake'Qk for k = 0, 1, , n and

(41,17) f(reze)e-tine/2 = Qo(r, 0) + iQ1(r, 0).

If a, r, a' and T have the same meaning as above with now

p(r, 0) = Q0(r, 0)/Q1(r, 0),

then the above reasoning leads again to eq. (41,12) for the number of zeros
of f(z) in the sector (41,16). In particular we infer from (41,12) that, since
K = K' = 0 here,

(41,18) p < (1/2)(a + T + a' + T) < (1/2)(m + m'),

where m and m' denote the number of positive real zeros of Q0(r, y) and Q0(r, -y)
respectively.

FIG. (41,1)

On the other hand, from eqs. (41,2) and (41,17), we have that

n
Qo(r, 0) _ A;r' cos {a; - [(n/2) - j]0}.

i=0
Let us assume that

la;l<y<7r/2, j=0,1,...,n,
and thus that point of lies in D1(y) or D2(y) according as A, > 0 or A, < 0. Now
on the boundary rays 0 = ± ' of the sector (41,16),

-7r/2 < -y - (n/2)y < oc, [(n/2) -j]0 < y + (n/2) < 7r/2

and hence cos {a; - [(n/2) -j)6} > 0 for 0 = ±y and for all j. Applying
Descartes' Rule of Sign to Q0(r, y) and Q0(r, - y), which are real polynomials
in r, we learn that both

m < 17(Ao, Al i ... , An), m' < K(Ao , Al , ... , An)

We now conclude from (41,18) that

(41,19) p < V(Ao, Al , ... , An),

as required in Th. (41,3).
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In this extension of Descartes' Rule to complex variables, it is not as yet
known whether or not the difference between the right and left sides of ineq.
(41,19) is zero or an even integer as it is in the case of real polynomials.

EXERCISES. Prove the following.
1. If all the coefficients of f (z) = ao + a1z + + lie in the sector

Iarg zI < it/2, then f(z) has no real positive zeros. More generally, if all the
points z = aketik°' lie in the same convex sector, then f (z) 0 0 on the ray 0 = co.
Hint: Use Th. (1,1) [Kempner 5].

2. If in Th. (41,3) all the a; are points of the double sector

65arg(±z)5 6+y'<6+ir,
and if I3 is the number of variations of the as with respect to this double sector,
then f(z) has in the sector S((ir - V)/n) at most 23 zeros. Hint: Apply Th.
(41,3) to {f(z) exp [- (6 + V/2)i]} [Schoenberg 1].

3. If all the zeros Zk of f (z) = ao + a1z + + lie in the sector A : 6 5
argzS6+y,<6+7r,then the points
also lie in A. Hint: I1 (1/zk) = 1/bo . According to the proof of Th. (1,1),
1 /bo , as a sum of vectors each of which lies in A, also lies in A and hence bo also
lies in A. Similarly, express 1/bk in terms of the zeros of the kth derivative of
f (z) and use Th. (6,1) [Takahashi 1].

4. If I f (eio) 15 M for f (z) = 1o akZk with aoa 0 0, then the number N of
zeros in the sector 0 < a 5 arg z 5 fi :5 2ir satisfies the relations

Q = IN - [n(9 - 0c)/2-]I < 16[n log (M I aoanl -'¢)]4,

Q < 16{n log [(Iaol + Iall + ... + Iaj) Iaoanl-4]}'4

[Erdds-Turin 1, 2].
5. The real polynomialf(z) = ao + a1z + + has at most V + 2(na/Ir)

zeros in the sector Iarg zI < a < a/2 where V = Y' (ao , a1 , , a,,) [Obrechkoff
1].



CHAPTER X

THE NUMBER OF ZEROS IN A GIVEN CIRCLE

42. An algorithm. Like that of Chapter 1X, the subject of the present chapter
is not only of theoretic interest but also of practical importance. It enters in
the study of certain questions of stability. These may pertain to a linear difference
equation with constant coefficients such as arise for example in econometric
business cycle analysis [Samuelson 1] or to the numerical solution of first order
differential equations [Wilf 1]. In such cases the requirement for a stable
solution is that all the zeros of the characteristic polynomial lie in the unit circle.
Similarly the stability of a discretely operating physical system may depend upon
the system's transfer function being a rational function with- all its poles inside the
unit circle [Jury 1, 2].

Let us denote by p (p < n) the number of zeros which the polynomial

(42,1) f(z)=ao+a1z+....+.a"z"=a"[J(z-z)
i=1

has in a given circle, which, without loss of generality, may be taken as the
unit circle IzI = 1. One way to determine p would be to map the interior of
the unit circle IzI < 1 upon the left half w-plane by means of the transformation

(42,2) w = (z - l)/(z + 1), z = (1 + w)/(1 - w).

Then p becomes the number of zeros which the transformed polynomial

(42,3) F(w) = (1 - w)"f((l + w)/(l -- w))

has in left half-plane and so may be found by applying to F(w) the theorems of
Chapter IX. (Cf. Hurwitz [3], Frank [lb].) The result thus obtained appears,
however, less elegant than that which we shall presently derive by applying
Rouche's Theorem (Th. (1,3)) directly tof(z).

