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PREFACE TO THE SECOND EDITION

Seventeen years have passed since the manuscript for the first edition of this
book was submitted to the American Mathematical Society. The preparation of a
new manuscript has presented a welcome opportunity to try to improve the first
edition by rewriting and expanding some of its material, by eliminating known
misprints and errors (with however the pious hope of not introducing too many
new ones) and by including new material developed during the past seventeen
years. It has also led to the replacement of the first edition’s title, The Geometry
of the Zeros of a Polynomial in a Complex Variable, by a simpler, more convenient
one, Geometry of Polynomials.

For a subject about 150 years old, the analytic theory of polynomials has
continued to show a surprising degree of vitality. A superficial measure of this is
the extent to which our bibliography has had to be enlarged. Over 300 new titles
have been added to the ones given in the first edition. These include a new,
seventy-six page survey [Specht 7] written as part of the revised Enzyklopddie der
Mathematischen Wissenschaften.

The new material has been incorporated into the text and into the exercises.
Particularly significant is the new material on infrapolynomials beginning with
sec. 5, on abstract polynomials beginning with sec. 14, and on matrix methods
beginning with sec. 31.

The author wishes to express his appreciation to those who have offered correc-
tions and suggestions regarding the first edition and to the following who generously
read all or part of the new manuscript: Dr. Oved Shisha of the Wright Patterson
A.F.B. Aerospace Research Laboratory, Professor Hans Schneider of the University
of Wisconsin at Madison, Professor Robert Vermes of McGill University, and Mr.
G. M. Shah of the University of Wisconsin-Milwaukee. He also wishes to thank
the American Mathematical Society for authorizing the publication of this second
edition and the Society’s editorial staff, (Miss Ellen Swanson, Mrs. Patricia Wolf,
Mrs. Fannie S. Balsama) for the patience and care with which they have processed
the manuscript. Finally, he gratefully acknowledges the support given him by the
National Science Foundation through the grants G-16315 and GP-2571.

MORRIS MARDEN
University of Wisconsin-Milwaukee
December 6, 1965.
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PREFACE TO THE FIRST EDITION

The subject treated in this book is sometimes called the Analytic Theory of
Polynomials or the Analytic Theory of Equations. The word analytic is intended
to suggest a study of equations from a non-algebraic standpoint. Since, how-
ever, the point of view is largely that of the geometric theory of functions of a
complex variable, we have preferred to use the title of the Geometry of the Zeros
of a Polynomial in a Complex Variable.

The connection of our subject with the geometric theory of functions of a
complex variable becomes clear when we examine the type of problems treated
in the subject and the type of methods used in solving these problems.

The problems center very largely about the study of the zeros of a polynomial
f(z) as functions of various parameters. The parameters are usually the co-
efficients of f(z), or the zeros or the coefficients of some related polynomial g(z).
Regarded as points in the complex plane, the parameters are allowed to vary
within certain prescribed regions. The corresponding locus R of the zeros of
f(2) is then to be determined. The locus R may consist of several non-over-
lapping regions Ry, R,,--:, R,. If so, we might ask how many zeros are
contained in each R, or in a specified subset of the R, or, conversely, what subset
of the R contains a prescribed number of zeros of f(z). It may happen that the
determination of the exact locus R may be too difficult, too complicated, or for
some reason unnecessary. If so, we may wish to replace R by a simpler region
S containing R. If for example S is chosen as a circle with center at the origin,
its radius would of course furnish an upper bound to the moduli of the zeros
of f(2).

We may consider these questions regarding the locus R as pertaining to the
geometric theory of functions for at least two reasons. First, we recognize that
they are essentially questions concerning the mapping properties of the zeros
viewed as analytic functions of the given parameters. Secondly, we recognize
that, in determining the zeros of a polynomial f(z), we are finding the A-points
of the polynomial g(z) = f(z) + A; that is, the points where the polynomial g(z)
assumes a given value 4. In other words, we may regard our problems as
instances of the general problem of the value distribution of analytic functions.
In fact, the solution to our problem may contribute to the solution of the
general problem. For, if G(z) is an arbitrary analytic function, we may be
able to construct a sequence of polynomials F,(z) which in some region R con-
verge uniformly to the function F(z) = G(z) — A; the zeros of F(z), that is, the
A-points of G(z), may be then sought in R as the limit points of the zeros of the
F,(2).

Our methods for investigating these questions will involve mostly the geo-
metric operations with complex numbers and certain principles which are based

ix



X PREFACE TO THE FIRST EDITION

upon these operations and which are stated in Sec. 1. Among these is the
principle that a sum of vectors cannot vanish if the vectors are all drawn from
a point O on a line L to points all on the same side of L. Among these also is
the so-called Principle of Argument and its corollaries such as the Rouché
Theorem, the Cauchy Index Theorem, the theorem on the continuity of the
zeros and the Hurwitz Theorem. Thus, due to the nature of not only its prob-
lems but also its methods, our subject may be considered as belonging to the
geometric theory of functions.

Historically speaking, our subject dates from about the time when the geo-
metric representation of complex numbers was introduced into mathematics.
The first contributors to the subject were Gauss and Cauchy.

Incidental to his proofs of the Fundamental Theorem of Algebra (which
might also be regarded as a part of our subject), Gauss showed that a poly-
nomial f(z) =z" + A4;2"*+ -+ + A, has no zeros outside certain circles
|z} = R. In the case that the A, are all real, he showed in 1799 that R =
max (1, 2'/2S) where S is the sum of the positive 4, and he showed in 1816 that
R =max (22 n|A|)"*, k=1,2,---,n, whereas in the case of arbitrary,
real or complex A;, he showed in 1849 [Gauss 2] that R may be taken as the
positive root of the equation 2z" — 2V3(|4,|z" '+ - -+ |4,)=0. As a
further indication of Gauss’ interest in the location of the complex zeros of
polynomials, we have his letter to Schumacher [Gauss 1, vol. X, pt. 1 p. 130,
pt. 2 pp. 189-191] dated April 2, 1833, in which he tells of having written enough
upon that topic to fill several volumes, but unfortunately the only results he
subsequently published are those in Gauss [2]. The statement of his important
result (our Th. (3,1)) on the mechanical interpretation of the zeros of the de-
rivative of a polynomial comes to us only by way of a brief entry which he made
presumably about 1836 in a notebook otherwise devoted to astronomy.

Cauchy also added much of value to our subject. About 1829 he derived for
the moduli of the zeros of a polynomial more exact bounds than those given
by Gauss. We shall describe these bounds in Sec. 27. To him we also owe the
Theory of Indices (about 1837) as well as the even more fundamental Principle
of Argument. (See Secs. 1 and 37.)

Since the days of Gauss and Cauchy, many other mathematicians have con-
tributed to the further growth of the subject. In part this development resulted
from the efforts to extend from the real domain to the complex domain the
familiar theorems of Rolle, Descartes and Sturm. In part, also, it was stimu-
lated by the discovery, in the general theory of functions of a complex variable,
of such theorems as the Picard Theorem, theorems which had no previous
counterpart in the domain of real variables. In view of the many as yet un-
settled questions, our subject continues to be in an active state of development.

The subject has been partially surveyed in the addresses delivered before
varjous learned societies by Curtiss [2], Van Vleck [4], Kempner [7], and Marden
[9]. Parts of the subject have been treated in Loewy [1], in Pdlya-Szego [I,
vol. 2, pp. 55-65, 242-252] and in Bauer-Bieberbach [1, pp. 187-192, 204-220].
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The most comprehensive treatment to date has been Dieudonné [11], a seventy-
one page monograph devoted exclusively to our subject.

Though very excellent, these surveys have been handicapped by a lack of
the space required for an adequate treatment of the subject. There still remains
the need for a detailed exposition which would bring together results at present
scattered throughout the mathematical journals and which would endeavor to
unify and to simplify both the results and the methods of treatment.

The present book is an attempt to fill this need. In it an effort will be made
to present the subject as completely as possible within the allotted space. Some
of the results which could not be included in the main text have been listed as
exercises, with occasional hints as to how they may be derived by use of the
material in the main text. In addition, our bibliography refers each listed paper
to the section of our text containing the material most closely allied to that in
the paper, whether or not an actual reference to that paper is made in our text.

It is hoped that this book will serve the present and prospective specialist
in the field by acquainting him with the current state of knowledge in the various
phases of the subject and thus by helping him to avoid in the future the duplica-
tion of results which has occurred all too frequently in the past. It is hoped
also that this book will serve the applied mathematician and engineer who need
to know about the distribution of the zeros of polynomials when dealing with
such matters as the formulation of stability criteria. Finally, it is hoped that
this book will serve the general mathematical reader by introducing him to some
relatively new, interesting and significant material of geometric nature—material
which, though derived by essentially elementary methods, is not readily available
elsewhere.

In closing, the author wishes to express his deep gratitude to Professor Joseph
L. Walsh of Harvard University for having initiated the author into this field
and for having encouraged his further development in it; also, for having made
many helpful criticisms and suggestions concerning the present manuscript.
The author wishes to acknowledge his indebtedness to The University of Wisconsin
in Milwaukee for.providing the assistance of Francis J. Stern in typing the
manuscript and of Richard E. Barr, Jr. in drawing most of the accompanying
figures; also his indebtedness to his colleagues at Madison for the opportunity
of giving there, from February to June 1948, a course of lectures based upon the
material in this book. Last but not least, the author wishes to thank the
American Mathematical Society for granting him the privilege of publishing this
manuscript in the Mathematical Surveys Series.

Milwaukee, Wisconsin
November 1, 1947
and October 1, 1948, MORRIS MARDEN
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CHAPTER 1
INTRODUCTION

1. Some basic theorems. Before proceeding to the study of various specific
problems connected with the zeros of polynomials, we shall find it useful to
consider certain general theorems to which we shall make frequent reference.

The first of these theorems provides an intuitively obvious sufficient condition
for the nonvanishing of a sum of complex numbers. It requires that each term
in the sum be a vector drawn from the origin to a point on the same side of some
line through the origin. This theorem may be stated as follows.

THEOREM (1,1). If each complex number w;, j = 1,2, -, p, has the properties
that w; # 0 and

1y ySargw; <y+m, j=1,2,-+,p,

where y is a real constant, then their sum w = 3*_, w; cannot vanish.

In proving Th. (1,1), we begin with the case y = 0 when the w; are vectors drawn
from the origin to points on the positive axis of reals or in the upper half-plane.
If arg w; = O for all j, then R(w,) > 0 for all j and hence R(w) > 0. Ifargw; 0
for some value of j, then 3(w;) > O for that j and hence J(w) > 0. Thus, if
y=0,w#0.

In the case that y % 0, we may consider the quantities w; = e~?'w,. These
satisfy ineq. (1,1) with y = 0 and consequently their sum w’ does not vanish.
As w' = e "iw, it follows that w % 0.

This proof establishes not merely that w 7 0, but also the following. The
point w lies inside the convex sector consisting of the origin and all the points z
for which y S argz < y + 6§, 6 < =, if all the points w; lie in the same sector.

Our second theorem expresses the so-called Principle of Argument.

THEOREM (1,2). Let f(2) be analytic interior to a simple closed Jordan curve C
and continuous and different from zero on C. Let K be the curve described in the
w-plane by the point w = f(z) and let A arg f(z) denote the net change in arg f(z)
as the point z traverses C once over in the counterclockwise direction. Then the
number p of zeros of f(2) interior to C, counted with their multiplicities, is

(1,2) p = (1]2m) Ag arg f(2).
That is, it is the net number of times that K winds about the point w = 0.
1



2 INTRODUCTION [11

We shall prove Th. (1,2) only in the case that f(z) is a polynomial. If z,,
Z, """, 2z, denote the zeros of f(z) inside C and z,,,,, z,42, * * *, Z, denote those
outside C, then

f(Z) = an(z - zl) ot (Z - Z,,)(Z - zo+l) e (Z - zn)’

arg f(z) = arg a,, +§:arg (z—z)+ 3 arg (z — z).

j=1 I=p+.
As the point z describes C counterclockwise (see Fig. (1,1)), arg (z — z;) increases
by 27 when 1 = j = p, but has a zero net change when p < j = n. This fact
leads at once to eq. (1,2).

z-plane

Fic. (1,1)

As is well known, eq. (1,2) may be written as

(1.2 =i fc (DI f(2)] dz

when there is added to Th. (1,2) the hypothesis that C be a regular curve.
From Th. (1,2) we shall next derive the important

RoucHE’s THEOREM (Th. (1,3)). If P(z) and Q(z) are analytic interior to a
simple closed Jordan curve C and if they are continuous on C and
(1,3) 1P(2)| < Q@) zeC,

then the function F(z) = P(z) + Q(z) has the same number of zeros interior to C
as does Q(z) [Rouché 1].
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For this purpose, we shall write

(1,4 F(z) =wQ(2), w=1+[P@2)/Q(2)]
If ¢ denotes the number of zeros of Q(z) in C, then according to Th. (1,2)
(1,5) Ag arg O(z) = 2nq.

Since |P(z)/Q(z)] < 1 on C, the point w defined in egs. (1,4) describes (see Fig.
(1,2)) a closed curve I which lies interior to the circle with center at w = 1 and
radius 1. Thus, point w remains always in the right half-plane. The net change

w-plane

Fic. (1,2)

in arg w as w varies on I is therefore zero. This means according to egs. (1,4)

and (L) that A arg F(z) = Ac arg w + A arg O(2) = 2mg

and according to Th. (1,2) that F(z) has also ¢ zeros in C.

We shall now apply Rouché’s Theorem to a proposition which we shall often
use either explicitly or implicitly. It is the proposition that the zeros of a poly-
nomial are continuous functions of the coefficients of the polynomial. In more
precise language, it may be stated as

THEOREM (1,4). Let
¥4
f(z)=ao+alz+-'-+a,,z"=a,,H(z—zj)'”f, a, #0,
i=1

F(z)=(as+e)+ (@, +e)z+ 4+ (a,y +€,1)2" " + a,z"
and let

(1,6) 0 < r, < min |z, — z,], j=1,2-,k—=1Lk+1,---,p.

There exists a positive number € such that, if |e,| S e for i=0,1,--+,n—1,
then F(z) has precisely my zeros in the circle C, with center at z; and radius r;.
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To prove Th. (1,4), we have only to note (Bieberbach [I, p. 35]) that on C, the
polynomial

l(D=c+eaz+ "+ e 2"
has the property

n—1

(@) S My, M =3 (n + |zl);
=0
whereas on C;
P
/@] Z laal re* TI (Iz; — zl — rd™ = 6, > 0.
i=1,i#k

If we choose € < 6,/M; , we have the relation |{(z)] < |f(z)| on C.. This means
according to Rouché’s Theorem that F(z) has the same number of zeros in C,
as does f(z). Since ineq. (1,6) ensures that the only zero of f(2) in C, is the one of
multiplicity m, at z, , we see that F(z) has precisely m, zeros in C, .

For other proofs of Th. (1,4) and similar theorems, the reader is referred to
Weber [1], Coolidge [1], Maluski [1], Cippola [1], Krawtchouk [1], Van der
Waerden [1], Ostrowski [I, pp. 209-219], Kneser [1], and Iglisch [1].

Th. (1,4) may be regarded as a special case of the

Hurwitz THEOREM (Th. (1,5)). Let f(z) (n=1,2,---) be a sequence of
JSunctions which are analytic in a region R and which converge uniformly to a function
f(2) # 0 in every closed subregion of R. Let { be an interior point of R. If [ is
a limit point of the zeros of the f,(z), then L is a zero of f(z). Conversely, if { is an
m-fold zero of f(2), every sufficiently small neighborhood K of { contains exactly
m zeros (counted with their multiplicities) of each f,(z), n Z N(K) [Hurwitz 1].

To prove Th. (1,5), let us first assume that f({) # 0. Since f(z) is analytic in R,
it can have only a finite number of zeros in R.  We may then choose a positive p
such that f(z) # 0 (in and) on the circle K: |z — {| = p. Let us set ¢ =
min| f(z)| for z on K. Since the f,(z) converge to f(z) uniformly in and on KX,
we can find a positive integer N = N(K) such that [f,(z) — f(2)| < € for all z in
and on K and all n = N. Consequently, |f,(z) — f(2)| <|f(2)| on K and, by
Rouché’s Theorem, the sum function f,(z) = [f,(2) — f(2)] + f(z) has as many
zeros in K as does f(z). Since therefore f,(z) # 0 in X for all n = N, a point {
at which f({) # 0 cannot be a limit point of the zeros, of the f,(2).

Conversely, if we assume that { is an m-fold zero of f(z), we may again choose
a positive p so that f(z) # 0 on K. Reasoning as in the previous paragraph, we
now conclude from Rouché’s Theorem that each f,(z), n = N, has precisely m
zeros in K.

Th. (1,5), whose proof we have now completed, will provide our principal
means of passing from certain theorems on the zeros of polynomials to the
corresponding theorems on the zeros of entire functions and perhaps of other
analytic functions.
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EXERCISES. Prove the following.

1. If each of p vectors w; drawn from the origin lies in the closed half-plane
y S argw = y + = and if at least one of them lies in the open half-plane y <
argw < y + m, then the sum w = X2_, w; 5 0.

2. Th. (1,1) and ex. (1,1) hold for convergent infinite sums X2, w; in which
all the w; satisfy ineq. (1,1); also for integrals f° w(¢) dt in which a and b are
real numbers and in which w(?) is a continuous function of the real variable ¢
andy Sargw(t) <y +wforast=bh.

3. Let w=>21w;. If p of the points w; lie in the circle |z| < R, and the
remaining point w; lies in the annulus R, = |z| = R,, where R, > pR,, then the
point w lies in the annulus R, — pR, =< |z| £ R, + pR,. Hence w # 0.

4. If the point z traverses a line L in a specified direction, then the net change in
arg (z — z,) is = or —r according as z, is to the left or to the right of L relative to
the specified direction.

5. THEOREM (1,6). Let L be a line on which a given nth degree polynomial f(z)
has no zeros. Let A, arg f(z) denote the net change in arg f(z) as point z traverses
L in a specified direction and let p and q denote the number of zeros of f(2) to the
left and to the right of this direction of L, respectively. Then

(1,7 p—q=(»1/mALargf(2)
and thus

(1,8) p=(1/2)[n + (1/m) A arg f(2)],
(1,9) g = (1/2)ln — (1/m) Ay, arg f(2)].

6. The polynomial g(z) = z" + b;z"! + - - - 4+ b, has at least m zeros in an
arbitrary neighborhood of the point z = ¢ if |g¥)(c)| < efork = 0,1, , m — 1
and for e a sufficiently small positive number [Kneser 1, Iglisch 1]. Hint: Use
Rouché’s Theorem.

7. Rouché’s Theorem is valid when |P(z)| = |Q(z)| for z € C provided F(z) =
P(z) + Q(z) # 0 forze C.

8. Rouché’s Theorem is valid when C is the circle |z| = 1 and when |P(z)| =
|Q(z)] on C, provided that at each zero Z of F(z) on C the function R(z) =
log (Q(2)/P(z)) has the properties R'(Z) 0, R(ZR'(Z)) <0, I(ZR'(Z)) =0
[Lipka 3].

9. Let C be a closed Jordan curve inside which P(z) and Q(z) are analytic.
On C let P(z) and Q(z) be continuous, @(z) # 0 and R[P(z)/Q(z)] > 0. Then
inside C, P(z) has the same number of zeros as does Q(z).

10. Rouché’s Theorem (1,3) follows from the continuity of the zeros of F(z) =
AP(z) + Q(z) as functions of 2. Hint: Show that no zero of f may cross C as
4 increases continuously from 0 to 1.

11. In F(z) =1+ ayz + byz®> + - - - + b,z", the quantities n, by, by, - * -, b,
may be so determined that all the zeros of Flie on the unit circle. Hint: Choose n
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so that |a,| < 7 and choose the zeros {; of G(z) = z"F(1/z) so that |{;] = 1 for
all j, and so that the centroid of set ({;, {, " * -, {,) is at (—ay/n).
12. Let the interior of a piccewise regular curve C contain the origin O and be

star-shaped relative to O. (See sec.8.) Ifa;,a,, -, a,, are given in
F@=14az+ -+ auz™ + bppyz™* + - -+ + b, 2",

then n, by, byiss * *, b, may be determined so that all the zeros of Flie on C
[Gavrilov 2, 4, 5], [Cebotarev 1, 2]. Hint: Asin ex. (1,11), choose the {; so that
z; = 1/{; are points of C and so that Newton’s formulas

Sk+sk_lal+°'°+kak=0

are satisfied by the sums s, of the pth powers of the {;.

13. Let p(z) = X a2, q(z) = X2, b,z%, n > m. If, given an € > 0, we can
find 6 > Osothat |b, —a,] < dfork =0,1,---,mand |b,| < dfork =m + 1,
m + 2, - -+, n, then the zeros B, of ¢ may be so ordered relative to the zeros «;
of pthat |[B; — ;| < eforj=1,2,---, mand |B;] > lfeforj=m+1,---,u
[Zedek 1].

14. Let f(z2) =z"+ayz" '+ -+ a,, glz) =z"+ bz 4+ -+ 4+ b, with
a,b, # 0 satisfy

(1,10 be/ay) — 1| S e=4"n"

fork =1,2,---,n Then the zeros y; of g(z) may be so ordered relative to the
zeros x; of f(z) that |(y/x,) — 1] < 8ner/™ for k =1, 2, - -+, n [Ostrowski 1].
15. For the f, g and € in ex. (1,14), let S, and T, be the least positive numbers
such that
o = Sk bRl S Toes S Sp-1Sk41 5 T,z T iTn

for k=1,2---,n; let 6=+ /"|(1 —e/*) and let N=n or n — 1
according as n is odd or even. If instead of ineq. (1,10) we have

lar — byl = €S, lar — byl = €Ty, k=1,2--,n,

then the zeros y; of g(z) may be so ordered relative to the zeros x; of f(z) that

oV Z |yfxe] S oV [Ostrowski 2].

16. If the polynomial f(z) = z* + a;z"* + - - - 4 a,, has distinct zeros x; and
if b;(w) are continuous and b;,(w) = a; + o(1) in sector S = {w: « S argw = f,
lw| > R} for j=1, 2, -+ -, n, then the zeros y,(w) of the polynomial g(z, w) =
z"® + by(w)z"* + - - - + b,(w) may be so paired with the x, that y; = x; 4+ o(l) in
Sforj=1,2,---, n[Schumacher 1]. Hint: Use eq. (1,2)".

2. The zeros of the derivative. Mindful of the importance of Rolle’s Theorem
in the theory of functions of a real variable, we shall begin our detailed treatment
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of the zeros of polynomials in a complex variable by studying the location of the
zeros of the derivative f'(z) of the polynomial

(2,1 f@)=(z — z)™(z — z)™ -~ - (z — 2,)™, n=Ym,

in relation to the distinct zeros z; of f(z2).
Since f'(z) may be written as

'@ = f@Lf (D f(2)] = f(2)dllog f(2))/dz,
its zeros fall into two classes. First, there are the points z; for which m; > 1;
as zeros of f'(z), they have the individual multiplicities of m; — 1 and the total
multiplicity of n — p. Secondly, there are the p — 1 zeros of the logarithmic
derivative
22) F(2) = dllog f(2)}/dz.

In most of our problems, we shall prescribe the location of the zeros of f(z)
and consequently we shall know a priori the location of the first class of zeros of
f'(2). It will remain for us to determine the location of the second class of zeros
of f'(z), namely those of F(z). From egs. (2,1) and (2,2), we see that these are the
zeros of the function

P m.
(2,3) Fiz) =3 —
=1z — z;
in which the m; are positive integers.

In order to gain some insight into the problems about to be considered, we
shall now interpret the zeros of F from the standpoint of physics, geometry and
function theory. Since our physical and geometrical interpretations will not use
the fact that the m, are positive integers, we shall express these interpretations as
theorems concerning the zeros of a rational function F(z) = g(z)/f(z) whose
decomposition into partial fractions has the form of eq. (2,3) with the m; as
arbitrary real constants. In our function-theoretic interpretation, however, we
shall find it convenient to restrict the m; to be positive constants.

3. Physical interpretations. In place of F(z), let us introduce its conjugate
imaginary

P
(3,1) £(2) =‘Zlma'wa" w; = 1/(Z — Z)).
i=
If we write z — z; = p;e'®s, then the jth term in eq. (3,1) is
mw; = mj1/p;)e'?.

It may hence be represented by a vector having the direction from z; to z and
having the magnitude of m; times the reciprocal of the distance from z; to z.
In other words, the jth term may be regarded as the force with which a fixed
mass (or electric charge) m; at z; repels (attracts if m; < 0) a movable unit mass
(or charge) at z, the law of repulsion being the inverse distance law.
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An equivalent interpretation may be made in terms of masses repelling according
to the inverse-square law. For this purpose let us recall a result derived in books
on Newtonian Potential Theory [O. D. Kellogg, Potential theory, Springer, Berlin,
1929, p. 10, ex. 5]. If an infinite, thin rod L, of linear mass (or charge) density
m;[2 passes through the point z; at right angles to the z-plane, the resultant force
upon a unit particle at z due to the particles of L, repelling according to the inverse-
square law is a force directed along the line from z; to z and inversely proportional
to the distance from z; to z. This means that alternatively we may interpret the
conjugate imaginary of F(z) as the resultant force at z, in the Newtonian field due
to a system of » infinite thin rods (line charges) L; at z;,j= 1,2, -, n.

Still another interpretation is that m,w; is the velocity vector in the two-
dimensional flow of an incompressible fluid due to a source of strength m; at
z; (sink if m; < 0). Thus F(2)is the resultant velocity vector in a two-dimensional
flow due to the systems of sources of strength m; at the points z; [L. M. Milne-
Thomson, Theoretical hydrodynamics, Macmillan, New York, 1955, pp. 197-8].

Corresponding to each of these three physical interpretations of the function
F(z), we have a physical interpretation of the zeros of F(z). In the first two cases,
these zeros are the positions of equilibrium in the given force fields. In the third
case, these zeros are the positions at which the velocity vanishes; that is, they are
the so-called stagnation points.

We may summarize these results by stating two theorems. In the case that
the m; are positive integers, the first theorem is essentially due to Gauss [1],
having been stated by him as a theorem on the zeros of the derivative of a
polynomial. (Cf. our Preface.)

THEOREM (3,1). The zeros of the function F(z) = X2 m;/(z — z;) with all m;
real are the points of equilibrium in the field of force due to the system of p masses
(point charges) m; at the fixed points z; repelling a movable unit mass at z according
to the inverse distance law.

THEOREM (3,2). The zeros of F(z) are the equilibrium points in the Newtonian
field due to the system of p infinite, thin rods (line charges) of mass (or charge)
density m;[2 at the points z;. They are also the stagnation points in the two-
dimensional flow of an incompressible fluid due to p sources of strength m; at the
points z; .

A further interpretation concerns Green’s function G (x, y), with pole at infinity,
for an infinite region R bounded by a finite set B of Jordan ¢urves. The function
G(x, y) is the potential of a charge induced on a grounded cylindrical sheet
conductor whose cross-section is B, by a unit charge at infinity.

If B is the lemniscate |f(z)| = p, p > 0, where f is given by eq. (2,1), then
G(x,y) = (1/n)log|f(2)/pl. This is the real part of the function

(3.2 O(2) = (1/n) log [f(2)/ p]-



[§41 GEOMETRIC INTERPRETATION 9

The equilibrium points in this potential field are the critical points of G(x, y).
These points are the zeros of the derivative of ®(z); that is, the zeros of F(z)
given by eq. (2,3).

More generally [Walsh 20, p. 246], we may write G as

(3.9 G(x.3) =+ loglz — 1] du(,

du = (1/27)(0G[0v) ds, where « = constant and du > 0 if » is taken as the normal
to B pointing into R. This G is the real part of the function

(3.4) o) = &+ logz — D du()
B
whose critical points are the zeros of the function
(3,5) Fz)=| -4
B z—t

Since this function has the same form as eq. (2,3), the results on the zeros of Fin
eq. (2,3) may carry over to form (3,5) when these results are independent of p.

ExERCISE. Prove the following concerning F in eq. (2,3).
1. Each finite zero Z of F(z) is the centroid of a system of p particles of mass
w; = m;[|Z — z;|? situated at point z;, j=1,2,---, p.

4. Geometric interpretation. Let us begin with the case p = 3 when eq. (2,3)
becomes

@1 F(z) = — 4

mg

+

Z—2z, ZzZ—2y, Z-—24

We note that F(z) has two zeros z; and zj, unless n = m; + m, + my = 0 when
it has only one finite zero z; . Hence, if n # 0,

o —Z)E—z)
*2) = - —2

The location of points zj , z, relative to the triangle with vertices z, , z,, z; is
specified in

THEOREM (4,1). The zeros z, and zj of the function F(z) = X3my(z — z;)*
are the foci of the conic which touches the line segments (z, , z,), (25 , z3) and (25 , z;)
in the points {3, {; , and {, that divide these segments in the ratios m,:my, my:ms
and mg:my , respectively. If n = m; + my + my # 0, the conic is an ellipse or
hyperbola according as nmymyms > 0 or <0; whereas, if n =0 but v = myz; +
myzy + myzg # 0, the conic is a parabola whose axis is parallel to the line joining
the origin to point v.
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Fic. (4,1)

To prove Th. (4,1) when m, , m; , m; have the same sign, we shall use the well-
known property that in any ellipse E the lines from the foci to a point z, on or
exterior to E make equal angles with the tangents drawn from z, to E.

Let us draw (Fig. (4,1)) the ellipse E having foci z; , z; and line z,z, as tangent.
To show line z,z; to be tangent to E, let us set

y=arg[(zs — z)/(z; — z)], 0 =arg[(z; — z))/(z; — z)]-
Since from egs. (4,1) and (4,2)

ll_gl (z — 2)(z — z9)(z — 2x)F(2) = my(z, — 25)(21 — 25) = n(z, — 2;)(2; — 23),

and thus from
{(z5 — 2)/(z; — zD}/{(z2 — 2)/(z2 — 2z1)} = n/m,
it follows that
4,3) y — 8 = arg (nfmy) = 0 if nmy > 0.

Hence, line z,z, is tangent to E.
Let us now show that

449 s = (myzy + myzy)[(my + my)
is the point of tangency of the line z;z, to E. We may write (4,4) as

m, my

=0

+

la—z L—2z,
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so that from (4,1) and (4,2) we infer

F(L,) = ms _ n(s — z)(Ls — z3) .
. @ la—z3 (L — z)(Ls — z)(8s — 23)
That is,
(z; — L)(zz — L) my
4,5 =—.
“ (= e ) 7
If we set

a=arg[(z; — L)(z1 — L)), B =argl(zo — §)/(z2 — L)),
then from (4,5) we learn that
(4,6) o — f =arg(n/mg) =0 if nmg > 0.

Hence, ; is the contact point of line z,z, with E.
Similar considerations suffice to show that lines z,z; and z;z; are tangent to E,
respectively, at points

4,7 § = (mazs + myz,)/(my + my), la = (myzy + myz3)[(my + my).

Hence, the theorem has been established when the m; have all the same sign.
The proof of Th. (4,1) in the remaining cases is left to the reader.
The theorem just established is a special case of the following:

THEOREM (4,2). The zeros of the function

P
(4,8) Fz)=Y ——, m, real, m; % 0,

=1z — z;

are the foci of the curve of class p — 1 which touches each line-segment z;z, in a
point dividing the line segment in the ratio m;:my, .

The proof of Th. (4,2) is necessarily less elementary than that of Th. (4,1).
The one which follows will make use of line-co-ordinates and some abridged
notation. .

We may write eq. (4,8) in the form

P
m

— % -,

i=1tx; + ity; — 1

Let us compare (4,9) with the equation

(4,9) t=1/(x + iy).

P
(4,10) SBiso0, £,=ix;+uy; — L
i=1 y’- .
When cleared of fractions this equation has the form
D(u, 2)

411) =mZLy Ly Lo+ mL Ly L+ +mE Ly L,
=0
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and hence represents a curve C of class p — 1. Eq. (4,9) tells us that eq. (4,10)
is satisfied by the line with the co-ordinates

4,12) A=1/x+1iy), p=illx+1iy),

a line which, consequently, is tangent to curve C. Since line (4,12) is an isotropic
line through point (x, y), point (x, y) must be a focus of curve C. Furthermore,
the line (49, p) joining the two points (x;, y;), (X2, y,) satisfies simultaneously
the two equations .#; = 0 and £, = 0; viz,,

(4,13) Ay + poy1 — 1 =10,  Aoxs + poy — 1=0.

That is, it satisfies eq. (4,11) and is hence tangent to curve (4,11).
Now the point of contact of a tangent line (4, , %,) has the line equation

“14) = 2)(22) + u - m)(?;)f 0,

where the subscript 0 indicates values at (4, , #,). In view of eq. (4,11),

(g%))f (LsLy - - Lp)olmix, + moxy],

(4,15)
)
a_ = (&% - Lp)olmys + moy;].
/o
On discarding the common factor in egs. (4,15), we may write (4,14) as

[A(myxy + myx;) + ll(mx}’z + mz}’l)]
— [Ao(myixs + max;) + po(myye + myyy)] = 0.

According to eqs. (4,13), the second bracket in (4,16) has the value (m; + m,)
and thus (4,16) may be written in the form

(4’17) mz.?l +m13’2=0.

If my + m, # 0, this clearly is a line equation for the point

(4,16)

(mle + mx, myy + m1.V2) .
my, + m, ’ my + my
Hence, the line-segment z,z, has the desired properties.”

In a like manner the same may be shown concerning the other line-segments
2,2, , thus completing the proof of Th. (4,2).

Th. (4,2) was proved first by Siebeck [1] and later by Van den Berg [1], Vries [1],
Juhel-Rénoy [1], Heawood [1], Occhipinti [1], Fujiwara [2], Linfield [1] and
Haensel [1]. A proof covering only the special case p = 3, that is Th. (4,1), was
given by Bocher [2] and Grace [1] for the subcase m; > 0, all j, and by Marden [13]
for arbitrary m; . Furthermore, Th. (4,2) has been extended to the kth derivative
of a rational function by Fujiwara [2] and Linfield [1] and to certain entire functions
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by Reutter [1]. Also, in the case p = 3 and m; = my = m,y = 1, the result has
been applied by Walsh [4] to the ruler-and-compass construction of the zeros of
the derivative of a cubic polynomial. More recently, proofs have been given by
Jung [1] and Kuipers-Veldkamp [1].

EXERCISE. Prove the following.
1. Thezeros {;(j= 1,2, - -,p — 1) of F(z) in eq. (4,8) are such that for every k

p—1 D
Zarg G —=z)= Z arg (z; — z)
i=1 i=l1,i#k

[Motzkin-Walsh 2]. Hint: Choose k =1, z; =0 and 3% _ym; = 1. From (4,8)
then {;lo- {p 1 =mzyz5" " 2,.

5. Function-theoretic interpretations. Infrapolynomials. We now give two
additional interpretations. The first, treated briefly, is connected with the
mapping properties of polynomials and the second, discussed at greater length, is
related to the minimization of certain norms on given point sets.

First, for a polynomial f let us interpret the g distinct zeros z; of its derivative f’

f@=nlle-z7 Zp=n-1,

from the point of view that f is an analytic function of the complex variable
z. This means, as is well known, that w = f(z) maps any finite region R of
the z-plane upon a finite region S of the w-plane, the map being conformal except
at the ¢ points z;. Specifically, if two curves of the z-plane intersect at z; at an
angle of y, they map into two curves of the w-plane that intersect at an angle of
(p; + Dy. For this reason the zeros of f’(z) are called the critical points of f(z).

To introduce our second interpretation [Marden 21], we begin by defining an
infrapolynomial. Let us denote by £,.: {z" + a,z"* + - - - + a,} the class of all
nth degree polynomials with leading coefficient one and by E a bounded set of
points in the complex plane. The set E could consist of discrete points, arcs of
curves, regions or a combination of these. If p e Z, and g € £, with p(z) # q(2)
for z € E, we say that q is an underpolynomial of p on E [abbreviated g € U(p, E)]if

92| < |p(2)| for z€E, p(z) #0,

5,1 q() =0 for z€E, p(z) =0.

If, however, p has no underpolynomial on E [i.e., U(p, E) = @], then we say that
p is an infrapolynomial on E [abbreviated p € I(E) or I,(E)].

Among the best known infrapolynomials are polynomials which minimize
certain given norms. An example is the Tchebycheff norm

(5’2) "q"r = rnezx Iq(z)ls
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the polynomial T, € £, such that
IT,ll, = min {liqll, ; g€ P.}

being called the Tchebycheff polynomial on E. For instance, when E: —1 <
x = 1, let us verify that T,(z) = y(z), where

w(z) = 27{[z + (22 — D¥]" + [z — (2% — 1)*]*} = 2"+ cos [n arc cos z].

Clearly, ||y, = |y(cos kn[n)| =.2="* for k =0, 1, -, n. If |ql, < |¢], for
some real ¢ € #, , then the polynomial Q(z) = y(z) — q(z) would have alternate
signs at z = cos (kw/n), k =0, 1, - - -, n and hence would have at least n real
zeros, in contradiction to the fact that deg Q(z) < n. Hence, y(z) = T,(2).
Since ¢ € U(y; E) implies [q], < [¢]., it follows also that T, € I(E). Thus v
is not only the Tchebycheff polynomial on E, but also an infrapolynomial on E.

Another example is the Bessel norm defined, when E is a rectifiable curve, as
llqlls » where

5.3) (gl = fE @) ds,

and defined by means of appropriate sums or integrals for other pointsets E.
The polynomial B,(z) such that

I1B,lls = min {llqlls : g € 2.}
is called the Bessel polynomial of degree n. For instance, if k =2 and
E: —1 = x £ 1, let us verify that B,(z) = c,L,(z), where L, is the Legendre poly-
nomial of degree n and ¢, = 2"(n!)*(2n!)~1. If we choose any q € #, , we may
write it in the form

9(2) = coL(2) + 1L 1(2) + -+ - + c,Lo(2).
Substituting this into (5,3) with k = 2, and using the orthogonal relations

1
f L)L(x)dx =0 ifj#k; 20Qk+ 1) ifj=k
-1

we find
(lqllp)* = 22016;12(2n =2+ )7 = 2¢;2n + 1) = (llcoLallp)*

This establishes that B,(z) = ¢,L,(z). Since qe U(c,L, ; E) implies |q], <
lleoLnllg » it follows also that coL,, € I(E).

In fact, if we introduce suitable weight functions into the integral (5,3) with
k =2and E: —1 = x < 1, we obtain the other classical orthogonal polynomials.
More generally, any p € £, is an infrapolynomial on E.if it minimizes some
“monotonically increasing norm” |ig(z)], i.e., a norm with the property

(5:4) @1 < llp)] if ge U(p, E).

Thus these extremal polynomials form a subclass of I(E).
We shall consider next how to construct and represent the infrapolynomials
associated with a given bounded pointset E.
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The simplest case is that in which E = (z;,2,,° ", 2,), 1 £k = n. Allpoly-
nomials p(z) (z = 2))(z — 22) - * - (z — 2) $(2), p € P,_, , are clearly infrapoly-
nomials since here p(z) = O for all z€ E. As this case is trivial, we shall assume
hereafter that E contains at least n 4+ 1 points. We have then the following:

THEOREM (5,1) [FEKETE 8]. Let (2,21, *, 2,) be any subset of n + 1 distinct
points in E and let 1; be any positive constants such that Ay + A, + - -+ + A, = 1.
Then p € I(E) if

(5.5) p(z) = . w@=TIG~z).

i=02Z Zj =0

Proof. Let us suppose on the contrary that p ¢ I(E). Then there exists
qeU(p,E). We expand p and g according to the Lagrange Interpolation
Formula

_ p(z,) _ ___‘I(L:)___
(56)  p(2) w(z)z e —2) 1O “’(Z)Eow(z,)(z—z,)

Comparison of p(z) in (5,5) and (5,6) shows that 4; = p(z;)/w’(z;). Sinceqe Z,,
its leading coefficient is one; thus,

57 > a(z)lw'(z) = 1.
But, since g € U(p, E), ”
q(z;) p(z;) — < —
im0l w'(zy))!  i=ol w'(zy) ,Zo hi=1,

which contradicts (5,7). Hence U(p, E) = @ and p € I(E), as was to be proved.
In certain cases, Th. (5,1) has a converse which we may state as follows.

THEOREM (5,2) [FEKETE 8]. Let E be a closed bounded pointset containing at
least n + 1 points. Let p € I(E) such that p(z) # O for z € E. Then there exist an
integer m withn = m = 2n, a set of positive constants A; withg + 23 + - -+ + 4, =

1 and a set of m + 1 points (zy, zy, * * -, 2,,)  E such that p(z) is a factor of the
polynomial F(z):
(5.8) F(z) = Q(z)z ——, Q2)=TI( - z).

=0z — z; i=o

If E consists only of points on a line, we may take m = n.

To establish Th. (5,2) we shall need a number of lemmas. In the first we denote
by 2, the class of all polynomials ayz” + @,z"* + -+ - + a,,.

LeMMA (5,1). Let E be a closed bounded pointset. Then for a given p € #,
with p(z) # 0 for z € E, there exists q € U(p, E) if and only if for some re 2,_;
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the function w = r(2)/p(z) maps E onto a pointset S whose convex hull H(S) does
not contain the origin w = 0.

Proor. If such a g exists, then

5,9 P_(Z_)_:q_(z) _ = M 1.
G ) | pa)| <

Thus, with r(z) = p(z) — q(z), the set S and hence H(S) both lie in the disk
I''lw—=1|<1,and so w = 0 ¢ H(S).

Conversely, if, for some r € 2,,_; , H(S) does not contain w = 0, there exists a
line L through w = 0 which does not intersect H(S). Thus H(S) lies in some disk

w— 2 <lyl y #0.

This inequality implies that w = y~[r(z)/p(2)] lies in the disk I' for every z € E
and hence that
9() = p(z) — y7'r(@)
is an underpolynomial of p on E.
This lemma has the following counterpart in the Euclidean space of 2n-
dimensions.

LEMMA (5,2). Let E be a closed bounded set and let p € 2, and p(z) # O for
z€E. LetZ be the corresponding 2n-dimensional set whose points { are expressed
in the n complex valued co-ordinates { = ({;, {a, -, {,), where {; = z"[p(z)
andz € E. Then p € I(E) if and only if the origin lies in the convex hull H(Z) of Z.

Proor. Using the notation of Lems. (5,1) and (5,2), we may write
_rz) a4 o4 4o,
p(2) p(2)
If p ¢ I(E), there would exist g € U(p, E) and hence by ineq. (5,9) with ¢, =
e + icp and § = & + ing,

R(r(2)/p(2)] =k§1(cufk — cun) > 0

forallz € E. Thus the points { for all z € E lie to one side of a hyperplane through
the origin and hence H(Z) does not contain the origin of 2n-dimensional space.

We may prove the converse statement similarly.

PROOF OF THEOREM (5,2). By Lem. (5,2), the origin is a point of H(Z)if p € I(E).
Hence the origin is the centroid of m + 1 points { corresponding to m + 1 points
z; € E, with m = 2n, according to a theorem of Carathéodory [Eggleston 1, pp.
34-38]. That is, we may find non-negative constants A; with 4y + -+ - 4+ 4, =1
such that we have the orthogonality relations

(5.10) §o A2 H/p(z)] = 0 (k=1,2,,n).

=¢h+ b+ + cpla
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Writing p(z) = z" + a,z"* + - -+ + a,,, multiplying the kth equation in (5,10)
by a, for each k and adding the resulting equations, we are led to the further
equation

z A [p(z,) — 27] =0

=0 p(z;)
which because > 4; = 1 is the same as

(5,11) émwmm=L

The n + 1 equations (5,11) and (5,10) may be regarded as involving the m + 1
unknowns A; of which at least one is different from zero.
The matrix of the coefficients

P S
(Zo) (21) P(Zm)
gt 2T Zmt

A=|p(z)) p(z) P(z,)
11
Lp(z) p(z1) p(z,,)

has in the lower left corner a minor whose order is k¥ 4+ 1 and whose determinant
has the value
V(Zo’ 21,0, zk)
AOI- ok = ’
p(zo)p(z1) * * * P(zs)

where V(zy, z;, - **, z;), as the Vandermonde determinant for the distinct
numbers z,, z;, * * *, Z, is different from zero.

If m < n, we may solve for the 4; using the last m equations (5,10). Since these
are homogeneous equations with nonvanishing determinant, all 4, would be
zero—a contradiction. Hence m = n.

If m = n, we use the m + 1 equations (5,10) and (5,11) and thus get the results

i Aor - jo1ia1m p(z,)
(5:12) 3y = (—1y Beosmisnen | P
’ Aor.m w'(z;)

where

o@ =11 - 2).

Here therefore

(5.13) mrw@z—lﬁL— 0(@)3

(z)(z — zj) =0z — Zi
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If m > n, we solve for 4y, 4, -+, A,interms of 4,,,,- - -, 4, , thus obtaining
forj=0,1,--,n
Ay =Ag. m{(_l)iAOl- citisteon — 2 Mo ioan :‘+1~~n}
k=n41

— p(zy) 3 i w(z)p(z;) )
w(z;) o' (2)(z — 2)p(z)

Hence
v 4 _ ) 3, 0@ 5 p(z,)
G149 20 z—z; (2) k=z"+11k P(z) =0 @'(z)(z, — z))(z — z;)
Let
wk(z) = (D(Z)(Z - zk) (k =n + 1, T, m)'
Then
wy(z) = @' (2)(z — z;) + w(2)
so that .
wy(z;) = 0'(z;)(z; — z,) (G=0,1,---,n)
and
wl:(zk) = (O(Zk) (k =n + 1, Y m)'

By the Lagrange Interpolation Formula
Pz 2 pz) _
02z — z) =0 ' (2)(2 — 2)(z — 2;)  wyl(2)

Eq. (5,14) now becomes

S 4 @), §, ee)p) __ p)
g - z, w(z) +k="+1 (zk)lwk(z) wi(z)(z — zk)}
_ L(Z_) Ao(zy) _ < A
- a)(z){1 +u=n+1 p(z)(z — zk)} keni1Z — z,

Transposing the last sum to the left side and multiplying both sides by Q(z),
we obtain
003 A= pof[1+ 3 A (- 5)
=0z — z; k=nt1 p(2,)(z — z;)dk=np1
This proves that p(z) is a factor of F(z) as required for Th. (5,2).

Extension of Th. (5,2) is possible to an infrapolynomial p which has as zeros the
pointset K: {;, {,*+, { on E, where 1 = k < n. If we write p(z) = p,(z)p«(2),
where py(2) = (z — §)(z —Co) - (z— ) and where p,e £, ,, then p,e
I,_(E). For, if there exists g, € U(p, , E), then (p,q,) € U(p, E), a contradiction.
Thus, if in Th. (5,2) p hasthe zeros {; , {5, - - -, {; € E, then p has the representation

P@) =z —8) -z — LIpe(2)

where p,(z) is a factor of a polynomial of the form (5,8) withn — k <m =< 2(n — k).
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REMARKS ON THs. (5,1) AND (5,2). These theorems say in effect that the
zeros of function F(z) given by eq. (2,3) are the zeros of an infrapolynomial on
a set E which includes the points z;, Comparing eqgs. (5,5) and (5,8) with eq. (2,3),
we see that the pointset E and the zeros of an infrapolynomial on E play roles
respectively like those of the zeros of a given polynomial and the zeros of its deriva-
tive. Therefore we may expect that certain theorems on the relative location of
the zeros of a polynomial and those of its derivative will lead to analogous theorems
about the relative location of a pointset E and the zeros of any infrapolynomial
on E, and vice-versa.

Exercises. Prove the following.

1. If f(z) is an nth degree polynomial and f’(z) its derivative, the multiple
points of each curve R[f(2)] = a, 3[f(2)] = b, |f(2)| = ¢, arg f(z) = d, where
a, b, ¢ and d are constants, lie at the zeros z; of f'(z).

2. In ex. (5,1) let K be the arc z,z, of curve 3[f] = 0 joining a pair z;, z; of
zeros of f.  Then at least one zero of f* lies on K [Liouville 1].

3. If a polynomial p has a zero at a point z, outside H(E), the convex hull of a
closed, bounded pointset E, then p is not an infrapolynomial on E. Hint: Show
that there exists at least one point z; € H(E) such that |z — z;| < |z — z] for all
z € E and that g € U(E, p) for ¢(z) = p(z)(z — z,)/(z — z,) [Fejér 3]. Show that
an analogous result holds in three dimensions [Shisha 1].

4. If E is a circle |z] = 1 or the disk |z| < 1, then p(z) = z* is an infrapoly-
nomial on E. Hint: Show for fixed z,, |z;| = 1,

max |z —z;] =14 |z] and min (1 4+ |z))=1.
Izl =1 lal£1

5. Let p € I(E) and p(z) = p:1(z)ps(z), where p;(z) and py(z) are polynomials of
degreesn;and n, =n —n, . Thenp, € I,,I(E) and p, € I, (E) [Motzkin-Walsh 3 ].
Hint: Assume ¢, € U(p, , E). Show ¢q(z) = ¢:(2)p«(2) € U(p, E).

6. In Th. (5,1) p given by eq. (5,5) is the unique (Tchebycheff) polynomial for
which max [u(z) |9(2)|, z € E] is a minimum for g € &, and u a weight function
with u(z;) = 1/[4; |0’(z;)|]1forj = 0, 1, - - -, n [Fekete-von Neumann 1], [Motzkin-
Walsh 1].

7. Let 2% be the class of all polynomials z* + a,z"* + - - - + a,, which differ
from one another only with respect to the coefficients a;., , @12, * - *, a,, , Where
k and m are fixed integers with0 < k < m = n. Let E be a compact set containing
at least m + 1 points but with 0 ¢ E. Let a restricted infrapolynomial p* on E
relative to £ mean that p* € 2* and p} has on E no underpolynomial g* € 2% .
If k = 0, then a necessary and sufficient condition for p% to be a restricted infra-
polynomial with p% € 2% , p¥(z) # 0 z € E, is that there exist N points z, € E and
N positive numbers 4; satisfying orthogonality relations

N
SAzp ™ =0 (x=0,1,---,m—1)
j=1

with m £ N < 2m + 1 [Walsh 24]. Hint: Use method of proof for Th. (5,2).
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8. If in ex. (5,7) p* is an infrapolynomial, then p* is a factor of F* where

N Z N
FHG) = ()| 4(2) + a3 2], w@) =11 - z),

0z — z;

where A; > 0 for all j, Ay + A, + - - - + Ay = 1, where « is a constant and ¢(z)
is a polynomial of degree less than n — N + 1 such that [w(z)$(z) + az™] is
of degree not exceeding n [Shisha-Walsh 1]. Hint: Modify proof of Th. (§,2) by
noting under Lem. (5,2) that ¢; =0if j=1,2,---,k,m + 1, ---, n [Shisha 3].

9. In ex. (5,7) the determination of an infrapolynomial p* is equivalent to that
of finding the polynomial r* of class & *

F* = {ak+lzm—k—1 + ak+2zm-k—2 R am}
which is nearest to the given function
f(z) = Z—n+m[zn + alzn—l 4+ 4 akzk + am-}-‘lz”_m—l + 4 a”]

in the sense

/@) + r*@I = /() + s*@)]

for all s* € #* and all z € E, with the equality holding only where r*(z) = s*(2).
Hint: Apply definition of restricted infrapolynomial.

10. Let R(z) = D™z — o;)™ X 1(z — B;)~™ where all the «; and ; are distinct
and the m;, n;, m and n are positive integers. Let N = >"m; — > n; and
o(z) = 3™z — o;) >1(z — B;). Then every finite zero of R'(z), not an «,, is a zero
of the extremal polynomial of form p(z) = Nz™+"~1 4 b;z™*"~% 4 - - - for which
p(ea;) = mw'(e;) (j= 1,2, - -, m) and the Tchebycheff norm max | p(8,)/n;0’'(8,)|
is a minimum on the set {#,, - - -, 8,} [Shisha-Walsh 3]. Hint: Cf. ex. (5,6).



CHAPTER II
THE CRITICAL POINTS OF A POLYNOMIAL

6. The convex hull of critical points. In the previous chapter, we found that
any critical point (zero of the derivative) of the polynomial

(6’1) f(Z) = (Z - zl)ml(z - z2)m2 e (Z - zp)m"
if not a multiple zero of f(z), is a zero of the function

m;

62) F@) =3

=1z — z;

allm; > 0.

We found also that the zeros of F(z) can be interpreted in various ways from the
standpoint of physics, geometry and function theory. In the present chapter
we shall employ these interpretations and some additional analysis to determine
the relative positions of the zeros of F(z) and of the points z;, We shall also,
by the same analysis, determine the location of the zeros of rational functions
of a more general form than (6,2), as well as the zeros of certain systems of
functions of a form similar to (6,2).

The relative position of the real zeros and critical points of a real differentiable
function is described in the well-known Theorem of Rolle that between any two
zeros of the function lies at least one zero of its derivative. However, Rolle’s
Theorem is not generally true for analytic functions of a complex variable.
For example, the function f(z) = ¢*** — 1 vanishes for z =0 and z = 1, but
its derivative f’(z) = 2mie*™"* never vanishes. This leads to the question as to
what generalizations or analogues of Rolle’s Theorem are valid for at least a
suitably restricted class of analytic functions, such as the polynomials in a
complex variable. [Cf. Dieudonné 1].

In the present section we shall answer this question, not with respect to Rolle’s
Theorem, but rather with respect to a particular corollary of Rolle’s Theorem.
This says that any interval of the real axis which contains all the zeros of a
polynomial f(z) also contains all the zeros of the derivative f’(z). This corollary
may be replaced (see ex. (10,1)) by the more general theorem that a line-segment
L (not necessarily on the real axis) which contains all the zeros of a polynomial
f(2) also contains all the zeros of its derivative. But this theorem is only a special
case of the following result proved in 1874 by Lucas [1, 2, 3] and subsequently
by Legebeke [1], De Boer [1], Berlothy [1], Cesaro [1], Bocher [2], Grace [1],
Hayashi [3], Irwin [1], Gonggryp [1], Porter [1], Uchida [1], Krawtchouck [2]
and Nagy [1 and 5].

21
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THEOREM (6,1) [Lucas). All the critical points of a non-constant polynomial
[ lie in the convex hull H of the set of zeros of f. If the zeros of f are not collinear,
no critical point of f lies on the boundary of H unless it is a multiple zero of f.

From a physical point of view, this theorem is an obvious consequence of
Gauss’ Theorem (Th. (3,1)) with the m; as positive integers. For, if the zeros
(see Fig. (6,1)) of f'(z) are either multiple zeros of f(z) or the positions of equilib-
rium in the field of force due to masses at the zeros of f(z), then in either case
the zeros of f'(z) must lie in or on any convex polygon enclosing the zeros of f(2).

FiG. (6,1)

To prove the theorem analytically, let us apply Th. (1,1). If z/, a zero of
Sf(2), were exterior to H, it could not be a multiple zero of f(z). Furthermore,
the angle subtended at z’' by H would be A(z"), where 0 < A(z") < m. Hence,
if drawn from z’, each of the vectors (—w;) of formula (3,1) would lie in A(z")
as would therefore each of the vectors W; = —m;w;. Hence by Th. (1,1),
FZ)=—(W,+ Wy +---+ W,)#0. As this contradicts our assumption
that 2’ is a zero of f'(z), no zero of f'(z) may lie exterior to polygon H.

In fact we have proved the following more general result.

THEOREM (6,1)'.  For arbitrary positive constants m; each zero of the function F
in eq. (6,2) lies in the convex hull H of the points z,; and none lies on the boundary
of H unless the points z; are collinear.

From Th. (6,1) we may infer

THEOREM (6,2). Any circle C which encloses all the zeros of a polynomial f(2)
also encloses all the zeros of its derivative f'(z).
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For, if K is the smallest convex polygon enclosing the zeros of f(z), then X
lies in C and therefore by Th. (6,1) all the zeros of f’(z), being in K, also lie in C.

Conversely, Th. (6,1) follows from Th. (6,2). For, if Th. (6,2) were valid,
through each pair of vertices of the polygon H of Th. (6,1) we could draw a
circle C, which contains H and hence the zeros of both f(z) and f'(z). The
region K’ common to all these disks C, would also contain all the zeros of f(2)
and f'(z). Since this holds for all choices of circles C, passing through pairs of
vertices of H and containing H, all the zeros of f(z) must lie in the region common
to all possible regions K’, that is, in the polygon H.

Thus, as stated in Walsh [2(a)], Ths. (6,1) and (6,2) are actually equivalent.
Furthermore, they are the best possible theorems in the sense that, if the zeros
of an nth degree polynomial f(z), » > 1, are allowed to vary independently in
and on a convex polygon K or circle C, every point in or on X or C is a possible
multiple point of f(z) and therefore a possible zero of f'(z). If, however, the zeros
of f(2) are fixed and not all collinear, no zero of f’(z) other than a multiple zero
of f(z) may lie on the polygon K or circle C or may lie in a certain neighbor-
hood of each zero of f(z). Cf. ex. (6,1) and ex. (26,5).

In view of the similarity of forms (5,8) and (6,2), we may state for infrapoly-
nomials the following analogue to Lucas’ Theorem (6,1) due to [Fejér 3].

THEOREM (6,3). Let E be a closed bounded pointset and let p be an infrapoly-
nomial on E. Then all the zeros of p lie in H(E), the convex hull of E; no zero
lies on the boundary 0H(E) of H(E) except perhaps at a point of E on dH(E).

As an application of Lucas’ Theorem (6,1), we state

THEOREM (6,4). Let 0K be the boundary of a convex domain K in the z-plane
and let P and Q be polynomials such that (i) deg P = deg Q; (ii) |P(z)| = 10(2)|
for z € 0K; (iii) all zeros of Q lie in K U 0K. Then |P'(z)| < |Q'(2)| for z € OK.

Th. (6,4), due to Bernstein [1] when K: |z| < 1 and De Bruijn [2] in the general
case, may be proved as follows. We note that the function f(z) = P(z)/ Q(2)
is holomorphic in the complement D of K U 0K and that |f(z)| = 1 for z € K.
Hence by the maximum modulus principle |f(z)| = 1 for ze D. If now z, is

any zero of
8(2) = P(2) — 2Q(2), 11> 1,

[P(zo)| = A1 1Q(z0)| > [Q(20)-
That is, |f(zo)| > 1 and thus zy€ K. From Lucas’ Theorem (6,1) follows that
every zero of g'(z) also lies in K. This means that for no 1 with |4 > 1 is
P'(2)/{Q'(z) = Aforze D U 0K. Hence |P'(z)] = |Q'(z)| for ze D U K.
An important corollary of Th. (6,4) is the well-known theorem:

and if Q(zy) # 0, then

COROLLARY (6,4). Let P(z) be a polynomial of degree not exceeding n such
that |P(z)| = 1 for |z| £ 1. Then |P'(z)] S nforlz] = 1.
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This result follows from taking Q(z) = z* in Th. (6,4), and noting that
[P2)| =1 =|z"] for |z] = 1.
We may also state results analogous to Lucas’ Theorem (6,1) for three real
variables [see ex. (6,10)], for a quaternion variable [see Scheelbeek 1] and for an
abstract field [see Zervos 3].

Finally, we may state the following theorem due to Walsh [20, p. 249] regarding
the critical points of Green’s function.

THEOREM (6,5). Let R be an infinite region whose boundary B consists of a
finite set of Jordan curves, and G the Green’s function for R with pole at infinity.
Then all the critical points of G in R lie in the convex hull H of B; none lies on the
boundary of H unless the points of B are collinear.

This theorem is analogous to Lucas’ Theorem and may be proved in a similar
way, since eq. (3,5) has the same form as eq. (2,1).

EXERCISES. Prove the following.

1. Th. (6,1) may be deduced from ex. (3,1).

2. The zeros of the kth derivative f*)(z), 1 = k < n — 1, also lie in polygon H
of Th. (6,1) and in the circle of Th. (6,2).

3. Any infinite convex region which contains all the zeros of an entire function
f of genus zero also contains all the zeros of f’. Hint: By definition f(z) =
II5. (1 — z/a;)). Use Ths. (1,5) and (6,1) [Porter 1].

4. If r is the smallest number such that all zeros of f’, the derivative of a poly-
nomial f; lie in |z| < r, then at least one zero of f(z) lies in |z| = r. Hint: Use
Th. (6,2).

5. Ths. (6,3) and (6,5) may be established by the method used to prove Th. (6,1).

6. Let f(2) = 2" + 2" + - - - + ¢,2", ¢, # 0, have all its zeros in a
half-plane bounded by a line L through the origin, not all the zeros of f(z) being
on L. Then ¢; #0 for kK =j=n [Laguerre lc, Weisner 3]. Hint: ¢; =
f9(0)/j! # 0 by Lucas’ Theorem.

7. The zeros of Fin eq. (6,2) with all m; > 0 lie in the convex hull of the points

la=QAM)[(n—m)z; + mz], jk=12-",p j#*k,
[Specht 9]. Hint: With Z as in ex. (3,1), show R(«Z + ) = 0 for arbitrary
constants «, # if R(axl;, + B) = 0 for all j, k.

8. For f a given nth degree polynomial and ¢ an arbitrary constant, let X, and
K’ be respectively the convex hulls of the zeros of [f(z) + ¢] and of those of f'(z)
and let K* = (N K, for all c. If a side S of 9K, passes through only two simple
zeros of f(z) + ¢, then S N K* = & unless n = 2 when § < K* [Chamberlin-
Wolfe 2].

9. If the polynomials P and Q satisfy the relations Q(z) # 0, |P(2)] = |Q(2)| for
3(z) = 0, then |P'(2)] =< |Q'(2)| for J(z) = 0 [De Bruijn 5]. Hint: All zeros of
F(z) = P(z) — AQ(2), |A| > 1, lie in half-plane 3(z) < 0. Apply Th. (6,1) to F.
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10. In 3-dimensional Euclidean space, let p = xi + yj + zk be the position
vector to point (x, y, z) and let

F(p) = ckrill lb— @t Fo) = BF(R)I™ IVF(R)®

be a “distance polynomial” and its derivative respectively with C an arbitrary
real constant and V F the gradient of F. Then all the zeros of F' lie in the convex
hull H of the zeros of F; no zero lies on 9H unless it is also a zero of F [Nagy 18].
Hint: As in ex. (3,1) each zero of F’ is the centroid of suitable masses placed at
the zeros of F.

11. If E is a closed convex set of more than one point, every polynomial having
all its zeros on E is an infrapolynomial on E [Motzkin-Walsh 4]. Hint: Reread
sec. 5.

12. If in Th. (6,4) hypothesis (ii) is replaced by the assumption that w =
P(2)/Q(z) € S for z € 9K where S is a simply-connected domain in the w-plane,
then also [P'(2)/Q'(2)] € S for all z € 0K [De Bruijn 2].

13. If all the zeros of an nth degree polynomial f lie in the unit circle, then
max |f(2)| Z (n/2) max | £(2)| [Turén 1].
12| = C ozl =1

7. The critical points of a real polynomial. In the Lucas Theorem (6,1) we
treated the zeros z; of f(z) as independent parameters. Obviously, if we impose
some mutual restraints upon the z;, such as the requirements that the z; be
symmetrical in a line or point, we may expect the locus of the zeros of f '(2) to
be a smaller region than that given by the Lucas Theorem.

Let us in particular assume that f(2) is a real polynomial and thus that its
non-real zeros occur in conjugate imaginary pairs. Let us construct the circles
whose diameters are the line-segments joining the pairs of conjugate imaginary
zeros of f(z). These circles we shall call the Jensen circles of f(z). (See Fig. (7,1).)

We shall now state a theorem which was announced without proof by Jensen
[1] in 1913. It was proved by Walsh [4] in 1920 and later by Echols [1] and
Nagy [3]. ‘
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JeENSEN’s THEOREM (Th. (7,1)). Every non-real zero of the derivative of a real
polynomial f(2) lies in or on at least one of the Jensen circles of f(z).

To establish this theorem, we note that in the equation

n

f'@If(2) =2 [1/(z - z,)]

=1
the sum of the terms w; = 1/(x + iy — x; — iy;) and wp = 1/(x + iy — x; + iy,)
corresponding to the pair of zeros z; = x; + iy, and z, = x; — iy, has the
imaginary part

=2y[(x — x,)* + y* — yi]
[ = x)* + (v = p)°l(x — x)* + (¥ + »)°]

whereas the term w; = 1/(x + iy — x;) corresponding to a real zero z; = x; of
f(2) has the imaginary part

S(ws) = —yll(x — x)* + y*1.
Thus, sg J(w, + w,) = —sgy for every point z outside all the Jensen circles

S(wy + wy) =

and sg J(wg) = —sg y for every point z. In other-words, outside all the Jensen
circles
(7.1 sg S @] = —sgy.

In particular, if z is a non-real point outside all the Jensen circles, f'(z) # 0, a
result which proves the Jensen Theorem.

Actually, from the above expressions we may derive the following more specific
result:

TrEOREM (7,1)'. If a real polynomial f has at least one real zero, each non-real
critical point of f lies interior to at least one Jensen circle of f. If f has no real zeros,
each non-real critical point of f lies either on all the Jensen circles of f or interior to
at least one Jensen circle of f and exterior to at least one Jensen circle of f.

In fact we have also proved the following more general result. ~

THEOREM (7,1)". If in eq. (6,2) the pointset S = {z,} is symmetric in the axis
of reals and if m; = m; when z, = 2, then each non-real zero of F lies in or on
at least one Jensen circle of S.

The Jensen Theorem supplements Rolle’s Theorem in describing the location
of the zeros of f” relative to those of f. A theorem which describes the number
of zeros of f” is the following one due to Walsh [4].

THEOREM (7,2). Let I: o =< x =< f be an interval of the real axis such that
neither o nor B is a zero of the real polynomial f(z) or is a point in or on any Jensen
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circle of f(z). Let R be the configuration consisting of I and of the closed interiors
of all the Jensen circles which intersect I. Then, if R contains k zeros of f(z), it
contains at least k — 1 and at most k + 1 zeros of f'(2).

We shall prove this theorem with the aid of Th. (1,2), the Principle of Argument.
Let us denote by X the boundary of the smallest rectangle which has sides parallel
to the co-ordinate axes and which encloses R. In view of eq. (7,1) K is mapped
by the function w = f’(z)/f(z) upon the w-plane into a curve which encircles
the origin at most once. Hence, Ax arg [f'(z)/f(2)] is 0 or +27 and by eq. (1,2)
the number of zeros of f(z) within K differs by at most one from the number of
zeros of f(z) in K.

An immediate consequence of Th. (7,2) is the following result also due to
Walsh [4].

CoroLLARY (7,2). Any closed interval of the real axis contains at most one zero
of f'(2) if it contains no zero of f(z) and if it is exterior to all the Jensen circles for

f@.

An analogous theorem, due to Fekete and von Neumann [1], holds for infra-
polynomials [see sec. 5]. It is the following:

THEOREM (7,3). Let the pointset E be symmetric in the real axis and let J denote
the circles having as diameters the pairs of conjugate imaginary points of E. If p
is a real infrapolynomial on E, then any non-real zero of p must be in or on at least
one circle J.

PrROOF. Any non-real zero of p on E clearly satisfies Th. (7,3). Because of the
symmetry of E and p in the real axis, the zeros of p, not on E, will satisfy not only
the equation '

3 A

i=0Z — Z;

=0 (4;>0,j=0,1,---,m)

obtained from (5,8) for suitable points z; € E, but also the equation
m )'j

=02 — Z;

=0, 'Z',-=x,-— iy",

and hence the equation

zzj( 1 1 ) ~0.
j=0 \z —2z; z—Z;

Using now the same reasoning as for the proof of the Jensen Theorem (7,1),
we complete the proof of Th. (7,3).

Finally, we may state results analogous to Th. (7,1) for certain rational functions
of three real variables [see ex. (7,11)] or for certain functions of a quaternion
variable [see Scheelbeek 1].
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Also an analogous theorem, due to Walsh [20, p. 255], holds for Green’s
function. It is the following:

THEOREM (7,4). Let G be the Green’s function with pole at infinity, for an
infinite region R having as boundary a finite set B of Jordan curves, which are
symmetric in the real axis. Then every non-real critical point of G lies in or on at
least one of the circles whose diameters join the pairs of symmetric points of B.

EXERcIses.  Prove the following.

1. If a is a real constant and if f(z) is a real polynomial whose derivative is
S(2), none of the imaginary zeros of Fy(z) = (D + a)f(2) =f'(z) + af(2) lies
outside the Jensen circles of f(z). Hint: Study the imaginary part of @ + f'(2)/f(2)
[Jensen 1, Nagy 3].

2. Let E, (A4, A) denote the ellipse having as minor axis the line-segment
joining the pair of conjugate imaginary points 4 and 4 and as major axis a line-
segment m* times as long as the minor axis. Then the envelope of the circles
whose diameters are the vertical chords of E,{4, 4) is the ellipse E,,, (4, A).

3. If a and b are real constants and f(z) is a real polynomial whose first two
derivatives are f’(z) and f"(z), then none of the imaginary zeros of

Fy2) = f"(2) + (a + b)f'(?) + abf (2)
lies outside the ellipses having as minor axes the lines joining the pairs of conjugate
imaginary zeros of f(z) and having major axes 2* times as large as the minor
axes. Hint: Noting that Fy(z) = (D + b)(D + a@)f(2) = (D + b)Fy(z), apply
twice the results of exs. 1 and 2 [Jensen 1, Nagy 3].

4. If f(2) is a real polynomial and g(z) an mth degree polynomial with only
real zeros, then the non-real zeros of the polynomial

F,(2) = g(D)f(2), D = ddz,

lie in the ellipses which have as minor axes the lines joining the pairs of conjugate
imaginary zeros of f(z) and which have major axes m*¢ times as long as their
minor axes [Jensen 1, Nagy 3].

5. If f is any polynomial whose zeros are symmetric in the origin, then

(a) all the zeros of f'(2) lie in any double sector |arg (+2)| < y < 7/4 containing
the zeros of f(z);

(b) all the zeros of f’(z) (except perhaps one at the origin) lie inside, outside
or on any equilateral hyperbola H with center at 0 according as all the zeros of
f(2) also lie inside, outside or on H. Hint: By hypothesis f(z) = z"¢(z?). Show
that the zeros of F(W) = [f(W*)] lie in a convex point set, which by the
Lucas Theorem must contain the zeros of F'(W) [Walsh 13].

6. If Z is a non-real critical point of a real polynomial f, then the equilateral
hyperbola with vertices at Z and Z either passes through all the zeros of f or
separates them. Hint: If Z = X + iY, (X — x))? — y} + Y2 > 0 implies that
z, is outside H.



[§81 SOME GENERALIZATIONS 29

7. If C is a real constant and if m,, > 0, R(z,) > 0 for all k, then all the non-real

zeros of the function
F(z) = Cz7' + I myl(z — )™ + (z — 2)7]
k=1

lie in the closed interiors of the circles I', tangent at z, and z, to the lines joining z,
and z, to the origin [Walsh 9, 23]. Hint: Consider 3[F(2)].

8. Under the conditions of ex. (7,7) the closed interiors of the circles I', also
contain the zeros of

F(z)=Bz*+3Ymf(z —z)" +(z—2)"], B<O0 [Walsh9,23].
=

9. Let all the zeros of the real polynomial p lie in the strip S: a < R(z) <
and let y be a a real point notin S. Through the pair z,, Z, of conjugate imaginary
zeros of p let the circle I', be drawn tangent to lines yz, and yZ, at z, and Z, respec-
tively. Then every non-real critical point of p lies in or on at least one circle
I, [Walsh 23]. Hint: Show that

sg 3z —Nf@DIf)]= £ sgy

at any point z outside all I',.
10. Let H, be the equilateral hyperbola with vertices at @, and &,, where
3(a,) > 0. Then no critical point of the function

F(z) = ﬁ [(z — a)/(z — )]

lies either outside all H, or inside all H; [Nagy 19]. Hint: Examine 3[F'(z)/F(z)].

11. Let all the zeros of the distance polynomial F in ex. (6,10) be symmetric in
the plane E. Then any zero of F’ not on E lies in at least one of the spheres
having as diameters the line-segments joining pairs of zeros of F symmetric in E
[Nagy 18].

12. Let the nth degree polynomial f have only real zeros and the mth degree
real polynomial g have all its non-real zeros in the sector |argz| =< ¢ where
0 < ¢ = n*. Then all the zeros of h(z) = g(d/dz) f(z) are also real [Obrech-
koff 12]. Hint: For ¢ = 0, this is the Poulain-Hermite Theorem. It remains
valid as ¢ increases from 0 to ¢, when 4 has a multiple real zero. For¢ > ¢, + ¢,
e a sufficiently small positive number, 4 has non-real zeros. Prove theorem
first for g(z) = (e — pz)(e=*® — pz), p > 0.

13. Let E be a bounded point set consisting of at least » + 1 points lying on
aline L. If p € I(E) (see sec. 5) but p(z) # 0 for z € E, then p has only simple
zeros, all on L and separated by the points of E. If conversely p € 2, and p has
only simple zeros separated by the points of E, then p € I(E) [Marden 22]. Hint:
Use Th. (5,2).

8. Some generalizations. From the proofs given in the last two sections, it
is clear that the Lucas and Jensen Theorems are essentially results regarding
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the zeros of the function

n
F(z) =3 mjl(z — z)), m; > 0,
i=1
and that these results are valid even when the positive numbers m; are not
integers. This expression is however only a special case of the linear combination

®1) FG) = Smf(2)
where =

_(z—an)z—az) - (z—a;)
O = e — b (= by

and where the m; are complex numbers such that
3.2 pSargm=pu+y<p+t+m, j=1,2",n

We ask now whether or not the Lucas Theorem (Th. (6,1)) may be generalized
to functions F(z) of type (8,1).
We shall first prove

THeOREM (8,1). If K is a convex region which encloses all the zeros a; and
poles by, of each f(2) of eq. (8,1), then F({) # 0 at any point { at which K subtends
an angle less than' ¥ = (w — )/(p + ).

Since { is necessarily exterior to X, we may find in K two points « and # such
that (see Fig. (8,1) where, however, K subtends at { the angle ¢)

arg({ =PI — ) =¢ <Y

Fic. (8,1)
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and for all jand &k

8,3) 0<argo;, <¥, O<argm,;<VY,
where 0, = ({ — a3)/({ — &) and 7, = ({ — B)/({ — b;). Let us now set
(84 w; = m,fi(2)[({ — B)/({ — «)"].

Since w; = m; []2_; 04 I1i1 T We may, on use of egs. (8,2) and (8,3), obtain
the inequality pSargw <pu+y+@+o¥=p+m
It follows now from Th. (1,1) and eqgs. (8,1) and (8,4) that

FOIL — B — ay] =;§1 W, 5 0,
as required in Th. (8,1). -

Fic. (8,2)

If we define 27 to be the angle subtended by K at a point interior to K, we
may say that the zeros of F(z) lie in the region S(X, ¥') comprised of all points
at which K subtends an angle of at least ¥'. It is important therefore that we
determine the nature of the region S(X, ¥).

For example, if K is a circle of radius r, then S(K, ¢) is a concentric circle of
radius r csc (¢/2). If K is an ellipse, then S(K, ¢) is an oval-shaped region
bounded by a fourth-order curve. If K is the line-segment AB in Fig. (8,2),
then S(X, ¢) will be bounded by two arcs of circles which pass through 4 and
B and are symmetric in the line AB. If K is the closed interior of the triangle
ABC in Fig. (8,3), then S(X, @) will be a polygonal figure bounded by circular arcs.

As the last two examples show, the region S(X, ¢) is not in general a convex
region, though it always contains K and coincides with K when ¢ = m. The
region S(K, ¢) is, however, always star-shaped with respect to K. That is, it
has the property that, if P is any point of K and if Q is any point of S(X, ),
then the entire line-segment PQ lies in S(X, ¢). (Cf. Fig. (8,3).)

This fact is obvious when Q is also a point of K. We need therefore only
consider the case that Q:{ is not a point of K. Then the angle y subtended at
Q by X satisfies the inequality ¢ = v < # and two points « and 8 can be found
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FiG. (8,3)

in K so that v = arg (8 — {)/(« — {). Let us choose any point Q’:{’ lying on
the segment PQ and let us set " = arg (8 — {')/(« — {’). Obviously, y" > ».
Since the angle subtended at Q’ by K cannot be less than y’, we infer that it is
greater than ¢ and that therefore Q’ lies in the region S(X, ¢).

In view of this discussion we may restate Th. (8,1) in the following form,
which in the case y = 0 is due to Nagy [2] but in the general case is due to
Marden [4].

THEOREM (8,2). If all the zeros and poles of each rational function f,(z) entering
in eq. (8,1) lie in a closed convex region K and if the m; (j=1, 2, - -+, n) are
constants satisfying ineq. (8,2), then all the zeros of the linear combination F(z) =
D71 mf{2) lie in S(K, ¢), a region which is star-shaped with respect to K and
which consists of all points from which K subtends an angle of at least ¢ =

(=@ + 9.

We may add that in Th. (8,2) the region S(K, ¢) may not be replaced by a
smaller region. (Cf. Marden [4].) For, if P:s is any point in S(X, ¢), two
points Q;:#; and Q,:f, may be found in K such that < Q,PQ, = ¢. Let us
denote by d; and d, the distances of Q; and Q, from P respectively and by w
the angle formed by the ray PQ, with the positive real axis. Also let us define

ki =1[(s — )/d,]"**  and  ky = [(s — 1,)[d,]"*%".
Then, since |k;| = |ky| = 1,
argk; = (p + q)w
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and
aigk, =p+ o+ +y=7+(+ 9o,

the vectors k; and k, are equal and opposite and thus

kl + k2 = 0
This means that the function

G(2) = [di(z — 1)°/di(z — 15)°] + €"[d{(z — t,)°/d3(z — )]

has a zero at the point s. In other words, every point s of S(X, ¢) is a zero of
at least one function F(z) of type (8,1).

Th. (8,1) is a generalization of the Lucas Theorem (6,1) as may be seen by
settingy = 0, p = 0and ¢ = 1. Like the Lucas Theorem, it has various physical
interpretations.

If y# 0, p =0 and g = 1, the function F(2) in (8,1) has the form (2,3) and
thus Th. (8,1) describes the location of the equilibrium points in a field of force
due to complex masses m, acting according to the inverse distance law. An
example of such a field is the one due both to the charges carried by long straight
wires at right angles to the z-plane and to the electromagnetic field induced by
the currents flowing through these wires. Another example is the velocity field
in the two-dimensional flow due to a vortex-source obtained by placing a source
and vortex at the same point.

If y5#0, p=1 and g = 0, the zero of F(z) is the “centroid” of a system of
complex masses and thus Th. (8,1) describes the location of this centroid in
relation to these particles.

As another application of Th. (8,2), let us introduce a polynomial f(z) of
degree p and n polynomials 4,(z), j = 1, 2, * * -, n, each of degree at most p — 1.
Then
mihy(2) + mohy(z) + - - - + m,ha(2)

m1+m2+"'+mn

F(z) =f(2) -

=S ml@ — b2 Im,

=1

is a polynomial of type (8,1) with g = 0 and with

f(2) — hi(2) = (z — a;)(z — az) -~ - (z — a;,).
The a;, are clearly the points at which f(z) = h,(z) and the zeros of F(z) are the
points where '

f@) =§lm,~h,~<z> Sm;.

i=1

In other words, we have established the following Mean-Value Theorem for
polynomials.
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THEOREM (8,3). Let f(z) be a pth degree polynomial, let each h(z) (j =1, 2,
- -+, n) be a polynomial of degree at most p — 1 and let m; be complex constants
satisfying ineq. (8,2). If all the points z at which f(z) = hy(z) for at least one j
(j= 1,2, -, n) lie in a convex region K, all the points at which

(8,5) f(z)= Zlmjh,(z) jZ m;
1= =1
lie in the star-shaped region S(K, (m — v)/p).

Th. (8,3) is due to Marden [4]. When y =0, it reduces to the results of
Nagy [2] and when in addition 4,(z) = const., it reduces to the results stated by
Jentsch [1] and proved by Fekete [2].

Exercises. Prove the following.
1. If the points a; and by lie in a convex region K, then in the region
S(K, (m — p)/(p + q)) lies at least one of the points z, , z,, *"* -, z,, which satisfy

Z":mf (z;— an)(z; — az0) -~ (z; — a;,) _ 0
=1 (2, = bp)(z; — by) (25— byg)
where the m; satisfy (8,2). Hint: Assume the contrary.

2. If all the points at which a given pth degree polynomial f(z) assumes n
given values ¢;, ¢;, ** -, ¢, are enclosed in a convex region K, and if the m;
are numbers satisfying (8,2), then all the points at which f(z) assumes the average
value

c=3my;[ 3m;
i=1 i=1
lie in the star-shaped region S(X, (= — y)/p [Marden 7 and 8; for cases y = 0,

Fekete 2 to 6 and Nagy 4].
3. Let K be a convex region which contains all the poles b; of

J@O=0GC—-a)z—a) - (z—a,)/(z—b)z—b) " (z—b)

as well as all the points where f(z) assumes the values ¢;, ¢, ***, ¢,. Let the
m; be constants satisfying ineq. (8,2) and let ¢ =37, m,c;/37, m;. Then
f(2) # c outside the star-shaped region S(K, (= — »)/(p + 9)).

4. For the values r =t = s of the real variable ¢, let the equations z = a,(r)
and z = b,(¢t) represent Jordan curves which lie in a convex region K and
let z = m(¢) represent a Jordan curve which lies in a sector with vertex at the
origin and with an angular opening of y < =.

Let furthermore

£z =TT {lz = 0,01z = b0
and F(z) = [ m()f(z, t) dt. Then, F(z) # 0 outside the star-shaped region

T

S(K, (w — p)/(p + q)) [Marden 4].
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5. Let f(2) = [Iz., (z — z) and g(z) = f(z + A) — Bf(z — A) where 4 and
B are arbitrary complex numbers with, however, 0 < b = arg B < w. Then
no zero Z of g(z) may lie outside of all the lens-shaped regions defined by the
inequalities b/n S arg (z —z, + Az -2z, — A) ==, k=1, 2, ---, n, or
may lie inside all these regions [Nagy 8].

If all z, lie in a strip H bounded by two parallel lines making angles of ¢ with
the real axis, if arg 4 = ¢ + =/2 and if |B| = 1, then all zeros of g also lie in H
[Obrechkoft 4].