Let us associate with f (z) the polynomial
_ n

(42,4) f *(z) = z"f (1 /z) = aoz" + a1z"-1 + ... + a" = do ri (z - z
i=1

whose zeros zk = 1/Zk are, relative to circle Izi = 1, the inverses of the zeros
zk of f(z). This means that any zero of f(z) on the unit circle is also a zero of
f*(z) and that, if f (z) has no zeros on the circle IzI = 1, then f *(z) has also no
zeros on the circle IzI = 1 and has n - p zeros in this circle. Furthermore,
on the unit circle, the value off *(z) is

(42,5) f* (eye) = do 11 (ei°
aoe1'°(-1)"H (e_' ° - z,) = ei" f(e_to)

i=1 Z1Z2 Z" i=1

194
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and, consequently,

(42,6) If *(-?')I = I f (eie) I

From f (z) and f*(z) let us construct the sequence of polynomials f(z)
Yk-o ak5)zk, where fo(z) = f(z) and

(42,7) fj+1(z) = ao'fj(z) - aoj' jf *(z), j = 0, 1, ... , n - 1.

Thus,

(42(1+1) (j) (j) (j) (j)
,8) ak = do ak - an-jan-j-k

In each polynomial fj(z), the constant term aoj) is a real number which we
shall denote by 6,; viz.,

(42,9) 2 - Ia (j)12 = (j+1),9) 8j+l= laoI n-j -ao , j=0,1,2, ,n-1.
As to the zeros of these polynomials, Cohn [1] has proved two lemmas which

we shall combine in the compact form due to Marden [16].

LEMMA (42,1). If fj has p, zeros interior to the unit circle C: IzI = 1 and if
Sj+1 96 0, then fj+1 has

(42,10) Pj+l = (1/2){n -j - [(n -j) - 2p,] sg sj+1}

zeros interior to C. Furthermore, fj+l has the same zeros on C as fj

To prove this lemma, let us begin with the case that 6j+1 > 0. From eq.
(42,6) with f (z) replaced by f (z) and from eq. (42,9), we infer that

(42,11) Ian'-Jfs (z)I < l aoj)fj(z)I, ZEC.

Let e (>0) be chosen so small that ineq. (42,11) holds for z E C': IzI = 1 - e
and that f(z) :A.0 for 1 - e 5 IzI < 1. It follows from Rouche's Theorem
that the polynomial fj+1(z) has in C the same number pj of zeros as aoj fj(z).
Since sg 6j+1 = 1, this number is in agreement with formula (42,10).

Let us next take the case that Sj+1 < 0. Since now

(42,12) I a0('fj(e°B)I < I

the same reasoning as in the previous case here shows that the polynomial
f +1(z) has in C the same number (n -j -p,) of zeros as a;j! j f * (z). Since now
sg 6,+1 = -1, this number is also in agreement with formula (42,10).

As to the zeros of fj+l on C, we see from eq. (42,7) that on C every zero off ,

being also one of fj* , is a zero of fj+1 and that because of ineq. (42,11) and (42,12)
any point on C, not a zero of fj , is also not a zero of fj+1 .

Thus, we have proved that Lemma (42,1) is valid in both cases.
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Let us now apply Lemma (42,1) to each in the sequence (42,7). We
learn thereby that

p,=(1/2){n-(n-2p)sg 61},
P2 = (1/2){(n - 1) - [n - 1 - 2p1] sg 82}

=(1/2){(n-1)-[(n-1)-n+(n-2p)sgbl]sg82}
= (1/2){(n - 1) - (n - 2p) sg (6162) + sg 62}.

The expression for p2 is the special case of the formula

(42,13)
ps = (1 /2) [(n - j + 1) - (n - 2P) sg (6162 ... bs)

+ S90261 ... bj) + sg'(8384 ... b) + ... + sg b1]

Let us assume that we have verified formula (42,13) also for j = 3, 4,
k - 1 and on that basis let us compute pk . From eqs. (42,10) and (42,13) with
j=k-1, we obtain

Pk=(1/2){n-k+1-[(n-k+ 1)-2pk_1]sgck}
=(1/2){(n-k+ 1)- [(n-k+ 1)-(n-k+2)

+ (n - 2P) sg (8182... 4-1) - sg (6263 ... bk-1)

- S90364 ... bk-1) - .. - sg bk-1] Sg bk}

_ (1/2){(n - k + 1) - (n - 2P) sg (6162 ... bk) + sg (6263 ... bk)

+ S90364 ... 3k) .+.... + Sg 8k}.

This shows by mathematical induction that formula (42,13) holds for all j,
2<j<n.

In particular, since f,,(z) _- const. and hence p,, = 0, we derive from eq. (42,13)
with j = n the relation

(42,14)
1 - (n - 2p) sg (6162... 6,,) + sg (8283... 6n)

+ S90364 ... 6n) + ... + sg 8 = 0.

If solved for p, eq. (42,14) yields the value

(42,15) p = (1/2)(n - sg Pk)

where

(42,16) k= 1,2,---,n.
To interpret formula (42,15), let us denote by v the number of negative Pk,
k = 1, 2, , n. Then, as (n - v) is the number of positive Pk , we may write
(42,15) as

p = (1/2)[n + v - (n - v)] = v.

In other words, we have now as in Marden [16] established
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THEOREM (42,1). If for the polynomial

.f (z) = a0 + a1z + ... + anzn

p of the products Pk defined by eq. (42,16) are negative and the remaining n - p
are positive, then f(z) hasp zeros in the unit circle I z I = 1, no zeros on this circle
and n - p zeros outside this circle.

We observe that Th. (42,1) does not contain a hypothesis that f (z) # 0 for
IzI = 1. This is implied in the hypothesis 6n 0 0, as will be seen in secs. 44
and 45.

A convenient way to find the Sk is by construction of the matrix

a0 a1 ... an-2 an-1 an
an an-1 . . . a2 a1 a0
(1) (1) . . . (1) (1)a0 a1 an-2 an-1 0

a(1) a(1) .. . a(1) a(1) 0
1 0n-1 "_2

Lap"`) 0 ... 0 0 O J

comprised of the 2n + 1 rows pi, j = 1, 2, , 2n + 1. Row p1 consists of
the coefficients in f (z) = ao + a1z + + anzn and row p2 consists of the con-
jugate imaginaries of these coefficients written in the reverse order. In general

(k) (k)
P2k+1 = a0 P2k-1 - an-kP2k ,

and row P2k+2 consists of the conjugate imaginaries of the coefficients of the
row P2k+1 written in the reverse order. Since by definition Sk = a(k), the 6k are
the first elements in the rows p2k+1 , k = 1, 2, , n.

EXERCISES. Prove the following.
1. If 5, > 0 for j = 2, 3, , n, then f(z) s 0 in IzI < 1 or IzI > 1 according

as 6,>O or 6,<O. If sg then p = 2m + 1 if n = 4m + 1 and
p = 2m + 2 if n = 4m + k, k = 2, 3 or 4 and m = 0, 1,2, .

2. Let d;(r) be the values of the b; of Th. (42,1) for ak = bkrk and p(r) the
corresponding value of p. Then p(r) is the number of zeros of the polynomial
g(z) = b0 + b1z + + bnzn in the circle IzI < r.

3. Let 6,(r, s) be the values of the 6, of Th. (42,1) for a, = r' Jk , C(k, j)sk-'bk
and p(r, s) the corresponding value of p. Then p(r, s) is the number of zeros
of g(i) = bo + blz + + bnzn in the circle .1z - sI < r.

4. If the a, are all real and if 0 < an < an-1 < ... < ao, then also all the
a;k) in eq. (42,8) are real and 0 < an-Wk < a;,k)k_1 < ... < aO, fork = 1, 2, , n,
and thusf(z) s 0 in IzI < 1 [Enestrom 1, Kakeya 1, Cohn 1].

5. If 5, 96 0 for j = 1, 2, , n - 1 but if Sn = 0, then the zero of the fn_1(z)
(see eqs. (42,7)) lies on the circle IzI = 1.
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6. If laol < Ian!, f (z) has all its zeros in the unit circle if and only if f *(z) has
all its zeros in the unit circle [Schur 2].

7. If a c.r. (characteristic root) of an n x n matrix A = (ai5) lies in the left half-
plane, then the corresponding c.r. of the matrix B = [A - E]-1[A + E] lies
inside the unit disk and conversely [Wegner 1]. Hint: See sec. 31 and eq. (42,3).

43. Determinant sequences. While the algorithm given in sec. 42 does enable
us to find the number p of zeros of the polynomial f(z) in the unit circle, a set
of conditions expressed directly in terms of the coefficients of f(z) is desirable,
at least from a theoretical standpoint. This type of condition is embodied in
the following theorem.

SCHUR-COHN CRITERION (Th. (43,1)). If for the polynomial f (z) = ao +
alz + ' ' + all the determinants

ao 0 0 ... 0 an an-1 an-k+l

ai ao 0 ... 0 0 an an-k+2

Ak =
ak-1

an

an-i

ak-2 ak-3

0 0

an 0

ao 0 0

0 do ai

0 0 do

an

ak-1

ak-2

, k=1,2,...,n,

I an-k+1 an-k+2 an-k+3 . . . an 0 0 . . . a0 I

are different from zero, then f (z) has no zeros on the circle Izl = 1 and p zeros in this
circle, p being the number of variations of sign in the sequence 1, Al , A2, ' ' ' , An

Th. (43,1) is due to Schur [2] in the case Ak > 0 all k and essentially to Cohn
[1] in the general case. We shall follow the derivation in Marden [16].