6. Let f(z) be a real polynomial of degree n having n distinct zeros ¢, which
consist of the p pairs of conjugate imaginary zeros ¢;, ¢,.; = ¢ (j=1,2, - p;
2p = n) and the n — 2p real zeros ¢; (j=2p+ 1, 2p+ 2, ---, n). Let fi(2)
be a real polynomial of degree n — 1 which relative to f(z) has the partial
fraction development
(8.6) MO _S(2y L)y 3 2

f(2 ia\z—¢ z-—-¢ i=tp+1Z — C;

where y; = m;e™* with m; > 0 and pu; real for all j and pu; = 0 for j > 2p. Let
it be assumed that |u;| < /2 for j < 2p. Let K(c;, p;) be the circle which
passes through the conjugate imaginary pair ¢;, ¢; and which has its center on
the real axis at the point k; such that angle ¢;, c;, k; is ;. Then (a) any interval
containing all the real zeros of f(z) and all the points k; (j=1, 2, - - -, p) also
contains all the real zeros of f,(z); (b) between two successive real zeros of f(z)
lie an odd number of zeros of fi(z); (c) any interval of the real axis not con-
taining any zero of f(z) and any interior point of any circle K(c;, u;) contains
at most one zero of f,(z) [Marden 17].

7. In eq. (8,6), assume that m; > 0 for j > 2p but m; > 0 or < 0 for j =< 2p.
Then each non-real zero of f,(z) lies either in at least one circle K(c;, u;) corre-
sponding to m; > 0 or outside at least one circle K(c;, u;) corresponding to
m; < 0 [Marden 17].

8. In eq. (8,6) assume that all m; > 0. Let I: « = x = f§ be an interval of
the real axis such that neither « nor g is a zero of f(z) or an interior point of
any circle K(c;, p;). Let N be the configuration comprised of I and all the
circles K(c;, #;) which intersect 1. Then, if N contains ¥ zeros of f(z), it con-
tains at least » — 1 and at most » + 1 zeros of f,(z) [Marden 17].

9. Let f4(2), f1(2), - - -, fo(2) be the set of real polynomials such that for k = 0,
-, g—1

Jin(2) _ "‘( Y ?751:_.) + "ik Vik

2 ial\z—cy oz — 8,

where |arg y,;| S w, < w2 for j=1,2, ---, n—k and y,, and c;, are real
for j > 2p,. For convenience, take fy(z) = f(z) and c;, = c; for all j and set

Ay = cot [(m[4) — (w,/2)] for all k. Let E;, be the ellipse with center at the
point (¢; + ¢;)/2 ,with a major axis M, |c; — ¢;| along the axis of reals and with

i=2pk+1 Z — Cjp
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a minor axis N, |c; — &;| where N, = 2pA, -+ A, and M2 = 3% , N}. Then
each non-real zero of f(z) lies in at least one ellipse E;, (=1, 2, ---, p)
[Marden 17].

10. Let ¢(z, ¢) = [1/(z — )]+ (1/c) + (z/c®) + -+ - + (Z¥1/c*) and let F be
the real meromorphic function

0 0
F(z) =;1Aa'¢(z’ a;) +’_ZI[B:'¢(Z’ b;) + B;¢(z, b,)]
where A4; and a; are real with (4,/a%) > 0 for all j, where |u,| < #/2 for u; =
arg (B;/b*) (mod. 27) and where the series > 2, |4,/a**}| and 32, |B,/b+!| are
convergent. Then each non-real zero of F(z) lies in at least one of the circles
K(b;, p;), j= 1,2, - [Marden 17].

11. Let K be the smallest convex region enclosing all the zeros of f, a poly-
nomial of degree n. Then all the zeros of the mth derivative of F(z) = 1/f(2)
lie in the star-shaped region S = S(X, w/m). Hint: Let fi(z2) = f(wz + t) =
¢ TI{ (1 — zz). If tis any point outside S, w may be chosen so that 0 < arg z; <
m/mfor allk. But F(wz + t) = X2 ¢ z* withc,, = F™(£)[t! = ¢ Y Zhazks- - - zkn
and k; + k; + - -+ + k, = m. By Th. (1,1), F™)(t) #¢ 0 [Obrechkoff 8].

12. In the hyperbolic non-Euclidean (N.E.) plane H: |z| < 1, the smallest N.E.
convex polygon containing the points «; also contains the critical points of the
“N.E. nth degree polynomial”

X) f@) = el'I [z — a1 — &2)], ol < 1.

[Walsh 20, p. 157]. Hint: A “N.E. line” is a circle orthogonal to the unit circle.
The function f maps H, n to 1, upon itself.

13. If, in ex. (8,12), E is a closed set of at least n points in |z|] < r (< 1) and if
p is a N.E. infrapolynomial on E (cf. sec. 5), then all the zeros of p lie in the
smallest N.E. convex set X containing E [Walsh 22].

9. Polynomial solutions of Lamé’s differential equation. In the previous section
we studied the generalization of the Lucas Theorem from rational functions
F(2) = g(2)/f(z) whose decomposition into partial fractions has the " form
> myz — z;)* involving real m; to those whose decomposition has the form
> m,g(2)/f;(z) involving complex m;. In this section we shall extend the
Lucas Theorem to systems of partial fraction sums. We shall be principally
interested in the systems which arise in the study of the polynomial solutions
of the generalized Lamé differential equation

2, D X
i=1 j ]:[(Z—aj)

=1

where @ is a polynomial of degree not exceeding p — 2.
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By a straightforward application of the method of undetermined coefficients
Heine [1] shows the existence of at most C(n + p — 2, p — 2) polynomials
V with deg ¥ = p — 2 such that for ®(z) = V(2) eq. (9,1) has a polynomial
solution S(z) of degree n. We shall call each V(z) a Van Vieck polynomial
and the corresponding S(z) a Stieltjes polynomial in recognition of the fact that
Van Vleck [1] and Stieltjes [2] were the first to study the distribution of the
zeros of the polynomials ¥(z) and S(z) respectively. (Cf. ex. (9,1) and ex. (9,2).)

If S@) =(z—2z)z—129) -"(z—2z,) is a Stieltjes polynomial, it follows
from (9,1) that

9,2) 5"(z0) + ( élai/(zk - aj))S'(Zk) =0 (k=12---,n).

If S'(z,) = 0 but S”(z) # 0, eq. (9,2) would be satisified only if z, = a; for
some value of j. If S'(z) = S"(z) = 0, the differential equations obtained on
successively differentiating (9,1) would show that all derivatives of S(z) would
vanish at z = z,, an impossibility since S,(2) is an nth degree polynomial. If
S'(z,) # 0, we may write

S(z) = (z — zpT(2), T(z) # 0,
and obtain

S8"(ze) _ 2T"(zx) i 2
S(z)  T(z) s=iitkz,— 2;

Consequently, every zero z, of S(z) is either a point a; or a solution of the system

©.3) 3D :

i=12Zp — Q;  j=Lj¥*k Z; — Z;

=0, k=12---,n

In the later case, the zero z, has an interpretation similar to that assigned to
the zeros of (6,2). The term }&;(@, — z,)~* in the conjugate imaginary of (9,3)
may be regarded as the force upon a unit mass at the variable point z, due to
the mass }&; situated at the fixed point @; . The term (Z; — z,)~! may be regarded
as the force upon the unit mass at z, due to the unit mass at the variable point
z;. In other words, the system (9,3) defines the z, as the points of equilibrium
of n movable unit particles in a field due to p fixed particles a;, of mass &,/2.

Likewise, if # is a zero of the Van Vleck polynomial ¥(z) corresponding to
S(z), then

P

9,4 S"(t) + [Z“:‘/(’k - a:‘)] S'(t) = 0.
Jj=1

Thus t, is either a zero of S'(z), which we may write as

S(2) = n(z — 2)(z — 24) (2 — 2,
or S'(t,) # 0 and
P n—1
9,5 [ Fatin - a,-)] + [gll/(rk - z;-)] —o.

We leave to the reader the physical interpretation of the ¢, .
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The location of the zeros of S(z) and of V(z) has been studied by Stieltjes,
Van Vleck, Bocher and Pélya when all «; > O their results being given below in
exs. (9,1), (9,2) and (9,3). For the general case we shall now prove a theorem due
to Marden [5].

THeOREM (9,1). If
(%,6) larg ;| S y < 7/2, j=12""",p,

and if all the points a; lie in a circle C of radius r, then the zeros of every Stieltjes
polynomial and the zeros of every Van Vleck polynomial lie in the concentric circle
C' of radius r' = r sec y.

Fic. (9,1)

To prove the first part of this theorem, let us suppose that the Stieltjes
polynomial
S@=0C—-z2)z—2) " (z—2z)

has some zeros outside C’ and that among these the one farthest from the center
of Cis z;. (See Fig. (9,1).) Then at z, circle C would subtend an angle 4,(z,)
of magnitude less than = — 2y. Through z let us draw the circle I' concentric
with C and let us draw the line T tangent to I" at z; . By the assumption con-
cerning z;, all the points z; lie in or on the circle I' and hence the quantities
(z — z,)7? are represented by vectors drawn from z; to points on the side of T
containing circle C. Furthermore, since the quantity (4, — z,)~* may be repre-
sented by a vector drawn from z; and lying in the angle A4,(z,), the quantity



[§91 POLYNOMIAL SOLUTIONS OF LAME’S DIFFERENTIAL EQUATION 39

&;(a; — Z;)"! may, due to (9,6), be represented by a vector drawn from z; and
lying in the angle 4,(z,) formed by adding an angle y to both sides of 4,(z,).
The angle A4,(z,), being in magnitude less than 2y 4 (7 — 2y) = =, lies on the
same side of T as does C. In short, both types of terms (z; — %)™ and
&;d; — Z;)™! entering in eq. (9,3) are representable by vectors drawn from z,
to points on the same side of 7. This means according to Th. (I,1) that the
left side of eq. (9,3) cannot vanish. Since this result contradicts eq. (9,3), our
conclusion is that the point z, and consequently all z; must lie in C’.

With the first part of Th. (9,1) thus proved, it remains to consider the second

Fic. (9,2)

part that concerns the zeros of V(z), the Van Vleck polynomial corresponding
to S(z). Since we now know that all the zeros z, of S(z) lie in circle C’, we may
infer from Th. (6,2) that all the zeros z} of the derivative S’(z) also lie in C'.
Let us assume concerning V(z) that its zero #,, farthest from the center of C,
were outside C’ and let us draw through ¢, a circle I' and its tangent T. By
then repeating essentially the same reasoning as in the first part, we can show
that our assumption concerning ¢, implies the non-vanishing of the left side
of eq. (9,5) in contradiction to the hypothesis of the theorem.

In the case of real, positive «;, the part of Th. (9,1) that concerns Stieltjes
polynomials may be regarded as a generalization of the Lucas Theorem (Th.
(6,2)). For this same case, Walsh [8] has given the following generalization of
the Jensen Theorem (Th. (7,1)). (See Fig. (9,2).)

THEOREM (9,2). Let the «; in eq. (9,1) be positive real numbers and let the non-
real a; occur in conjugate imaginary pairs with o« = a; whenever a, = a;. Let
E,(a, d) denote the ellipse whose minor axis is the line-segment joining points a
and a and whose major axis is m*% times as long as the minor axis. Then no non-
real zero of any Stieltjes polynomial having m pairs of non-real zeros may lie
exterior to all the ellipses E,(a;, a,;),j= 1,2, -, p.
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It is to be noted that E\(a, @) is the Jensen circle of the pair (a, a).
In the proof of this theorem, we shall use two lemmas. The first is one which
may be easily verified by elementary calculus; namely,

LemMA (9,2a). The circles whose diameters are the vertical chords of the ellipse
E,, \(a, d) lie in the closed interior of the ellipse E,(a, @) and have this ellipse as
their envelope.

For the statement of the second lemma, let us write .S in the form
(9’7) S(Z) = (Z - Zl)(Z - z1) e (Z - zm)(z - z-m)(z - 22m+l) e (Z - zn)

with the z;, j > 2m, representing the real zeros of S(z). The second lemma is
then the following.

LeMMA (9,2b). If the non-real zero z, of S(z) lies outside the Jensen circles
Ea;, a;), j=1, 2, ---, p, it lies inside at least one Jensen circle E\(z;, Z;),
25j=m.

For, eq. (9,3) becomes for (9,7) and for k = |,
2 L 2 Z 2 2 < 2
©08) I —H—p = +z( + )+ > = 0.

=12y —Qa; zZy— Z; =2\ —2zZ; Z;—Z; i=2m+1 Zy — Z;

Except for the term (z; — Z))7, eq. (9,8) has the form of eq. (6,2). If z; were
also outside the Jensen circles of the points z;, 2 < j < m, then we could apply
the reasoning used to prove Th. (7,1). Thus for all terms in (9,8), except possibly
(z1 — z)™, the sign of the imaginary part would be that of sg(—y;). But, since
(z; — z)7' = —2ify,, the sign of imaginary part of all terms would be that of
sg(—yp). Thatis, if z; were outside of the Jensen circles for allthe a;, 1 < j = p,
and all the z;, 2 = j < m, then it would not satisfy eq. (9,8).

Now, to prove Th. (9,2), let us assume that point z, is exterior to all the
Jensen circles E(a;, 4;). By Lem. (9,2b) point z, is interior to, say, Ei(z;, Z2).
If, then, z, is also exterior to all the Jensen circles Ey(a;, 4;), it lies interior to,
say, Ey(z3 , Z3), and so forth. Eventually, we must come to a value of k, k = m,
such that, although the point z,_, lies exterior to all the circles Ey(a;, 4;) and
thus lies interior to the circle Ey(z, , Z), the point z, lies interior to at least one
circle Ey(a;, @,), say Ey(a, , ).

Now applying Lem. (9,2a), we see that circle E,(z , Z) lies in ellipse Ex(ay , @1);
that circle E\(z;_;, Z,_,) therefore lies in ellipse Ey(a,, 4,), etc., finally, that
circle Ey(z,, %) lies in the ellipse Ey(a;, @). Since however, k = m, ellipse
Efa,, @) lies in the ellipse E,(a,, 4;). Thus we have completed the proof of
Th. (9,2).

Instead of assuming that the «; are positive real numbers, let us suppose that
the «; corresponding to a pair a;, 4; form a conjugate imaginary pair. We
may then prove the following two theorems.
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THEOREM (9,3). If the a; and the corresponding «; are real or appear in con-
Jjugate imaginary pairs and if |arg «;| < w/2 for all j, then the zeros of every
Stieltjes polynomial and those of the corresponding Van Vleck polynomial lie in
the smallest convex region which encloses both all the real points a; and all the ellipses
having the pairs of points a; and a; as foci and having eccentricities equal to
cos (arg a;).

THEOREM (9,4). Under the hypotheses of Th. (9,3), let S(z) be a Stieltjes poly-
nomial possessing k pairs of conjugate imaginary zeros and let V(z) be the corre-
sponding Van Vleck polynomial. Corresponding to each conjugate imaginary pair
a;, a; let the real point e; be located such that angle a;, a,, e; is arg «; and let
E(a; , q) denote the ellipse with center at e;, with a minor axis m; = 2 |a; — e,
parallel to the imaginary axis and with a major axis q**m;. Then every non-real
zero of S(z) lies in at least one of the ellipses E(a;, k) and every non-real zero of
V(z) lies in at least one of the ellipses E(a; , k + 2).

Th. (9,3) is a Lucas type of theorem which may be proved with the aid of
the lemma stated in ex. (9,5). The part which concerns the Stieltjes polynomials
was first proved in Vuille [1]. The theorem in its entirety was established in
Marden [5].

Th. (9,4) is a Jensen type of theorem which is a generalization of Th. (9,2)
and which may be established with the aid of ex. (8,6) and of the method of
proof used for Th. (9,2). Th. (9,4) is due to Marden [20].

EXERCISES. Prove the following.

1. If in eq. (9,6) ¥ = 0 and if all the a; lie on a segment o of the real axis,
the zeros of every Stieltjes polynomial will also lie on o [Stieltjes 2].

2. Under the hypothesis of ex. 1, the zeros of every Van Vleck polynomial will
also lie on ¢ [Van Vleck 1].

3. If y = 0, any convex region K containing all the points a; will also contain
all the zeros of every Stieltjes polynomial [Bécher 1, Klein 1, and Pélya 1].

4. Under the hypothesis of ex. 3, K also contains all the zeros of every Van
Vleck polynomial [Marden 5].

5. Let the “mass™” « be at point z = 4i (1 > 0) and the “mass” & at point
z = —Ai. The resultant force

&(—Ai — 7)1 + a(li — z)

at z; due to these two masses has a line of action which intersects the ellipse
with +Ai as foci and with cos (arg «;) as eccéntricity [Marden 5].

6. The zeros of the Legendre polynomials P,(z) lie on the interval —1 <
z = 1 of the real axis. Hint: The Legendre polynomials P,(z) may be defined
as the solutions of the differential equation

(1 = z%Py(2) — 2zP(2) + n(n + 1)P,(2) = 0.
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7. If the differential equation w” + A(z)w’ + B(z)w = 0, where A(z) and
B(z) are functions analytic in a region R, has as a solution an nth degree poly-
nomial P(z), the zeros of P(z) in R are the points of equilibrium of n movable
unit particles in the plane field of force whose magnitude and direction at any
point z of R is that of the vector 4(z). The movable particles attract one another
according to the inverse distance law [Bécher 4].

8. The zeros of the Hermite polynomials H,(z) are all real and distinct. Hint:
By definition, w = H,(2) is a solution of the differential equation w” — zw’ +
nw = 0. Use ex. (9,7) [Bécher 4].

9. The zeros of the Stieltjes polynomials S(z) are the critical points of the
function |G|, where

Gzrr -z =11 T @ — a)™ T (& — 2).

k=1 i=1 i=k+1

n

Ifa; > 0,1(a;) =0,a; <a;,,forj=1,2, -, p, there are exactly C(n + p — 2,
P — 2) polynomials S(z); a unique S(z) corresponds to each of the C(n + p — 2,
p — 2) ways of distributing its n zeros z; among the p — 1 intervals (a;, a;,)
[Stieltjes 2].



CHAPTER 1III
INVARIANTIVE FORMULATION

10. The derivative under linear transformations. In the last two chapters we
were interested in proving some theorems concerning the zeros of the logarithmic
derivative of the function

» P
(10,1) f2) = }'Il(z —z)™, n= ’Zlm; ,
and in extending these theorems to more general rational functions and to certain
systems of rational functions. We obtained these results largely by use of Th.
(1,1) and Th. (1,4).

We now wish to see what further generalizations, if any, may be derived by
use of the method of conformal mapping. For instance, we know by virtue of
Lucas’ Theorem (6,2) that any circle C containing all the zeros of a polynomial
f(2) also contains all the zeros of the derivative f'(z) of f(z). Since we may map
the closed interior of C conformally upon the closed exterior of a circle C’, can
we then infer that, if all the zeros of f(2) lie exterior to C’, so do all the zeros of
f'(2)? Certainly not in general, as we see from the example f(z) = z® — 8 with C’
taken as the exterior of the circle |z| = 1.

Let us consider how to generalize Th. (6,2) so as to obtain a result which will
be invariant relative to the nonsingular linear transformations

«Z + B « Bl
yZ + 46’ y 0

Specifically, let us denote by Z; the points into which the zeros z; of f(z) are
transformed by (10,2) and by Z; the points into which the zeros z; of f'(2)/f(z)
are transformed; that is
(10,3) z;=(aZ; + BIZ; + 0),  z, = («Z; + PI(YZ; + 9).
Clearly, the Z; are the zeros of F(Z), the transform of f(z), where

Z+p

10,4 F(Z) = (yZ + o)" (“ )
(10,4) @) = yf Z 40

The Z; , however, are not in general the zeros of the logarithmic derivative of
F(Z). Let us inquire as to the choice of the m; necessary and sufficient for a
finite Z; to be such a zero.

The logarithmic derivative of F(Z) calculated from eq. (10,4) is

SN N el
43

(10,2) z=
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We thereby obtain
(10,6) F@y__m
F(Zy) vZ;+6
Thus a necessary and sufficient condition for F'(Z;) = 0if Z; 3 oo is that yn = 0.

This condition will be satisfied if we choose y = 0; that is, if we select for
(10,2) any nonsingular linear integral transformation

(10,7) z=AZ + B, A#0.

Thus, if we restrict the transformations to translations, rotations and those of
similitude, the zeros of f’(z)/f(z) transform into those of F’(Z)/F(Z) when the
m; are chosen as arbitrary positive or negative numbers.

To satisfy the condition when y % 0 and Z, # oo, we must choose n = 0.
This implies that not all m; may be positive. In other words, under the general
transformation (10,2) the zeros of the logarithmic derivative of a polynomial
are not carried into the zeros of the logarithmic derivative of F(Z).

This does, however, suggest that, in place of the derivative f'(z) of a given
nth degree polynomial f(z), there be introduced the function

(10,8) [@) =nf(2) — (z — 20) f'(2).

The polynomial fi(z) is of degree at most n — 1. It generalizes the derivative
in the sense that, if for a given € > 0 and R > 0 we take

2ol > 1fe, M = max Inf(2) — 2f'(2)l, Fy(2) = fi(2)/z0,

then

[Fy(2) — @) = [nf(2) — 2" @)l[|ze| < Me.
That is,
(10,9) lim [f(2)/z,] = f'(2)

uniformly with respect to z for |z] = R. The function fi(z) has been called by
Laguerre [1, p. 48] the “émanant” of f(z) and by Pdlya-Szegé [1, vol. 2, p. 61]
“the derivative of f(z) with respect to the point z,,” but we shall call fi(z) the
polar derivative of f(z) with respect to the pole z, or simply the polar derivative
of f(2).
The zeros of the polar derivative are:
(a) the point z, if f(z,) = 0;
(b) the multiple zeros of f(z), and
(c) the zeros of the function
(10’10) fl(z) — n _ < m; .
(z—2zf(z) z—12, im1z—z
Since (10,10) is the logarithmic derivative of

=S —z)™,
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a function of type (10,1) with a total “degree” of zero, the zeros of (10,10) and
hence those of f,(z) are invariant under the general linear transformation (10,2).

In order to associate the polar derivative f,(z) with a more familiar invariant,
let us introduce the homogeneous co-ordinates (&, 1) by substituting z = &/7
into f(z) and fi(z). Thus,

F(&,n) = n"f (&),
Fy(&n) = "7"_1"70f1(§/77)

=’—Z79{[nF(s, p) - En=10 2 2 re o

No

Since, as a homogeneous function of degree n, F(§, n) satisfies the Euler identity

oF
F(§, oty
nF(&,n) = Eas +n
we find
F
(10,11) Fy(& ) = aé +n.,;7

In short, upon the introduction of homogeneous co-ordinates, the polynomial
f(z) transforms into a homogeneous function F(&, ) and f,(z) into Fy(&, %), the
first polar of F(& 7). This result provides further evidence of the invariant
character of the polar derivative.

EXERCISES. Prove the following.

1. If the zeros of a polynomial f(z) are symmetric in a line L, then between
two successive zeros of f(z) on L lie an odd number of zeros of its derivative
f'(z) and any interval of L which contains all the zeros of f(z) lying on L also
contains all the zeros of f'(z) lying on L. Hint: Apply (10,7) to Rolle’s Theorem.

2. Let z = g(Z) be a rational function which has as its only poles those of
multiplicities ¢; at the points Q; with j=1, 2, ---, k. Let furthermore
hZ) = TI*.,(Z — 0,)% and F(Z) = h(Z)"f(g(Z)), where f(z) is the function
(10,1). Then a given zero z; of f'(z)/ f(z) is transformed by z = g(Z) into a zero
Z; of F'(Z)|F(Z) if h'(Z;) = O whereas all zeros z; are transformed into zeros
Z;ifn=0.

11. Covariant force fields. In order to throw some further light upon the
invariant character of the zeros, not merely of the polar derivative of a poly-
nomial, but also of the logarithmic derivative of any function f(z) of type (10,1)
with n = 0, we shall use a physical interpretation similar to that in sec. 3 coupled
with the method of stereographic projection. (See Fig. (11,1).)

At the fixed points P; of a unit sphere S let us place masses m; which repel
(attract if m; < 0) a unit mass at the variable point P of S according to the
inverse distance law. Let us denote by ®(P) resultant force at P.
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Fic. (11,1)

By drawing lines from the north pole N of S through the points P and P; let
us project P and P; stereographically upon the equatorial plane of S into the
points z and z;, respectively. At the points z; let us place masses m; which
repel (attract if m; < 0) a unit mass at z according to the inverse distance law.
Let us denote by ¢(z) the resultant force at z.

We ask: what is the relation between the resultant force ®(P) in the spherical
field and the resultant force ¢(z) in the corresponding plane field ?

The answer to the question, given by Bocher [4], is contained in

THEOREM (11,1). Let ©(P) be the resultant force upon a unit mass at a point P
of a unit sphere S due to masses m; at the p points P; of S. Let z and z; be the
points into which P and P; are carried by stereographic projection upon the equa-
torial plane of S. Let ¢(z) be the resultant force upon a unit mass at z due to masses
m; at the points z; . If the total mass n=my + my + -+ -+ m, =0, then the
force ®(P) may be represented by a vector which is tangent to S and which projects
into the vector [(1 + |z|2)[2]¢(2).

To establish this theorem, we shall need

LemMA (11,1). The lines of force in a field due to a mass —m at a point Q, and
a mass +m at point Q, are circles through Q, and Q,. The resultant force ¢(Q)
upon a unit mass at any third point Q has a magnitude m(Q,0,)/(00,)(0Q;) and
is directed along circle Q,QQ, towards the negative mass.
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To prove this lemma, let us introduce complex numbers in the plane determined
by the three points Q, O, and Q. and denote their co-ordinates by z, z, and, z,
respectively. According to sec. 3,

m m m(Z, — Z
aL Hoy =T b

Z, I—% (F—12)Z—12)

Obviously, #(Q) has the required magnitude. As to its direction,
arg ¢(Q) = arg m — arg (z, — z;) + arg(z — z,) + arg(z — zy),
whence (see Fig. (11,1))

arg (z; — z) — arg $(Q) = arg(z; — z,) — arg(z — z,) — argm.
That is,
f=oa—argm.

Thus 8 = aif m > 0, but f = « + = if m < 0, so that $(Q) has also the required
direction.

We proceed now to the proof of Th. (11,1).

Let us place at the north pole N of S p additional masses (—m;). Since by
hypothesis their total mass (—n) = 0, the resultant force due to the augmented
system consisting of these new masses and of the original masses*m; at P; is
the same as for the original system. The augmented system may, however, be
considered as comprised of the p pairs of masses, m; at P, and —m; at N.
According to Lem. (11,1) the jth pair acts upon a unit mass at P with a force
®,(P) tangent to the circle C; through the points P, P, and N. Since for every
Jj the circle C; lies on the sphere S, the resultant force ®(P) due to all p pairs
is tangent to the sphere S. Furthermore, since point N projects into the point
z = 0, the circle C; projects into the straight line through z and z; and vector
®,(P) projects into the vector directed either from z; to z or from z to z; according
asm; > 0orm; <O0.

To compare the magnitudes of these vectors, let us recall the relation between
the co-ordinates of P:(&, n, {) and those of its projection z = x + iy; namely,

& -1 tL 212
¢ ’Ti—p YV YiTaTy

Hence, for the square of the magnitude of the force ¢,(z) due to the mass m, at
z; , we have

|¢,~(z)|2 =

(11,2) X

mj
(x = x)* + (y — y;)* '
= mi(l — L' = §°
(61 = L) = &1 = OF + [n(1 = L) —m,(1 = O
On squaring out the denominator and on using the fact that, being on the sphere
S, the points (&, 5, {) and (&;, 7, , {,) satisfy the equations

(11.3) E+nt=1-0 &+ni=1-0,
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we obtain

(114 i)t = = D = L)

21 — &&; —mm; — UL

Similarly on using (11,2), we obtain

2 _ _mi(NP)*
P8 = Gep Ny
= mi&: + 7% + ({; — 1)] .
[(E— &P +m—n)l+C—LRE+n+ (¢ - 17
Consequently,
(11,5) D,P)* = mil — ¢)

2t — & — o, — LI = 8]

From (11,2), (11,4) and (11,5) it then follows that ‘

o,P)IF__ 1 _(A+x+y)

$4(2) a-o 4

By applying this result to each pair N, P;, we bring to completion our proof

of Th. (11,1).
From this theorem, we derive the important

CoroLLARY (11,1). The points of equilibrium in the spherical force field project
into the points of equilibrium in the corresponding plane force field.

For obviously, ®(P) = 0 if and only if ¢(z) = 0.

12. Circular regions. In the preceding two sections we were able to associate
with every nth degree polynomial f(z) an (n — 1)st degree polynomial called the
polar derivative of f(z), namely

L@ =n(@) + - 2)f(2),

whose zeros remain invariant under the linear transformations (10,2). Since
fi1(2) is a generalization of the ordinary derivative, its zeros may be expected to
satisfy some invariant form of the Lucas Theorem (6,2) that any circle C con-
taining all the zeros of f(z) also contains all the zeros of f’(z). In order to find
the corresponding theorem for the polar derivative, we need to consider the
class of regions which includes the interior of a circle as a special case and which
remains invariant under the transformation (10,2). As is well known, this is
the class of so-called circular regions, consisting of the closed interiors or exteriors
of circles and the closed half-planes.

In our subsequent work involving circular regions we shall find the following
lemma very useful.
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LemmAa (12,1). Let C(2) = |z — a|* — r?, so that C(z) = 0 is the equation of
the circle C with center at point o and radius r. Let z, , Z and w, be any three points
connected by the relation wy = (Z — 2,)™* and let C’ be the circle with center at o’
and radius r', where

(12,1) o =(Z—a)CZ) and r =r||CZ).

Then the point w, lies inside or outside the circle C' according as the circle C does
or does not separate the two points Z and z, .

To prove this lemma, let us calculate C’'(w;) = |w; — &'|2 — r'2
Cw) =[1Z—-2)"—(Z - )C@)Z — z)7* = (Z — BC(2Z)7]
— [*C@)]
=1|Z — zy|7? + C(Z)™*
—Z-Z-2)+(Z—DZ—z)]1Z — z|* C).

Using now the identity AB + AB = |A]* + |B|2 — |A — B|? in the form

Z—-—)Z—-2)+ (2 —-&)Z—z)
(12,2)

=|Z = o +|Z — z|* — |z, — af%,

we obtain C'(w)) = |w,|? [C(z))/C(Z)].

If one of the points z; and Z is inside and the other is outside C, then
C(z,)/C(Z) < 0 and hence C’(w;) < 0, implying that w, is inside circle C’. If,
however, the points z; and Z are both inside or both outside circle C, then
C(z))/C(Z) > 0 and hence C’(wy) > 0, implying that w; is outside circle C'.
This completes the proof of Lem. (12,1).

Exercises. Using the above equations, prove the following.

1. If the circle C passes through the point Z, then C’ is a straight line passing
through Z.

2. If C is the straight line C(z) = &z 4+ aZz + b = 0, b real, then C’ is a circle
passing through Z.

3. If the circle C passes through the point z; but not through the point Z, then
C' is a circle passing through the point w, .

13. Zeros of the polar derivative. We are now ready to state the invariant form
of the Lucas Theorem (Th. (6,2)) due to Laguerre [1].

LAGUERRE’S THEOREM (Th. (13,1)). If all the zeros z; of the nth degree poly-
nomial f(z) lie in a circular region C and if Z is any zero of

(13,1) S1@) =nf@@) + (= 2)f(),



50 INVARIANTIVE FORMULATION [3]

the polar derivative of f(z), then not both points Z and { may lie outside of C.
Furthermore, if f(Z) # 0, any circle K through Z and { either passes through all the
zeros of f(2) or separates these zeros.

Because of the importance of Laguerre’s theorem to our subsequent investi-
gations, we shall give two proofs of it and also suggest a third in ex. (13,1).

The first proof will use the results of sec. 11 concerning spherical force fields.
Let us assume that Z and { are both exterior to the region C. Since all the zeros
of f(2) lie in C, it follows that f(Z) £ 0 and, hence, also Z # {. Through Z
a circle I' may be drawn which separates the region C from the point {. As
a zero of f1(2), Z must satisfy the equation

13.2)  ADIE - Df( D))= —In[(Z - D] + [ @DIf@D] =0

and consequently must be an equilibrium point in a plane force field due to
particles of total mass zero. With this plane force field may be associated a
spherical force field in which points P, , P and Q and circles C’ and I'" correspond
respectively to points z;, Z and { and circles C and T" and in which the mass at
P; is m; and the mass at Q is —n = — (m; + my + - -+ + m,). The force ®;
at P due to the pair consisting of m; at P; and of (—m;) at Q acts in the direction
of the circular arc P,PQ and hence towards the side of circle I' not containing
C’. The vectors @, are consequently all drawn from P to points on the same
side of the tangent line to I'" at P. According to Th. (1,1) they cannot sum to
zero. This means that P cannot be an equilibrium point in the spherical field
and that consequently Z cannot be an equilibrium point in the corresponding
plane field. This contradiction to our assumption concerning Z proves the first
part of Laguerre’s Theorem.

To prove the second part of the theorem, let us assume first that a circle X
through Z and { has at least one z, in its interior, no z; in its exterior and the
remaining z; on its circumference. This corresponding circle X’ through P and
Q on the sphere then has at least one P; in its “interior”, no P; in its “exteriot”
and the remaining P; on its circumference. The forces ®; are then directed
from P along the tangent line to K’ at P or to one side of this line and hence
cannot sum to zero. This contradicts the hypothesis that Z is a zero of f(z)
and so at least one z; must be exterior to K. Since a contradiction would also
follow if K were assumed to have at least one z; in-its exterior and no z; in its
interior, we conclude that K must separate the z; unless it passes through all
of them.

While the proof which we have just completed was based upon the properties
of equilibrium points, our second proof of Laguerre’s Theorem (13,1) will be
based upon the properties of the centroid of a system of masses. If Z is any
zero of (13,2), it satisfies the equation

n_ & my
Z-{ SZ-z;

(13,3)
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On substituting into this equation

(13,4 w=Z-071, w=02Z-2z),
we derive the relation
b4 »
(13,5) W= (Z m,w,)/n, n=> m,
i=1 =1

Consequently, w is the centroid of the system of masses m; at the points w;.
As to the location of the centroid w, we have the

LemMA (13,1). If each particle w; in a system of positive masses m; lies in a
circle C', then their centroid w also lies in C’ and any line L through w either passes
through all the w; or separates the w; .

This lemma is intuitively obvious. In order to prove it analytically, let us
write eq. (13,5) as

(13,6) my(wy — W) + ma(wy — w) + + - + my(w, — w) = 0.

If circle C’ did not contain w, it would subtend at w an angle 4, 0 < 4 < =,
in which would lie all the vectors w; — w. By Th. (1,1), therefore, the sum (13,6)
could not vanish.

Now, to prove the first part of Laguerre’s Theorem, let us assume that point
Z is exterior to region C and consequently is different from all the z;. Using
Lem. (12,1), we then infer that each w; defined by (13,4) lies interior to some
circle C’; using Lem. (13,1), we infer that the centroid w also lies in C’ and,
again using Lem. (12,1), we infer that the {, defined by eq. (13,4), must also lie
in C. That is, not both Z and { may lie exterior to C.

In the second part of Laguerre’s Theorem we know by hypothesis that Z is
different from all the z;. Any circle X through Z and { would transform into
a line L through w, the centroid of the w;. According to Lem. (13,1), either
L passes through all the w; or L separates some w; from the remaining w; .
Hence, either K passes through all the z; or it separates some z, from the remaining
z;. Thus, we have completed the proof of Laguerre’s Theorem.

In our discussion of Laguerre’s Theorem, we have implied that { is a given
point and that the zeros Z of f,(Z) were to be found. Instead, we may consider
Z as an arbitrary given point and then define { as the solution of the equation

(13,7) n(Z -0 =f@DIfD.

Thus { may be interpreted as the point at which all the mass must be concentrated
in order to produce at Z the same resultant force as the system of masses m; at
the points z,. That is, { may be interpreted as the center of force. Based upon
this interpretation, a theorem equivalent to Laguerre’s Theorem has been given
by Walsh [1b, p. 102].
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Corresponding to a given nth degree polynomial f(z), let us construct the
sequence of polar derivatives

(13.8) @ =0 —k+ Dfes(2) + G = 2)fia(2), k=1,2,-"-,n,

with fy(z) = f(2). The poles {, may be equal or unequal.

Like the kth ordinary derivative f *)(z) of f(z), the kth polar derivative fi(z)
is a polynomial of degree n — k. Just as the position of the zeros of f *)(z) may
be determined by repeated application of the Lucas Theorem (6,2) (see ex. (6,2)),
the position of the zeros of f,(z) may be determined by repeated application of
Laguerre’s Theorem (13,1). The result [Laguerre 1b, Takagi 1] so obtained may
be stated as

THEOREM (13,2). If all the zeros of an nth degree polynomial f(2) lie in a circular
region C and if none of the points {, , {y, - - -, {, (k = n — 1) lies in region C, then
each of the polar derivatives f,(2), f3(2), - - - , fi(2), in the eqs. (13,8), has all of its
zeros in region C.

For, by Laguerre’s Theorem (13,1), all the zeros of fi(z) lie in C; hence, all
those of f;(z) lie in C; hence, all those of f,(z) lie in C; etc.

Let us express the polar derivative f,(z) directly in terms of f(z) and {;,
lo, -+, &G If from eqs. (13,8) we successively eliminate f(z), fy(2), -
Jfi—1(2), we find

fi(2) = Zo(k — NIC(n — j, k — S (2)f(2),
-
where S;(z) is the sum of all the products of the differences ({; — z) taken j at a
time,i=1,2,---, k.
As is clear from this formula, f,(z) is a generalization of the kth derivative of a
polynomial in the sense that, as {; — o0, j= 1,2, -+, k,

fi(2) T
G—=—2)—2) (& — 2) = f(z).

Let us put f(2) in still another form which will more clearly show the relation
of its coefficients to those of f(z). For this purpose, let us write f(z) and f(z)
in the form

lim

n—k

(13.9) f@) = gocon, DAZ, &) =30 — ko AP,

where we define A™® = 0forj < Oandj>n—k

Substituting into eq. (13,8) the expressions for f,_;(z) and fi(z), equating the
combined coeflicient of z’ on the right side of eq. (13,8) to that on the left side and
simplifying the resulting formulas, we find

(13,10) AP = (n — k + 1)(A% D + 45717,
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Let us now show that by repeated application of eq. (13,10) we may derive the
formula

k
(13,11 AP =n(n—1)- - (n—k+ 1)2)0(’% DA »

where o(k,i) is the symmetric function consisting of the sum of all possible
products of {;, {», **, {; taken i at a time. First we note that for k = 1 eq.
(13,11) is the same as eq. (13,10). We have merely to show then that, if (13,11) is
valid, 4%*+? will be given by eq. (13,11) with k replaced by k + 1. According to
(13,10) and (13,11)

*
A§k+n =nn—1)---(n— k);)[“(k’ DA + Gero(k, DAy 4]

=nn =1+ (1= K 3 ok ) + sty § = Dl

k+1

=nn—1)(m—kXok+1,)A,;.
=0
Thus eq. (13,11) has been established by mathematical induction.

ExERCISES. Prove the following.

1. Laguerre’s Theorem may be derived by assuming Z and { as both exterior to
region C, by applying the transformation w = 1/(z — {) and finally by using the
Lucas Theorem (6,2).

2. If all the points z; lie on a circle C, the following is true: (a) Z and { may not
be both interior or both exterior to C; (b)if Zis on C, { is located on C at a point
separated from Z by at least one z;; (c) if { is on C, Z is located on C at a point
separated from ( by at least one z; .

3. Let z, be any zero of an (n + 1)th degree polynomial g(z) and Z any zero of
its derivative. Then any circle through Z and {, where

{=Z—-n(z - 2),

must contain at least one zero of g(z) [Fejér 2]. Hint: Writingg(z) = (z — z,) f(2),
compute g'(Z)/g(Z) in terms of f'(Z)/f(Z) and define { as in eq. (13,7).

4. The centroid of the zeros of the derivative of a polynomial f(z) is the same
as the centroid of the zeros of f(z).

5. Let f(z) be an nth degree polynomial, ¢ an arbitrary point for which
S(®)f'(t) # 0, and L an arbitrary line through ¢. Let H be the half-plane bounded
by L and containing the point u = t — [f(z)/f'(¢)] and let C be the circle which
passes through the points ¢ and v = ¢t — [pf(¢)/f’(¢)] and is tangent at ¢ to L.
Then, if at least one and at most p zeros of f(z), 1 =< p < n, lie in H, at least one of
them lies in or on C. In order for all p zeros to lie on C, the remaining n — p
zeros must lie on L [Nagy 6]. Hint: Let H: |arg(z — 1) — w| = 7[2; let z;
denote the zeros of f with z;e Hfor j=1,2,---,¢9,1 = q = p, and z; ¢ H for
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j=q+1,---,n Let

ReWH) = —f()/f'(),  reiet® =z, — 1,

A= Rsecy, a;=r;sece;

with @, =minag,;, 1 £j=<gq. Then show a; ¢4 < pA with a, = pA only
wheng =p,a, =a,="+*=a,and a;' = 0 forj > p.