In order to prove Th. (43,1), we need to express the Ak in terms of the bk
entering in Th. (42,1). For this purpose, we shall first develop a reduction
formula for the determinants :

a0(i) 0 0 0 0)an-i W
an-i-1

a(i) a(i) 0 0 0 ani)1 0 i

(i) (i) (i) (i) 0 0 ...
A(i) ak-1

a
k

2
ak-3

a
0_k a(i)

n 7
0 0 0 (i)do(j) (i) ..

n(i) a(i)
n 7 0 0 0 a(i)

0

(i)an-i-k+1 (i)

an-i-k+2
(i)

an-i-k+3
(i)

an-i 0 0

(i)

an-i-k+1

a(i)
n

7-k+2

a(i)n-i
a(i)

k 1
a(i)
k 2

(i)

a0

where the aki) are the quantities defined in eq. (42,8).
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With this in mind, let us introduce the determinant of order 2k

A(1) -k

d0(j) 0 0 ... 0 -ani)i 0 0 0

0 aoi) 0 ... 0 0 0 ... 0

199

0 0 0... aoi) 0 0 0 -ani)i
- a;,, 0 0 ... 0 aoi) 0 0 ... 0

0 -a(i)i 0 0 0 ao) 0 0

0 0 0 _a(i) 0 0 0 ... aoi)

To evaluate ).k, let us multiply its last k rows by a(ni), and add the resulting rows
to the first k rows multiplied by aoi). Using eqs. (42,8), we thus find

(431) ,s(i) = (aoi+l))x

l Let us now form the product 4i)Okwhich is by the laws of determinant
multiplication and by eqs. (42,8):

aoi+v 0 0 ... 0 0 a;,i+1)1 a(5+1) x+1

a(1+1) a(i+1) 0 ... 0 0 0 ... a(i+1)
1 0 n-i-k+2

(i+1) (i+1)ak-1 ak-2

0 0

(i+1)an-i-1

(i+1)
ak-3

0

0 0

a(i+1) 0 0 . . 0
(i+1) (i+1) (i+1)0 a0 a1 ...

ak-1

0 0 a(i+1) ... a(1+1)
0 k-2

(i+1) (i+1) (i+1) . . , (i+1)
an-i-k+l an-i-k+2 an-1-k+3 0 0 0 a0

Developing this determinant with respect to the kth and (k + 1)st columns
according to the Laplace method, we obtain the result

(43,2)
(i) (i) (i+1) -(i+1) (i+1)Ak L1k = a0 a0 Ok-1 .

If now we use eqs. (43,1), (43,2) and (42,9), we are led to the following conclusion.

LEMMA (43,1). The determinants oki) satisfy the relation

(43,3) Oki) = D i+ll)I(6i+1)k-2 if 6i+1 76 0.

Let us now apply Lemma (43,1) to the determinant Ak in Th. (43,1), bearing
in mind that ai = Thus, by iteration of (43,3), we have

Ok _
6k-2

=
67-2

6k-3 A(2)k-2
if 6162 76 0-

1 1 2
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When 6162 ak+1 34 0, this suggests the formula

A= 1 1 . 1 1 (k-1) = ak

-1 -2 1
k ak-2 ak-3 ak-l 1 Sk-262k-3 ...

ak-2

which may be established by mathematical induction.
By virtue of this formula,

Ak ak al-lag-2 ... ak_1 = 6162 ... ak+l
2

Ak+1 a1
262-3 . ak-2 ak+1 ak+1

This means that

[10]

(43,4) Sg Sg Pk+1

If now we apply Th. (42,1) in conjunction with eq. (43,4), we may complete
the proof of Th. (43,1).

Th. (43,1) may also be proved by using either of the two equivalent Hermitian
forms

n

H1 1 anui + an-1u9+1 + ... + aaunl2 - I a0u1 + a1u7+1 + ... + an_ unl2,
9=1 A=1
n-1

H2 = I Afku;uk
J.k=0

where A,k are the coefficients in the Bezout resultant

*) = J
(Z){J *(W) - {

J (W)f *(Z) _ 1-1A z'W n-1-kB( f, f
{

l L. !kZ - W 3,k=0

Form Hl was used in Schur [2] and Cohn [1] and form H2 was used in Fujiwara
[5]. If Hl or H2 is reduced to the canonical form of a sum of n positive and
negative squares, the p and q of Th. (43,1) are respectively the number of
positive squares and the number of negative squares. This method is analogous
to that which had been previously used in Hermite [1] to determine the number
of zeros of a polynomial in the half-planes Z(z) > 0 and .(z) < 0.

EXERCISES. Prove the following.
1. With the polynomial f (z) = ao + a1z + . + anzn let there be associated

the triangular matrices

ao a1 a2 ak-1

0 ao a1 ak-2

Lo 0 0 ... a0]
Let Ak and Ak denote the corresponding matrices for f (z) and f *(z) respectively.
Furthermore let MT denote the transpose of any given matrix M. Then the
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determinants Ok of Th. (43,1) may be written symbolically as

A T *

Ok =
*T

Ak
[Cohn 1].

Ak , Ak

2. Let Ak represent the matrix obtained from Ak by interchanging the jth
and (k - j)th rows, j = 1, 2, , k. Then, iff(z) is a real polynomial,

Ak = det [(A,* + Ak) (Ak - Au)] [Cohn 1].

3. The determinant A. is the resultant of the two polynomials f (z) and f *(z)
and hence vanishes if and only if f(z) has a zero on the circle Izi = 1 or at
least one pair of zeros which are symmetric in this circle, or both. Hint: The
resultant of two nth degree polynomialsf(z) and g(z) may be written (cf. Bocher's
Algebra, New York, 1924, pp. 198-199) in terms of the corresponding triangular
matrices An and Bn as

R(f, g) _
An, An

Bn, Bn
T

[Cohn 1].

44. Polynomials with zeros on or symmetric in the unit circle. In Th. (42,1)
and Th. (43,1) we assumed that f has no zeros on the circle C: jzI = 1 and also
that none of the b, or A, , j = 1, 2, , n, is zero.

Let us lift the first restriction partly by assuming that we may factor the poly-
nomialf(z) = ao + a1z + - + anzn in the form

(44,1)

where

f(z) = V(z)g(z)

v

(44,2) ''(z) = (z - r.eim,)(z - r,
1ei4f)

(z - eiBi),

(44,3) 0:5 k=n-2,u-v.
The factor y,, having only zeros on or symmetric in C, is said to be self-inversive.

The factor g will be assumed not to have any such zeros. Now, since

(44,4) V*(z) = (-1)°eai,p(z),

where a = 01 + 02 + ... + 0,, + 2(41 + 02 + + Oµ),

(44,5) f *(z) _ (-1)n-ke-, V(z)g*(z)

That is, V is a common factor of f and f *. Conversely any common factor of
f and f * has the form (44,2).

The polynomial ip(z) may be found by applying to f (z) and f *(z) the Euclid
algorithm for finding their greatest common divisor. But V (z) may also be found
by use of the sequence (42,7) of polynomials fk(z). In fact, let us denote by
gk(z) the sequence (42,7) in which f(z) is replaced by g(z). Then, since in (44,1)
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ao = (-1)n-kei0bo and an = bk, it follows that

J1(z) _ (-t)n-ke iab0,(z)g(z) - bk(-1)n-ke

"V(z)g*(z)

and, hence, that

(44,6) fl(z) = (-1)(n-"'e-"'(z)g1(z)

Similarly

f2(z) = (-1)2(n-k)e2i0 ,(z)g2(z),

(44,7)

[10]

fk(Z) _ (- 1)k(n-k)e kio, '(z)bok)

fk+l(Z) = 0.
In other words, if f (z) and f*(z) have a common factor ip(z) of degree n - k, it
is a factor of all the f (z), j = 1, 2, , k, and f1(z) - 0 together with 6, = 0,
j>k.

Conversely, if

(44,8) fk+1(Z) =
d(k)fk(Z) - Qnk)kfk(Z) = 0,

we may show that fk(z) is a factor common to all the f (z) and f *(z), j = k - 1,
k - 2, , 1, and tof(z) andf*(z). For, from eq. (42,7) we obtain

zfi+1(Z) = a0(j)f; (z) - Qn;),f;(z),
and thus

b;+1f,(z) = Q0;)f;+1(z) + anL5zfi+l(z),
(44,9)

b;+1fj(z) = an;);f;+1(z) + (z)

If we substitute from (44,8) into (44,9) with j = k - 1, we find from the equations,
m-k 0 0,if a(k)

bkfk-1(Z) = [a0
-1) + ank k+1(a0k)/ank)k)zJfk(z),

Skf, 1(Z) = [Qn k+l + Q(ok-1)(a(0k)/a k)k)Z]fk(z),

that fk(z) is a common factor of fk_1(z) and f * 1(z). By application of eqs.
(44,9) with j = k - 1, k - 2, , 0, we may also show fk(z) is a factor of f(z)
and f *(z).

The number of zeros of (f / f *) in the circle Izl < 1 is the same as the number
of zeros of g(z) in this circle. If we set E, = boJ), the E, are the 6, for g(z) and
so the number of zeros of f(z) in IzI < I is the number of negative products
(E1E2 ,), j = 1, 2, , k. Since from eqs. (44,1) and (44,7) we find

ao;) _ (-1)(J+1)(n-k)e(i+1)icb0

Q(;) _ 1 ;(n-k)e 2iob(;)n-; - (- ) k-;
(;) 2 (;) 2 (,) 2 (;) 2b;+1 = I a I- I Qn-; I- I b0 I- I bk-; I- E;+1
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In other words, we have proved the following generalization of Th. (42,1)
due to Marden [16].

THEOREM (44,1). For a given polynomial f (z) = ao + a1z + + az", let
the sequence (42,7) be constructed. Then, if for some k < n, Pk 0 0 in eq. (42,16)
but fk+l(z) = 0, then f has n - k zeros on or symmetric in the circle C: IzI = 1 at
the zeros of fk(z). If p of the P, , j = 1, 2, , k, are negative, f hasp additional
zeros inside C and q = k - p additional zeros outside C.

The zeros of fk(z) may be determined by use of Th. (45,2).

EXERCISES. Prove the following.
1. The number p in Th. (44,1) may be taken as the number of variations of

sign in the sequence 1, A,, 02 , Ok of determinants (43,1) [Marden 16; cf.
Cohn 1, p. 129].

2. Let f (z) be a real polynomial of degree n and let

g(Z2) = (Z2 + 1)nf((Z + i)/(Z - i)){J ((Z - i)/(z + i)).

Thenf(z) has k zeros on the circle IzI = 1 if and only if g(z) has k positive real
zeros [Kempner 2, 3 and 7].

3. Let the polynomials be defined by the relations so,n(z) = 1 + z + +
n

Sm,n(Z) =I Sm-1.k(Z),
k=0

m=1,2,....

Then all the zeros of Sm,n(z) = for n = m + 1, m + 2, , lie
on the circle jzJ = 1 [Turan 2].