6. In ex. (13,5), let p of the derivatives f*)(z), k =1, 2, - - -, n, be different
from zero at z = ¢. Then at least one zero of f(z) lies in or on each circle through
the points ¢ and v [Fejér 2].

7. 1f z,, z5, -+ -, z, are the zeros of an nth degree polynomial f(z) and
21,2y, " ", Zn_, are those of its derivative, then

n—1 n

(n— 1)“21]3(2;)! s=n g 13(z)l

with the equality holding if and only if 3(z;) > 0 or < 0 forall j. [De Bruijn 1;
De Bruijn-Springer 1; Erddés-Niven 1]. Hint: If 3(z;) > 0 for all j, use Th. (6,1)
and ex. (13,4). If 3(z;) > O for j < k but J(z;) < 0 for j > k, apply the same to
52 =TTz — z)11;..(z — z,), noting that |f’'(x)] = | f((x) for all real x.

8 Ifzy,2,, 5, 2,, 815 8o v+, ¢ all lie on a circle C, then all the zeros of
£1@), fo(2), - -+, fi2) also lie on C. Hint: Use ex. (13,2).

9. Let C,: |z — zo| = r, be the circle on which lie the p roots { of the generalized
eq. (13,7); viz.,

(13,12) n/(zy — §)” =,§11/(Zo — )’ = (=1 "F*(z))/(p — D!,

where F(z) = f'(z)/f(z). Then either at least one zero of f(z) lies inside C, or
all the zeros of f(z) lieon C,. Hint: Label the zeros z, in the order of increasing
distance from z, so that

2o — 2zl Slzg — 2ol £ -+ = |29 — 24l

and study the modulus of the left and middle members of eq. (13,12) [Nagy 6
and 12].

10. Let polar co-ordinates (r, ¢) be introduced with pole at z, and with polar
axis along a ray from z, through a root { of eq. (13,12). Then at least one zero
of f(z) lies in the curve with the equation r? = r? cos p¢ [Nagy 6,12].

11. Th. (13,1) may be generalized by replacing f(z) by

Fy(2) = f@)2 m(l — z)/(z — z)

where the m, are arbitrary positive constants [Nagy 21].

12. If the nth degree polynomial f(z) has all its zeros on the unit circle C and Z
is any point on C where f(Z) % 0, then | f'(Z)/f(Z)| > n/2. Hint: In (13,3) let
1Z-{ <2



[§14] GENERALIZATION TO ABSTRACT SPACES 55

13. Let P be an nth degree polynomial, Q(z) = nP(z) — zP'(z) and C an open
or closed circular region not containing the origin. If P has a k-fold zero at the
origin, 0 < k =< n, and n — k zeros in C, then Q(z) has a k fold zero at the origin
and n — k — 1 zeros in C [Ballieu 1]. Hint: Apply Th. (13,1) with { =0.

14. The zeros of the distance polynomial given in ex. (6,10) are separated by any
sphere that passes through the points with position vectors p and & where
F(p)F'(p) # 0 and

S=p—2n|VF@)I* VF(p) [Nagy 18].

15. Let K be a circular domain in the z-plane and S an arbitrary pointset in the
w-plane. If the nth degree polynomial f is such that f(z) € S for all z € K, then
fi defined by eq. (13,1) satisfies the condition [fi(z)/n]€ S for all ze K and
{ € K [De Bruijn 2]. Hint: Take C as the complement of K and apply THh.
(13,1) to [f(z) — A] where A ¢ S.

16. If the nth degree polynomial satisfies the conditions |f(2)| = 1, f(2) # 0
for |z| = 1, then |f’'(z)] = n/2 for |z|] = 1 [Erd6s-Lax, see Lax 1; De Bruijn 2].
Hint: In ex. (13,15) take X: |z] < 1 and S: 0 < |w| < 1 and show S contains a
circle of radius | f'(z)|/n. Compare with Cor. (6,4).

14. Generalization to abstract spaces. We now proceed to extend Laguerre’s
theorem (Th. (13,1)) to vector spaces. For this purpose we need to define an
abstract homogeneous polynomial and its polar derivative as well as an analogue to a
circular region.

Given a vector space E and an algebraically closed field K of characteristic zero,
we define P to be a homogeneous polynomial on E with values in K'if

(14,1) P(sx + 1) = 3 Py(x, )™ = 3 Py(y, x)fs™*
k=0 k=0

for all x, y € E and s, t € K, where P,(x,y), k=0, 1, - -+, n, have in K values
independent of s and ¢t. If P,(x,y) # 0, P is said to be of degree n.
From (14,1) we infer that

(14.2) P(y) = Py(x,y),  P(x) = Py(x,)),
(14’3) Pk(x, y) = P,,_k(}’, x), k=0,1,2,--+,n.
(14,9) P(sx) = s"P(x),  Py(Ax, uy) = Au"*Py(x, y).

If E is an N dimensional vector space K, we may introduce unit base vectors
e; so that
x=x'e, + x"eg+ -+ + xNey

with each x™ € K. We may then use eq. (14,1) to write
(14,5) P(X) = z Akﬂcg‘ - (x')kl(x” ke ., . (x(N))kN

where the sum is taken foreach k; =0, 1, --,nand ky + ks + * - - + ky = n,
and where the 4, ,, ..., are constants with respect to the x,
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By analogy with the formula for F;(&, %) in (10,11), we define the first polar of
P(x) (with pole at x,) as

N .
Py(x) = (l/n)( glng’p,)P(x), D; = 9/ox".

This is a homogeneous polynomial of degree n — 1 in x if deg P = n. We define
also the mth polar with poles x; , x5, -, x,, as

m

(14,6) P, (x)=[(n - m)!/n!](H ix,(,”Df)P(x), 1=mZn.

k=1 j=1
This is a homogéneous polynomial of degree n — m in x if deg P = n.
A direct calculation from (14,5) shows that

(14,7 P y

= (l/n) Z Ak1kz' Ckw (x/)kx(xr/)kz e (x(N))kN zijgi)[x(i)]—l

i=1 .

P,(x)
(14,8) " "7 ) . )

= (n!) lzkl! kz! cc kN! Aklkz"'kﬂxal PPN xalnxﬂl “ e xﬂkz e xillv) “ .. xii\;v)
wherek; = 0, all j,and k; + kp + - - - + ky = n, and where the set (¢, , * * -, % ;
B, .3;;, R PRI vkﬂ), assumes as values all possible permutations of the

set (1, 2, -+, n). Thus, the nth polar
P,,(x)EP(xl,xz,---,x,,)

where P(x,, Xz, ***, x,) is an n-linear symmetric form (linear in each x; , sym-
metric in set {x,}) with the coincidence property

(14,9) P(x, x,- -+, x) = P(x).

As shown in Hormander [I1] and Hille-Phillips [1], even if E is not finite
dimensional, there corresponds to each homogeneous nth degree polynomial P(x)
a unique symmetric n-linear form P(x;, x,, ** -, Xx,), with values in X for all
x, x; € E, such that P(x, x, - - -, x) = P(x). This form may be defined as the nth
polar of P(x) when E is not necessarily finite dimensional.

For 1 = m = n the mth polar is the form obtainable from P(x, , x5, - - -, x,) by
setting X, .1 = Xppg = *** = X, = X.

Having defined an abstract homogeneous polynomial and its polar form, we
next introduce a concept equivalent to “circular region”. As an algebraically
closed field of characteristic zero, K contains a maximally ordered field X, C K
so that, with the adjunction of i to K, where i? = —1 € K,,, we obtain [Van der
Waerden 1, pp. 229-230] Ko(i) = K. Fora,feK,,y=a + ifandj = a — iff
are conjugate elements in K. The order relations (=) and (>) apply, however,
only to the elements in K, . By a Hermitian symmetric form H is meant a function
which has values H(x, y) € K for all x, y € E, and is linear in x for every fixed y
and whose conjugate H is such that

(14,10) H(y,x) = H(x,y) for all x,y € E.
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Now, in Euclidean two space we may specify a circular region by an inequality on
the complex variable z = x'/x”
(14,11) azz+ bz+bz+c=0, a, c real,
the left side of which involves a Hermitian symmetric form

H(x,y) = ax'y’ + bx'§" + bx"y' + cx"§".

Similarly, we may define a ‘“‘circular region” in E by an inequality H(x, x) = 0.
We now state a generalization of Laguerre’s Theorem (Th. (13.1)) due to
Ho6rmander [1].

THEOREM (14,1). Given a homogeneous nth degree polynomial P and a Hermitian
symmetric form H with P(x) € K and H(x,y) €K for all x e E,yc E. Let
E,={x: x€eE, x#0, H(x,x) Z 0}.
If P(x) # O for all x € E, , then also the first polar P,(x) = P(x,, x, x," -+, x) # 0
when both x € E; and x, € E, .

Proor. Since K is algebraically closed, we may factor P(x):

P(sx + tx;) = Za smr = H (s7; — to;)

where g, = (— 1)"""27, 'r,2 .. 0., " 0;, - The sum is taken for all possible

T ks

permutations (jy , ja, * * * 5 jin) of the set (1,2,---,n). For a finite dimensional E,

N
(d[dDP(sx + X)) = D Apy- - ay H (sx + tx{?) ¥ {kx{(sx? + tx{?)71} .
=1 i=1
It follows from the above and (14,8) that
ap = {(d/dt)P(sx + txl)}s=1,t=o = P(xy, x," ", x),

(14,12) a, 3la, = nP(xy x, -+, )IP() = — S (0,fr).
=1

This holds also when E is not finite dimensional. On the other hand, using
(14,10) and the linearity of H(x, y) in x, we find
H(ox + 7y, 0x + 1y) = cH(x, 0x + 7y) + TH(y, 0x + 7))
= oH(ox + 1y, x) + 7H(ox + 19, )
= oGH(x, x) + 07H(x,y) + 6rH(x,y) + 77H(y,y)
(14,13) = 0GH (x, x) + 2R[o7H (x, y)] + 77H(, ).

Now, if P(o;x + 7;5) = 0 with o,x + 7,y # 0, then by hypothesis o,x + 7,y ¢ E,
and so
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This implies, since H(x, x) = 0 and H(y, y) Z 0, that
R(o,7H(x, y)) <0 for all j.

Dividing the left side by 7,7; and summing, we find also

#[ B )3 (0] <0

and thus from (14,12) that P(x;, x, x, - -+, x) # O for x€ E, , x, € E, , as stated
in Th. (14,1).

The question now arises as to when the class &; of homogeneous polynomials
not vanishing on E; is an empty one. It will be empty if E; has a two dimensional
linear subspace L. For then with the use of suitable coordinates in L, any P(x)
becomes a homogeneous binary polynomial and, as such in an algebraically closed
field, it has at least one zero in L.

To formulate conditions for this, we introduce the vector

(14,14) E=x— x4
where t = H(x, x,) and H(x,, x,) = 1. Then from the linearity of H(x, y) in x
follows that

H (&, xo) = H(x, xo) — tH(x,, Xo) = 0,
(14,15) H(txy + s&, txy + s&) = tf + s§H (¢, &),
s arbitrary. If H(&, &) = O for some £ satisfying (14,14), then the left side of
(14,15) will be positive and hence the two dimensional space spanned by x, and
& will belong to E;. For £, not to be empty, H (£, £) must be negative definite

for every £ satisfying (14,14). Conversely, if this holds, then the left side positive
in (14,15) implies that ¢ > 0 and hence that the polynomial

P(x) =P@xy+ &) =t"#0forx€kE,.

That is to say, a necessary and sufficient condition for £; not to be empty is that
H (&, £) be negative definite for all & satisfying (14,14) [Hormander 1].

For other generalizations of Laguerre’s Theorem to abstract spaces, we refer
the reader to Zervos [5].

ExXEercises. Prove the following.
1. In the expansion

P(tlxl + tzxz + M + t”xﬂ) = zAklkz'"kutkltkz e tk”

where #; € K, x; € E and where A4, ..., are independent of the #;, 4;5..., is a
symmetric n-linear form which reduces to n! P(x) when x; = x, =+ = x, = x
and thusis n! P(x; , X5, - -, x,). Thus also

P(xI’xZ"°',xn)

(14,16)
= (1/nN)[0"[0t; - - - Ot )P(tyxs + * * * + ta X))y m.mtpm0



[§14] GENERALIZATION TO ABSTRACT SPACES 59

2. Forx,yeEands, teK,
(14,17) P(sx + ty) = 2 C(n, )P(x, - - -, x, p,- - -, p)s't"~*
k=0

[Hille-Phillips 1, p. 763]. Hint: Use induction based upon (14,1).
3. Any homogeneous polynomial P(x) may be expressed as a Newton interpola-
tion polynomial

(14,18) P(y + sx) =§0C(s, k) AP(y)

in terms of the kth difference AP where

k
A%P(y) =go(—1)""’C(k, DP@y + jx)

[Hille-Phillips 1, p. 761]. Hint: Show that the difference of the right and left
sides (14,18) is an nth degree polynomial that vanishes at the n 4+ 1 points:
s=0,1,---,n.

4. The nth polar may be written as

(14,19) Pxy, Xy, 0005 Xo) = (1n) Ay p, POY)
[Hille-Phillips 1, p. 762]. Hint: Show that the right side of (14,19) is a symmetric
n-linear form satisfying (14,9).

5. If in eq. (14,5) K is the field of complex numbers and |P(x)| = 1 for |x|> =
(P + (2 + - + ) = 1, then |4y, ] S N (! Kyl <o Kyl
[Kellogg 1]. Hint: First prove result for N = 2 and then use induction, setting
x = py®, j=1, 2, -+, N—1, with (y')z + 0/’)2 4o+ (y(N—l))2 =1.

6. In ex. (14,5) let DP denote the directional derivative of P. If |P(x)| <1 for
|x] =1, then |DP(x)] =n for |x| =1 [Kellogg 1]. Hint: Use ex. (14,5).
Compare with Cor. (6,4).



CHAPTER 1V

COMPOSITE POLYNOMIALS

15. Apolar polynomials. So far we have been concerned with the relative
position of the zeros of certain pairs of polynomials. In Chapters I and II, the
pair consisted of a polynomial and its ordinary derivative. In Chapter III,
the pair consisted of a polynomial and its polar derivative. We shall now apply
the results obtained to the study of the comparative location of the zeros of other

pairs or sets of related polynomials.
We begin with a pair of so-called apolar polynomials. Two polynomials

n n
(15,1 f(2) =2 C(n, k)42,  g(z) =3 C(n, k)B, 2", A,B, #0,
k=0 k=0
are said to be apolar if their coefficients satisfy the equation
(15,2) A4B, — C(n,)4;B,_, + C(n,2)A;B, 3+ -+ (—1)"4,B, = 0.
Clearly, there are an infinite number of polynomials which are apolar to a
given polynomial. For example, the polynomial z3 + 1 is apolar to the poly-
nomial z® + 3az? + 3Bz + 1 for any choice of the constants « and S.

Let us denote by z,, z,, * * *, z, the zeros of f(z) and by {;, {3, * - *, {, the
zeros of g(z) so that
f(z) = An(z - zl)(z - zz) e (Z - zn)a
(15,3)
gD =B,z — L)z — L) - (z— L)

In terms of the elementary symmetric functions
s(n,p) =3 25,25, " " Zip
o(n,p) =3 GG, Gy
the sum of products of these zeros taken p at a time, we may substitute
C(na P)An—p = (— l)ps(n9P)An s

(154)

(15,5)
C(n9P)Bn—p = (—l)po(n’P)Bn

into eq. (15,2) and so obtain the following criterion for apolarity.

THEOREM (15,1). Two nth degree polynomials f(z) and g(z) are apolar if and
only if the elementary symmetric functions s(n, p) of the zeros of f(z) and the ele-
mentary symmetric functions o(n, p) of the zeros of g(z) satisfy the relation:

(15,6) S (= )HCn, K 's(n, n — K)o(n, k) = 0.

k=0
60
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A simple method for constructing a polynomial g(z) apolar to a given poly-
nomial f(z) is described in Szeg6 [1], as follows.

THEOREM (15,2). If the polynomial f(z) = D_, a,z* satisfies the linear relation

15,7) LIf(®)] = 3 ba, = 0,

k=0
then it is apolar to the polynomial

(15,8) g(z) = L[t — 2)"].
For, as
(t—2)"= i:(——l)"‘kC (n, k)z" %
and thus =

g(z) = LIt — 2)"] = 3. (= 1)™*,C(n, )z"*,
k=0

eq. (15,7) is seen to be of the form (15,2) with B,_, = (—1)"*],.

Now, as to the relative location of the zeros of two apolar polynomials, we
have the fundamental result of Grace [1], also proved in Kakeya [3], Szego [1],
Cohn [1], Curtiss [1], Egervary [1] and Dieudonné [4].

GRACE’s THEOREM (Th. (15,3).) If f(z) and g(z) are apolar polynomials and if
one of them has all its zeros in a circular region C, then the other will have at least
one zero in C.

Let us prove this theorem on the assumption that all the zeros z,, z,, - - -,
z, of f(z) lie in a circular region C. If the zeros {;, {,, - -, {,_; of g(z) were
all to lie exterior to C, all the zeros of each polar derivative fi(z), k =1, 2, - - -,
n — 1, given by egs. (13,8) would according to Th. (13,2) also lie in C.

In particular, let us consider f,_,(z) which according to eqgs. (13,9) and (13,11)
we may write as

(15,9) faa(2) = 4"V + A"z,
where
ATV =nl{dg+ o(n — 1, DAy + o(n — 1,204, + -+ o(n—1,n — 1)A4,_,},
APV =nl{A; + o(n — 1, DAy + o(n — 1,204+ -+ a(n — 1, n — 1)4,)}.
In view of egs. (15,4) and (15,9) and the relation

on—1,k)+ o(n— 1,k — 1), = o, k),
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it follows that

fn—-l(gn)
= n! {4y + o(n, 1)A4, + o(n, )4, + - - - + o(n, n)A,}
(15,10)
- Bl! {4,B, — C(n, 1)A1B, 1 + C(n,2)4sB, 5 — - - - + (—1)"C(n, n)A,By).

n

Since f(z) and g(z) are apolar, eq. (15,10) implies that f,_,({,) = 0. The point
{, is therefore the zero of f,_,(z) and must lie in C.

In other words, at least one of the zeros {;, {5, - - -, {, of g(z) must lie in any
circular region C containing all the zeros of f(z). Similarly, at least one of the
Zeros z, zy, * * *, 2z, of f(2) lies in any circular region containing all the zeros
of g(2).

From Grace’s Theorem, we may deduce at once the following result due to
Takagi [1]. ’

CoroLLARY (15,3). If f(2) and g(z) are apolar polynomials, any convex region
A enclosing all the zeros of f(z) must have at least one point in common with any
convex region B enclosing all the zeros of g(z).

For, if A and B had no point in common, we could separate them by means
of a circle C enclosing say A, but not containing any zero of g(z). This would
contradict Grace’s Theorem.

From Grace’s Theorem, we may also infer the following Coincidence Theorem
due to Walsh [6].

THEOREM (15,4). Let ® be a symmetric n-linear form of total degree n in z, ,

Zy, ", 2, and let C be a circular region containing the n points 2, z;®, - - - | 2D

Then in C there exists at least one point { such that
OUL L, D= 0D, 40, -, 29).

For, if ®(z, z» ---, z{9) = ®,, the difference ®(z;, z,, - -, z,) — D
is linear and symmetric in the z,, z,, -+, z,. By the well-known theorem of
algebra, any function linear and symmetric in the variables z, , z,, * * -, z, may
be expressed as a linear combination of the elementary symmetric functions
s(n, p) of these variables. That is, we may find constants B, so that
D(zy, 25, -+, 2,) — Dy = Bys(n, 0) + Bys(n, 1) + -+ + B,s(n, n)

= A;{BoA, — C(n, )BiA, s + -+ + (—1)"C(n, n)B, Ao},
where f(z) = A, [I7-.(z — z)) = 3_, C(n,j)A,z’. Consequently,

q)(zio), Z;O), ce Z;O)) - q)o =0
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is a relation of type (15,2) and by Th. (15,2), f(z) is apolar to the polynomial

g(2) =3 Cn, B, = B(z, z, -, 2) — Dy,
k=0

By Th. (15,3), g(z) must have at least one zero { in C.

Conversely, as may be shown by a reversal of the above steps, Th. (15,4) implies
Th. (15,3). In other words, as shown in Curtiss [1], Th. (15,3) and Th. (15,4) are
equivalent theorems.

A result similar to Th. (15,4) is also developed in Schaake-Van der Corput [1]
and De Bruijn [2].

Grace’s Theorem (15,3) was derived by repeated application of Laguerre’s
Theorem (13,1). Similarly, the following generalization of Grace’s Theorem to
abstract spaces, due to Hormander [1], may be derived by repeated application of
Th. (14,1).

THEOREM (15,5). Let a homogeneous nth degree polynomial P(x), its nth polar
form P(xy, X5, - **, X,) and a hermitian symmetric form H(x, y) be defined in a
vector space E with values in an algebraically closed field K. Let

E, = {x: xeE,x#0, H(x, x) = 0}.
If P(x) # 0 for x € E; , then P(x, , X5, *, x,) # O when all x; € E; .

A further generalization, also due to Hormander [1], is the following:

THEOREM (15,6). Let P(x), a homogeneous polynomial defined in a vector space
E over a field K, assume values in a vector space G over K. Let H(x,y) and E,
be defined as in Th. (15,5). If M is a supportable subset of G such that P(x) € M
for x € E,, then also the corresponding polar P(x,, X, ***, x,) € M when all
x,€EE .

By a supportable set M < G we mean a set M that is not intersected by any
hyperplane through the origin and any point £ € G — M.

To prove Th. (15,6) for a finite dimensional G, we choose some point £ € G — M
and a hyperplane L(y) = 0 through £ and y = 0.

If G is spanned by the vectors ¢, €5, - -, €,, then for any y € G we may
write y = y1€; + Yoea + * * * + Y€, and

L(y)=}'],yl+”'+)'mym
where the constants 4, are so chosen in K that

L(&) = Mé1 + Ak + - + Amém = 0.
Furthermore
P(x) = Py(x)e; + Py(X)ey + * * * + Pp(X)ey,

where each P;(x) is a homogeneous polynomial of degree n, with values in G.
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Since
L(P(x)) = MPy(x) + APy(x) + -+ + ApPu(x),

L(P(x)) is an nth degree homogeneous polynomial whose polar is
L(P(xl s Xz, ", xn))'

Since P(x) € M for x € E,, it follows that L(P(x)) # 0 for x€ E;. By Th.
(15,5), also L(P(x,, x5," **, X,)) # O for all x, € E; and hence

P(xy,x3,° ", x,) EM.

EXERrcisgs. Prove the following.

1. InTh.(15,3)if 2n — 1 of the 2n points z; , z,, " "+, 2, , {3, §o, * -+, {, lieon
a circle C, then also the remaining point lies on C.

2. Let F(z) = X', C(n, k)uz* and G(z) = 3¢ _, C(n, k)B, 2" satisfy the relation
Sr o (=1)*C(n, k)ouB, = 0. 1If all the zeros of F(z) lie in a circular region X,
then at least one zero of G (z) lies in the circular region K’ obtained on inverting
K in the unit circle. Hint: Apply Th. (15,3) to

f(z) = z"F(1/z) and g(z) = G (2).

3. If f(z) and g(z) are apolar polynomials with only real zeros, any interval 4
containing the zeros of f(z) must have at least one point in common with any
interval B containing the zeros of g(z). Hint: Use Cor. (15,3).

4. InTh. (15,3), if no zero of g(z) lies in the interior of C, then all zeros of 4(z) =
f(2)g(2) lie on the boundary 0C of C or A(z) has a zero of multiplicity exceeding
non 0C.

5. If from the polynomials (15,1) we form

U@ = 3 (-1 (g™ M2,
then -
U(z) = n!'S (= DXC(n, K) 4B, i
k=0

[Markovitch 4]. Hint: Show U ‘(z) = 0 and find U(0).
6. If f and g are given as in egs. (15,1), let

n—k

(15,11) fk.:i(z) = ZC(" — k, i)AH:'Zj’
=0

(15,12) g (5) =3 C(n — k, B,
i=0

Then the first polar f; of f with respect to &, and the first polar g, of g with respect
to n, will be apolar for all & and #, if and only if each polynomial f; 4, f1,, is
apolar to each polynomial g, o, g;,;- Hint: Express f; and g, in terms of f o,

JSi1> 8105811+
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7. As given by (13,8) with {, = &, , the kth polar f, with respectto &, &,,- -+, &,
and the corresponding kth polar g, of g with respect to #,, 75, - - -, 7, will be
apolar for all £; and #; if and only if each f; , in eq. (15,11) is apolar to each g, ;
in (15,12) for i, j =0, 1, -+ -, k — 1 [Goodman 2].

8. If the polynomials f and g have the property specified in ex. (15,7), then any
circular region containing all the zeros of f or g contains at least k zeros of the
other polynomial [Goodman 2]. Hint: Use ex. (15,7), ex. (19,8) and induction.

9. Let H be a Hilbert space over the field C of complex numbers with the scalar
product (x - y) and norm |x| = (x - x)*. Let B be a Banach space over C with
norm | f||. Let P(x) be an nth degree homogeneous poynomial and

P(x1$x2a"'axn)

its nth polar with P(x) € B and P(x; , x4, ***, x,) € B for all x€ H and x;€ H.
Then

sup [[IP(x)NI/1x]"] = sup [IP(xy, Xg, -+ 5 X )I/|%1] %3] * - - [ x,]]
xeH zi€H

[Hormander 1]. Hint: Apply Th. (15,6) with E, G as the product spaces £ = H X
C,G=BxC: H(x,t)=ti—(x-x), and M ={(§7): £€B,7eC,t 0,
&l < «|7|}. Since [P(x),t"le M for (x, 1)eE, H(x, t)=0, t#0, then
1PN = o 2|™.

10. Let the polynomial f(x) = D¢ a,x* have only real zeros and satisfy a relation
>» ha, =0 where the A, are real numbers. Let Ad, = A, — Ay, A2, =
AA, — Adyy, -+ - . Then f(x) has at least one zero on the interval 0 < x < 1 if
and only if the differences A"-*}, are positive fork = 0, 1, - - -, n [Obrechkoff 13].

11. In order that there exist a transformation (10,2) which carries f and g of
eqs. (16,1) into the pair ¢,(Z" + 1) and cy(Z" — 1) or the pair ¢,;Z" and
¢:Z"YZ + c3) with ¢, , ¢p, 3 constants, it is necessary and sufficient that all the
following be satisfied: Ay,B; + A;By — A;B;_;, — A; 4B, =0fork=1,2,---,
U2l j=2,3,--+,n A;B, + A,B; — AyB,;  — Apj By =0fork=j+ 1,
j+2,-, [(n+)2); j=1,2,---, n — 2 where [¢q] denotes the largest integer
not exceeding ¢ [Goodman 3]. Hint: Decompose the transformation into those
offorms z=aZ,z=1/Z,z=2Z + 8.

16. Applications. We shall now apply Ths. (15,3) and (15,4) to the study of
polynomials A(z) which are derived in various ways by the composition of two
given polynomials f(z) and g(z). We shall first consider a result due to Szegé [1].

THEOREM (16,1). From the given polynomials
(16,1) f(2) =k20C(n, k)A.z*,  g(2) =k§oC(n, k)B,z*,
let us form the third polynomial

(16,2) h(z) = 3 C(n, k)A,B,2"

k=0
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If all the zeros of f(z) lie in a circular region A, then every zero y of h(z) has the
form y = —af where « is a suitably chosen point in A and B is a zero of g(z).

This follows from Th. (15,3). For, since the equation

h) = 3 Cln, KIAB* = 0

defines a linear relation L[f(#)] = 0 among the coefficients of f(z), the polynomial

LIt — 2)"] = éo(—l)"c(n, k)Byy*z"™* = z"g(—v/z)

is apolar to f(z) and thus has at least one zero « in 4. If the zeros of g(z) are
denoted by B,, B, '+, B,, the zeros of z"g(—y/z) will be —y/B,, —¥/Ba,
-+, —y/B,. One of these will be «. That is, y = —af; for some j.

Th. (16,1) leads at once to the following result of Cohn [1] and Egervary [1].

COROLLARY (16,1a). If all the zeros of f(z) lie in the circle |z| < r and if all
the zeros of g(z) lie in the circle |z| < s, then all the zeros of h(z) of eq. (16,2) lie
in the circle |z| < rs.

For, by hypothesis |«| < r and |8| < s and thus |y| = |«f| < rs.

From Th. (16,1) we may also deduce what is essentially a converse of Lucas’
Theorem (Th. (6,1)). We state it for a circular region, though it may be easily
proved [Biernacki 4] for any closed bounded convex region [see ex. (16,17)].

CoRrOLLARY (16,1b). Let A:|z—a| Zr, let (€A and let E(A,{) be the
envelope of the circles passing through { and having their centers in A. If an nth
degree polynomial f(z) has all its zeros in A, then the polynomial F(z) = [% f(t) dt
has all its zeros in E(A, {). Furthermore E(A, {) cannot be replaced by a smaller
region containing all the zeros of each F(z).

To deduce this corollary from Th. (16,1), we write f(z) as in eq. (16,1), take for
convenience { = 0 and make F(z) = zh(z) by choosing all B, = 1/(k + 1). That
is,

8(2) = (1/2) f "W+ dt = [ + 2™ — 1Yi(n + Dzl.

Thus the zeros of g(z) are B, = —1 + exp[2nki/n + 1)}, k=1, 2, ---, n.
Since each zero y of F(z) has the form y = —af where a € 4 and § = 8, for
some Kk, it lies on the circle through the origin with center at . Hence, all zeros
of F(z) lie in E(4, 0).

That this region cannot be replaced by a smaller one may be seen by taking n
odd and f(z) = (z — b)" for all b dA. In fact, the zeros of F(z) lie on the
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boundary 0E(A4, {) of E(A,{) and, as n— oo, become everywhere dense on
E(4, D).

It may be easily verified that E(A4, {) is bounded by a Pascal limagon and that,
when A4 is an arbitrary bounded convex region, E(4, {) is star-shaped with respect
to L.

Another consequence of Th. (16,1) is the following due to De Bruijn [2].

COROLLARY (16,1¢). Given the polynomials f, g and h in egs. (16,1) and (16,2)
and a subset S of the w-plane, let f(z) € S and g(z) # O for |z| < 1. Then h(z) € B,S
for |z| = 1 where B,S = {Bys: s € S}.

To prove Cor. (16,1c), we replace f(z) by F(z) = f(z) — A and h(z) thus by
H(z) = h(z) — AB,. 1f 1 ¢S, then F(z) # 0 for |z] £ 1. Hence, in Th. (16,1),
le| > 1 and |B] > 1 so that also |y| > 1 and thus H(z) # 0 for |z| > 1. If
therefore AB, is a value assumed by A(z) in |z] = 1, 1 is a value assumed by f(z)
in [z| = 1, as was to be proved.

As an application of Cor. (16,1c), we shall prove the following result due to
De Bruijn [2].

COROLLARY (16,1d).  If the polynomials f and g in eqgs. (16,1) have the properties:
f@I=1,  [g@I=1 for |zl =1,
then the polynomial h in eq. (16,2) has the property
h(2)] = 1 — [|4o| — |Boll.
For, if || > 1,
G(z) = [g(2) — A}/(Bo— A) #0 for |z] = 1.
Using Cor. (16,1c) with S: |z] = 1 and g(z) replaced by G(z), we find
e = Ml [1B =~ H S 1,
1h(2)| = |1A40| + |Bo — Al.

Since this equality holds for all 4, || > 1, it holds in the limit for all |A] = 1.
Recalling that |B,| = |g(0)] < 1, we may choose A = 4, = exp (i arg B,) and thus

|h(2)] = |40l + 1 — |By.
Using the symmetry of the hypotheses in f and g, we may show -
IA(2)| = |Bol + 1 — |4,

This result completes the proof of Cor. (16,1d).
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The next two theorems, which are due to Marden [12], deal with a different
variety of composite polynomials than those treated in Th. (16,1). They are
generalizations of the results stated in exs. (16,7), (16,8), (16,9) and (16,10).

THEOREM (16,2). From the given polynomials

(16,9 1@ =S g =Shat

let us form the polynomial
(16,4) h(z) =k'zz:oa,,g(k)z’°.
If all the zeros of f(z) lie in the ring R,
(16,5) Ry:0=r=S|z]=r, = oo,
and if all the zeros of g(z) lie in the annular region A
(16,6) A:0=p =zl /|2 —m| Z py = 0,
then all the zeros of h(z) lie in the ring R,
(16,7) R,: rymin (1, p}) < |z] = ry max (1, p%).
It is to be observed that the region 4 has as boundary curves the circles
Izl = prlz—m| and  |z| = py|z — m],

each of which is the locus of a point which moves so that its distance from the
origin is a constant times its distance from the point z = m. The region 4 in
Fig. (16,1) typifies the case 0 < p; < p, < 1. We leave to the reader to sketch

Fi1c. (16,1)
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Ainthecases0 < p; < 1 < pyand 1 < p; < p;, as well as in the cases in which
either p; or p, or both assume the values 0, 1 or co.
To prove Th. (16,2), we shall need

Lemma (16,2a). If B, # m and if all the zeros of f(z) lie in a circular region C,
then every zero Z of the polynomial

(16,8) H@) = —z'() + Bif(2)
may be written in the form Z = { or in the form
(16,9) Z = [BiJ(Br — m)

where { is a point of C.

This lemma follows from Th. (15,4). For, since f,(Z) is linear and symmetric
in the zeros of f(z), there exists in C a point { such that

0=£(2)=—mZZ — )" + B(Z — )™,

whence Z = { or Z has the form (16,9).
We shall need also the

LemMA (16,2b). If B, is a zero of g(z) and if the hypotheses of Th. (16,2) are
satisfied, then all the zeros of the f,(z) in (16,8) lie in the ring R, ,

(16,10) Ry:rymin (1, py) = |z| = rymax (1, py).

By the hypotheses of this lemma,
(16,11) pL= 1Bl [ 1By — m| = pe .

Since all the zeros of f(z) lie in the region |z| = r,, it follows from Lem. (16,2a)
that

(16,12) ' Il =rs.

Either Z = {, whereupon |Z| = r, or Z has form (16,9) whereupon |Z| < pyr,.
Hence, |Z| = max (1, py)ry. Similarly, since all the zeros of f(z) lie in the region
|z| = ry, it follows by use of Lem. (16,2a) that |Z| = min (1, p,)r; . This verifies
Lem. (16,2b).

Finally, we shall need the

Lemma (16,2c). Let By, By, - -, B, be the zeros of g(z) and let {f,(2)} be the
sequence of polynomials
(16,13) fo(2) =f(2),  fu(2) = Brfier(2) — zfra(2), k=1,2,---,n.

If f(z) and g(z) satisfy the hypotheses of Th. (16,2), then all the zeros of f,(z) lie
in the ring R, .



70 COMPOSITE POLYNOMIALS [4]

This lemma is clearly true for n = 1, for then it is identical with Lem. (16,2b).
Let us assume its validity for n = k — 1; i.e., that the zeros of f; ;(z) lie in the
ring Ry, :

(16,14) ri=rymin (1, pi™) = |z S rymax (1, p577) = r;.
Applying Lem. (16,2b) with r, and r, replaced by r; and r,, we find that all the
zeros of fi(z) lie in the ring R, since
rimin (1, py) = rymin (1, p¥),  rymax (1, p) = r, max (1, p%).
That is, Lem. (16,2c) has been established by mathematical induction.

Now, to prove Th. (16,2), we have only to show that f,(z) is essentially A(z).
For this purpose, let us define

8z = b, (br — 2)(B2 — 2) - - - (B — 2), b, # 0,
and compute f,(z) from egs. (16,13) as

@) =3 a2 = bzlgo 2,807,

j=

If we now assume that
(16,15) Sea(2) = b7} Z a;'gk—l(j)zjs
i=0

we may compute f;(z) from egs. (16,13) as
70 = {3 a8 0B~ 57} = 573 a2

In other words, h(z) = (—1)"b,, f,(z) and thus by Lem. (16,2c) all the zeros of
h(z) lie in the ring R,, , as was to be proved.
As an alternative to the above, we may write

gD =B —2)B:—2) (B, — 2),

apply Lem. (16,2a) repeatedly and thus arrive at the following result also due to
Marden [12].

THEOREM (16,2)." If all the zeros of the polynomial f in eq. (16,3) lie in the ring
(16,5) and if g is a polynomial of degree n, all the zeros of the polynomial h in eq.
(16,4) lie in the ring

(16,15)’ rymin [1, |g(0)/g(m)]] = |z| = r, max [1, [g(0)/g(m)]].

Another theorem of Marden [12] involving the same polynomials f(z), g(z)
and A(z) as in Th. (16,2) is

THEOREM (16,3). Let f(2), g(z) and h(z) be the polynomials defined in Th. (16,2).
If all the zeros of f(z) lie in the sector £, :

(16,16) w Sargz = w,, Wy, — =< m
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and if all the zeros of g(2) lie in the lune £ :

(16,17) 0, Sarglz/z—m]=6;, 6. + |0, = (7 — w)/n,
then all the zeros of h(z) lie in the sector & ,:

(16,18) o, + min (0, n6,) =< arg z < w, + max (0, n6,).

Here the boundary curves of &,
argz/(z—m)=0, and argz/(z—m)=0,,

are the arcs of circles, each of which is the locus of a point in which the line-
segment z = 0 to z = m subtends a constant angle 6. The region % in Fig. (16,2)

Fic. (16,2)

typifies the case that 6, < 6, < 0. We leave to the reader to sketch & in the
cases 0; <0< 0, and 0 < 6, < 6, as well as in the special cases when either
or both 6, and 0, are O or =.

The proof of this theorem is similar to that of Th. (16,2), except that the
argument of the Z in eq. (16,9) instead of its modulus is used. The necessary
lemmas paralleling Lem. (16,2b) and (16,2c) are given in ex. (16,7).

Exercises. Prove the following.

1. Th. (16,1) is valid if 4 is assumed to be an arbitrary convex region [Takagi 1].
Hint: Use Cor. (15,3).

2. If f(2) has only real zeros and g(z) has only real zeros of like sign, then the
h(z) of eq. (16,2) has only real zeros. Hint: Use ex. (16,1).

3. If f(z) has only real zeros with a sign of € and g(z) have only real zeros with a
sign €', then the A(z) of eq. (16,2) has only real zeros of sign (—ee’) [Takagi 1].

4. If f(z) has zeros only in the sector 6 < argz <0, where 0 =6’ — 6 <=
and g(z) has zeros only in the sector ¢ < argz < ¢’ where 0 < ¢’ — ¢ < 7, then
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the h(z) of eq. (16,2) has zeros only inthe sector 0 + ¢ — 7 <argz<6'+ ¢ — =
[Takagi 1].

5. If f(z) has zeros only in the above sector 6 < argz < 6’ and g(z) has only
real zeros, then the A(z) of (16,2) has all its zeros in the double sector 6 <
arg (£2) < 0'.

6. The theorems in the above exs. 2 to 5 remain valid when A(z) is replaced by
either .

hy(z) =2 k! [C(n, K)AL[C(n, k)B,]z*
k=0

or

hy(z) =’§o [C(n, k)A,][C(n, k)B,]z*.

Hint: Use Cor. (18,2c). The results thereby obtained are due to the following:
hy(z): ex.2, Schur [2]; exs. 3 and 4, Takagi [1]; ex. 5, Takagi [1] and Weisner [3];
hy(2): ex. 2, Malo [1]; ex. 4, De Bruijn [3]; ex. 5, Weisner [3].

7. If the hypotheses of Th. (16,3) are satisfied, all the zeros of the f,(z) of
eq. (16,8) lie in the sector ;. By induction, all the zeros of the f,(z) of eq.
(16,13) lie in &, [Marden 12].

8. If all the zeros of f(z) lie in the circle |z| = r, and if all the zeros of g(z)
lie in the half-plane bounded by the perpendicular bisector of the segment z = 0
to z = m and containing the origin, then all the zeros of the A(z) of eq. (16,4)
also lie in the circle |z| < r, [Obrechkoff 7, Weisner 4]. Hint: Setr; = p, =0
and p, = 1 in Th. (16,2).

9. If all the zeros of f(z) lie exterior to the circle |z| = r, and all the zeros of
g(2) lie in the half-plane R(z) = m/2, then all the zeros of the 4(z) of eq. (16,4) lie
exterior to the circle |z| = ry . If all the zeros of f(z) lie on the circle |z| = r; and
those of g(z) lie on the line R(z) = m/2, then all the zeros of h(z) lie on the circle
|z| = r, [Obrechkoff 7, Weisner 4].

10. If all the zeros of f(z) are real and positive and if all the zeros of g(z) are
real and exterior to the interval 0 =< z < m, then all the zeros of 4(z) of eq. (16,4)
are real and positive [Laguerre 1, pp. 200-202; Pdlya 6].