45. Singular determinant sequences. Returning to polynomials f(z) which do
not have any zeros on the circle Izi = 1, let us consider the case that, for some

(45,1) (k+1) (k) 2 (k) 2
6k+1 = a0 - ja0 - Jan-kl = 0.

In such a case the number p of zeros of f(z) in the unit circle C: Izl < 1 may
be found either by a limiting process or by a modification of the sequence (42,7).

The limiting process may be chosen as one operating upon the circle C or
upon the coefficients offk(z). That is, since fk(z) has no zeros on the circle C, we
may consider in place offk(z) the polynomial

(45,2) Fk(z) =.fk(YZ)

which, for r = 1 ± E and E a sufficiently small positive quantity, has as many
zeros in the circle IzI < 1 as does fk(z). Alternatively, we may consider in
place offk(z) the polynomial

n-k
FF(45,3) Fk(z) = (1 + E)ao) + a;k)z' = Ea0k) +Jk(Z),

i=1
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which, for e a sufficiently small real number, has also as many zeros in the unit
circle as does fk(z).

A more direct procedure for covering the case of a vanishing bk+l is to modify
the sequence (42,7). The modification will apply even when fk(z) has zeros for
IzI = 1.

Observing that, according to (45,1), in

(45,4)
{{Jk(Z) = apk) + alk)z + . .. + a(nk)kzn-k

the first and last coefficients have equal modulus, we shall find useful the fol-
lowing two theorems due to Cohn [1].

THEOREM (45,1). If the coefficients of the polynomial g(z) = bo + blz + +
bmzm satisfy the relations:

(45,5) bm = ubo , bm_i = ubl , ... , bm-a+1 = uba_i , bm_q 5 uba

where q < m/2 and j u I = 1, then g(z) has for IzI < 1 as many zeros as the polynomial

(45,6)

where

m

G1(z) = B0G(z) - Bm+aG*(z) =I B;l)z',
9=0

m+a
(45,7) G(z) = (za + 2b/Ibl)g(z) _ B,z',

=o
(45,8) b = (bm_a - uba)/bm ,

and
IB(1)1 < IBm'I.

THEOREM (45,2). If g(z) = bo + blz + + bmzm is a self-inversive poly-
nomial; i.e., if

(45,9) bm = ubo , bm_1 = ubl , , ho = ubm , lul = 1,

then g has as many zeros on the disk IzI < 1 as the polynomial

m-i
(45,10) gi(z) = [S (z)]* _ (m - l)bm-;zf

t=o

That is, g and g' have the same number of zeros for IzI > 1.

Since polynomial fk(z) in (45,4) is, a polynomial g(z) of the type in either
Th. (45,1) or Th. (45,2), these theorems permit the replacement of fk(z) by a
polynomial which is also of degree not exceeding n - k and in which relations
(45,5) and (45,9) are not satisfied.

Let us first prove Th. (45,1). As the factor (za + 2b/Ibl) does not vanish
for IzI < 1, g(z) has as many zeros for IzI < 1 as G(z). Since, however, B0 =
2(b/Ibl)ba and Bm+a = bm , we learn from (45,5) that

D, = IB012 - IBm+a12 = 4 Ibol2 - I bml2 = 3 Ib,I2 > 0,
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and, from (42,10) with n -j replaced by m and 5;+1 replaced by D1, we learn
that G(z) and GI(z) have the same number of zeros for IzI < 1. If we compute
G1(z) by use of eqs. (45,6) and (45,7), we find 0 if j > m; that is, G1(z)
is a polynomial of the same degree as g(z). Also,

BJ1
= 4 IboI2 - Ibml2 = 3 Ib012,

Bm> = bob,m(2 IbI + 3) = Ibol2u(2 Ibi + 3)

and thus IBoI'I < IB;,1'I
To prove Th. (45,2), we follow Bonsall-Marden [1] in establishing

LEMMA (45,2). If g is a self-inversive polynomial, its derivative g' has no zeros
on the circle C: IzI = 1 except at the multiple zeros of g.

It suffices to show that, if 0 0 for E C, then 0 0. Let us write
[cf. eq. (44,2)]

»b P Q

(45,11) g(z) = bm II (z - zj) = bm IT (z - Y,)(z - Y*) IT (z - A;)
j=1 1=1 1=1

where p?O,q>0and2p+q=m,IY;I
and A; = ezo' for j = 1, 2, , q. (If p or q = 0, we omit the corresponding
product in (45,11).) Then

g '(01W) w;
i=1

But the transformation

w, = ( - z5)-1

(45,12) w = G - z)-1

carries C into the straight line L which passes through the point w = and
is perpendicular to the ray R from the origin to point w = 1/(20. Since this
transformation also carries the points A, into points on L and the point pairs y;
and y' into point pairs symmetric in L, the centroid W = (Y1 w;)lm of the points
w; lies on L and hence W 0 0 as was to be proved.

For the proof of Th. (45,2) we first consider the case that g(z) a 0 for IzI = 1
(i.e., q = 0) and hence, by Lem. (45,2), g'(z) 34 0. For any E C we have seen
that the corresponding vector W has a positive component along R. As moves
counterclockwise on C, the line L rotates clockwise and thus arg
decreases by 27r. By the Principle of Argument (Th. (1,2)) g'(z) has one less
zero than g(z) inside C and hence the same number of zeros as g(z) outside C.

In the case that q 0 0, we let e = (1/4) infi), - AkI for j : A k, j, k = 1 , 2, ,

draw circles F, of radius a about each A; , and let C' be the smallest Jordan curve
enclosing C and all the r, , j = 1, 2, , q. Since the vector ( - A;)-1 rotates
clockwise as moves counterclockwise on r, n C', the vector W rotates clockwise
as before as moves counterclockwise on C' and we reach the same conclusions.
We have thus completed the proof of Th. (45,2).



206 THE NUMBER OF ZEROS IN A GIVEN CIRCLE [10]

In summary, we may say that, if the first and last coefficients of the fk(z) in
(45,4) have the same modulus, then by applying Th. (45,1) or Th. (45,2) we
may replace fk(z) by another polynomial having the same number of zeros in
the circle IzI = 1 as does fk(z), but having first and last coefficients of unequal
modulus. This replacement permits us to resume the computation of the 6,
inasmuch as the new 6k+1 is not zero.

EXERCISES. Prove the following.
1. Let Ak(r) be the value of the determinant Ak of Th. (43,1) for ak = bkrk,

k = 0, 1, , n. Then the polynomial g(z) = bo + b1z + + bz" has on
the disk Izl < r the number p(r) of zeros and in the ring r1 < Izi < r2 the
number m(r1, r2) of zeros, these numbers being

p(r) = *^{l, Al(r), A2(r), ... , A"(r)},
m(r1 , r2) = i{l, A1(r2), A2(r2), ... , A"(r2)} A&1), E2(r1), ... , An(r,)}.

It is assumed that all the Ak(r), Ak(r1) and Ak(r2) are different from zero [Cohn 1].
2. If in the sequence (42,7) fk(z) is the first f (z) of the type g(z) in Th. (45,2),

and if the polynomial fk+1(z) = z"-k-1fk(1/z) has m zeros in the unit circle, then
fk(z) and f (z) have each [n - k - 2m] zeros on the unit circle [Cohn 1 ].

3. A necessary and sufficient condition for all the zeros of g(z) to lie on the
unit circle is that g(z) satisfy conditions (45,9) and that all the zeros of g'(z) lie
in or on this circle [Cohn 1].

4. A necessary and sufficient condition that all the zeros of f (z) = ao +
a1z + + a"z" lie on the circle IzI = 1 is that in eq. (42,8) all ak' = 0 and
that alsof'(z) have all its zeros in or on this circle [Schur 2].

5. Let N(f, E) and Q(f, E) denote respectively the total multiplicity of the
zeros of f on a set E and the number of distinct poles of f on E. Let k and K
be polynomials with deg k > deg K; k(z) = f(z)g(z) and K(z) = F(z)G(z) where
f, g, F, G are polynomials, f and F are self-inversive and N(g, IzI > 1) _
N(G, Izl < 1). Then with O(z) = k(z)/K(z)

N(c', Izl > 1) = N(0, IZI > 1) + Q(O, Izl ? 1)

[Bonsall-Marden 2]. Hint: Use reasoning similar to that for Th. (45,2).
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BScher's Theorem, 94, 95
Bolzano's Theorem, 112

Cassini oval, 145
Cauchy indices, x, 168, 169
center of force, 51
centroid, 16, 33, 51, 53, 75
characteristic polynomial, 167
characteristic roots, 140-146, 190
circular region, 48, 49, 52, 55, 56, 57, 61, 66,
69, 74. 75, 80, 82, 87, 89, 92, 94-96, 98,
100, 102

closed field, algebraically, 55, 94
Coincidence Theorem, 62, 89, 98
companion matrix, 140, 144
complex masses, 33, 37, 75
composite polynomials, 65-72
conics, 9, 79
continued fraction, 173
continuity of zeros, 3, 5, 141, 148
convex

domain, 23
hull, 16, 19, 22-25, 87

of critical points, 21
point-set, 75
region, 24, 30, 32, 34, 36, 41, 62, 66, 73,
74, 83, 84, 86, 89, 110-112, 115, 116, 117,
118

sector, 1, 84, 193
critical points

convex hull of, 21
of G(x, y), 9, 24, 28
of a polynomial, 13, 22, 106, 107
of a real polynomial, 25, 28

cross-ratio, 102

derivative of a rational function, 93, 96, 102
Descartes' Rule of Signs, 122, 191-193
determinant sequences, 174
differential equations, 36-42
distance polynomial, 25, 55, 101
domain, convex, 23
dynamic stability, 166

electromagnetic field, 33
elementary symmetric functions, 60, 62
ellipse, 9, 35, 39-41, 78
Enestrom-Kakeya Theorem, 136, 137, 139,

197
entire function, 4, 24, 87, 105, 118, 164
equilateral hyperbola, 28, 29, 78
equilibrium point(s), 8, 9, 33, 37, 42, 48,
50, 95

extremal polynomials, 14

Fejer sum, 74
field

algebraically closed, 55, 58, 94
of force, 8, 22, 33, 37, 41, 42, 45, 48, 50,

166

first polar, 48, 56, 94
foci

of the conic, 9, 79
of the curve of class p, 11

force fields
complex masses, 33, 37, 41, 75
covariant, 45
inverse distance law, 7, 8, 33, 37, 45, 46
Newtonian, 8
spherical, 46