11. In Th. (16,2), we may write symbolically

(16,19) h(z) = g(z(d|dz)) f (2)-

12. Let f(z), g(z) and h(z) be defined by eqs. (16,1) and (16,2). Let K denote
a circle or straight line and K; and K the two closed regions bounded by K.
Let a;, ay, * -+, «, (p = n) denote the zeros of f(z) in K; and a,,;, apys, * 7,
«, those not in K; . Let further

filz) = AH (z =) T (2 — il — ) — o),

J=p+

fulz) = 4, 1_1 (2 — a®)l(x — a)f(x — “?)]jli @-a)
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where «} denotes the image of point «; in K and « denotes an arbitrary but fixed
point on K. Then

(a) all the zeros of f;(z) lie in K; and all those of fi(z) in Ky ;

®) 1) = /] = |f2)| on K;

© If:@] 2 /@) in Ky and | fx()| Z /@)l in K,

[De Bruijn-Springer 2].

13. If {f, g} denotes the left side of eq. (15,2), then, in the notation of ex.
(16,12), 1{f. g}l = |{fx g}l Hint: Using Grace’s Theorem, show that
{fe — M, g1 — Ag} # O for all || < 1 [De Bruijn-Springer 2].

14. Let D(z, L) denote the distance of point z to line Land let o , &z, -+, ,, ;
BisBas "y Bns Y1, Y2, * ", yn denote respectively the zeros of the f(z), g(z)
and A(z) defined by eqgs. (16,1) and (16,2). Then, if —1 < 8, =0 for all k,

él[D(%’, L)y — D, L)] = (B,,_I/B,,)él[ D(«;, L) — D(0, L)]
[De Bruijn-Springer 2].

15. Let ¢(x) = max (1, [x]). Then, for the «;, B, and y; of ex. (16,14) and
for r; > 0 and r, > 0 (not necessarily —1 < g, < 0),

;Ii_[l $(rirely;) = i.[l ¢(’1/°‘j)¢("2/ﬁj)-

Hint: Take the K of ex. (16,12) as the circle [z| = r; apply to fi(z), gx(z) and
hy(z) the Jensen Formula

27 n
(16,20) f log | f(re®®)/ £(0)| d6 = 27 > log é(r/x,),

0 i=1
and use exs. (16,12) and (16,13), noting that h(u) = {f(uz), z"g(—1/z)} [De Bruijn-
Springer 2].

16. Let N(r) denote the number of zeros of the nth degree polynomial f(z) =
>7 a,z* (where aga, 7 0) on the disk |z] < r. Let
M(r.f) = max 1),
A= n"log {IM(1, f)]zllaoanl} o= 1%
Then
14+ n'[N(e®) — N(e”)] = o [Rosenbloom 1].
Hint: Use the Jensen Formula (16,20) as modified in Rosenbloom [1].

17. Cor. (16,1b) is valid for arbitrary, closed convex regions A. The region
E (A, {) is then star-shaped with respect to {.

18. If in ex. (16,17) A is the line segment joining given points a and b, then
E(A, {) consists of the closed interior of the two circles whose diameters are the
line-segments joining { to a and to b [Biernacki 4]

19. In Cor. (16,1b) E(A, a) is the disk |z — a| = 2r. This limit is attained by
the zeros of F when n is odd, but may be replaced by the smaller disk [z — a] <
2r cos {m[2(n + 1)} when n is even [Biernacki 4].
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20. If all the zeros of the nth degree polynomial f(z) lie in a convex region X
containing point a, then all the zeros of F(z) =[% f(¢) dt, lie in the domain
bounded by the envelope of all the circles passing through a and having centers
on the boundary of K [Biernacki 4]. Hint: Take a = 0, apply ex. (16,1) with
g() = (1/z) J5 (1 4+ ©)" dt and h(z) = F(2)/=.

21. If all the zeros of the polynomial f(z) lie on the disk |z — a| = r, all the
zeros of the polynomial

F(z) =fft f :2f(t1) dt,dty - - dt,

lie on the disk |z — a| < (p + 1)r. This is the best result as is shown by the
example f(z) = 1 4+ z,a = 0, r = 1 [Biernacki 4].

22. In Cor. (16,1c) let S = {f(z); |z| =1}. Then also F(z) € S where F(z)
is the Fejér sum of f(z) defined by

k
(k + DF(z) = 3 (k — j + 1)C(n, )A,27, . kzn-1
[De Bruijn 2]. Hint: Choose =0
gD =(k+ Dk —n+ Dz + k + 1](z + 1)

17. Linear combinations of polynomials. Our next application of the theorems
of sec. 15 will be to linear combinations of the polynomials

(17,1) fD=z"+auz™ + - t+a,, k=12,p
We shall assume that the zeros of f(2) lie in a circular region C,,. Unless other-

wise specified, the region C, will be bounded by a circle C, with center ¢, and
radius 7, . Our general result is embodied in the

THEOREM (17,1).  The zeros of the linear combination
17,2 F(2) = 11£1(2) + Aaofa(2) + - - - + A,1,(2),
where 2; #0,j=1,2,---, p, lie in the locus T' of the roots of the equation
(17,3) Mz—a)"+ Az — a2+ -+ A(z—a,)»=0

when the ay, oy, ** -, a, vary independently over the regions C,, C;, -, C,
respectively.

This result follows almost at once from Th. (15,4). For, if { is any zero of
F(2), the corresponding equation F({) = 0 is linear and symmetric in the zeros
of each fi(z). On the strength of Th. (15,4), equality F({) = 0 may be replaced by
the equation for { obtained from F({) = 0 when all the zeros of each f;(z) are
made to coincide at a suitably chosen point «; in the region C;. This leads to
eq. (17,3) for {. To find all possible positions of {, we must allow each «; to
occupy all possible positions in its circular region C;. In other words, all the
zeros of F(z) lie in the locus I' as defined in Th. (17,1).
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It is to be noted that in Th. (17,1) the regions C; may be half-planes as well
as the interior or exterior of circles.

The particular case p =2 and n; = n, = n is one in which we can readily
determine I'.  For that case we write A,/A, = —21 and denote by w,, w;, ** -,
w, , the nth roots of 2 with w, =1 when 41 = 1. Eq. (17,3) is the same as the
equations

17,9 (z— o) — w(z— ) =0, k=1,2,---n,
whose roots are
(17,5) Z, = % T W ,

1 - wk

where k=1,2,---,nwhen A1 and k=2,3, ---, n when A=1. The
locus I' will then consist of the ensemble of loci I';, of the z, when «, and «, vary
over their circular regions C;and C,, respectively.

In order to find I',, we shall need three lemmas which essentially concern the
location of the centroid of a system of particles possessing real or complex masses.
The first lemma is due to Walsh [lc, pp. 60-61] and [6, p. 169]. All three lemmas
are proved in Marden [10].

LemMA (17,2a). If the points &, , &, , * * - , &, vary independently over the closed
interiors of the circles C,, Cy, * -+, C, respectively, then the locus of the point «,

P
(17,6) = ma,,

i=1
where the m; are arbitrary complex constants, will be the closed interior of a circle
C of center c and radius r, where

Fd P
17,7 c=Ymye;, r= |myr,
i=1 i=1
and c; and r; denote respectively the center and radius of the circle C; .

In the case of exclusively positive real m;, we may deduce Lem. (17,2a) from
the theorem of Minkowski [1] which states that the convex point-set K whose
support-function (Stiitzfunktion) is H = >2_ m,H, is the locus of the point « =
22, mo; when foreachj = 1,2,- - -, p the point o; has as locus the convex point-set
K; whose support-function is H;. For, on taking K; = C; and setting c; =
R(cy), c; = 3(c;), ¢’ = R(c) and ¢" = J(c), we find that, since by definition of
H; the equation ux + vy = H; must represent the family of lines tangent to C;,

H;=cu+cv+r®+®)*
and thus that
H=cu+ c"v+ r(u® + v®)*.
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To prove Lem. (17,2a) as stated, let us note that

o —c| =

V4 D V4
me(aj —-c;) §z [m] oe; — ¢4 éE [m;lry=r,
i=1 i=1 i=1

which means that every point « defined by (17,6) lies in C. Conversely, if « is
any point in or on C, we may write

o= c + pre®, 0<u=1,
and associate with this « the points «;
o; = ¢; + p(lmj|[m;)r;e®.

Each point «, lies in or on C; and together they satisfy eq. (17,6). In other words,
the locus of the point « of eq. (17,6) is the closed interior of circle C.
We turn next to

LEMMA (17,2b). If the point «, describes the closed exterior of the circle Cy but
the remaining o, describe the closed interiors of the circles C;, then the locus of
the point o of eq. (17,6) is the closed exterior of the circle C of center ¢ and radius r,
where

P P
(17,8) ¢= zlma‘cj ’ r=|mlr — 22 lm;| r;
i= j=
provided in (17,8) r > 0, and is the entire plane if r < 0.
To prove this lemma when r > 0, let us note that now

| —¢] =

V4 ¥4
zmj(a;i — )| Z Imyl |y — ¢ _22 [m;| |a; — ¢;
i=1 j=

P
Z |my ’1“2””:1 rp=r.

j=2
Conversely, with every point «
o= c + ure®, u=1,

which lies on or outside C, we may associate the points «; defined by the equations

myeq — ) = [Imy] ry + (u — Drle®,

mja; — c;) = — |m,| r;e®, - j=23-",p
These a; satisfy eq. (17,6). Furthermore, this point «, lies on or outside circle
C, , whereas the remaining points «; lie on their respective circles C;. That is,
every point « of the locus lies in C and every point of C is a point of the locus.

If r = 0, the locus C is obviously the entire plane.
If r <0, let us choose a circle C; concentric with C; of radius r; such that

b4
Fo=mlri =3 Imir, =0,
p2
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Thus r; > r; and hence the exterior of Cj is contained in the exterior of C, and
the locus C’ of « corresponding to the circles C;, C,, C;, - -+, C, is contained
in the locus C of « corresponding to the circles C;, C;, -+, C,. Since C' is
the entire plane, so is C.

To complete the discussion of the locus of «, we add

Lemma (17,2c). If two or more of the a; vary over the closed exteriors of their
circles C; , then the locus of point « is the entire plane.

For example, let us suppose that «, varies ovei the closed exterior of the circle
C, with center ¢, and radius r, and «, varies over the closed exterior of C, while
the remaining «; vary over the closed interiors of the circles C,. We may then
choose a circle C, whose interior lies exterior to C, and whose radius r; satisfies
the inequality

»

[my| ry — |my| rg —’Za [my| r; = 0.

The locus C’ of « corresponding to the exterior of C, and the interiors of Cj,

Cs, -+, C,is by Lem. (17,2b) the entire plane. As C; lies exterior to C,, the
locus C contains C’ and hence is also the entire plane.

Returning now to discussion of the locus of the points z, of eq. (17,5), we may
on the basis of Lems. (17,2a) and (17,2b) deduce from Th. (17,1) two theorems, of
which the first is due to Walsh [6].

THEOREM (17,2a). If all the zeros of f(z) = z" + ayz" ' + - -+ + a,, lie in or
on the circle C, with center ¢, and radius r, and if all the zeros of fy(z) = z" +
byz"1 + - -+ + b, lie in or on the circle C, with center c, and radius r, , then each
zero of the polynomial

(l7a9) h(z) =f1(z) - z:f2(z)’ A # 1,

lies in at least one of the circles 'y with center at y, and radius p, , where

(17,10) yo= 0=, ntlodn
1 — w, 11 —

and where the w, (k =1, 2, - - -, n) are the nth roots of A. If A =1, the same
result holds provided the root w, = 1 is omitted and provided the closed interiors
of C, and C, have no point in common.

THEOREM (17,2b). If in the notation of Th. (17,2a) each zero of fi(z) lies on or
outside circle C,, if each zero of fy(z) lies in or on circle Cy and if ry > ry |AM",
then each zero of h(z) in eq. (17,9) lies on or outside at least one of the circles T,
with center vy, and radius p; , where

€ — Wil ry = lwglr,

17,11 = =
( ) Yk 1— o, P 1 —
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So far we have obtained, by use of Lems. (17,2a) and (17,2b), -some results
concerning the location of the zeros of the linear combination A(z) given in eq.
(17,9). For this same function A(z), we may obtain an altogether different set of
results if we write eqs. (17,4) in the form

(17,12) (zx—c) = (—¢) _

(2 — €2) — (2 — €2) "

The new results will be in terms of the ellipse E with points ¢, and ¢, as foci and
|ry — ro| as major axis, the hyperbola H with ¢, and c, as foci and (ry + r,) as
transverse axis, and the conic K having |A|*" as eccentricity, ¢, as focus and the
line R(z) = « as directrix, with

(17,13) k=0 —r |AYn

These new results will be embodied in the following three theorems, which are
due to Walsh [3c] in the case the parameter A = | in eq. (17,9) and to Nagy [10]
for other values of A.

First we shall prove

THEOREM (17,3a). In Th. (17,2a), if each zero of f,(z) lies on or outside circle
C,, if each zero of fy(2) lies in or on circle C, and if circle C, is contained in circle
C,, then no zero of the polynomial h(z) = fi(z) — Mx(2), |A| £ 1, lies interior to
the ellipse E.

By the hypothesis of Th. (17,3a), «, lies on or outside C;, «, lies in or on C,
and

(17,14) lc2_ Cl| <r1“' r2.

Furthermore, since |A] = 1, |w,] = 1 for all k. From (17,12) it then follows that

(17,15) 1>|w|>l°‘1_c1|_l2k*‘01|>r1—|Zk—cll
4 = kl = =
lag — o] + |z — ¢l — 12+ |2z — o
and, consequently,
|z — e1l + |z — ol Z 11— 12 > 0.

In short, z, must lie on or outside E.
Next, we shall prove

THEOREM (17,3b). If each zero of fi(2) lies in or on the circle C,, if each zero
of f,(2) lies in or on the circle C, and if C, and C, have no common points, then no zero
of the polynomial h(z) = fi(z) — Afy(z) may lie interior to H, if |A| Z 1, and none
interior to H, if |A| = 1, H, and H, being the branches of hyperbola H containing
respectively ¢, and ¢, .
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In this theorem a point “interior to a branch H,” of a hyperbola means one
from which no real tangents to H; can be drawn; in contrast, a point outside H;
means one from which two real tangents to H; can be drawn.

By hypothesis, «, lies in or on C,, «, lies in or on C, and

(17,16) |Cl - CZI > rl + rz .

If |A| = 1 and thus |w,| = 1, we find from (17,12)

1< [w|<lzk al + o — 01|<Izk—01|+rx
Tz =l — e — il Tz —cof — 1

provided |z, — ¢;| — r, > 0; that is, provided z, lies outside C,. From (17,17),
we deduce that

(17,17)

|2 — ol = |lzx — il =i+ ra,

which means that z, is on or outside of H;. Similarly, if [A] =1 and thus
|w| < 1, we find from (17,12) that

(17,18) 1= ol = |z — & = loy — ¢ > |z — €1l — 1y ‘
’ = |Zk - Cgl + |a2 - czl izk —_ Czl +r,

This implies that

(17319) |Zk -_ Cll — Izk — c2l é rl + r2

and therefore that z, lies on or outside of H, .
Finally, we shall establish

THEOREM (17,3c). If each zero of f,(2) lies in or on the circle C,, if each zero
of fo(2) lies in a closed half-plane S satisfying the relation R(z) = o > 0 and having
no points in common with C, , then each zero of h(z) = f,(z) — Afy(2), exterior to S,
lies on the opposite side of conic K as its focus c, .

By hypothesis, «, liesin C, , a, liesin Sand ¢ — R(c;) > r,. From eq. (17,12)
we have for any point z, exterior to S and C,

Mll/n — Iwkl é |zk - cll + |“l - cll < lzk'— cl‘ +r

|z — o = [R(xz — 2|
(17,20)
< lzx —al + 1y
T o — R(z)
and hence,
(17,21) [+ o - Rz < 12— alllAF"

Since the expression on the left side of (17,21) is the distance of z, to line R(z) =
K (see (17,13)), each point z, lies on the side of conic X which does not contain the
focus ¢, .
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EXERCISES. Prove the following.

1. If all the zeros of a polynomial f(z) = a, + a;z + - - - + a,z" lie in a circle
|z| = r, then all the zeros of F(z) = f(z) — ¢ lie in the circle |z| = r + |c/a,|}".
Hint: Use Th. (15,4) and in eq. (17,1) take fi(z) = f(z), n, =0 and p =2
[Walsh 6].

2. If all the points «; are exterior to circle C; with center at ¢; and radius r,
and if all the points §; are interior to a concentric circle C, of radius r,, |A|V"r, <
ry, then no zero of h(z) in (17,9) lies inside the concentric circle I' of radius
p = (r; — rz [A]¥")/(1 4+ |A|*™) [Nagy 10]. Hint: Use Th. (17,2b).

3. If £ is any zero of h(z) = ay + ayz + - -+ + a,_;z™, then at least one zero
of fi(z2) =as+ aiz+ - + a,_;z"* + z" lies in any circular region containing
all the points z, = £(1 — e*"*/*), k =0, 1, 2, -+, n — 1. Thus at least one
zero of fi(z) lies in the circle |z| < 2 |£] and, if n is odd, at least one in the circle
|z| =2 €| cos (w/2n). Note: limit is attained by fi(z) = (1 + z)* [Szegd 1].
Hint: Apply Th. (17,2b).

4. The trinomial eq. 1 — z — ¢z" = 0 has at least one root in every circular
region containing all the points z, =1 — e?™*i" k=0, 1, ---, n — 1. Thus,
it has at least one root in the circle |z| =< 2; if nis odd, at least one root in the circle
|z| = 2cos(n[2n). Hint: Apply ex. (17,3) [Szego 1].

5. An equivalent statement of the result in ex. (17,3) is that, if fi(z) # 0 in
|z] = R, then h(z) £ 0 in |z| = R/2 if n is even and in |z| = (R/2) sec (7/2n) if n
is odd. The example f;(z) = (z — R)" shows that these are the best possible limits.

6. Let f1(z) = z" + A, z"* + Apyz™F 1 4 - - - + A, and A(z) = Ay 2™ +
“+++ A, . If h(z) has at least one zero in |z| = r, then f(z) has at least one zero
in |z] £ 2r+ (4)Y*. Hint: In ex. (17,2) take fy(z) = z" + A,z"*, and
h(z) = f,(2) — fi(z) [Nagy 10].

7. Letry, ry, - -+, r, be any positive numbers and 4 any complex number such
that riry- - r,=|A|. Let C;ilz—z|=r;, j=1,2, -, n, and let f(z) =
(z—2z)(z— 29 (z—z,). Then among the A-points of f(z) (that is, the
points where f(z) = A) none lies inside or outside all the circles C;. If |B| < |4],
each B-point lies in at least one circle C; concentric with C; and of radius r} =
|B/A|*"r; ; p B-points lie in any point-set K comprised of the closed interiors of p
circles C;, provided K has no point in common with the closed interiors of the
other n — pcircles C;. Hint for last result: Study the variation of the Z-points
as Z decreases continuously from A4 to 0 [Nagy 11].

8. Letu,, up, -+, u, be n distinct points inside a circular region C and let
v1, Vg, ", v, be n distinct points outside C. Then the determinant |(u; — vy)"|,
Jok=1,2,+-+, n, cannot vanish. Hint: fz) = —u)(z— ) (z — u,)
is, due to the linearity of eq. (15,2) in the A4;, not only apolar to (z — u;)" for
each j, but also apolar to the polynomial g(z) = X", ¢,(z — u;)* for arbitrary
constants ¢;. Choose ¢; so that g(v,) =0fork =1,2, -, n[Szego 1].

9. 1If fe)=ap+az+ -+ +a,z" # 0 for |z] <r and if 0 < p <n, then
D) =ay+az+ -+ a,_,z"? 5 0 for |z] < r/(p + 1) [Biernacki 4].

10. If in ex. (17,9) z, and z,_, are the zeros, smallest in absolute value, of f(z)
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and f,(z) respectively, then |z,| = 2|z,_,|. Hint: Show the product of the zeros
of g(Z) = f(z,_1 + Z) is (—1)"z7_, and thus, if Z,, is the zero, smallest in absolute

value, of g, then |Z,| = |z,,].
1LIff2)=a+az+--+a z";é0f0r|z|< 1 and if ¢(2) = Aya, z™ +
*+ Aa, z"ewhere0 <n <nmy <- <n,,<nand|2|<lfor]—1 2 -k,
then F(z) = f (z) + q(2) # 0 for |z| < p where p is the positive root (p < 1) of

the equation
(1—=p)"= ZC(n, n;)p™ [Rahman 1].
a1

Hint: Apply Ths. (15,2) and (15,3) with L[f(¢)] = F(Z) = 0 where Z is any zero
of F.

12. Let f(z) =a(z — z,)- -+ (z — z,,), let C, be the circle |z — z, + h| =
|4l |z — z; — h| with |4,] > 1 and let K be the intersection of the interiors of all
the C,, k=1, 2, ---, n. Then F@=f(z+h +if(z—h)#0, A=
MAg -+ A, , z€ K [Kuipers 3]. Hint: Show |f(Z + h)/f(Z — h)| > |Alfor Z€ K.

13. Let Sy(a,0,¢):0<arg(z—a)=<0+¢, 0=¢ <7 and Sixa,0,¢) =
Sy, 0,4) U Sy(a,0 + 7, ¢). Letf(z) =a(z—z) - (z— z,) and

F(z) = f(a + b(z — a)) — ¥ (a + Bz — a))
where |A| = 1, = e*2b % b. Then, if all the zeros of f lie in Sy(a, 0, ¢), all the
zeros of F lie in Sy(a, 6 — «, ¢) [Han-Kuipers 1]. Hint: If z ¢ Sy(a, 6 — «, ¢),
show la+ b(z—a) — z,|[la+ f(z — a) — z,| > 1 or < | for all k.

14. Let f and g be two polynomials of exact degree n and let F(z) = f(z)/g(2).
If « and B are respectively a finite zero and a finite pole of F and if C = f(B)/g(),
then F assumes every value A with [A| < |C| either at least once inside the circle

K:lz — o = [2/C]" |z — B

or only on K. If 0 < w = |arg (—A/C)| = =, then F assumes the value 4 either
at least once inside the region S or only on the boundary of S, where S is the set of
all points from which the line segment from « to § subtends an angle of at least
wfn [Nagy 19b]. Hint: Consider h(z) = f(z) — Ag(2).

18. Combinations of a polynomial and its derivatives. We conclude the present
chapter with the application of the theorems of sec. 15 to linear and other
combinations of a polynomial and its derivatives.

We begin with a theorem due to Walsh [6].

THEOREM (18,1). Let
(18,1) f(@) = Zaiz =a, H (z—

(18,2) g(z) = ;)bjzj = b'n!:-[l(z - ﬂ:})a
J= =

(18,3) h(z) = g (n = ) boif (2) = Z(n — ) a,g?).
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If all the zeros of f(z) lie in a circular region A, then all the zeros of h(z) lie in the
point set C consisting of the n circular regions obtained by translating A in the
amount and direction of the vectors f; .

To prove this theorem, we shall assume Z to be any zero of h(z); i.e.,

(18,4) hZ) =3 (n — N b._;f(Z)=0.

=0 -
Since eq. (18,4) is a linear expression in the coefficients of f(z), we infer from Th.
(15,2) that f(z) is apolar to the polynomial obtained on replacing f(z) in eq. (18,4)
by (Z — z)"; that is,

S(n =)l b, ;dNZ — 2)"/(dzZ) = n! g(Z — 2).
=0
According to Th. (15,3), at least one of the n zeros Z — 8; of g(Z — z) must lie
in the circular region A containing the zeros of f(z). That is, Z =« + §;,
where « is a point of 4.
An interesting special case under Th. (18,1) is the one in which

(18,5) £(2) = 2"z — nky)
and thus

h(z) = n! f(z) — (nA)(n — 1! f'(2).

Since in this case §; = ni; , and g, = B3 = - - - = B, = 0, we obtain the following
result [Walsh 6, 9; Marden 3, 10].

CoRrOLLARY (18,1). If all the zeros of an nth degree polynomial f(2) lie in a
circular region A, all the zeros of the linear combination

(18,6) L) =f(2) — Lf'(2)

lie in the point-set comprised of both A and A’ = T(A, nk,), A’ being the region
obtained on translating A in the magnitude and direction of the vector (ni;).

When used in conjunction with Cor. (15,3), the apolarity of f(z) and g(Z — z),
which led to Th. (18,1), permits us to infer that any convex region A containing
all the zeros of f(z) must overlap every convex region B’ containing the zeros of
g(Z — 2). Since B’ may be considered as the locus of the point z=Z —
when B varies over a convex region B containing the zeros of g(z), each zero Z
of h(z) is expressible in the form Z = « 4+ § where « and f are points of 4 and
B respectively. In other words, the following result of Takagi [1] has been
proved.

THEOREM (18,2). Let the polynomials f(z), g(z) and h(z) be defined by the eqs.
(18,1), (18,2) and (18,3). If all the zeros of f(z) lie in a convex region A and all
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the zeros of g(z) lie in a convex region B, then all the zeros of h(z) lie in the convex
region C which is the locus of the points y = o + [ when the points « and j vary
independently over the regions A and B respectively.

If g(2) is taken as the polynomial (18,5), the convex region B may be taken
as the line-segment joining the points z = 0 and z = nl,. We thereby derive
a result due to Takagi [1].

COROLLARY (18,2a). If all the zeros of an nth degree polynomial f(z) lie in a
convex region A, then all the zeros of the polynomial

(18,7) S =f(@) — Af'(2)

lie in the convex region A, swept out on translating A in the magnitude and direction
of the vector nk, . That is, Aw) = U, T(4, pnky), 0 = py = v, 4, = AQ1).

Since 4, < A* = A(c0), we conclude from Cor. (18,2a) that all the zeros of f;
lie in A*, a result due to Fujiwara [2].

We have stated Cor. (18,2a) because, though weaker than Cor. (18,1), it is
better suited than Cor. (18,1) to iteration. Let us define the sequence of
polynomials

j;c(z) =ﬁc—l(z) - Akfl;—l(z)’ k = 13 29 T P,
with fo(z) = f(z). Let us also define the sequence of regions
Ao =4, A = U T(Ag-a» nhgita), 0=m=1

Clearly, 4, = U T(4, n(usA, + paks + - - - + medy)), the union being taken for
0<u;=<1,j=1,2, ---, p. Fig. (18,1) illustrates the case k =2 when 4

-

SN

Fic. (18,1)
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is a circle. By Cor. (18,2a), region 4, contains all the zeros of f,(z) if the region
A, contains all the zeros of f;_;(z). But, as we may write symbolically,
f(z) = (1 — DA fo1(2), D = d|dz,
we may write
So@) = (1 — DA)(1 — DA, y) -~ (1 — DA)f(2).
This establishes the following result due to Takagi [1].

CoROLLARY (18,2b). Let f(z) be an nth degree polynomial having all its zeros
in a convex region A and let A(z) be the polynomial

A@)=10 —42)(A — 42) - - (1 — A,2).
Then all the zeros of the polynomial
(18,8) Fz) = AD)f(2), D = djdz,

lie in the above-defined convex region A, .

Of special interest is the case that f(z) = z* and that A(z) is an nth degree
polynomial for which the points 4, lie in a convex sector S with vertex at the
origin. Since each point n4, also lies in S, each region 4, will lie in S provided the
preceding region 4,_, lies in S. Now, the region 4 may be taken as the point
z=0. Since the corresponding region A4, will be the line-segment joining the
points z = 0 and z = n4,, the region 4, lies in S and hence all the subsequent
regions A, , Az, -+, A, liein S.

Since the 4, are the zeros of the polynomial

8(@) = z"A(1/2)
we have proved

CoroLLARY (18,2c). If all the zeros of the polynomial
8D = byt bz + -+ by
lie in a convex sector S with the vertex at the origin, then so do also all the zeros of

the polynomial
G(2) = by + bz + (b2%2) + + - - + (b,2z"[n)).

Cor. (18,2c) as stated is due to Takagi [1], but, in the special case that S is
the positive or negative axis of reals, it had been previously proved by Laguerre
(1, p. 31].

Thus far, we have considered linear combinations of a single polynomial and
its derivative. Let us now study the linear combinations of the products
[f(2)f {(2)] of the derivatives of two given polynomials fi(z) and fy(z). The
first result which we shall prove is the following one due to Walsh [6]:

THEOREM (18,3). Let the zeros of a polynomial f,(z) of degree m, have as locus
the closed interior of a circle C, of center «, and radius r, and let the zeros of a
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polynomial f,(z) of degree m, have as locus the closed interior of a circle C, of center
ap and radius ry . Let the polynomial g(z) be defined by the equation

g(2) =§°C(m1, HC(my, n — j)B;z"7 = bz jf;[l (z — B,

where the binomial coefficient C(k, j) =0 if j > k orj < 0, where p +q =n <
m; + my, and where B; #0, B;# 1 for j=1, 2, -+, p. Then the zeros of
the polynomial

h(z) = ; C(n, )B,fP(2)f(2)

have as locus the point-set I' consisting of the closed interior of C, if my > n, the
closed interior of C, if my > n and the closed interiors of the p circles T'; of center
y; and radius p; , where

o‘1—13:""‘2’ pj=r1+|ﬂflr2’ =12
1— B, 11— il

To establish that I' is the locus of the zeros of A(z), we must show first that
every zero of h(z) lies in I' and, secondly, that every point of I' is a possible
zero of h(z). Let Z be any zero of h(z). By Th. (15,4) the equation h(Z) = 0
being linear and symmetric in the zeros of both f,(z) and of f,(z) may be re-
placed by an equation obtained by coalescing all the zeros of fi(z) at a point
{, in circle C, and coalescing all the zeros of fy(z) at a point {, in circle C, .
That is,

Yi= ‘5 D-

§0C(n’ j)C(mI’ j)c(m2’ n— ])j! (n -_ j)! Bj(z —_— gl)ml—j(z _ Cz)m’—"—j
= nl(Z = LMZ - L™ElZ - WIZ ~ L] =0.

The possible values of Z are therefore

Z=1 ifm, > n, Z=1l, ifmy>n
and

(18,9) Z = (L — LBl — By

In the first case Z is a point in or on C; and in the second case Z is a point in
or on C;. In the third case Z is a point in or on the circle I',, as may be de-
termined by use of Lem. (17,2a).

Conversely, if Z is any point of T, it is a possible zero of h(z). For, we may
take fi(z) = (z — {Y)™ and fy(z) = (z — {2)™2, choosing {, and {, as follows.
If m; > n and if Z lies in C,, we choose {; = Z and {, as an arbitrary point in
C,. Similarly, if my > n and if Z lies in C,, we choose {, = Z and {, as an
arbitrary point in C,. If, however, Z lies in I',, we may according to Lem.
(17,2a) so choose {; in C; and {, in C, that eq. (18,9) is satisfied.
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Thus we have completely established that the point-set I' is the locus of the
zeros of h(z).
As an application of Th. (18,3), let us prove

CoRrOLLARY (18,3). If all the zeros of an nth degree polynomial f(z) lie in the
circle C:|z| < r and if all the zeros of the polynomial

(18,10) $2) =2+ Cn, DAz + - -+ + C(n, nA,z"
lie in the circular region K:
(18,11) lz| S slz — 7, s> 0,
then all the zeros of the polynomial
¥2@) = Lf(@) + WS @EDN + - - + 4, [ P(2)(72)"[n']
lie in the circle T':
(18,12) |z| = r max (1, s).
The polynomial y(z) is of the form of the A(z) given in Th. (18,3) with
[ =f(2), fu2) = ()", B, = A7 [n'v"C(n, k)
and consequently the corresponding g(z) is
8(2) = (z[7)*$(7[2)/n!.

If &, &, -, &, are the zeros of ¢(z), the zeros of g(z) are f;, = 7/§,. Here
circle C, is the same as circle C but circle C, is merely the point z = 0. According
to Th. (18,3), the zeros of (z), not in C, lie in the circles I', centers at z =0
and radii

pr = rlll — Bl = r|&/(& — 7).

From condition (18,11) on the zeros of ¢(z) it now follows that |p,| < rs. The
zeros of y(z), including those in C, therefore satisfy condition (18,12).

Exercises. Prove the following.

1. In Th. (18,1) if all the zeros of f(z) lie in the circle |z| = r, and all the
zeros of g(z) lie in the circle |z| = r,, then all the zeros of h(z) lie in the circle
|z| £ ry + r, [Kakeya 3].

2. In Cor. (18,2¢) if all the zeros of polynomial g(z) are real, then all the zeros
of G(z) are also real [Laguerre 1, p. 31].

3. In Cor. (18,3) f(z) is apolar to the polynomial (Z — z)"¢$[Z7/(Z — z)]
if (Z) = 0. Hence, if all the zeros of f(z) lie in a convex region A and all the
zeros of ¢(z) lie in a region B whose inverse in the circle |z| = 1 is convex, then
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every zero Z of y(z) has the form Z = «f/(f — 7) where « is a point of 4 and
f is a point of B. If m > n, assume B contains z = oco.

4. In ex. (18,3) if all the zeros of f(z) lie in the sector A:y Sarg z<y +
o = y + = and if all the zeros of ¢(z) lie in the lune B:A S arg z/(z—7) S u
with g — 4 < =, then all the zeros of y(z) lie in the sector y + A S arg z =
y+ w4+ u. Ifm>n, assume ud < 0.

5. If the zeros of f(z) = e**P(z), where P(z) is an nth degree polynomial and
a is a constant, lie in a circular region C, the zeros of f'(z) lie in region C and
in the region C’ obtained on translating C in the magnitude and direction of
the vector (—na='). Hint: Use Cor. (18,1).

6. If the pth degree polynomial P(z) and the qth degree polynomial Q(z) have
all their zeros in the same circular region C, then the zeros of the derivative of
f(2) = e¥®Q(2) lie in region C and the p circular regions C; obtained on
translating C in the magnitude and direction of the vectors [w;(—q/ap)¥/?]
(j=1,2,---, p) where w; are the pth roots of unity and a is the coefficient of the
pth degree term in P(z) [Walsh 6].

7. If all the zeros of the kth degree polynomial f;(z) lie inside a circle K and
all those of the rth degree polynomial fy(z), r < k, lie outside K, then inside X
lie all the zeros of the polynomial

h(z) = 3 (=1Clk — r + , fP@f§ @, 0=j=<r  [Curiss 1]

8. Let F(z) and G(z) be polynomials which have all their zeros in the strip
|3(z)| £ a, a= 0. Then all the zeros of H(z) = X7 (t*/k)F®(2)G*)(z), t < 0,
also lie in this strip [De Bruijn 3]. Hint: Let

f(2) = z FFOw)k! = F(z +w) and g(2) = 3 2G®(w)lk! = G(z + w)
(1]

and apply ex. (16,6) taking h(z) as hy(z).

9. If all the zeros of f(z) = X7 (a/k!)z*, n = 2, lie on the disk C:|z — z,| S r
and if H(z) is the Hermite polynomial of degree k, then all the zeros of the poly-
nomial F(z) = X7 a,H,(z) lie in the convex region C, = U, T(C, un) where
T(A, «) is defined in Cor. (18,1), # is the supremum of the zeros of H,(z) and
—1 = u = 1[Specht 6]. Hint: H;_ ,(z) = H,(2).

10. If £, g, h are polynomials of degree n, p, q respectively and if all the zeros of
flie in the upper half-plane, necessary and sufficient conditions for all the zeros of

F(z) = g@2)f(2) + h(2) f'(2)

to lie in the upper half-plane are that (1) J[g(2)/A(z)] Z O for 3(z) = 0; (2) all
zeros of h(z) lie in the upper half-plane; (3) either p < g or both p = ¢ + 1 and
lim [g(2)/zh(z)] = a, real negative, as z— oo [Dieudonné 9].

11. Let H be the convex hull of the zeros of g(z) = TI% (z — z,), ¥ a complex
number, {4} a set of non-negative reals with >_; 4 =1, and z, any zero of
g1(2) = g@[l — 272, Az — z)™']. Then z, has the form c + Ay where
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ceH and 0 =1 =1 [Shisha-Walsh 1]. Hint: Apply Lem. (13,1) choosing
c€ Hsothat D™ Az, — z)™ = Az — €)%

12. Let P¥ be the class of polynomials a, + @,z + * - - + a,z" with a,, # 0, and
a, and a, ; prescribed and let p* be an infrapolynomial on finite set E =
{z1, zs,**, z,} relative to P¥ [see ex. (5,7)]. Then every zero of p* has the
form ¢ 4+ Ay where ¢ € H(E), the convex hull of E, and where 0 < 1 <1 and
y = —(a,_ya,) — >r_, z, [Shisha-Walsh 1]. Hint: Use ex. (18,11).



CHAPTER V

THE CRITICAL POINTS OF A RATIONAL FUNCTION WHICH HAS
ITS ZEROS AND POLES IN PRESCRIBED CIRCULAR REGIONS

19. A two-circle theorem for polynomials. The Lucas Theorem which we
developed in sec. 6 states that any convex region K enclosing all the zeros of a
polynomial f(z) contains also all the critical points of f(z). Furthermore, as we
remarked in sec. 6, every point interior to or on the boundary of X is the critical
point of at least one polynomial which has all its zeros in K.

Let us now consider the class T of all polynomials f(z) of degree n which have
n, zeros in or on a circle C; , n, zeros in or on a circle C,, etc., and n,, zeros in
or on a circle C,, with n, + n, 4+ -+ 4+ n, =n. If K denotes the smallest
convex region enclosing all the circles C; (j=1, 2, -+, p), all the critical
points of every f(z) in T will lie in K, but not every point of K will necessarily
be a critical point of some f(z) in T. Let us now determine the precise locus of
the critical points of the polynomials of class 7.

We begin with the case p = 2 which was first studied by Walsh [2]. We shall
state his result as

WaLsH’s Two-CIRCLE THEOREM (Th. (19,1)). If the locus of the zeros of the
ny-degree polynomial f,(z) is the closed interior of the circle C, with center ¢, and
radius ry and the locus of the zeros of the ny-degree polynomial f,(z) is the closed
interior of the circle C, with center c, and radius r, , then the locus of the zeros of
the derivative of the product f(z) = f1(z) f(2) consists of the closed interiors of C,
if n, > 1, of Cy if ny > 1 and of a third circle C with center ¢ and radius r where

¢ = nicy + Nycy r = nry + nory
=, = ———

(19,1)
n, + n, n, 4+ ny

In a sense, the third circle C is the weighted average of the two given circles
Cyand C,. (InFig. (19,1) C= C3,r =ryand ¢ = c;.) Ithaswith C; and C,
a common center of similitude and its center is the centroid of the system of
two particles, one of mass 7, at ¢; and the other of mass n, at c, .

To prove Th. (19,1), let us note that, if Z is any zero of f'(z),

(19,2) 0 = f'(2) = f1DfAZ) + [(2D)f (D).
This is an equation which is linear and symmetric in the zeros of f,(z) and in
the zeros of fy(z). By Th. (15,4), Z will also satisfy the equation obtained by
substituting into eq. (19,2)
L@ =GE—-m  filD)=(z—™
where {, and {, are suitably chosen points, the first in C, and the second in C,.
89
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That is, Z satisfies the equation
mZ — L) NZ = L)+ ny(Z — L)"Z = L)t =0
and thus has the values of
Z=y§,ifn>1; Z=10y,ifng>1;
Z = (n36y + m&y)(ne + my).

Obviously the first Z is a point in C, and the second Z is a point in C,. That
the third Z is a point in C may be verified by setting p = 2, m; = n,/(n, + n,)
and m, = my/(n, + ny) in Lem. (17,2a). Thus we have proved that every zero
Z of f'(2) lies in at least one of the circles C;, C, and C.

Fie. (19,1)

Conversely, as in the proof of Th. (18,3), we may show that any point Z in
or on the circle C,, C, or C is a zero of the derivative of f(z) = f,(z) f(2) for
suitably chosen polynomials f,(z) and fy(z) having all their zeros in C; and C,
respectively. We thereby complete the proof of Th. (19,1).

Concerning the number of zeros of f'(z), we may as in Walsh [2] deduce the
following result.

CoROLLARY (19,1). If the closed interiors of the circles Cy, C, and C of Th.
(19,1) have no point in common, the number of zeros of f'(z) which they contain is
respectively ny — 1, n, — 1 and 1.

For, if & is any point in C, and £, any point in C,, then we may allow all
the n, zeros of f(z) in C, to approach £, along regular paths entirely in C; and
similarly allow all the n, zeros of f(z) in C, to approach £, along regular paths
in C;. Thus & and &, become zeros of f'(z) of the respective multiplicities
ny — 1 and n, — 1, the remaining zero of f’(z) then being a point of C. During
this process, no zero of f'(z) can enter or leave C,, C; or C. Hence, the number
of zeros in C; , C, and C was also originally n, — 1, n, — 1 and 1.

By a similar method we may establish the following somewhat more general
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result concerning the function F(z) = 3 [m,/(z — z,)], where the m; are arbitrary
positive numbers.

THEOREM (19,2). If all the points z;, 1 = j = p;, lie in or on the circle C,
and if all the points z;, py + 1 = j = p; + p., lie in or on a circle C,, then
any zero of the function

P1+P2 m;

F@) =3 , m; >0, allj,

j=lz—"Z"

if not in or on C, or C,, lies in the circle C defined in Th. (19,1) with

21 P1+Pp2
nn=>m; and ny= Y m,
j=1 j=p1+1
As an application of Th. (19,2), we shall derive the following Mean-Value
Theorem for polynomials.