Fundamental Theorem of Algebra, x

Gauss Theorem, 8, 22
gear-wheel region, 130,133
generalized stochastic matrix, 146
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Grace-Heawood Theorem, 107
Grace's Theorem, 61, 63, 66, 73, 107
Green's function, 8, 24, 28

INDEX

Hadamard's Theorem, 140
Hermite polynomials, 42, 87, 125
Hermitian symmetric forms, 56, 94, 200

abstract, 59
Hilbert space, 65
Holder inequality, 124, 151
homogeneous co-ordinates, 45
homogeneous polynomial, abstract, 55,
56-59, 63, 64, 94

hull, convex, 16, 19, 22-25, 87
Hurwitz('s)

Criterion, 181, 186
polynomials, 181, 187, 188
Theorem, x, 4, 24, 148, 165

hyperbola, 9, 78
equilateral, 28, 29, 92

hyperbolic non-Euclidean (N.E.) plane, 36

incompressible fluid, 8
infrapolynomial(s), vii, 13, 15, 18, 19, 23,

25, 27, 36, 92, 110, 116
restricted, 19, 88

Interpolation Formula, Lagrange, 15, 18
interpolation polynomial, Newton, 59
invariant, 45, 48, 93
inverse distance law, 7, 8, 33, 45, 46

Jacobian of binary forms, 94, 103
Jensen('a)

circles, 25, 26, 27, 28, 40
Formula, 73, 129
Theorem, 26, 29, 39-41

Jordan curve, 2, 5, 24, 28, 34

Kakeya-Enestrom Theorem, 136, 137, 139,
197

Lacunary polynomial(s), 110, 134, 138, 147,
153, 155, 159, 160, 163

Lagrange Interpolation Formula, 15, 18
Laguerre's Theorem, 50, 51, 53, 57, 95
Lame differential equation, 36-42
Legendre polynomials, 41
lemniscate, 8
lens-shaped regions, 35
limagon, Pascal, 67
linear combination(s), 32, 62, 78, 82, 101

of a polynomial and its derivative. 81, 101
of polynomials, 74
of the products of the derivatives, 84

linear relation, 61, 66, 163

linear transformations, 43, 48
line-co-ordinates, 11
Lucas Theorem, 22-25,30,33,41,48,49,

53,66,89,113,158,162
Tune, 71

matrix, companion, 140
matrix methods, vii, 139-146
Mean-Value Theorem, 33,91, 110
meromorphic function, 86,118
monotonically increasing norm, 14

nth polar, 56,59,65
nearest polynomials, 20
Newton ('s)

formulas, 6
interpolation polynomial, 59

Newtonian field, 8
non-Euclidean (N.E.) plane, hyperbolic, 36

orthogonal polynomials, 125
orthogonality relations, 16
orthonormal polynomials, 127

p-circular 2p-ic curve, 97, 103
p-valent, 121

functions, 117
parabola, 9
partial fractions, 7
Pascal limagon, 67
Pellet's Theorem, 128, 130, 132, 147
Picard's Theorem, 147,164
point-set, convex, 75
polar

first, 56, 94
nth, 56, 59, 65

polar derivative, 44, 48, 49, 52, 55, 92
polynomial

abstract homogeneous, vii, 55,56,59,94
lacunary, 10, 134,138,153-165
nearest, 207
self-inversive, 201, 204, 205

Poulain-Hermite Theorem, 29
Principle of Argument, ix, 1, 27, 189

quadratic forms, 171
quadrinomial, 147,165
quaternion variable, 27

region, star-shaped, 31, 32
restricted infrapolynomial, 19, 88
resultant of two polynomials, 201
ring, 68,69
Rolle's Theorem, x, 6,21,26,45,107
roots, characteristic, 140-146



Rouche's Theorem, 2,3,4,5,128,170,194,
195

Schur-Cohn Criterion, 198
Schwarz inequality, 129
sectors, 70, 130, 189, 191, 193
self-inversive polynomial, 201, 204, 205
sources, 8
spaces

abstract, 94
n-dimensional, 16

spherical force field, 46, 50
stability, 166, 194
stagnation points, 8
star-shaped region, 31, 32, 34, 110, 111, 116,

117

stereographic projection, 46
Stieltjes

integrals, 111
polynomial, 37,38,41,42, 105

stochastic matrix, generalized, 146
Sturm

sequences, 171, 172, 191

theorem, 191

support-function, 75
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supportable set, 63
symmetric forms

functions, elementary, 60, 62
Hermitian, 56, 94
n-linear, 56,58

Tchebycheff

norm, 13,20

polynomial, 14,19
trinomial equation, 80, 147, 165

underpolynomial, 13
univalent function, 110

Van Vleck polynomial, 37,38,41
Vandermonde determinant, 17
vector spaces, 55, 63, 94
velocity field, 33
vortex source, 33

Walsh's
Cross-Ratio Theorem, 102
Two-Circle Theorem, 89

Wronskian determinant, 113

zeros, continuity of, 3,5, 148
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