THEOREM (19,3). Let the circle C, with center ¢, and radius ry encjose all the
points in which a pth degree polynomial P(z) assumes the value A and let the circle
C, with center c, and radius r, enclose all the points in which P(z) assumes the
value B. Then, if n, and n, are arbitrary positive numbers, the circles C, and C,
and a third circle C with center ¢ = (nyc; + nyc,)[(ny + n,) and radius r =
(nyry + nore)/(ny + ny) contain all the points at which P(z) assumes the average
value M = (n,A + n,B)/(n, + n,).

This theorem is stated and proved in Pdlya-Szegé [1, vol. 2, p. 61] in the
case that n; and n, are positive integers. To prove it in the more general case,
let us denote by z;, 1 =j < p, the points where P(z) = Band by z;, p+ 1 =
j = 2p, the points where P(z) = A. Thus,

(19,3) P@)-B=T[Gz—z), P@)—A= Iz = z).

j=p+1
If Z denotes any point at which P(z) = M, then

(m + np)[P(Z) — M] = ny[P(Z) — A] + n,[P(Z) — B] = 0.
Hence,

(19.4) n,P'(Z) n,P'(Z)

PZ) —B PZ)—4

Substituting from eq. (19,3) into eq. (19,4), we find

b4 2p

S+ > =0

i1Z —z; =1l — z;

According to Th. (19,2), therefore, point Z must lie in at least one of the circles
Cl N Cz and C.
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ExERrcIses. Prove the following.

1. Th. (6,2) is the special case of Th. (19,1) in which C, = C,.

2. Let mP:m{» (j=1, 2, ---, q) denote the ratios in which the line-seg-
ment (¢, , €,) is divided by the ¢ distinct zeros of the kth derivative of the
g(2) = (z — c)™(z — ¢c;)". Let K; denote the circle with center at
(m{Pe; + mPey)/(m? + m{P) and radius (m{r; + m{Pry)[(m{> + m{?). Then
the locus of the zeros of the kth derivative of the f(z) of Th. (19,1) is
composed of the circle C; if k < ny, the circle C, if kK < n, and the ¢ circles
K;. If any K; is exterior to all the other Xj, it contains a number of zeros of
f%)(z) equal to the multiplicity of the corresponding zero of g*)(z) [Walsh 6,
pp. 175-176].

3. Th. (19,1) and ex. (19,2) are special cases of Th. (18,3).

4. If every zero of an n;-degree polynomial f,(z) lies in or on the circle
C,:|z| £ r, and if every zero of an n,-degree polynomial f,(z) lies on or outside
the circle C,:|z| = r,, where r, Z (nory/n,), then every zero of the derivative
of the product f(z) = fi(z)fx(2) lies in or on C; , on or outside C, or on or outside
the circle C:|z| = r = (nyr; — ngry)/(n; + ny). Furthermore, if r > r;, exactly
ny — 1 zeros of f'(2) lie in C, and exactly n, lie on or outside C [Walsh 2].

5. If an nth degree polynomial f(z) has a k-fold zero at a point P and its
remaining n — k zeros in a circular region C, then f’(z) has its zeros at P,
in C and in a circular region C’ formed by shrinking C towards P as cen-
ter of similitude in the ratio 1:k/n. If C and C’ have no point in common,
they contain respectively » — k — 1 zeros and one zero of f'(z) [Walsh 1D,
p. 115].

6. Let F(z) be an nth degree polynomial whose zeros are symmetric in the
origin O. Let O be a k-fold zero of F(z) and let all the other zeros of F(z) lie
in the closed interior of an equilateral hyperbola H with center at O. Then,
except for a (k — 1)-fold zero at O, all the zeros of F'(z) lie in the closed interior
of the equilateral hyperbola obtained by shrinking H towards O in the ratio
n*:k*%. Hint: Apply ex. (19,5) to f(w) = f(z?) = [F(2)]?, taking the circular
region C as the half-plane R(w) = a > 0 [Walsh 17].

7. Given the disks C,:|z — ¢;| S, kK =1, 2, with |¢; — ¢y| > |ry — r,| and
the class of disks C:|z — ¢| = r where ¢ = Aj¢c; + A5cp, ¥ = Myry + Aory, With
A >0,2,>0, 1, + 4, =1 1If Eis a closed set some points of which lie in
C, and the remainder in C,, and if an infrapolynomial p € I,(E) has a zero z,
outside C; and C,, then z, lies in some disk I' = C. If no disk I' = C con-
taining z, intersects C; or C,, then no other zero of p lies outside C; and C,
[Motzkin-Walsh 4, Th. 8.2]. Hint: Use Ths. (5,2), (19,2) and the reasoning
behind Cor. (19,1).

8. If an nth degree polynomial f has n — k (0 < k < n) zeros on the disk
|zl <1 and k zeros in the region I':|z| > r (>1), then for a suitable { with
1 < |{| < r the polar derivative f; of f as given by eq. (13,1) has exactly k — 1
zeros in I". Hint: Apply the mapping w = (1 4 z{)/(z — {) and use Cor.
(19,1).
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20. Two-circle theorems for rational functions. The question raised in sec. 19
concerning the derivatives of a product of two polynomials may also be asked
concerning the finite zeros of the derivative of their quotient. Here the answer,
also due to Walsh [1b, p. 115], reads as follows.

THEOREM (20,1). If the polynomial f,(z) of degree ny has all its zeros in or on
a circle C, with center c, and radius ry, and if the polynomial f,(z) of degree n,
has all its zeros in or on a circle C, with center c, and radius r, and if n, # n,,
then the finite zeros of the derivative of the quotient f(z) = f,(z)/f«(2) lie in C,,
C, and a third circle C with center ¢ and radius r where

c = Ngly — NGy r = ngry + nyry
— > —_— e,
ny — n [ng — my

Under these hypotheses if n; = ny, and if the closed interiors of C, and C, have no
point in common, then these two circles contain all the zeros of f'(z).

The proof of Th. (20,1) is similar to that of Th. (19,1) and will be left to the
reader. He should, however, note that, if 7, = n, and if the closed disks C,
and C, did overlap, the zeros of both f,(z) and f,(z) could be made to coincide
at the common points of C; and C,. The corresponding quotient f(z) would
then be constant and its derivative identically zero. That is, if #, = n, and
if C; and C,, originally without a common point, are allowed to expand, the
locus of the zeros of f(z) changes abruptly to the entire plane when C; and C,
become tangent.

Th. (20,1) is essentially a proposition concerning the finite zeros of the rational

function I

Fi2)= 3

=1z —2z;

m;

in which m; >0 for 1 £j<p, and m; <0 for p, + 1 =j =< p, + p, and in
which all the z;, 1 £j = p,, are points in or on the circle C; and all the z;,
p1+ 1 =j=p; + pa, are points in or on the circle C,. The numbers n, and
n, are here

1 P1t+Pp2
n=3m; and m= 3 m,.
i=1 j=p1+1

In the case n; = n,, we are dealing with the logarithmic derivative of a function
of type (10,1) in which the total “mass” is zero and therefore of which, according
to sec. 10, the zeros are invariant under linear transformations. We may there-
fore replace the interiors of circles C; and C; by arbitrary circular regions C,
and C,. We may also introduce the binary forms

Dy (&, 1) = X a ™" = n"f(¢m),
(20,1) =
d)z('f’ 77) =k§obk'§k7ln_k = ﬂ"fz(f/"?)-
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The jacobian of these forms is

20,00, 00,0,
T 9 9 ot oy
= n* " VL€M) f&Im) — &M fiEm)]
= "’72‘"—"{’(5/?7)[fz(é‘f/’?)]2

where f(z) = f1(z)/fo(z). Since the zeros of J(&, 7) are the finite zeros of f'(&/n)
and possibly the point at infinity, we may restate the last part of Th. (20,1) in
the form due to Bécher [4].

THEOREM (20,2). If each zero of the form ®,(&, ) lies in a circular region C, ,
if each zero of the form ®y(&, ) lies in a circular region C, and if the regions C,
and C, have no points in common, then no finite zero of the jacobian of the two
forms lies exterior to both regions C, and C, .

Th. (20,2) has the following generalization to abstract spaces [Marden 24].

"THEOREM (20,3). Let E be a vector space over an algebraically closed field K
of characteristic zero. Let H(x, y), i = 1, 2, be two Hermitian symmetric forms,
defined on E with values in K, such that there are subsets E;,= {x: xE€E,
Hy(x,x) >0, x # 0}, i =1, 2, with the property that (E — E;) N (E — E,) =
&. Let Px),j=1,2,--+,q, defined for x € E with values in K, be homo-
geneous polyhomials of degree n; and let P(x, , x) be the first polar of Px) with
respect 10 x, , x, € E. Let {m;} be a set of real numbers with m; > 0 if jeJ, =
1, 2,--, p<gq), with m;<O0 if jel,=(p+1, p+2,---, q) and with
dim;=0. Let ®(x;,x) =37, mpPy(x): - P, j(X)P;(xy, X)P;,1(X) * * * Py(x).
If P(x) # O for x € E, when j€J, and for x € E, when j€J,, then ®(x, , x) # 0
when x € E; N E, .

We may prove Th. (20,3) by an adaptation of the proof of Th. (14,1). Letting
where 7, # 0, k = 1, 2, - - -, n; , we infer from eq. (14,12) that
nj
Pi(xy, x)[Py(x) = "(1/"7'),;1%1:’ Pix = (/T x),

D(x,x)) = —M ﬁ Pi(x)
i=1

where

q nyg
M = E(mj/n,-)zpn- .
i=1 x=1
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We infer also from eq. (14,13) that

hige = (TpTi) ™ H0px + TpX1, 0px + TyXy)
= puPs Hi(x, x) + 2R[py Hi(x, x)] + Hy(x1, xy),

nj nj nj
kzl hij = H{(x, x) kZancﬁﬂc + zm[Hi(x’ x;) glpfk] + n;H(xy, xy),
q nj
S; = Z (m,-/n,-)E b
i=1 %=1
q nj
= Hyx, x)jzl(ma'/”j) zlpjkf-’jk + 2R[MH(x, x,)].
= k=

Since Py(oyx + 7yx,) = 0fork = 1,2, -+, ny, it follows from the hypothesis
of Th. (20,3) that

OpX + X1 ¢ Eg OpX + TyX1 € Ep
witha=1,8=2ifjeJybuta =2, =1ifjeJ,. Hence,

hin =0, he > 01if jeJy,
hlik> 0, h21k§ OiijJz,

and therefore S; < 0, S; > 0. Since both H;(x, x) > 0 and Hy(x, x) > 0 when
x € E; N E,, we conclude that

0 > Hz(xs x)Sl - Hl(x: x)S2
= zm{[Hz(x» x)Hl(x: xl) - Hl(x: x)H2(xs xl)]M}

Thus M 5 0 and consequently ®(x, , x) # 0 as was to be proved.

EXERCISES. Prove the following.

1. In Th. (20,1), if f5(z) has no multiple zeros, if n; # n,, and if the circles
C,, C; and C have no point in common, then f(z) has in these circles respectively
ny — 1, ny — 1 and 1 zero(s) [Walsh 1b, p. 115].

2. Laguerre’s Theorem (Th. 13,1) is a special case of Th. (20,1).

3. Let positive particles of total mass n be placed at certain points of a circular
regions C; on the unit sphere S and negative particles of total mass (—n) at
certain points of a circular region C, on S. If the regions C, and C, have no
common points, then no point on S exterior to both regions C; and C, can be
a point of equilibrium in this field. Thus, obtain another proof of Th. (20,1)
in the case n, = n, [Bocher 4]. Hint: cf. sec. 11.

4, If the circle C, with center ¢, and radius r, contains all the points where
a pth degree polynomial P(z) assumes the value A4 and if the circle C, with
center ¢, and radius r, contains all the points where P(z) assumes the value B,
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then the points where P(z) assumes the value (n,4 — ny,B)[(n, — ny), ny > ny > 0,
lie in C;, C,, and the circle C of Th. (20,1). Hint: cf. Th. (19,3).

5. Let f(z) be a polynomial of degree m and g(z) a polynomial of degree n % m.
Let all the zeros of g(z) lie in circular region R bounded by a circle C. Let w
be any point on C and let { be defined by the equation

MW _gw _im—n

fw)y gw)  w—1
Then, if { also lies on C and if 4 > 0 and 4 7 n/m, at least one zero of f(z)
liesin R. Hint: Apply Th. (15,4) and Lem. (17,2a) [Obrechkoff 4].

6. If in Th. (20,1) the loci of the zeros of f; and f, are respectively the closed
interiors (assumed disjoint) of C; and C,, and if n; # n,, then the locus of the
finite critical points of f consists of the closed interior of C, if n; > 1, the open
interior of C, if n, > 1 and the closed interior of the C [Walsh 1b, 20]. Hint:
The multiple zeros of f, are not critical points of f.

21. The general case. In generalization of secs. 19 and 20, we shall now study
the derivative of a rational function which has its zeros and poles distributed over
any finite number of prescribed circular regions. The results which we shall
obtain are due to Marden [3] and [10]. We begin with

THEOREM (21,1). For j=0, 1, - -+, p let fi(z) denote a polynomial of degree
n; having all -of its zeros in the circular region 0,Cy(z) =0 where o; = +1 and
(2L1) Ci2) =z —c,* = 1.

Then every finite zero Z of the derivative of the rational function

S (2) - - fol2)

2L2) - f2) = , 0=g9=p
fq+1(z)fq+2(z) te 'fp(z)
satisfies at least one of the p + 2 inequalities
chj(z)go’ j=0,],"',P,
(21,3)
E(Z) _i nm; < MMTix
Co2D)Ci(Z) - -+ CZ) i=0Ci(Z)  s=0ks1 CZ)CUZ) ~
where m; = n; or —n; according asj S qorj>gq,n=>m;,
T = |6 — al® — (uir; — mri)?, M = 0;Sg ;.

In applying Th. (21,1) to the case ¢ = p, we assume that (21,2) reduces to
f(@) =fo(2)fs(2) - - - [5(2).

Before taking up its proof, let us interpret Th. (21,1) from a geometric stand-
point. According as o; =1 or —1, the region C; defined by the inequality
0;,C{(2) = 0 is the closed interior or the closed exterior of the circle with c; as
center and r; as radius. According as u;u, = 1 or —1, the quantity 7, when
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positive is the square of the common external or internal tangent of the circles
Ci(z) =0 and Ci(z) =0. When n # 0, the equation E(x + iy) =0 may be

written in the form (x®+ y2)? + é(x, ) =0

where ¢(x, y) is a real polynomial with a combined degree of at most 2p — 1
in xand y. Being of this form, E(z) = 0 represents a so-called p-circular
2p-ic curve, a curve of degree 2p which passes p times through each circular
point at infinity. As such, the curve E(z) = O consists of at most p branches,
each of which is a bounded closed Jordan curve. In short, when n 5 0, Th. (21,1)
implies that each zero Z of f’(z) lies in at least one of the given circular regions
C; or lies in one of the regions bounded by the p-circular 2p-ic curve E(z) = 0.
For example, when p = 2, equation E(z) = 0 becomes

nmyCy(2)Ca(2) + nmyCy(2)Cy(2) + nmyCy(2)Cy(2)

21,4
L4 —mgmy 701 Co(2) — mymyr13Co(2) — MmamyreCy(2) = 0.

For n # 0, (21,4) is the equation of a bicircular quartic, a result which for the
m; positive integers and the C; interiors of circles coincides with the result due

to Walsh [5]. With subscripts 1, 2, 3 replacing 0, 1, 2 respectively, Fig. (21,1)
illustrates the case that m; = m, = m; and that regions C,;, C, and C; are the

Fie. (21,1)
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interiors of circles of radii r; =r, = r; = 10 with centers at. the points
¢;=—3—1i,¢;=3—iand ¢3=2i In that case, curve E(z) = 0 consists of
two nested ovals.

When n = 0, we may give a similar interpretation of Th. (21,1). The equation
E(z) = 0 thén represents in general a (p — l)-circular 2(p — 1)-ic curve. In
this case, we must take the precaution that not all the regions C; have a point
in common. For, if ¢ were such a point, we could reduce f(z) to a constant
by concentrating at ¢ all the zeros of all the f(z), whereupon f'(z) = 0 making
every point in the plane a possible position of Z. In other words, if we wish
a nontrivial result in the case # = 0, we must assume that no point is common to
all the regions C; .

Proceeding now to the proof of Th. (21,1), let us denote the numerator in
eq. (21,2) by Fi(z) and the denominator by Fy(z). For any zero Z of f'(2), the
expression F(Z) = Fy(Z)F)(Z) — F\(Z)F)Z) =0 is one which is linear and
symmetric in the zeros of each f;(z). By Th. (15,4), we may select a point {;
in each region C; such that Z will also satisfy the equation obtained from
F(Z) =0 by setting fi(z) = (z — {;)™. Thus we find that either Z = {; for
some value of j for which n; > 1 or Z satisfies the equation

(21,5) golmj/(z — ) =0

In the first case Z lies in a region C; and thus satisfies the jth of the inequalities
(21,3). In the second case Z lies in the locus R described by the roots of equation
(21,5) when &y, &, - -+, {, are allowed to vary independently over the circular
regions C,, Gy, * * *, C,, respectively.

For the purpose of determining R, let us establish

LemmA (21,1). If the points {; lie in the circular regions C; (j=0,1, -, p),
and if the m; are real or complex constants, then every root Z of eq. (21,5) lies in a

region C; or satisfies the inequality
( S lmjlr; )

i=0|Cy(2)]

<mc; — z) 2_

(216) S0 Ci2)

Let us first choose Z as any fixed point which lies exterior to all the regions
C;. Then by Lem. (12,1) the point w, = (Z — {)* lies inside the circle T,
with center y; and radius p, where

7i =(Z — ¢)|C(2), pi = 1,{ICAZ)|.
Hence, by Lem. (17,2a), the point w = 3* m,w; lies in the circle I' with center y
and radius p where

21,7) y =,§, ™y, =g [mAZ — ¢)/CAD),

21,8) p= éolmjl ps = éonm,l r,ICAZ)1.
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That is,
(21,9) w—9y?—p*=0.

Now, let us specialize Z to be a root of eq. (21,5). Then, as the points {;
vary over the regions C,, point w assumes the value of zero at least once. That
is, w = 0 must satisfy ineq. (21,9); viz.,

(21,10) Iyl — p* = 0.
On substituting from eqs. (21,7) and (21,8) into (21,10), we finally obtain in-
eq. (21,6).

To complete the proof of Th. (21,1), we need now to show that the left sides
of inegs. (21,3) and (21,6) are identical. Using the identity

Z—-c)Z-)+ 2 =) Z—-c)=1Z—=c>+1Z =l —le; — al?,
we find from (21,7) that

< m? |Z — ":'12 < m;m(|Z — ":'|2 +1Z — Ck|2 = le; — Cklz)

=3

= Cu2) 7=0,k=j+1 C.(2)Cu(D)
Using the notation of Th. (21,1) and the hypothesis that ¢,C;(Z) > 0 and thus
|C{(2)| = C(Z)[s; , we infer from (21,8) that
pt = i mirj 2m Ml T 5T
=0C(2) =kt C(Z)CY(2)

Finally, using eq. (21,1), we conclude that

l? — p* = i m} o mmlCi(Z) + CUZ) — 74]
=0 CAZ) i=o=s+1 Ci(Z2)C\(Z)

which reduces at once to the expression in ineq. (21,3) for E(z).
We shall now establish the following converse of Th. (21,1).

?

THEOREM (21,2)." Let Z be any point which satisfies the inequality
(21,11) 6,0, - 0,E(Z) = 0.

Then Z is a zero of the derivative of a function of type (21,2) with each f{(z) =
(z — £,)™ and with {; a suitably chosen point in the region 0,C(Z) =< 0.

First, let us suppose that Z lies exterior to all the regions C;, i.e., that
0;C{Z) > 0 for all j. Then ineq. (21,11) is identical with ineq. (21,6). We also
note that Lem. (17,2a) concerns the locus of point w and that in Lem. (12,1)
the locus of point w,, as Z remains fixed and as z, varies over the interior or
exterior of circle C, is the interior or exterior of the circle C’. In this case,
therefore, we may, without difficulty, retrace the steps which lead to Lem. (21,1)
and thus prove Th. (21,2).
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Secondly, let us suppose that Z lies interior to one region, say C,, and exterior
to the remaining C;. Using Lem. (12,1) and Lem. (17,2b) and the notation
employed in the proof of Lem. (21,1), we find that w, lies outside the circle
I’y and the remaining w; lie inside the circles I';. The locus of point w =
>2_, m;w; is then the region

(21,12) w—y2—p*= 0

where

y = gomm = ,é['”"‘z — )ICD),

p = Imal po =31l p, = (ml rof|C@)) = 3 (Im,| r,/1C.(2),
provided p > 0. Since here
(21,13) 6,Co(Z) <0;  0,C{Z)>0  forj=1,2,--,p,
we may write »
p= =3 [mur,|CDL

If we insert these values of ¥ and p and also w = 0 into ineq. (21,12), we find
(21,12) becomes
EZ)[Co2)C(2)--- C(Z2) Z 0

which, because of (21,13), reduces to (21,11). Hence, if p > 0, ineq. (21,11)
implies that point w = 0 satisfies (21,12) and therefore that points {, may be
chosen in the regions C; making Z a root of eq. (21,5). If p =0, the locus of
w is the entire plane; the point w = 0 is surely a point of the locus and Z is a
root of eq. (21,5) for a suitable choice of points {; .

Finally, by Lem. (17,2c), if Z lies in two or more regions C; , the locus of point
w is the entire plane and again the point Z will be a root of eq. (21,5) for suitably
selected {; .

Thus, we have completed the proof of Th. (21,2).

Ths. (21,1) and (21,2) do not in all cases completely specify R, the locus of the
roots of eq. (21,5) when the {; have the circular regions C, as their respective
loci. For example, in the case that the bicircular quartic (21,4) consists of two
nested ovals, the requirement (21,11) of Th. (21,2) merely ensures that the region
between the ovals belongs to R.

It is clear, however, from the proof of Th. (21,2) that the inequality opposite
to (21,11), namely 040y * - - 0,E(Z) > 0, may be satisfied only under one of the
following two circumstances. Either the point Z lies in just one region C; and
simultaneously

(21,14) éo[m,-mrj/cj(zn >0,

or it lies at a point common to at least two regions C; .



[§21] THE GENERAL CASE 101

That the locus R may in fact possess a component which is not a simply-
connected region is illustrated by the following example suggested by Professor
Walsh. Let us take m; =1 for j=0, 1, - -+, p. Let us choose the region C,
as merely the origin and each region C;, j=1, 2, -+, p, as the circle with a
center at the point z = ¢?"/? and with a radius r such that sin (7/p) < r < 1.
Each circle C;, j=1, 2, -+ -, p, obviously overlaps its two neighboring circles
C,; but does not contain the origin. Being but a simple zero of f(z), the origin
cannot be a zero of f’(z) no matter what the positions of the remaining zeros
of f(z) may be within the regions C;, j=1, 2, - -+, p. Clearly, therefore, the
locus R completely surrounds the origin but does not include it. Thus, R
consists of at least one region which is not simply-connected.

EXERCISES. Prove the following.

1. Ifmy=my=my,ifc;=—-3—i,c,=3—iand ¢g=2i, andifr, =r, =
r3 =r, then the bicircular quartic (21,4) consists of (a) two ovals, neither
enclosing the other, if r < 3% — 1; (b) a single oval if 3% — 1 <r < 3% 4 1;
(c) two ovals one enclosing the other, if r > 3% + 1.

2. If Z is taken as a root of the equation 4 + X?[m;[(Z — ;)] =0, then
(21,6) must be replaced by the inequality

[- (g5t

(21,15) pesmis=2) 2o

=1 C ,(Z)

Hint: w = —1 must satisfy eq. (21,9).

3. If the hypotheses of Th. (21,1) are satisfied, and if F(z) = f(z)/fy(2), then
each zero of the linear combination F’(z) 4+ AF(z) lies in one of the regions
C,, Cy, -+, C, or in the point set S bounded by the branches of p-circular

2p-ic curve

(21,16)

where

illlz mlz) 3 MM _
=1 nCy(2) i=10=i+1 C (2)Ci(2)

T(2) = |z — (¢; — nd™) — 2
Hint: Use Th. (15,4) and ex. (21,2) [Marden 10].

4. A result similar to Th. (21,1) is valid when one or more of the regions C;
are half-planes o;,L(z) <0 where o; = &1 and where L,(z) = R(ze'™) — h,
with o; and A; real.

5. Let each Fy(p) be an n; degree distance polynomial [cf. ex. (6,10)] and
R@) =TT, F,(p)/]'L_q +1 Fi(p), 0 =g = p. If all the zeros of each Fi(p) lie in
the spherical region

ajsj(p) = 67["9 - c,'||2 - r?] =<—_ 0’ r; > 0, 0; = :I:l,
j=0,1,---, p, then every finite zero of R' = (R/4) || v log R| satisfies at least
one of the inequalities 0,S;(p) = 0 or

é,[NNf/SKP)l = 3 INNT/S@S(@] =0

3=0,k=j+

b
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where N; =wn;; »;=1 for j<q and »; = —1 for j>¢; N=32N, and
Ty = lle; — ll2 — (vj0,r; — n0,r)% [Schurrer 1].  Hint: Prove 3-space analogies
to Lems. (12,1) and (21,1).

22. Some important special cases. We shall now consider under Th. (21,1)
a number of special cases which involve three or more polynomials f;(z) and in
which the p-circular 2p-ic curve E(z) = 0 degenerates into one or more circles.

We begin with the case p =2. When n =0, eq. (21,4) with all subscripts
increased by one reduces to the equation

(22,1) mamy73Ci(2) + mymy 735, Co(z) + mymar1,Cy(2) = 0,

the equation of a circle. On the other hand, for this special case eq. (21,5)
becomes on replacing Z by z

z—{l Z—gz z"‘la

which, solved for —m,/m, , may be written as

(z =8 -8 = M
(z =8 — 8 m,

In other words, the region bounded by circle (22,1) is the locus described by a
point z which forms with {;, {, and {; the constant cross-ratio (22,3), as the
{; describe their regions C; .

These results may be summarized in the form of two theorems both due to

Walsh [1].

(22,3)

WaLsH’s CRoss-RATIO THEOREM (Th. (22,1)). If the points {; , §,, {; varying
independently have given circular regions as their loci, then any point z forming a
constant cross-ratio with {; , {, and {3 also has a circular region as its locus.

THEOREM (22,2). For each j =1, 2, 3, let fi(z) be a polynomial of degree n;
having all its zeros in a circular region C;. If ny + n, = ng and if no point is
common to all the regions C;, then each finite zero of the derivative of the function

@) = 1@ fD)]fo(2)

lies in at least one of the circular regions C, , C, , C, or in a fourth circular region C.
This fourth region is the locus of a point Z whose cross-ratio (22,3) with the points
{15 Lo and L3 has the constant value (—nyny) ac {; , {, and {3 describe the regions
C;, C; and C; respectively.

Regarding Th. (22,2), we may draw the same conclusion for the zeros of the
derivative of the reciprocal f3(z)/f1(z) fz(2) of the above function. Furthermore,
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since the total “degree” of f(z) is n = n, + n, — ng = 0, we may restate Th.
(22,2) in terms of the jacobian of the binary forms (20,1), as is done in Walsh
[1b, pp. 112-113].

The p-circular 2p-ic curve E(z) = 0 also degenerates into a number of circles
in the case that m; > 0 and that the regions C; are the interiors of circles having a

Fie. (22,1)

common external center of similitude. (See Fig. (22,1).) The result in this case
is due to Walsh [1c] and is embodied in

THEOREM (22,3). If each zero of the polynomial f(z) of degree n; lies in the
closed interior of a circle C; and if the circles C; have an external center of similitude
O, then each zero of the derivative of the product f(z) = fi(2) f(2) -+ * f,(2) lies
either in the closed interior of one of the circles C;(j= 1,2, -, p) or in the closed
interior of one of the circles I', (k =1,2,-+-+, p—1). The circles T, have also
the external center of similitude O; their centers are the zeros of the logarithmic
derivative of the polynomial

(22,4 8@ = — )"z — e (2 —¢y)"

where c; is the center of C; forj=1,2,---,p.

Let us verify this theorem in the case p = 3. Without loss of generality,
we may take O at the origin and take the centers ¢;, ¢; and ¢; of the circles
on the x-axis. (See Fig. (22,1).) The equation of each circle C; has then the
form

(22,5) CiD)=|z—c;)®>— (Ae)’=x*+ y>— 2c;x + puc; u=1-—2%
and the square of the common tangent of two such circles is
(22,6) T = 6, — &l* — 2%(c; — ¢)® = plc; — ¢

If egs. (22,5) and (22,6) are substituted into eq. (21,4) after all subscripts have
been increased by one, we obtain the equation

22,7 n*(x% 4+ y*)? — 24x(x* + y*) + B(x2 + y*) + 4Cx* — 2Dx + E=0
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where m; = n; and

A = n[(n — ny)c; + (n — ny)cy + (n — ny)csl,
B =u{(n - n)%; + (n — ny)’c + (n — nx)e; + 2nynycic,
+ 2nyn5c5c5 + 2nyn50,C5},
C = n(nge1¢y + nscics + nycacs),
D = p{nse,col(n — ny)ey + (n — ny)cs] + nocicsl(n — ny)ey + (n — ng)cy]
+ nycacsl(n — ny)es + (n — ng)es] + 2(nyng + nyng + nyngeicacs),

E = p*{n3cic; + nicics + nicscs + 2¢,¢acq(nangey + nyngcs + nyNyCy)}.
On the other hand, the zeros of the logarithmic derivative of (22,4) in this case
satisfy the equation

(22,8)  ng(z — c)(z — ¢3) + noz — e)(z — ¢5) + my(z — ¢2)(z — ¢5) = 0.
Denoting the roots of (22,8) by y, and y,, we have the relations from eq. (22,8)

1
Y1+ v2==[(n — n)c; + (n — ny)c, + (n — ny)cs),
(22,9) ’1’
Y12 = ; [nscica + nacicy + nycacs).

The circles I'; and T, with centers y, and y, and with O as center of similitude
have the equations of form (22,5)

(22,10) F@=x*+)y"—2yx+upyi=0.
Multiplying together these two equations, we obtain

D@2 = (° + y)° = 2y + y)x(6* + 1) + 604 + 7D + )
+ 4y1yox® — 2pyau(yy + yox + vy = 0.

Using eqgs. (22,9) and other symmetric functions of y; and y,, we may show

that eq. (22,11) is the same as that obtained by dividing eq. (22,7) by n%. In

other words, the bicircular quartic (22,7) degenerates into the two circles I'y

and T', as required in Th. (22,3) with p = 3.

Th. (22,3) may be generalized to rational functions of the form (21,2). If
the regions C; are the interiors of circles and if, exterior to all the circles C;,
there is a point P which is an external center of similitude for every pair C,,
C; when i and j are both less than k + 1 or both greater than k, but which is
an internal center of similitude for all other pairs C;, C;, then the curve
E(z) = 0 again degenerates into a set of circles with P as an internal or exter-
nal center of similitude. For further details, the reader is referred to Walsh
[Ic, p. 45].

(22,11)

EXERCISES. Prove the following.
1. Th. (19,1) is a special case of Ths. (21,1) with p = 1 and (22,3) with p =2
and of Th. (22,2) with region C; taken as the point at infinity.



(§22] SOME IMPORTANT SPECIAL CASES 105

2. Let the circles C; (j=1, 2, - - -, p) have the collinear centers ¢; and equal
radii r. Let the polynomial fi(z) of degree n; have all its zeros in the closed
interior of C;. Let C; denote the circles of radius r, which have their centers
at the zeros of the logarithmic derivative of the g(z) of eq. (22,4). Then the
zeros of the derivative of the product f(z) = fi(2)fa(2) - - - f,(2) lie in the
point set consisting of the closed interiors of the circles C; (j =1, 2, - - -, p) for
which n; > 1 and the circles C; (j=1, 2, - -+, p—1). Hint: Use Th. (21,1)
or allow point O in Th. (22,3) to recede to infinity [Walsh Ic, p. 53].

3. Let the r in ex. (22,2) be a sufficiently small number. Then the zeros of
f%)(2) lie in the point set consisting of the closed interiors of the circles C;
G=1,2,---,pand Cj(j= 1,2, -+, p — k), the latter being of radius r and
having their centers at the zeros of g*)(z)/g(z) [Walsh Ic, p. 53].

4. For my = my, = m,, r; = ry, = ry and the centers c; at the vertices of an
equilateral triangle whose center is O, bicircular quartic (21,4) degenerates into
two circles concentric at O, the larger of which has the radius (r7 + Ar,)'/2, h being
the distance from O to ¢; [Walsh 5].

S. Formy=m,ry=r(j=1,2,---, p) and the c; as the roots of the equation
z? = h? where 0 < A, the curve E(z) = 0 of Th. (21,1) (with all subscripts in-
creased by one) degenerates into a set of circles concentric at z = 0 having as
radii the roots R of the equation

P P
S3Bt)— 3 4k’ sin’(#(j — k)p™) =0,
1 i=1,k=i+1
where 1/t; = R% + h® — r? — 2hR cos (2wjp~') [Marden 3, p. 98].
6. Let a, b, ¢1, ¢y, 3, * * * be real numbers and let each z; be a point in or
on the circle C; with center at ¢; and with radius r. Then the zeros of the de-
rivative of the entire function of genus zero or one

f(z; 2y, 25, 23, - - *) = exp (az + b) kH1(1 — z[z)
lie in the circles C; of radius r with centers at the zeros of the derivative of
f(z; ¢y, ¢, 3, -) [Walsh 11].

7. Let Cy, C,, - - -, C, be circles of equal radius r with centers at the collinear
points ¢;, ¢, ***, ¢, . Assume in eq. (9,1) that the «; are positive and denote
by s(z) a Stieltjes polynomial corresponding to a;,=v¢;,j=1,2,---,p. Let
C/, C;, -+, C, denote the circles of radius r with centers at the zeros of s(z).
If no circle C; has a point in common with any other C; or with any circle C;,
then the locus of the zeros of the Stieltjes polynomial S(z) as the point a; varies
over the closed interior of the circle C; (j=1, 2, - - -, p) consists of the closed
interiors of the circles C; (j=1, 2, - - -, n). Furthermore, each C; contains just
one zero of S(z) [Walsh 8].

8. The curve (21,16) reduces to one or more circles in the following cases:
(a) p =1 (cf. Cor. (18,1)); (b) A real and the regions C; taken as the closed in-
teriors of equal circles with centers on a line parallel to the axis of reals [Walsh 9].
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9. Let Cy:lz| £y, Cotlzl Z rs (> 1), Cazlz| Z 13 (> 1) and
ry = (myrars — narsry — ngrira)[(nory + ngrs — myry),

where n, , n, , ng (= n, + n,) are respectively the degrees of polynomials f, , f2 , f5 -
If all the zeros of f;, fa, fs respectively lie in C,, C;, Cy, then no critical point
of f(z) = £1(2) f2(2)/ fo(2) lies in the annulus r; < |z] < r, if r; < ry < rg and none
lies in the annulus r; < |z| < rgifry > ry.



CHAPTER VI

THE CRITICAL POINTS OF A POLYNOMIAL WHICH HAS ONLY
SOME PRESCRIBED ZEROS

23. Polynomials with two given zeros. In Chapters Il and V we developed
several theorems on the location of all the critical points of a polynomial f(z)
when the location of all the zeros of f(z) is known. In the present chapter we
shall investigate the extent to which the prescription of only some of the zeros
of f(z) fixes the location of some of the critical points of f(z).

A first result of this nature is the one which we may derive immediately from
Rolle’s Theorem by using €q. (10,7) to transform the real axis into an arbitrary
line L. This result states that, if the zeros of a polynomial are symmetric in a
line L, then between any pair of zeros lying on L may be found at least one zero
of the derivative.

We now ask whether or not, given two zeros of a polynomial f(z), we may
locate at least one zero of f’(z) even when no additional hypothesis (such as that
of symmetry in a line) is placed upon the remaining zeros. An affirmative
answer to this question, as given first by Grace [1] and later by Heawood [1],
is stated in the

Grace-Heawoop THEOREM (Th. (23,1)). If z;, and z, are any two zeros of an
nth degree polynomial f(z), at least one zero of its derivative f'(z) will lie in the
circle C with center at point [(z, + z,)/2] and with a radius of [(1/2) |z, — z,| (cot =[n)].

In proving this theorem we may without loss of generality take z; = +1
and z, = —1. (See Fig. (23,1) for the case n = 8.) By hypothesis, we have upon
'@ =ay+az+ az® + -+ - + a, 2" + 2"

the requirement that
2a, = 2a,

@) 0=1() —f(—1)=f: P di=2a,+ 24 2y

Since eq. (23,1) is a linear relation among the coefficients of f'(z), we may apply
Th. (15,3). Thus at least one zero of f’(z) lies in every circular region containing
the zeros of the polynomial .

g(2) =f_+11(z — )" 1dt = (1/n)[(z — D" — (z + D"].

But the zeros of g(z) are z = —i cot (kn/n), k=1, 2, -+, n—1. This
means not only that at least one zero of f'(z) lies in the circle C of Th. (23,1)
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but also that at least one zero of f'(z) lies in every circle C’ (see Fig. (23,1))
through the two points z = =i cot =/n.

That the radius r of the Grace-Heawood Theorem may not be replaced by a
smaller number may be seen from the polynomial

1(2) =f_zl (t — i cot m/n)y™ dt
= Mz — i cot(mm)]" = [=1 — i cot (m)]"}
n

which has the zeros z = +1 and the derivative of which,
f'@) = [z — i cot (mm)]",

has its only zero at z = i cot (n/n).

Let us now allow the points z, and z, to vary arbitrarily within circle |z] < R
and inquire regarding the envelope (see Fig. (23,2)) of the corresponding circle
C of Th. (23,1). It is clearly sufficient to consider the envelope of the circle
when |z,| = |z, = R. Any point on the circumference of C may be represented

by the complex number:

(23.2) (oatn elaal (,_,) |
2 2 n

Corresponding to point {, two points z; and z, on the circle |z| = R may be
found so that either z; = z,e’ or z, = z¢* with 0 = 9 =< = and so that eq.
(23,2) is satisfied. Thus,

Il = (R[2) |1 + €| + (R[2) |1 — €| cot (m/n),
Il = Ricos (y/2) + sin (y/2) cot (w/n)]
= Rsin(w/n + y[2) csc(m/n) = R csc(m/n).
We have thereby proved the following result due to Alexander [1], Kakeya [2]
and Szegd [1].

THEOREM (23,2). If two zeros of an nth degree polynomial lie in or on a circle
of radius R, at least one zero of its derivative lies in or on the concentric circle of
radius R csc (m[n).

This is again the best result, as may be seen by choosing

1@ =f:[u + ie""csc (w/n)]"* du.

For, this polynomial has on the unit circle the zeros z; = +1 and z, = —e®¥/"
and its derivative has a zero on the circle |z| = csc w/n at the point z =
—ie™I"™ csc (m/n).
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EXERCISES. Prove the following.

1. If f'(z) # 0 in |z| = r, f(2) has at most one zero in |z| < r sin (w/n). Hint:
Use Th. (23,2).

2. If the derivative f'(z) of an nth degree polynomial f(z) is different from
zero in a circle C of radius r, then f(z) cannot assume any value A twice in the
concentric circle C’ of radius r sin m/n. In other words, f(z) is univalent in C’.
Hint: Apply ex. 1 to f(z) — A [Alexander 1, Kakeya 2, Szegé 1].

3. Letf(z2) = apz™ + ayz™ + - - + @ 2™, 0 Sny <my <+ - < My, Q0a;° * * ay
#0. If f(1) =f(—1) =0, then at least one zero of f'(z) lies on the disk
|z| = 2k [Fekete 4]. Hint: Apply ex. (34,6) to (23,1).

4. In the notation of sec. 5, let E be a finite set of points; « and 8 zeros of
an infrapolynomial p € I(E); H any hyperbola having segment «f as diameter;
9(z) = p2)/[(z — a)(z — P)]; E'={z: z€E, ¢q(z) #0}. Then E’ cannot lie
wholly interior or exterior to H [Motzkin-Walsh 2].

24. Mean-Value Theorems. We may derive results similar to those of sec. 23
on using the following two Mean-Value Theorems. In the form stated below,
these theorems were first proved by Marden [7] and [8], but in certain special
cases they had been previously treated in Fekete [2-6] and Nagy [4]. Both
theorems employ the notation S(K, ¢) as in sec. 8 for the star-shaped region
comprised of all points from which the convex region K subtends an angle of at

least ¢. :

THEOREM (24,1). Let P(z) be an nth degree polynomial and let z, , 2, , - * -, z,,
be any m points of a convex region K. Let o, the mean-value of P(z) in the points
z; , be defined by the equation

(24.1) o 3o, =2 ;P(z))
i=1 j=1
where
p=arga,sput+y<uptm, =12, m

Then the star-shaped region S(K, (m — y)[n) contains at least one point s at which
P(s) = 0.

We may similarly describe the location of point ¢. 1f H denotes the smallest
convex region of the w-plane containing the points w = P(zy), P(z,), * * *, P(2,,),
then, according to Th. (8,1) applied to F(w) = > ay(w — P(z;)), o is some point
of the region S(H, = — y).

THEOREM (24,2). Let P(z) be an nth degree polynomial and let C: z = y(t)
(t real; a =t < b) be a rectifiable curve drawn in a convex region K. On curve C,
let a(t) be a continuous function whose argument satisfies the inequality

uSarga®) Spu+y<u+m, teC.
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Then, the star-shaped region S(K, (w — y)[n) contains at least one point s for which
b b
242) [ Prvntsn ai = po [ atyon a

Ths. (24,1) and (24,2) could be combined into a single theorem if Stieltjes
integrals were introduced into eq. (24,2).

The proofs of both Ths. (24,1) and (24,2) are essentially the same. For example,
to prove the first, let us write eq. (24,1) in the form

(24,3) 2 o,[P(z;) — o] = 0.
i=1
Denoting by a,, a;, - - -, a, the points at which P(z) assumes the value o, we
may set up the equation
(24,9 P(2) —o=A(z—a)(z—ay) - (z — a,).

If every a, were to lie exterior to S(K, (= — y)/n), the region K would subtend
in each a; an angle less than (7= — p)/n. That is, a constant 6, could be found
so that

(24)5) 0=arg(z;—a) — 6, <(m—p)n, k=1,2,-+-,n; j=1,2,--+,m.

Adding the inequalities (24,5) fork = 1, 2, - - -, n and substituting from eq. (24,4),
we conclude that
O=sarg[P(z) —o]l—argA -3 6 <m—vy, j=12,"-",m
k=
Hence, by Th. (1,1) !

j_glotj[P(z,) —0]#0

in contradiction to eq. (24,3).

We shall now apply Th. (24,2) to the determination of the zeros of P(z); that
is, the points s for which P(s) = 0. Since [® a[p(t)] dt % 0 in Th. (24,2), we
deduce at once a result which for y = 0 is due to Fekete [S] and [6] and for y
arbitrary is due to Marden [7].

THEOREM (24,3). Let P(z) be an nth degree polynomial; let C: z = y(f)
(t real; a <t = b) be a rectifiable curve drawn in a convex region K and let «(t)
be on C a continuous function whose argument satisfies the inequality

parga@) Sp+y<p+m
Then, if

(24,6) f"P[w(r)Mw(r)] dt =0,

P(2) has at least one zero in the star-shaped region S(K, (w — y)[n).
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As an application of Th. (24,3), let us choose

y=0, a(2) =1, a=0, b=1,
w(t) = (1 — )&+ m.

Let us denote by Q(z) an nth degree polynomial which assumes the same values
at the points & and #. 1f now we replace n by » — 1 in Th. (24,3) and if we set
P(z) = Q'(2), then we find

f:Q'[(l D& + m]di = [0(8) — QI(E — ) = .

That is, eq. (24,6) is satisfied. Hence, at least one zero of Q’(z) lies in
S(K, m/(n — 1)). Since K may be taken as the line-segment joining the points
& and 7, we have established the following result due to Fekete [5].

THEOREM (24,4). If the nth degree polynomial P(z) has the two zeros z = & and
z =, its derivative will have at least one zero in the region comprised of all points
from which the line-segment &v subtends an angle of at least [w[(n — 1)].

EXERCISES. Prove the following.

l.Leta# b, A# B,0< ¢ =m and C# 4, C # B, |arg (C — B)/(C — A)|
= ¢. If an nth degree polynomial P(z) assumes the value A4 at z = a and B at
z = b, it assumes the value C at least once in S (segment ab, ¢/n) [Fekete 7].
Remark: For ¢ = =, this result is analogous to the Bolzano Theorem that,
if a real continuous function f(x) of the real variable x assumes the value A4 at
x = a and the value B # A4 at x = b # q, it assumes every value between A
and B at least once on the line-segment a < x < b.

2. Let C: z = y(t) (t real,a < t < b) be a rectifiable curve drawn in a convex
region K and let a(z) be a function which is continuous on C and assumes on
C only values in a sector 4 with vertex at the origin and with an opening y < .
Let pand g be positive integers with m = max (p, q) and let S be the star-
shaped region consisting of all points from which K subtends an angle of at
least (w — p)/(m + ¢). Finally, let P(z) and Q(z) be polynomials of degree p
and g respectively such that R(z) = P(z)/Q(z) is irreducible and has no poles in
S. Then in S there exists at least one point s such that for z = y(r)

b b
f R(2)a(z) dt = R(s) f o(z) dt [Marden 7].
3. Let g be a positive continuous function on the finite interval I: a < x < b.

Let {Q,.(x)},m=0,1,2,---, be a sequence of orthogonal polynomials of degree
m satisfying the relation

[[4090,90,09dx =0 for m=
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Then at least n zeros of the polynomial

-1
$(x) = ? Qi 1(X)

lie in S = S(/, =/l), the region comprised of all points from which the interval /
subtends an angle of at least «r// [Vermes 1]. Hint: Apply Th. (24,3) assuming
the zeros {;toliein Sfor1 £ j <k <n — l and outside Sfork + 1 = <n +
p — 1 and taking

n—1 n+p—1

a«x) =qx) [T (x —L)x = L), Px) =TI (x = ¢).
1 n
4. In the notation of ex. (24,3), all the zeros of the Wronskian determinant

Qn(x) Qn+1(x) e Qn+'p—1(x)
0n(x)  Qnua(x) - Qpipa(¥)

Q7P QI QR
lie also in S(J, /) [Vermes 1]. Hint: Apply ex. (24,3).

25. Polynomials with p known zeros. As a generalization of Ths. (23,2) and
(24,4), we shall now consider the problem: given that p zeros of a polynomial
f(2) of degree n (n = p) lie in a circle C of radius R, to find the radius R’ of the
smallest concentric circle C’ which contains at least p — 1 zeros of the derivative
7).

This problem was first proposed by Kakeya [1]. He showed that there exists
a function ¢(n, p) such that R" = Ré(n, p). Lucas’ Th. (6,2) shows that ¢(n, n) = 1.
Furthermore, as in Th. (23,2), Kakeya established the result that ¢(n, 2) = csc (m/n),
but did not succeed in obtaining an explicit formula or an estimate for ¢(n, p)
for other values of p.

Subsequently, Biernacki [1] derived an estimate for ¢(n, n — 1); namely,
$(n,n — 1) = (1 + 1/n)*%.

In order to throw light upon the general question, we shall, as in Marden [11],
first extend Th. (24,4) to polynomials having a given pair of multiple zeros.

THEOREM (25,1). If z; and z, are respectively ki-fold and k,-fold zeros of an
nth degree polynomial f(z), then at least one zero (different from z, and z,) of the
derivative lies in the circle C with center at the point [(z, + z,)/2) and with a radius
[(1/2) |z, — z5| cot (m[29)], whereq =n + 1 — k; — k, .

If we set p =k, + k, and N =1 + (n/2) we note that the limit in Th. (25,1)
is smaller than, same as or larger than that in Th. (23,1) according as p > N,
p=Norp<N.
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In proving this theorem we suffer no loss of generality in taking z; = —1
and z, = +1. Let us apply Th. (24,3), choosing

a(z) = (1 + 2y~ (1 — 2)*=1, P(2) =f'(2)[«(2), ) =1t

For these choices arg a(z) = 0 = y on the straight line z=9(1), - 1 <t =<1,
and P(z) is a polynomial of degree g. According to Th. (24,3) at least one zero
of P(z) lies in the star-shaped region comprised of all points at which the seg-
ment —1 <z <1 subtends an angle not less than =/q. The smallest circle
which encloses the latter region is clearly the circle described in Th. (25,1).

We now ask: what is the envelope of the circle C of Th. (25,1) when the
points z; and z, vary independently over a circle of radius R? To answer this
question, we may employ the method used in the proof of Th. (23,2). We thus
obtain the following result due to Marden [11].

THEOREM (25,2). If a circle C of radius R contains a ky-fold zero and a ky-fold
zero of an nth degree polynomial, then the concentric circle C’ of radius R csc w[2q,
g=n+1—ky — k,, contains zeros of the derivative with a total multiplicity of
at least ky + ky, — 1.

In order to generalize this theorem to the case that the circle C contains p
zeros which are not necessarily concentrated at just two points, we shall employ
the following identity which connects any p zeros of a polynomial with any g =
n — p + 1 zeros of its derivative.

THEOREM (25,3). Among the n + 1 distinct numbers o, , oy, **-, «,, B,
Boy s Bys p+q=n+1, let the a; be zeros of an nth degree polynomial and
let the B, be zeros of its derivative. Then

D, ....
(25’]) z J1j2" " ‘de =0
(ﬂl - “11)(132 - a:’z) e (ﬁa - aiq)
where j, , jo, -+ * , J, run independently through the values 1, 2, - - - , p and where
D‘“h = kl' k2 ° k’,!
with k; equal to the multiplicity of w; as a zero of the palynomial (8 — «; )(f — ;)
(B ).
This identity, which is due to Marden [11], is a generalization of the formula

< 1
(25,2) > =0

=1 — o
which connects any one zero f, of f'(z)/f(z) with the n zeros «;, a;, ***, «,

of f(2).
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For example, if ¢ = 2, we may eliminate «, from two equations

1 —0, 1

i=1 ﬂl - oy Jj=1 ﬂg - oy

=0

and thus cbtain

n—1 1 n—1 1 n—1 1

A=) BB BB
which reduces to (25,1) with g = 2.

To establish Th. (25,3), it is necessary to eliminate the ¢ — 1 numbers «,,, ,
®yi2, ", &, from the ¢ equations (25,2), k =1, 2; - -+, ¢. As this elimination
is quite involved, we shall omit the details and proceed immediately to the proof
of a result due to Marden [11].

=0

THEOREM (25,4). If a circle C of radius R contains p zeros of an nth degree
polynomial f(2), the concentric circle C' of radius R csc (w[2q),q=n—p+1,
contains at least p — 1 zeros of the derivative f'(z).

Let us suppose, on the contrary, that at most p — 2 zeros of f’(z) lie in or on
C’ and hence at least (n — 1) — (p — 2) = q zeros of f*(z) lie outside C’. Let us
denote these zeros of f'(z) by B, , Bs, - * *, B, and let us denote the zeros of f(z)
lying in C by &, , @y, ***, a,. Obviously, no «;, 1 <j = p, may equal a g,
1 =k =q. Ateach B, the circle C subtends an angle less than =/q. This
means that a point £, on C may be found so that

sk—ﬂk

*; 3

If now the sum in eq. (25,1) be multiplied by (8, — &)(B — &) -+ (B, — &),
the resulting sum would have the terms of the form

(& — ﬂl)(£2 - .32) e ('fq - ﬂq) .
(aix - ﬂl)(“h - .32) e (ajq - .Ba)

Because of (25,3), each term (25,4) would be representable by a vector drawn
from the origin to a point in the sector

(25,3) 0=<arg < 7lq, j=1,2-",p.

(25,4)

0=argz <,

and hence by Th. (1,1) the sum cannot vanish. This result, being in contra-
diction to eq. (25,1), affirms that at least p — 1 zeros of f'(z) must lie in circle C’.

By the same method of proof, we may establish a more general theorem than
Th. (25,4) in which we replace circle C by an arbitrary convex region K and circle
C’ by the star-shaped region S(K, w/q) comprised of all points from which K
subtends an angle of at least w/q. [See ex. (25,1).]

In the case some or all of the «; are multiple zeros of f, the term (8, — «,) in
eq. (25,2) is replaced by [v;(, — «,;)~'] where »; is the multiplicity of «;. If we
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again eliminate the zeros «,, ®,,, ***, &, , We secure an identity between the
sets o; , &y, "+, &, and By, * - -, B, , which identity we may more conveniently
derive by a limiting process from (25,1). The identity has the same form as
(25,1) but.with different positive coefficients D, ;.. . .;

We thus obtain a generalization of Th. (25, 4), namely,

THEOREM (25,5). If a polynomial f has n distinct zeros of which p (0 < p = n)
lie in a convex region K, it has at most n — p distinct critical points on or outside
the star-shaped region S(K, w|q), whereq = n — p + 1.

Let us now develop for infrapolynomials [see secs. 5, 6, 7] a result analogous to
Th. (25,5). This theorem is concerned with the location of just some critical
points of a polynomial f(z) when the position of only some zeros of f(z) is known.
Our analogy must similarly be concerned with just some zeros of an infrapoly-
nomial when the location of the pointset E is only partly specified. The following
is such an analogy, due to Marden [22].

THEOREM (25,6). Let E = E, + E,, where.Ey is a closed bounded pointset
and E, is a set of k points 0 = k = n. Let T, be the set comprised of all points
from which E, subtends an angle of at least w[(k + 1). If p € 2, is a nonvanishing
infrapolynomial on E, then p has at most k zeros outside T, irrespective of the
location of E, .

Proof. 1fZ,,Z,, -+, Z, are any k + 1 distinct zeros of p outside T, then
by Th. (5,2)
(2535) z Zj = 0’ i= 03 13 Y ka
i=0Z; — z;
where z,, z;, * -+, z,, are points in E. Among the latter, let us say that only
Zms Zm1> ' ' " Zm-ss1 are points of E; with 0 = s <k — 1. From the k + 1
equations (25,5) we may theoretically eliminate z,,, z,.1, "', Zp_z+1 but

practically this is very difficult. Instead, we use the fact that the Z; are continuous
functions of the 4;. For a given € > 0 we can find a 6 > 0 such that for rational

numbers p; with |p; — 4, < d,j =0, I, - - -, m, the equation
(25,6) z{)[P:i/(Z —z)]=0
=
has roots &g, &y, -, § with |{; —Z,| < e for i=0, 1, ---, k. Hence the

points ; also lie outside T,. If N is taken as a sufficiently large integer so that
each »; = p;N is an integer, the equation

25,7) gmxz —z)l=0,
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also having the roots &y, &, - -, {;, is satisfied by the zeros of the logarithmic
derivative of the polynomial
f(2)= Ho(z = z)".
J=
We may now apply Th. (25.5), with the «; and g, replaced by the z, and Z; and
with the circle C replaced by a convex region K as in ex. (25,1). Thus we complete
the proof of Th. (25,6).

ExerCises. Prove the following.

1. If a convex region K contains p zeros of an nth degree polynomial f(z),
the star-shaped region S(K, #/q), ¢ = n — p + 1, contains at least p — 1 zeros
of the derivative f’(z). Hint: Use Th. (25,3) [Marden 11].

2. If f'(z) has at most p — 1 zeros in a circle of radius p, f(z) has at most p
zeros in the concentric circle of radius p sin [#/2(n — p)]. Hint: Assume the
contrary [Marden 11].

3. If the derivative of an nth degree polynomial f(z) has at most p — 1 zeros
in a circle C of radius p, then f(z) assumes no value 4 more than p times in the
concentric circle C’ of radius {p sin [7/2(n — p)]}; that is, f(z) is at most p-
valent in C'. Hint: Apply ex. (25,2) to f(z) — A [Marden 11].

= |2 _ n
f(2) = [z 2z (2

4. The polynomial
V%] /2 n—p
) + 1} [z —Yinn - p))%:|
h—p p

with p a positive even integer has two zeros on the unit circle, each of multi-
plicity (p/2). Its derivative has at the same points zeros each of multiplicity
(p — 2)/2 and has a double zero at the point z = (2 — p/n)*:. Thus, for p
even the ¢(n, p) defined at the beginning of sec. 25 satisfies the inequality

(25,8) é(n, p) = (2 — p/n)*% [Marden 11].
5. LetZ,,Z,, -, Z, be zeros of the function

p—1 . n
F2) =3 A2 + Imjl(z — z)),
j=0 i=0
where the A, are arbitrary complex constants. Then

n P
(259) F@) = 3imi - DT @ - 212, - 2))
Hint: Eliminate the 4, from F(z) by using the eqs. F(Z,) =0, k=1,2,---,p
[Marden 19].

6. If in ex. (25,5) all the poles z; lie in a convex region K and if the m; are
points in a convex sector with vertex at the origin and with an aperture u, then
at most p zeros of the function F(z) lie exterior to the star-shaped region
S(K, (m — w)/(p + 1)). Hint: Assume the contrary and consider the argument
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of each term in the eq. F(Z,,) = 0 obtained fromeq. (25,9) withZ, ,Z,,---,Z, .,
all taken exterior to S [Marden 19].

7. With n = oo the results in exs. (25,5) and (25,6) are valid for the mero-
morphic function

M@ =3B + oz = 2] + 3 m 11z — 2)] + 3. a1z,

where the B, are arbitrary complex constants, if 37, |m;,|/|z;|® converges. Hint:
In ex. (25,5) take A; = B, + >r_, my(1/z,)’. Then, as n— oo, F(z) > M(z)
absolutely and uniformly in every finite closed region not containing any z;
[Marden 19].

8. Letz,=0, z,, z,, * - - be the zeros of an entire function E(z) of genus p so
that E(z) may be written in the Weierstrass form

B) = ez T (1 — 2/2,) exp 3 ce12,4741).

Jj=1

Then, if Z,,Z,, - - -, Z, are any p zeros of E'(z), and if m; = 1 for 1 =,

EG) = B3 [tz = 21 11 (2. - /(2 - 1)

If all the zeros of E(z) lie in a convex infinite region K, at most p zeros of E’(z)
lie exterior to the region S(K, =/(p + 1)). Hint: Apply ex. (25,7) to E'(2)/E(2)
[Marden 18].

26. Alternative treatment. As in sec. 25 let us denote by R the radius of a
circle containing p zeros of an nth degree polynomial f(z) and by R’ the radius
of the concentric circle containing at least p — 1 zeros of f'(z). We shall now
obtain another upper bound on R’, this time by using ex. (19,4) and ex. (19,5)
and induction.

As a first step, we shall prove

THEOREM (26,1). If an nth degree polynomial f(z) has p zeros in or on a circle
C of radius R and an (n — p)-fold zero at a point {, then its derivative has at leasi
p — 1 zeros in the concentric circle C’ of radius R’ = R[(3n — 2p)/n].

Without loss of generality in the proof, we assume that C is the unit circle
[z] = 1.

If |{| = 1, then all the zeros of f(z) lie in circle C and by Th. (6,2) all n — 1
zeros of f’(z) lie in C. In such a case, surely p — 1 zeros of f(z) lie in C’.

If |] > 1, ex. (19,5) informs us that (see Fig. (26,1)) the zeros of f’(z) lie in
circle C and in a circle I' with center y = p{/n and radius ¢ = (n — p)/n. If
C and T (closed disks) do not overlap, exactly p — 1 zeros of f'(z) lie in C and
hence in C’. If C and I do overlap, but if I does not enclose {, precisely p zeros
of f'(2) lie in the region comprised of C and I' and hence in the circle C’ with
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center at the origin and radius
1 + [2(n — p)/n] = (3n — 2p)/n.

Finally, if C and I overlap and if I' contains {, then all the zeros of f(2) lie in
C’ and hence all n — 1 zeros of f'(2) lie in C’.

In all cases, therefore, circle C’ contains at least p — 1 zeros of f'(z).

Let us now consider polynomials which have p zeros in a circle C, but do not
have the remaining zeros necessarily concentrated at a single point. For such
polynomials, we shall prove a result due to Biernacki [3].

FiG. (26,1)

THEOREM (26,2). If an nth degree polynomial f(z) has p (p < n) zeros in a
circle C of radius R, its derivative has at least p — 1 zeros in the concentric circle
C’ of radius

n—p
(26,1) R'=RTII(n + k)/(n — k).
k=1
Our proof will use the method of mathematical induction. Without loss of

generality, we may assume that C has its center at the origin and that the zeros
a; of f(z) have been labelled in the order of increasing modulus

(26,2) log] = log] =0+ = oyl

We begin with the case p =n — 1. Since only one zero «, is exterior to C,
we learn from Th. (26,1) that at least p — 1 zeros of f’(z) lie in the circle

|z|§(1+3)R<(1+ 2 )R=("+1)R;
n n—1 n—1

that is, in the circle C’ with the radius R’ as given by eq. (26,1) for p =n — 1.
Let us now suppose that Th. (26,2) has been verified for the cases p =n — 1,
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n —2,---,N 4 landlet us proceed to the case p = N where

n—N+1
R = R[(2n — N)/N] TI (n + k)[(n — k).
k=1
If in this case [«y,;| > (2n — N)R/N, we may apply ex. (19,4) with n, = N,
ng=n— N,r,=Randr, > (2n — N)R/N. We thus find that

r > (1/n){Ni(2n — N)RIN] — (n — N)R} = R

and that f’(z) has exactly N — 1 zeros in the circle C; = C and hence in the
circle C’.

If, on the other hand, |ay,| = (2n — N)R/N, the circle C:|z| = p =
(2n — N)R/N contains the N + 1 zeros «;, &, ***, ay,;. Hence, according
to Th. (26,2) applied with p replacing R and N + 1 replacing p, at least N zeros
of f'(2) lie in the circle

Cn=N [+ D +2)--Cn—N=1)
(26,3) Izlé[ N :H:(n-—l) (n—2)---(N+1) ]R

But this is the circle C’: |z]| = R’, with the R’ given by eq. (26,1) for p = N.

In all cases in which p = N, there are therefore at least N — 1 zeros of f’(2)
in the circle C’. In other words, Th. (26,2) has been established by mathematical
induction.

However, neither Th. (25,4) nor Th. (26,2) gives the complete answer to the
question raised at the beginning of sec. 25. For, as a critical examination of
their proofs will reveal, neither theorem gives in general the least number ¢(n, p)
with the property: if p zeros of f(z) lie in a circle of radius R, then at least p — 1
zeros of f’(z) lie in the concentric circle of radius Ré(n, p).

EXERCiISes. Prove the following.
1. If the derivative of an nth degree polynomial f(z) has at most p — 1 zeros
in a circle C of radius p, then f(z) has at most p zeros in the concentric circle C’

F1G6. (26,2)
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of radius
n—p—1

(26,4) pr=0pr };Il [(n = B)/(n + K)].

2. The f(2) of ex. (26,1) is at most p-valent in |z| < p'.

3. Th. (6,2) is the special case p = n of both Ths. (25,4) and (26,2).

4. In the case p = 2, Th. (23,2) is better than Ths. (25,4) and (26,2).

5. Let « be a p-fold zero of the nth degree polynomial f(z) and let C, a circle
of radius R, pass through « but not contain any other zeros of f(z). Let C’, a
circle of radius R’ = (p/n)R, be tangent to C internally at «. (See Fig. (26,2).)
Then f'(z) # 0in C’. Hint: Apply ex. (19,5).

Remark. The radius R’ may, as shown in Nagy [5], be replaced by the larger
number R” = p/(S + p), where S is the maximum number of zeros of f(z) to
either side of the line tangent to C at «.



CHAPTER VII

BOUNDS FOR THE ZEROS AS FUNCTIONS OF ALL
THE COEFFICIENTS

27. The moduli of the zeros. So far we have studied the location of the zeros
of the derivative of a polynomial f(z) relative to the zeros of f(z). The results
which we obtained led to corresponding results concerning the relative location
of the zeros of various other pairs of polynomials. In short, we may regard
the preceding six chapters as concerned with the investigation of the zeros
Z,,2,, -, Z, of a polynomial F(z) as functions Z, = Z,(z;, 25, ***, 2,)
of some or all of the zeros z, of a related polynomial f(z).

In the remaining four chapters, our interest will be centéered upon the study
of the zeros z, of a polynomial

@7,1) f@=a+az+ e +az

as functions z; = z,(a,, @, * * *, a,) of some or of all the coefficients a; of f(z).
Our problems will fall mainly into two categories:

(D Given an integer p, 1 = p < n; to find a region R = R(ay, a;, ***, a,)
containing at least or exactly p zeros of f(z). For instance, we shall try to find
the smallest circle |z]| = r which will enclose the p zeros.

(II) Given a region R, to find the number p = p(a,, a,, * - -, a,) of zeros
in R. An example of such a problem is that of finding the number p of zeros
whose moduli do not exceed some prescribed value r.

While the regions R to be considered will be largely the circular regions,
usually half-planes and the interiors of circles, we shall also consider other regions
R such as sectors and annular rings.

Just as some of the preceding results were complex-variable analogues of
Rolle’s Theorem, so will some of the succeeding results, particularly those con-
nected with the problems of the second category, be complex-variable analogues
of the rules of sign of Descartes and Sturm.

Let us begin with a problem of the first category: to find an upper bound for
the moduli of all the zeros of a polynomial. A classic solution of such a problem
is the result due to Cauchy [1]; namely,

THEOREM (27,1). All the zeros of the polynomial f(z) =ay + @iz +--* +
a,z", a, # 0, lie in the circle |z| < r, where r is the positive root of the equation

(27.2) @] + laul z + -+ - + |@py| 2" — @, 2" = 0.

Obviously, the limit is attained when f(2) is the left side of (27,2).
122
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The proof hinges on the inequality, obtained from eq. (27,1),
(27,3) /@ Z la,l 121" — (laol + laal lz] + - -+ + |@naf 121",

If |z| > r, the right side of (27,3) is positive since the left side of eq. (27,2) is
negative for r < z = + oo. Hence f(z) # 0 for |z| > r.

From ineq. (27,3), there follows immediately a second result also due to
Cauchy [1]; namely,

THEOREM (27,2). All the zeros of f(z2) = ay + a1z + -+ + a,z", a, #0, lie
in the circle

(27,4 |z] <1 4 max |a,/a,l, k=0,1,2,---,n—1.

For, if M = max |a/a,| and if |z| > 1, we may infer from ineq. (27,3) that
@I 2 la 271 = M3 1217
> lau) 271 = M3, 121
j=1

M lzl —1—M
> a" ”{1 - } = a” n{_——_}.
la,l |z] -1 la,l || =1

Hence, if |z|] = 1 + M, then |f(z)] > 0. That is, the only zeros of f(z) in
|z] > 1 are those satisfying ineq. (27,4). But, as all the zeros of f(z) in |z| = ]
satisfy ineq. (27,4) also, we have fully established Th. (27,2).

Let us arrange the zeros z; of fin the order

|zl 2 |zol Z2 - 2 |2

l-

From the a; expressed as the elementary symmetric functions of the z; , we infer
that [see egs. (15,4). and (15,5)]

(27,5) |an—k/anl é C(n’ k) lzllk,
(27,6) o = max |a,_4/a,C(n, O)I'* = |z,.
1=kSq

On the other hand, from eq. (27,2) with z = r, we infer that

27,7 rm=Za"+ Cn,n— Da™tr + -+ + Cn, Dour™t = (a0 + 1) — r™.
Hence, ’ |
(27,8) Q@¥" — Dr 2«

In other words, we have established the following result due to Birkhoff [1],
Cohn [1] and Berwald [3]; namely,
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THEOREM (27,3). The zero z, of largest modulus of f(z) = ay + ayz + * * * + a,2",
a, # 0, satisfies the inequalities

(27.,9) @ =DrsaslzlSr=sae/in-1),

where r is the positive root of eq. (27,2) and « is defined in (217,6).

The lower limit in (27,9) is attained by f(z) = (z + ). For, eq. (27,2) is
then (z + 1) — 2z" =0 and r=1/(2Y" — 1). The upper limit in (27,9) is
obviously attained by f(z) = (z + 1)* — 2z".

By the above reasoning we may also show that, if z, is the zero of f(z) of
smallest modulus, then |z,| £ (2 — 1)r. (See also ex. (27,1).)

A further improvement in bound (27,9) may be developed on use of the well-
known Hélder inequality

n n 1/p/ n 1/q
@10 Sep= (3] (30"

j=1 i=1 i=1
where «; > 0, 8, > 0 for all j.and p > 1, ¢ > 1 with (1/p) + (1/g) = 1. When
applied to (27,3), ineq. (27,10) yields the results

n—1 . n—1 /p [n—1 1/q
@7,11) S Jaj) |z’ < ( > la,-l")' (z |z|f") :
=0 =0 j=0
n n—1 1 1/q
(27,12) S Z laal 121"l — 4,\ 3 ——) |
" i=o |z|'"7?
where
n—1 1/D
@7,13) 4, = (3 ajar)”
=
Since, if |z] > 1,
27,14) 1 g1 __1
< Izl(n—i)a = lzla’a |29 — 1 ’
we learn from (27,12) that
n A
@1.19) @1 > a1 = Al 20

provided |z|? — 1 = (4,)%; i.e.,
(27,16) lz| Z [1 + (4,)7]=

The relations (27,15), (27,16) and (27,13) lead thus to the result of Kuniyeda
[1], Montel [2] and Tdya [1], which we state as

THEOREM (27,4). For any p and q such that

(27,17 p>1, ¢>1, (p+U/9=1,
the polynomial f(z) = ay + a1z + -+ + + a,z", a, # 0, has all its zeros in the circle

n—1

/p)1/
27,18) ol < {1+ [2 |aj|”/|a,.|”]" s (4 mmageye

j=0
where M = max |a,/a,|,j=0,1,-++,n—1.
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Thus, if p = ¢ = 2, ineq. (27,18) becomes

n—1 '/f
(27,19) Iz < {1 +S 1aYlar)
=0

the bound derived in Carmichael-Mason [1], Kelleher [1] and Fujiwara [1].
Results analogous to the above have been found for expansions of a given
polynomial fin terms of certain orthogonal polynomials y,(z) with deg y, = k,

(27,20) f@) = zo a2’ =kZo biyi(2).
= =

For example, when y,(z) are the Hermite polynomials

(27,21) Hy(z) = (= te*'(d"]dz) (),

Turan [4] established the following analog to Th. (27,2).

THEOREM (27,5). In the expansion

(27,22) f(@ =i a;z’ = i b H,(z)
where a,b, # 0, let = =0
M* = max |b,/b,|, 0<k=n-1.
Then all the zeros of f lie in the strip
(27,23) 13(2)] < (1/2)(1 + M*).

To prove Th. (27,5) we note that the zeros x;; , of H(z) (j= 1,2, - - -, k), are
all real. If we make use of the identity [Szegé 4]
. Hy(z) = 2kH} 4(2),
we may write
H,(z) 1H(z) 1Ek 1

Hyz) 2kHJ(2) 2%&Ez—x,

Ho@| 1% 1 _ 1

Hy(z) | 7 2kimtlz — x4 21yl
since z = x + iy and |z — x| = |y| for all j. The equality holds only when
R(z) = x;. Thus
Hy(z) Hyz) Hyn(z).  Ha,a(2)
H,(2) Hen(2) Hyo(z)  Ho(2)
Now, from (27,22) we find forz ¢ x,,,,, j= 1,2, -+, n,

1
2n—k Iyln—k

9N Z b 1= 1o IHk.1<z)/Hn(z)|},

(27,24) > 1b,H,(2)l {1 _ M*g@ | yl)_m},
1f(2)] > 1b,H ()] {1 — M*[1/2 |y| — DI}
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Clearly [f(2)| > 0 if 2|y| —1 — M* = 0. Hence all zeros of f(z) must satisfy
ineq. (27,23).

EXERCISES. Prove the following.

1. The zero of smallest modulus of f(z) =ay + a;z + - - + a,2", a, # 0,
lies in the ring R < |z| < R/(2Y" — 1), where R is the positive root of the
equation

laol — lay| z — |ay| 22 — - -+ — |a,| z* = 0.

Hint: Apply Th. (27,3) to F(z) = z"f(1/z).
2. All the zeros of the f(z) of ex. (27,1) lie on or outside the circle
|z| = min [|a,|/(|aol + |a])], k=1,2--,n

3. As p — oo, the right side of (27,18) approaches the limit 1 + max |a,|/ |a,|,
j=0,1,-++,n—1, and thus Th. (27,2) is a limiting case of Th. (27,4).
4. All the zeros of f(z) =a, + ayz + - + a,z", a, # 0, lie in the circle
aﬂ aﬂ.

2:| 4
Hint: Apply (27,19) to F(z) = (1 — z)f(z) [Williams 1].
5. All the zeros of f(z2) =ay+ aiz+ - + a,z" a, #0, lie in the circle

2 2
G a1 — 4 a, — ap

+ +oo

2125 | = [1 +

an

(27,26) z] £ 3 la,j/a.l"".
i=1

Hint: Apply ex. (17,1) successively to the polynomials Py(z) = a,z"* +
a, 2" * 14+ ta, , z,withk=n—1,n—2,---,0and with —c = q,_,
[Walsh 7].

6. If z, and z, are zeros of f(z) =ay + ayz + - + a,2z", aya, # 0 and if
|z3) =1 = |z, then

n n—2
lag + a1z, = zzlajla layzs + apy| = Z la,l.
j= ‘j=0

7. Let M = max |z;| of the zeros z; (=1, 2, - -+, n) of f(2) = z" + ayz" ' +
*+++4+a,. Then
Mz (Un)3 1a,/C(n, DI
Hint: Add the n relations (j=1,2,:-, n)
[C(n, j) ;| VP = |C(n, )Y 21z - P S M [Throumolopoulos 1].

8. Let f(z) = 3" az* and g(2) = 3T bz* with b, > 0 for all k. Let r, be
the positive root of the equation Mg(r) = |a,|, where M = max |a,/b,|, k = 1,
2, -+, n. Then all the zeros of f(z) lie in |z| Z ry. Hint: For any zero
z = re'® of f(2),

laol g1 = G = [; \ay/ byl bkr"] / [? b,,r":l <M
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since G is a mean value of the quantities |a,/b,| for k =1, 2, - - -, n [Marko-
vitch 3].

9. For any given positive ¢, let M = max |a,|t*, k = 1,2, ---, n. Then all
the zeros of f(z) = >7az* lie in |z| = |aol t/(lag] + M). Hint: Choose
b, = t~* in ex. (27,8) [Landau 4; Markovitch 3].

10. The zeros of the polynomial h(z) = X7 a,b;z* lie on the disk |z| < Mr,
where r is the positive root of eq. (27,2) and M = max |b,/b, |V for 0 <
k < n — 1 [Markovitch 7].

11. All the zeros of f(z) = z" + a,z2"? + - -+ + a,, a, # 0, p < n, lie on the
disk |z| < r, wherer > 1,r? — r?1 = |q |, |a,| = max |g|,p = k =n [Guggen-
heimer 2]. Hint: r and any zero Z of f satisfy

1Z|" = la | (1Z]"*+ — 1)(1Z] — 1),
rt = lag| r*=?(r — 1)1 > g, | (r"? — 1)(r — 1)L

12. All the zeros of fin Th. (27,5) lie in the strip

n—1
132 = (1/2)§o|bk/bn|1/k =B

[Turan 4]. Hint: If |3(z)| > B, then |b,/b,] < (2 [y])** for all k and |f(z)| > 0
from ineq. (27,24).
13. Let {¢,(z)} form a set of orthonormal polynomials; that is,

¢n(z) = Oy + %pn1Z + e + “nnz"
with

2z —_—
(112" 4l d8 = b,
0
where w(f) is a Lebesgue integrable, positive weight function and 4,,, = 0 or 1

according as m % n or m = n. Let a given nth degree polynomial f(z) be written
as

(@) = bepo(2) + b1y(2) + -+ + b,$,(2).
Then all the zeros of f(z) lie in the disk
bal 121 = (Ibol® + [baf* + - - - + [,V = |b,| B

[Specht S, 10]. Hint: Let Z be any zero of f. Solve f(Z) = 0 for b,4,(Z). Use
(27,10) with p = ¢ = 2 and the inequality

1922+« -+ + 16,2(D)* = (1Z]* — D7 [$a(2)P2.
14. If p is the positive root of the equation
|aol x™ = |Gy [x* 1 + -+ + |ap | x + |a,]

and w;, 1 = j = k, are the zeros of the polynomial fi(z) = aoz* + a;z* 1 + -+ - +
a;, then any zero of f, not on the disk K: |z| = p lies on at least one disk
Dyilz—wj|<p,j=1,2,---, k [Specht 12]. Hint: If f(Z) =0, |Z| > p,
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then
LA@) = 1Z*"[fu(2) — D]l < lao| p*-

28. The p zeros of smallest modulus. An important generalization of Cauchy’s
Th. (27,1) is the one published in 1881 by Pellet [1].

PELLET’S THEOREM (Th. (28,1)). Given the polynomial

(28,1) f@=a+az+ - +az®+- - +a,z" a, # 0.
If the polynomial

(28,2) Fy2) = lagl + lay| 2 + - -+ + la,q| 2771 — |a,| 27
+ |appal 227 4 - + |a,| 27

has two positive zeros r and R, r < R, then f(z) has exactly p zeros in or on the
circle |z| = r and no zeros in the annular ring r < |z| < R.

Our proof, like Pellet’s will be based upon Rouché’s Theorem (Th. (1,3)).
Let us take a positive number p, r < p < R. In view of the facts that sg F,(z) =
sg F (0) =1 for 0 <z <r and sg Fy(z) =sg F,(+®) =1 for R<z < oo, it
follows that for € a sufficiently small positive number

(28,3) Fy(p) <0, r+esp=R--e
This means according to eq. (28,2) that

7—1 n .
(28,4) layl p> > lajl p’ + 3 layl p'.
7=0 j=p+1

At this point we shall apply Rouché’s Theorem to the polynomials

(28,5) P(z) = Z a iz, 0(2) = a,z®.

§=0,7
Since, on the circle |z] = p, we have from (28,5) and (28,4)

n

Pl = % lajl p” <la,| p* =1Q(2)] # 0,
Jj=0,i#p
our conclusion is that, in the circle |z| < p, f(z) = P(z) + Q(z) has the same
number p of zeros as does Q(z). Since p is an arbitrary number such that r <
p < R, it follows that there are precisely p zeros in the region |z| = r and no
zeros in the region r < |z| < R.

Pellet’s Theorem, the proof of which we have just completed, may be sup-
plemented by two theorems due to Walsh [10]. The first concerns the case that,
instead of the distinct zeros r and R, F,(z) has a real double zero r while the
second is a converse of Pellet’s Theorem.
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THEOREM (28,2). If F,(z) has a double positive zero r, then f(z) has 6 (6 = 0)
double zeros on the circle |z| = r, p — 0 zeros inside and n — p — § zeros outside
this circle.

THEOREM (28,3). Let ay, ay, " -, a, be fixed coefficients and €, , €, ***, ¢,
be arbitrary numbers with |e| = || = - =|e,| = 1. Let p be any positive
real number with the two properties:

(1) p is not a zero of any polynomial

$(2) = apep + a1z + * - + a,€,2";
(2) every polynomial ¢(z) has p zeros (0 < p < n) in the circle |z| = p.
Then F,(z) has two positive zeros r and R,r < R,andr < p < R.

For the proof of Th. (28,2), the reader is referred to Walsh [10], but for the
proof of Th. (28,3) the reader should also consult Ostrowski [2].

Another set of bounds due to Specht [2] on the p absolutely largest zeros is
furnished by

THEOREM (28,4). If the zeros z; of a polynomial f(z) = z" + a;z"* + - -+ + a,
are arranged so that

lzal Z lzol Z - 2zl > 1 Z Mzpal Z -0 * 2 |z,
then
Izlzz Ut zp' é N: |Z,| é Nl/p

where N2 =1+ |a)|* + -+ - + |a, |2
ProoF. Let {, =1/z,k=1,2,---, p, be the zeros of

gy =zf(1lz)=14+aiz+ " + a,z", lzZl Sr=1—€e<1

with € chosen so that g(re®) # 0 for 0 < 6 < 2#. Applying Jensen’s Formula
[see ex. (16,15)] to.g(z), we have

2r
log 7t~ &) = (112 Tog lg(re®) 0.
According to Pélya-Szeg6 [1, vol. 1, p. 54]

|rPzy2y - - - 2,| = exp {(1/217)‘[0 "log [g(re®) dﬂ]

27
= (1/2m)) 1g(re®)| db.
0
Now by Schwarz’ inequality

27 2 bs
oz 5l < Q)| [0 [Mgretdo] = .
0 1)

By allgwing € — 0 and hence r — 1, we obtain Th. (28,4).
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EXERCISES. Prove the following.
1. Th. (27,1) is the limiting case of Th. (28,1) in which all a;, p <j = n, are
allowed to approach zero.
2 If la,l > laol + larl + ** + + lap s + lagual + -+ + la,], then f(2), de-
fined by eq, (28,1), has exactly p zeros in the unit circle [Cohn 1].
3. In Th. (28,4)
27+ - 7l < max (1 + 4, |a,)

where 4, = max >* la;| for1 =4, <--- <@ <n [Mahlerl, Mirsky 2].

j=1
4. In Th. (28,4),

lzlzz oo zmIZ + lzm+lzm+2 oo zn|2 é N2
[Vicente Gongalves 1, Ostrowski 8].

5.Leta,=a,+ da,,+ "+ d,a,.,, Withay=0,a, =0 forr >n. Let

%o o Ay ° 0 gy g
. % %o o U Upg
N, =| &, oy %o H . 3
Cpy g g " O

Then, in Th. (28,4), |22, * * 25| < N,u/N,_y < NY™ [Specht 3].
6. At least k zeros of f(z) = X2 ,az*, with apa, # 0, n > 2, lie in |z| =
(A 4+ ¢y + - + ¢,) /"] where ¢, = |a,/a,| [Zmorovié 1].

29. Refinement of the bounds. In secs. 27 and 28, we took into consideration
only the moduli of the coefficients of f(z) in constructing some bounds for the
zeros of f(z). We shall now try to sharpen those bounds by taking into account
also the argument of the coefficients.

Let us divide the plane into 2p equal sectors .S; having their common vertex
at the origin and having the rays

6 = (%o + km)|p, k=12---,2p,

as their bisectors. Let us denote by G(r,, r; p, «,) the boundary of the gear-
wheel shaped region formed by adding to the circular region |z| < r, those
pointls of the annulus ry, < |z| < r which lie in the odd numbered sectors S, ,
Ss,**, Sy 1. (See Fig. (29,1).)

Following Lipka [6] in the case p = n and Marden [15] in the general case,
we now propose to establish a refinement of Pellet’s Theorem (Th. (28,1)).

THEOREM (29,1). If the polynomial
(29,1) f@=a+az+ +az”>+ - +a,2"
with

(29,2) apma,a, # 0 and  ay = arg (ay/a,)
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be such that the equation
(293) F@) =lal+lalz+ -+ la,,4] 227 — |a,| 2

+ lapal 24 4 4 gl 2 = 0
has two positive zeros r and R, r < R, then the equation
(29,4 O (D= la| + lagl z+ -+ - + la, 4] 2772 — |a,| 272

1yl 22+ -+ a2 = 0
has two positive zeros ry and Ry with ry <r < R < R,. Furthermore, the poly-

nomial f(2) has precisely p zeros in or on the curve G(ry, r; p, ) and no zeros in
the annular region between the curves G(ry, r; p, ®o) and G(R, R, ; p, ag + m).

FiG. (29,1)

As to the existenée of the roots ry and R,, let us note that, according to (29,3)
and (29,4),

(29’5) Fp(z) = |ao| + z(I),,(z),

Thus,

(29,6) Q,(r) = —laol/r, Dy (R) = — |al/R.
Since

®,(0) = |a;| > 0 and ®,(+ ) > 0,

it follows that @ (z) = 0 has two roots ry and Ry such that 0 < 7y <r < R < R,
and that, for € > 0 and sufficiently small,

(29,7) @,(p) <0 forro+ e<p=<Ry—e.
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Let us now set z = pe'® and
(29,8) aila, = A, A, =0, k=0,1,2,---,n.
For the real part of [p?f(z)/a,z”], we then have

(29,9) R(p*f(2)/a,z"] = i A;picos [(p — )6 — ;] + p”

i=0,7#¥p

On the other hand, inequalities (28,4) and (29,7) may be written as

(29,10) pP> 3 A, rtesp=R-—g¢
j=0,i#p

(29,11) pPP> > A, ro+e<p=<R,—e
i=1,i#p

Substituting these into (29,9), we have

(29,12) R (@a,2”) > 3 Ap's,, r+esps=R-—g

Jj=0,i#p
(29,13) R[pf(2)]a,z"] > Apcos [p6 — ag] + 3 A;p'd;,
i=1i#p

rot+e=p=Ro,—¢

where 6, =1 + cos [(p — j)0 — «,]. It is clear that the right side of inequality
(29,12) is non-negative for all angles 6 and that the right side of inequality (29,13)
is non-negative for angles 0 in the ranges

—7[2 + 27wk < pb — oy < /2 + 27k, k=01, ,p—1;
that is, in the ranges
(29,14) [0 — (g + 2km)[p | < 7/[2p, k=1,2,--+,p,

constituting the even numbered sectors Sy .
Furthermore, we see that f(z) has no zeros on the rays

0 = [20y + (4k + 1)7]/2p, k=01,---,p—1,

inside the annular region ry < |z| < R, .

Let us now apply ex. (1,9), taking as C the curve G(ry + €;, r + €5 ; p, o)
where 0<e¢ <Ry—r, and 0< e < R—r. Due to the fact that
R[p?f(2)/a,z?] > 0 along this curve for any of the above values of ¢; and e,,
we may infer that f(z) has the same number p of zeros as a,z” inside the curve
G(ro,7; p, %) and no zeros between curves G(ry, r; p, «,) and G(R, Ry ; p, %y + ).

Incidentally, if in ex. (1,9) we take as C any circle |z] = p, r < p < R, we
obtain another proof of Pellet’s Theorem, since R[p?f(z)/a,z?] > 0 along this
circle.
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ExeRrcISes. Prove the following.

1. All the zeros of f(z) = ay + a;z + * - - + a,z", a, # 0, lie in the gear-wheel
region G(ro, r; n, o) where oy = arg (ao/a,), r is the positive root of eq. (27,2)
and r, the positive root of the equation

las| + lagl z + -+ - + @, 2" — |a,| 2" =0  [Lipka 6].

2. If in Th. (29,1) f(z) = >} az* with a,a, # 0 and arg @/a, = o, is such
that F,(z) has two positive zeros r and R, r < R, then the polynomial

Y(2) = Fy(2) — |al z¥, k # p,

has two positive zeros r, and R, with r, <r < R < R;,, and the polynomial f(z)
has precisely p zeros in or on the curve G(r, r; p — k, «;) and no zeros between
the curves G(r,, r; p — k, ) and G(R, R, ; p — k, o, + =) [Marden 15].

3. If the power series f(z) = > a;z’ with aa, #0, arg ay/a, = o, and
with a radius of convergence p > 0 is such that each polynomial

F(2) = lagl + layl z + - - + laya 227 = |a | 2° + - -
+ lapal 277 + - + a,| 2"

has a positive zero r™ < p, then the function F,(z) = lim,_,, F{"(z) has a
positive zero r < p; the function

Yi(z) = Fy(2) — |al 2%, k #p,

has a positive zero r, < r, and the function f(z) has p zeros in or on the curve
G(r,, r; p — k, o) and, hence, in the curve G(r,, p; p — k, &) [Marden 15].

30. Applications. As a first application of Th. (29,1), we shall establish a
result due to Marden [15].

THEOREM (30,1). Let
(30,1) f(z) = boeipo + (bl - bo)eiﬂlz + te + (bn—l - bn_g)eiﬂ”_lzn_l

— b,_,e#"z",

where
bp—-1§bp—2§"'§bo-_<—0<bn—-1§bn—2§"’§bp-
Let
ﬂt; = :30 - :Bp -7
and let
(30,2) g(z) =by+ bz + --- +b,_z"L

Let ry be the smaller positive root of the equation

(30,3) D,2) = (bp— by) + (by — b))z + - - - + (b — b, 1)z"?
+ bn_lz"_l = 0.
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Then, if g(1) > 0, f(2) has exactly p zeros in the curve G(r,, 1; p, B;) and g(z)
has p zeros in the curve G(ry, 1; p, w). If g(1) < 0, f(2) has exactly p zeros in or
on the curve G(ry , 1; p, B;) and g(z) has p — 1 zeros in or on the curve G(ry , 1; p, m).

Insofar as it concerns the zeros of g(z), Th. (30,1) reduces to a result due to
Berwald [2] when the curve G(r,, 1; p, =) is replaced by the circle |z| = 1.
Thus Th. (30,1) is a refinement of Berwald’s result.

To prove this theorem, we make use of the fact that corresponding to the
f(z) in (30,1), the polynomial (29,3) is

(30,4) F(2)= —by+ (bo—b)z+ -+ (by—2 — b,_)z** — (b, — b, ))z*
+ (bp - bp+1)z”+1 +-+ (bn—z - bn—l)zn_:l + bn-—lz”‘

This function may also be written as
(30,5) Fy(2) = (z — 1)g(2).

Clearly F,(1) = 0. Since F (1 + 8) = dg(1 + ), F,(z) changes from — to +
or from + to — at z = 1 according as g(1) > 0 or g(1) < 0. In the notation
of Th. (29,1),

(30,6) rn<r<l=R<R, ifg(l)>0;
(30,7 rr<r=1<R<R, ifg(l)<o0;
(30,8) g =Po— B, —m=p.

Since f(z) has p zeros in or on the curve G(r,, r; p, B;) according to Th. (29,1),
it has p zeros in G(ry, 1; p, B;) if g(1) > 0 and p zeros in or on G(r,, 1; p, B;)
if g(1) < 0. This proves Th. (30,1) as far as f(z) is concerned.

To prove Th. (30,1) with respect to g(z), we need merely note that the zeros
of g(z) are those of F,(z) except for z = 1 and that, considered as a special case
of (30,1), F,(z) has its B, = m and B, = —= and thus its ¢, = =.

As our second application of Th. (29,1), we shall establish a result somewhat
more general than the one given in Marden [15].

THEOREM (30,2). Let Ay, Ay, *, A,y and py, po, *** , toy be any two sets
of positive numbers such that

a—1 a—1

go(l/lf) =1, 21(1//4;) =L p=sh, j=12-,9-1L
For the polynomial
(30,9) f(2) = ay + ayz™ + apz" 4+ - - + az™,

where
aua, - --a, #0 and O=n<m<n<: - <n,=n,
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let
(30,10) M = max [A |a,|/|a |/ =", k=0,1,---,9—1;
(30311) MO = max [nuk |ak|/|aq|]1/(”_"k)’ k = l’ 23 Tt q - l'

Then all the zeros of f(z) lie in or on the gear-wheel curve G(M,, M; n, ) where
oy = arg (ap/a,).

Proor. From egs. (30,10) and (30,11), it follows that 0 < M, < M and
also that
Aelag] = lagl M™™, Uy lag] = lag| Mg™™.

Hence,
q—1 a1

(30,12) Zo laxl M™ = Eo(lllk) lagl M™ = |a | M",
k= k=
q—1 a—1

(30,13) kgl lal M2 < kzl(l/y,,) lagl M? = |a | M2 .

From an equality in (30,12), we would infer that M is the positive root r of the
equation

(30,14) laol + las 2 + - - + lag] 23" — la]| 2" = 0,

whereas from an inequality in (30,12), we would infer that M > r. Similarly,
from an equality in (30,13) we would infer that Mj is the positive root r, of the
equation

(30’15) |a1I z™ + |a2| z™ +- + |aq—1| Zhe1 — |aq| z" = 0,

whereas from an inequality in (30,13) we would infer that M, > r,. Since
we recognize egs. (30,14) and (30,15) to be respectively F,(z) = 0 and ®,(z) = 0,
we conclude from Th. (29,1) that all the zeros of f(z) lie in or on G(r,, r; n, o)
and therefore in or on G(M, , M; n, a,), thus establishing Th. (30,2).

If in (30,9) each n, =1 + k and if the curve G(M,, M; n, a) is replaced
by the circle |z| = M, then Th. (30,2) reduces to a result of Fujiwara [3]. Thus
Th. (30,2) is both a generalization and refinement of Fujiwara’s result.

Of special interest, are the following two sets of the 4; and the u; :

}‘=’ '=0’l’...’ -1
(30,16) {, q j q
Auk—_—q—l, k=l’2’-..’q_1;
a1 ‘
A’.=§o|av|/laj|a ]=0’1’-..’q_1;
(30,17) =
e = z1 lav}/lakl’ k= l’ 23 T, q — 1.

On use of the set (30,16), we deduce at once from Th. (30,2) the following
result.
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CoROLLARY (30,2a). For the polynomial f(z) in eq. (30,9), let

M = max [q |al/|a,|]*/ "), k=0,1,---,4—1
and
M, = max [(g — 1) |al/|a,|]*/ =), k=1,2,--",9g— 1.

Then all the zeros of f(z) lie in or on the curve G(My, M; n, a;) where
%y = arg (ap/a,)-

On use of the set (30,17), we see on setting

—1 —1
(30,18) p=3lalllal,  po=3 lallal,
that
M = max Pl/(n—nk) = max (Pa Pl/n)’
(30,19) MO = max pzl(n—nk) = max (POa P(l)/(n—m)):
We thereby derive

COROLLARY (30,2b). For the polynomial f(z) of eq. (30,9), let p and p, be
computed from eqs. (30,18) and let
x = max (p, Plln), Ko = max (po, P;/("‘M))-
Then all the zeros of f(2) lie in or on the curve G(k, , «; n, a,) where ay = arg a,a, .
Various other corollaries may be deduced from Th. (30,2) on making other
special choices of the 4; and u; , as will be seen in the exercises below.
One of the most important of these [see ex. (30,1)] is the following:

ENESTROM-KAKEYA THEOREM. (Th. (30,3)). Given the real polynomial f(z) =
a+az+---+az" IfayZa Z---2Za,>0,thenf(z) # 0 for|z] < 1.

Furthermore, we may extend the device used in eq. (30,5) so as to describe the
location of the zeros of a polynomial
(30’20) f(Z) = Qqy + a,z + -+ anz"’ ay > 0,

in terms of various linear combinations of the a; .
Thus, if we multiply f(z) by

(30,21) AD)=2+Mz+ -+ 2,2 1 =Em=n,

where 4, > 0 and 4,, # 0, the product

(30,22) F2)=A2)f(z) = Ay + A1z + - - + Appp2z™™

has coefficients

(30,23) Ay =roar, + Map 1+ -+ Lay,, k=0,1,---,m+n,
where a; = 0 for j > nand 4; = 0 for j > m.
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Since
m+n
|F(2)| = Aoag _1521 [l 121,

no zero of f(z) lies on the disk |z| < R, where R is the positive root of the equation

m+n

(30,24) doag — 3 || 2 = 0.
k=1

This method is illustrated in some exercises given below.

EXEerciIses. Prove the following.

1. Enestrém-Kakeya Theorem. (Th. (30,3)) [Enestrém 1, Kakeya 1, Hurwitz 3]
Hint: Use Th. (30,1). Alternatively, construct polygon Z,Z, ---Z, ., With
Zy=0,Z,1 = Z, + ayre™®. Let S, consist of all points from whlch segment
Z,Z,,, subtends an angle of at least §/2. Show S, = S;_; and Z, ¢ S, for all
k > 0 [Tomi¢é 1].

2. All the zeros of the polynomial f@ =ay+ a,z + - - - + a,z" having real
positive coefficients a; lie in rlng p1 = |z| = p, where p; = min (ak/aHl), P2 =
max (a,/a,,,) fork =0, 1, , n — 1 [Kakeya 1, Hayashi 1, Hurwitz 3]. Hint:
Apply Th. (30,3) to g:(2) =f (p12), 82(2) = z'ff(Pz/z)'

3. The real polynomial

h(z) = ay+ a1z + -+ - + &z* — @y 2" — - — a2, a; >0, all j,

has no non-real zeros in the annular ring p; < |z| < p, where p1 max (a;/a;,,),
j=0,1,2,--+,k — 1, and p, = min (g;/a;,,), j =k, k —1,---,n— 1. How
many zeros does f(2) have in the circle |z| < p, [Hayashi 2, Hurwitz 3]?
4. All the zeros of f(z) =a,+ aiz+ -+ a,z" lie in or on the curve
G(M,, M; n, ay) where ay = arg (ao/a,),
M = max p |a,_,/a,|'/, k=1,2,---,n,
MO max po Ian—k/anl /k k= 1’ 2’ trt,n— 19
and p (#1) and p, (#1) are the positive roots of the equations
prtt—2p"+1=0, pg—2p0t4+1=0
Hint: Choose 4, = p* and u;, = pk and apply Th. (30,2).
5. All the zeros of f(z) =a,+ a;z+ -+ + a,z" lie in or on the curve
G(M,, M; n, o) where ay = arg (ay/a,) and where
M = 2 max {Ian—llanl’ |an—2/an|1/2’ ct, |,al/an|1/(”_1)s |ao/2a,,|1/"},
M, = 2 max {|a, 1/a,|, |@n_sfa,*? - - -, |ag)a,| "2, |ay/2a, |/ "D},
Hint: In Th. (30,2), choose 4, = 2%, k =1,2,++,n—1; A, =2"1; u, =2
k=1,2,",n—2; p, 3 =2""2
6. All the zeros of f(z) =ay + a;z + -+ - + a,z" lie in the circle |z| =,
r=max (|ayl/lail, 2l|aarl), k=1, 2, ---, n—1. Hint: Show that
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sl r*1 2 2 |a| r* for k2 1; |ay| r Z |ao| and thus |a,r"| Z |ao| + -+ +
|@,_y] r™1. Remark: The limit is attained by f(z)=2+z+2*+--- +
z" 1 — z" [Kojima 1, 2].
7. Let A, be positive numbers such that 37, (1/4,) = 1. If there exists an
r > 0 such that
max [4; |a,_;/a,]I"" < r < min [K}, la,/a,,1"

forj=1,2,---,pand k=1, 2, ---, n — p, then there are p zeros of f(z) in
2| = r.

8. All the zeros of the polynomial f(z) = ay + @yz + - -+ + a,,z" 1 4 z" lie
in the circle |z] < max (L, L/*tV), where L is the length of the polygonal line
joining in succession the points 0, a,, @,, ***, a,-,, 1. Hint: Apply Cor.
(30,2b) to g(z) = (1 — z)f(z) [Montel 2, Marty 1].

9.1fa;>0,j=0,1,---, n,a_, = a,,; =0, and if p, and p, can be found
(p2 = pr > 0) so that, for ]=0’ L, ===, n 0§P.5_N, b:’= P1P28jt1 —
(p1 + po)a; + a;.; > 0 for j# p and b, < 0, then p zeros of f in eq. (28,1)
lie in |z| < p, and n — p zeros lie in [z| > p,. Hint: Apply Th. (28,1) to
(pz — 2)(p1 — 2)f(2) [Egervary 4].

10. The real polynomial f(z) =ay+ ayz+ -+ a,z2", gy Za ="' 2 a,,
has a non-real zero z; of modulus one if and only if the g; fall into sets of m
successive equal coefficients; that is, defining a; = 0 for j > n, we have

(30,25) Q=0 = " =0y 1>y =0y = """ = Qg
>a2m=a2m+l=”'°
Hint: Obviously, z; # 1 and g(z,) = (1 — z,)f(z,) = 0;
n+1

n+1
ap = ?(ab—l —apZf| < g(ak—l —a) = a,,

unless all the terms (a,_; — a,)z¥ are real and positive. Let m be the least
number for which z* = 1. For the converse, note that eq. (30,25) implies that
1+z4224---4+2z™1is a factor of f(z) [Hurwitz 3, Kempner 1]. Alter-
natively, show for r = 1 the polygonal line of ex. (30,1) must reduce to one or
more regular polygons if z = €% is to be a zero of f(z) [Tomi¢ 1].

11. All the zeros of the polynomial

f@) =ag+ ayz" + - - + gp2™, allg; # 0,
0=n,<n <--+<nm,lie on the disk |z| =< r where
r = max [|ay/a,|™, lZaj/a,.“l"‘i], m;=(n; —n;_)%, j= 2,3, k—1.

[Kojima 1, 2.] Hint:

la:H-ll i 2 2a| rt, lay| r*t = |agl.

Thus |a,| r* = 3% |a;| . Alternatively, set all r; = 1 in ex. (30,12).
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12. Let ry=0,r,=1; r;,- -+, rp_, be arbitrary positive constants. Then in
ex. (30,11) f has all its zeros in the disk

IZI é M = max {[(1 + rj—l)/'j] Iaf/a3+ll}m’a ] = 1’ 2’ T k'

[Cowling-Thron 1.] Hint: Let v, =1; v, ;, =1+ (a/a;_,)z" ™-w, for
j=12,---k. If|z| > M, show |v)| >r;forj=k—-1,k—2,---,0.

13. If in eq. (30,20) f(2) is a real polynomial with b, = X% , a4, ;> 0, k=1,
2,--+, n, mZ 1, no zeros of f(z) lie in the disk |z| < r where r is the positive
zero of

d@)=1—czl +z+---+ 2z
where
¢ = max (a,/b;), k=1,2,---,n

[Heinhold 1]. Hint: In egs. (30,21)-(30,24) set 4, =1 and 4, = —c for j =1,
2, -+ -, m and note that eq. (30,24) has one positive root which must be r.

14. If in eq. (30,20) f(2) is a real polynomial, then all its zeros lie in the annulus
M’ = |z| £ M, where M and M’ are respectively the maximum and minimum
values of the fraction

Aot + Mysq + 1+ 4,05 g5,

Ao@rsr + MBx_ge1 + 0+ ABiopen

for k=0,1, --+, n+ 2pqg — 1, where q and p are positive integers and the
positive parameters A, (s = 1, 2, - - -, p) are chosen so as to make all the denomin-

ators in the fractions positive [Heigl 1].
15. Given the operators E, T and V* such that Ea, = a,, Ta;, = a,,, and

Ve = (E— T = 3 (=1)"Ca, m)T™
m=0

Ifay=0,a,=0and V’a, = 0Ofork=1,2,---,nandforagivena, 0 < a = 1,
then f(z) = D7 a2* # 0 for |z| <1 [Cargo-Shisha 1]. Hint: Show that
(cf. ex. (30,1))

R{(1 - 9@} = S (VaR(* — > 0.

16. Given the operators E, T; and V“* such that

Eakl s kp = a,,l cenkp o T,akl eee k’ = akl ek 1k1+lka+l ko
and V* = (pE =27, T Let0O<a=x1,ifa ...,, 20 and V“a,c1 %, S0
fork-Ol ',n,,1—12 ,pwith(kl,-- " ,,);é(O , 0). "Then
F(zl, cee,z) = Zk o 2wl g, - a (@) (2 £ 0if |z] <1 for j=1,
2, WP [Mond Shisha 1].

31. Matrix methods. Unless otherwise specified, each matrix 4 = (g;,) in the
sequel isa n X nsquare matrix. Let us recall that, if E = (J,;), where d,; = O or
1 according as i # j or i = j, is the identity matrix, the determinant det (4 — zE)
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of the matrix 4 — zE is called the characteristic polynomial of 4 and its zeros are
called the characteristic roots (abbreviated *“c.r.””) of 4.
Given an nth degree polynomial

(L) f@=z"+az"'+ - - +a,,
we may write fin the form
-_Z l 0 oo 0 0
0 —_Z 1 PO 0 0
3L2) f@=(-Dn" . . e .
0 0 0 cee —g 1
—8, —a,, —d,5 °° —a —(a+2)

Therefore f is the characteristic polynomial of the n X n matrix

0 1 o --- 0 0
0 0 1 - 0 0
(31,3) F= . . . . .
0 0 o .- 0 1

—aq, —Aa,, —Qp g °"°° —Q —Qq

called the companion matrix of f. We may therefore use the various known
results on the c.r. of matrices as an aid to determining the zeros of a given
polynomial (and vice-versa).

A number of these results are consequences of the following theorem of Hada-
mard [See Lévy 2, Desplanques 1, Parodi 1].

THEOREM (31,1). Inthe n X n matrix A = (a;;), det A # 0 if

(31,4) lagl > Pi= 3 layl, i=12-"",n

j=1,7#1

Proor. If on the contrary det 4 = 0, then the system of linear equations

(31’5) za“xj=0, i= l, 2" e, n,
i=1

has a non-trivial solution {x,} of which let x,, be the x, of the maximum modulus.
Then from the mth equation in (31,5) ’

n
GmmXml S 3 sl %] = Ppy [x]-
i=li#¥m

Since x,, # 0, ineq. (31,4) is contradicted. Hence det 4 5 0.
On applying Th. (31,1) to matrix 4 — zE, we obtain immediately a result due
to Gerchgorin [1].
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THEOREM (31,2). The c.r. of the matrix A lie in the union of the disks

YE |z —ay S Py, i=1,2-,n
As to the number of c.r. in a given I',, we have the following result due to
A. Brauer [2].

THeEOREM (31,3). Ifin Th. (31,2) for a given m
(31’6) |aﬁ - amml > Pi + P,

for all j 5 m, then one and only one c.r. lies in the disk T',, .

To prove this theorem, we introduce the n x n matrix B(t) = (b,;) where
bpm = Qum 3 by = a;; for i 2 m; and b,; = ta,,;, the parameter ¢ being real
with 0 < ¢+ < 1. All the c.r. of B(?) lie on the union K of the disks I';, i % m,
and on the disk
Ym(D): [z —pml St 3 |ap| =tP,

i=17#m
which clearly is contained in I',, = y,(1). By (31,6), I', " K= &. Hence,
as t varies continuously from 1 to 0, no c.r. of B(f) can enter or leave I',,. But
the c.r. for B(0) are a,,,, and the c.r. of an (n — 1) X (n — 1) matrix whose c.r.
lie in K. Since B(0) has only one c.r. in I, , we infer by continuity that also
B(1) = A has exactly one c.r.in ', . [Cf. Th. (1,4).]
Ths. (31,1), (31,2) and (31,3) remain valid if in (31,4) the P, are replaced by

Qi= 3 lal;
Jj=1,j#1i
that is, if rows and columns are interchanged. Th. (31,1) remains valid if
P, =< |a,| for all i and P, < |a,,| for at least one i provided A4 is irreducible; that
is, provided A cannot, by applying the same permutation to the rows or columns,

be reduced to the form
All Alz
0 A,

where A,; and A4,, are square matrices and O is the zero matrix. It remains valid
also [Ostrowski 3] when in (31,4) the P; are replaced by P:Q;*forreals,0 <s < 1.
Another valuable result is the following one given in Perron [1].

THEOREM (31,4). IfA = (A, A, ", A,) is an arbitrary set of positive numbers,
then all the c.r. of the matrix A = (a;;) lie on the disk |z| = M, where

(31,7) M, =max 3 (A,/4) las.

1Sisn j=1
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Proor. For any c.r. p of 4 the system of equations

(31,8) za,-,xj= PX; 5 i= 1, 2,"’,”.
=1

has a non-trivial solution (x; , x,, - - -, x,). Let us set x; = 4,y; and denote by

¥m the y; of maximum modulus. Then, using the mth equation in (31,8) we infer

that

ERNES PPN TN M
j= j=

Hence, |p| = M, .
Th. (31,4) is also valid when A is a set of non-negative numbers 4, not all zero,
provided we redefine M, as

(31,7 M, = inf{,u: ph>lag 4,120 n}.
Jj=1

This definition reduces to (31,7) when all 4; > 0. Th. (31,4) is also valid if we
interchange i and j in (31,7).

From Th. (31,4) it follows that all the characteristic roots lie in the disk
|z] = R where R = min M, for all sets A of non-negative numbers. 1fall a;; > 0,
then Ris a c.r. of 4 as is stated in the following result due to Perron and Frobenius
for the proof of which we refer to Gantmacher [1, pp. 66—69].

THEOREM (31,5). If all elements a,; of an irreducible matrix A are non-negative,
then R = min M, is a simple c.r. of A and all c.r. of A lie on the disk |z|] = R.
Furthermore, if A has exactly p characteristic roots (p < n) on the circle |z| = R,
then the set of all c.r. is invariant under rotations of 2m|[p about the origin.

A less general, but easier to prove result than Th. (31,5) is the following:

THEOREM (31,5)'. If A = (a;;) is a positive matrix (i.e., a;; > 0, all i, j), then
A has a positive c.r. Ay and all its c.r. satisfy |z| = 2, .

Our first proof (cf. [Ullman 1]) will be based upon a theorem of Pringsheim
[Hille 1, p. 133]): If the series D3 a,z", a, >0 for n= N =0, has R > 0 as
radius of convergence, then it converges for |z| < R to a function which has z = R
as a singular point.

Denoting the c.r. of A by 4;, 4;, -+ -, 4,, and max (|4, - - -, |4,]) by 4y, we
write

FB) =3 = Ayt = i + 3 ma .
i=1 k=1

Here m;, = > | A* = trace A* > Osince all a;; > 0. The infinite series converges
to f(4) for all |A] > 4,. This means that 4, is a singularity of f(4), and that
Ao = A, for some j, as was to be proved.
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Another proof, due to Ostrowski [14], introduces p the c.r. of maximal modulus,
V= (x;, X2, *-*, x,) the corresponding characteristic vector and the vector
Vo = (Ixl, |xal, - - -, [x,]). If all non-vanishing x; did not have the same argu-
ment, we learn from eq. (31,8) that

n
lPl lx1| < zla,'j ]le, i= l’ 2’ ceeLn,
=

written symbolically as ¥V < [p|™24V,. Thus, for a sufficiently small € > 0 and an
arbitrary positive integer m

Vo = (ol + o7 4V = (Ipl + ©)7™4A™ Vs

It follows that [(|p| + €)= A]™+> O as m — oo, which implies that at least one
c.r. of matrix [(|p| + €)= 4] is greater or equal to one in modulus. As these c.r.
are however 4,/(|p] + €) and as p = max |4,], we are led to a contradiction.
Therefore all the x; have the same argument and in particular can be taken as
positive real. From eq. (31,8) we now infer that p > 0, which ‘establishes
Th. (31,5)".

We also state a comparison theorem due to Wielandt [1] for the proof of which
we refer to Gantmacher [1, pp. 69-71].

THEOREM (31,6). If the matrix A and the number R satisfy the hypotheses of
Th. (31,5) and if in matrix C = (c,;)

lci5|§aij’ iaj=l’2"..an’

then any c.r. y of C satisfies the inequality |y| < R. The equality sign holds only
when there exists a matrix D = (%0,;) such that é,;, =1 for all j, é,; = 0 for all
i # j,and

C = (y/R) DAD™.

APPLICATIONS. Let us apply the above theorems to the matrix F in (31,3) and
thus obtain some results on the location of the zeros of the polynomial f given by
(31,2).

From Th. (31,2) thus follows [Parodi 1]:

THEOREM (31,7). The zeros of the polynomial f lie in the union of the disks
fSL 2+ al <3l
g
From Th. (31,3) follows

THEOREM (31,8). If
las] > 1 + 3 Ja|
j=
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then one and only one zero of f lies on the disk

n
2 + @il < 3al.
=

We now apply Th. (31,4) [Wilf 2, Bell 1] to the transpose of matrix mod F = F*+
where

0 ‘ 1 0 0 0

0 0 1 -+ 0 0
(31,9) Ft=| - . . cee .
0 0 0 e 0 1

[l |@nal l@n-ol - lag| layl

We are led at once to a result due to Ballieu [2]:

THEOREM (31,9). For any set A = (4, Ay, -+ +, A,) of positive A;, let Ay =0
and
(31,10) M/l = max [(}'k + }‘n Ian—kl)/}‘k-i-l]'
0sSk=n—1

Then all the zeros of f lie on the disk |z| = M, .

In this theorem we may require A, merely to be non-negative if we redefine
M, as
(31,10 M, = inf {M: M}‘k‘-i-l > }‘k +Anlap il k=0,1,---,n— 1}-

Among the important special cases of Th. (31,9) is Cauchy’s Th. (27,2) obtained
by setting 4, = 4, = - -+ = 4, = 1 and Kojima’s bound in ex. (30,6) obtained by
setting A, = A, la, 4, k=1,2,---,n.

Also it is to be noted that F* is the companion matrix for the polynomial

" — Iall "t — e — Ianls

so that Ths. (31,5) and (31,6) yield at once Cauchy’s bound given in Th. (27,1).
Many additional applications are possible if we make use of the fact that the
matrix C-24AC has the same c.r. as 4 for any non-singular matrix C. This fact
follows from the relation
C1AC — zE = C™Y(4 — zE)C.

For further theory and applications we refer the reader to Parodi [1] and Marcus-
Ming [1].
Exercises. Prove the following.
1. All the zeros of the polynomial fin (31,1) lie in the union of the disks
laa+zl=1;  lzZl=1l+ali=2-,n—1; |z =|a,l

Hint: Apply Th. (31,2) with P; replaced by the Q, .
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2. If 4, = p™*, p = max |a;/w,/' and each w; > 0 with w, + w, + -+ +
w, = 1, then M, in (31,7) reduces essentially to M in (30,10).

3. The zeros of the polynomial fin (31,1) lie on the disk K:

|z + (a/2)] = lay/2] + |aal”® + |ag*6 + - - - + |a,|*/"
[Walsh 7, Bell 1]. Hint: Use the diagonal matrix A = (4,0;;) to form G =
AIFA where Fis given by (31,3). Apply Th. (31,2) and show I'; = KX for all i.

4. Let A* be the transpose of the conjugate of a given matrix 4 = (a;;). All
the c.r. of 4 lie in the annular region m = |z|*> < M where m and M are respectively
the smallest and largest c.r. of the matrix 44* [Browne 1, Parodi 1].

5. All the zeros of f in (31,1) lie in the annular region m = |z| < M where
m? =max {0, min, ;< [1 — lgjl, |a,|?]} and M2 =max {1 + |g,, |a,|* +
23> 1la?}. Hint: Apply ex. (31,4) to matrix Fin (31,3).

6. In the notation of Ths. (31,1) and (31,2) each c.r. of matrix A lies in or on at
least one of the Cassini ovals K;;

lz—aiillz—aﬁ|<Pin9 i’j=1’2’...’n

[Brauer 2; 11]. Hint: If w is a c.r., the system

(w - akk)xk = Z*kaij" (k ) 1, 2’ SRR n)

=13

has a non-trivial solution {x,}. Multiply corresponding sides of the pth and gth
equations where |x,| = |x,| 2 max |x;] (j # p, j # q) and use reasoning similar to
that in the proof of Th. (31,1).

7. In ex. (31,6) let G;; be the simply connected region bounded by the part of
K, that encloses focus a;; and let H;, = U7, G;. If H,NH, = & fork=1,
2,-++,i—1,i+1,--+, n, then H; contains one and only one c.r. of 4
[Brauer 6; 11]. Hint: Use a proof similar to that for Th. (31,3).

8. In the notation of ex. (31,6), Th. (31,5) may be generalized to read that all
of the c.r. of matrix 4 are interior to the Cassini oval

|z —a,,l |z —a, < (R—a,,)(R—a,)

where |a,,| = |a,| = min |a,l, i # p, i #q, p # q [Brauer 9; 11].

9. Th. (31,5) holds if all a;; = 0 provided that for each k there exists at least one
non-vanishing product of the form a, ;a,, ...a,;,  [Ullman 1]. Hint: Show
my, > 0 for each k in the first proof of Th. (31,5)".

10. In the notation of Th. (31,5), the n — 1 c.r. 4; # 1, satisfy the inequality
4] = A[(M?% — m®)|(M? + m?)] where M = max a;, m=min a;; i, j=1,
2,--+,n. [Ostrowski 13].

11. In the notation of Th. (31,1), let m = min P, and M = max P;, i=1,
2, -+, n. Foreverygiven € > 0, there exists a matrix which is similar to 4 and for
which the corresponding quantities m* and M* satisfy the relation M* — m* < €
[Brauer 9; 11]. Hint: Multiplying all elements in certain rows by a suitable
constant ¢ # 0 and dividing corresponding columns by ¢, is a transformation
which decerases the difference M — m.
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12. Let 4;, 45 ," - -, 4, be the c.r. of a positive nth order matrix 4. For every
positive ¢, there exists a positive generalized stochastic nth order matrix S(e)
whose c.r. @, w,, ***, w, can be so ordered that |w; — 4| < € for j=1,
2, -+, n [Brauer 9; 11]. Hint: A matrix S = (s;;) is said to be generalized
stochastic if 37, s, =sfori=1, 2, ---, n; stochastic if s =1. Apply ex.
(31,11).



CHAPTER VIII
BOUNDS FOR p ZEROS AS FUNCTIONS OF p + 1 COEFFICIENTS

32. Construction of bounds. In the preceding chapter we obtained several
bounds which were valid either for all zeros or for p, p < n, of the zeros of the
polynomial

(32,) f@=a+az+" -+ a,z"

In either case the bounds were expressed as functions of all the coefficients.
While clearly the bounds for the moduli of all n zeros should involve all n + 1 a;,
itis natural to ask whether there exist for the p zeros of smallest modulus, p < n,
some bounds which would be independent of certain a; .

This question was first raised in 1906-7 by Landau in connection with his
study of the Picard Theorem. In [1] and [2] Landau proved that every trinomial

a, + a,z + a,z", aa, #0, nz2,
has at least one zero in the circle |z| < 2 |a,/a;| and that every quadrinomial
a, + a,z + a,z" + a,z", a,a,a, # 0, 2=m<n,

has at least one zero in the circle |z| = (17/3) |ap/a,l. These two polynomials
are of the lacunary type

a+az+ - +azz®+a,z"+ 0+ a,z™,

with a,a, *--a, #0and 1 =p <n <ny <--- < m, which will be treated in
secs. 34 and 35. In those sections we shall establish the existence of a circle
|z] = R(ay, a;, ** -, a,, k) which contains at least p zeros of every such poly-
nomial. ,

In order to gain some insight into the problem under discussion, let us first
prove that if in eq. (32,1) one of the coefficients a,, a,, - - -, a,_, is arbitrary,
then at least n — p + 1 zeros of polynomial (32,1) may be made arbitrarily
large in modulus. Let us select p as an arbitrary, but fixed, positive number.
If an |a), 0 = kK < p — 1, is arbitrary, then we may choose that |a,| so large
that irrespective of the values of the other |a,|, j # k,

k—1 n

@l p* > Elafl P+ 2 la,l p’.
=0 PRt}

It follows from Pellet’s Theorem (Th. (28,1)) that n — k zeros of f(z) exceed p in
modulus. That is, at least n — p + 1 zeros of f(z) surpass p in modulus.

Let us also show that, even though a4, a,, - -+, a,; are all fixed, n —p + 1
zeros of polynomial (32,1) may be made arbitrarily large if all the remaining

147
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coefficients a;, j = p, are arbitrary. This becomes clear if we consider the
reciprocal of polynomial f

F@) = 2f(1)z) = 82" + ayz" + -+ + @, 2" + 42" + -+ + 4,

If for all j = p we choose the |a;] sufficiently small, then by Th. (1,4) the zeros
of F(z) may be brought as close as desired to the zeros of

Fo(z) = aoz" + alz"—l 4o ap—-lzﬂ—HI

and thus at least n — p + 1 zeros of F(z) may be made to lie in an arbitrarily
small circle |z| = 1/p. That is, at least n — p + 1 zeros of f(z) may be made
to lie outside an arbitrarily large circle |z| = p.

Finally, let us use the reasoning in Montel [3] to show that, if the coefficients
@, a4, """, a,, and a,,, for some h, 0 = h < n — p, are fixed with a,,, # 0,
then p zeros of f(z) are bounded. Were the contrary true, we could select a
monotonically increasing sequence of positive numbers p,; , With p,, — 00 as
m — o, and corresponding to each p,, , we could select a polynomial

fu(2) =3 ai™z’, havinga™ =a; for j=0,1,---,p—1p+h
=0

and having at most p — 1 zeros in the circle |z| < p, . Defining 4, as
max |a{™| for j =0, 1, - - -, n, we distinguish two cases according as 4,, does or
does not remain bounded as m — co. In the first case, the f,, form a normal,
compact family of functions and so we may select a subsequence of the f,, ap-
proaching uniformly as limit a polynominal ¢ of degree at least p + A. In
the second case, we may introduce the normal, compact family of polynomials
&m(2) = fn(2)/A,, , which have the same zeros as the f,,(z) and in which for m
sufficiently large the coefficient of the maximum modulus one is that of a term of
degree at least p. Thus we may select a subsequence of the g,, approaching uni-
formly as limit a polynomial v of degree at least p. However, we learn from
Hurwitz’ Theorem (Th. (1,5)) that neither ¢ nor v can have more than p — 1
zeros and hence neither can have a degree greater than p — 1. Thus, the
assumption that p zeros of f(z) are not bounded has led to a contradiction and
must therefore be false.

Our first bounds upon the p zeros of smallest modulus as functions of the first
P + 1 coefficients will be constructed by modification of the previously developed
bounds upon all n zeros of f(z) as functions of all n 4+ 1 coefficients a;. The
method to be used is one due to Montel [3].

Let us label the zeros «; of an nth degree polynomial

32,1) f@Q=a+az+ -+ a,z"
in the order of decreasing modulus:

(32,2) log| = log| =« -+ = |l
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Then, in or on the circle |z| = r, = |a,_,,1] lic the p smallest (in modulus)
zeros o; (j=n—p+1, n—p+2, -+, n) of f(z). These «,; are the zeros
of the polynomial

(23)  fusd) = 1) -

(g —2)(ag — 2) "+ (Hpp — 2) 7
It is to f,_,(z) that we now shall apply the results of the previous chapter, so
as to obtain some estimates on the size of r,, .

For this purpose, we need first to derive expressions for the coefficients a'*—»
in terms of the a; and the «;. Let us note that for |z| <r, S o, j=1,
2, ,n—p,

n—p n—p oo 0
(324 (-2 =T 3(2)=3s
a’

=1 o i=1 k=0 k=0

('n—p) i
, AN

Me

0

where S, is the sum of all possible products of total degree k formed from the
qualities (1/«;). Thus,

So =1, S, = 2(1/“:'1)3

S, = 2—12— + Y 1 s
‘xh aha’iz

L(Lyl), st
®jp Ny &; *jy%ja%sg

;%5 J2
where j; =1, 2, ---, n—p, but;,.+1=],.+l,j,.+2, cv,nm—pfori=1,
:2’ DRI
Using this notation, we express eq. (32,3) as

(32,5 Son(2) = ;a—T( >a;z ) (éoskz") .

142 n—p
Since f,,_,(2) is a polynomial of degree p, the series expansion of (32,5) converges
to f,—,(2) for all z and the combined coefficient of each term in z*, k > p, is zero.
That is to say, '
1 P
0260 Ss@= {3 @t aisi o+ i)
0yy * Oy k=0

The general coefficient in (32,3) according to (32,6) is

1 k
D @ sS;.

Xy * * Ry §=0

(32,7) a? =

For k = p, we obtain from eq. (32,3) the simpler formula
(32,8 a; ™ = (=1)""a,
Thus we have

k
(32,9 lag™?)| < (r,,)-"”jzo |a_j IS;1.
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In order to find a bound for |S,|, let us observe that S, is a kth degree,

symmetric function of the o7, j=1, 2, -+ -, n — p, with |a;] > r,. For the
values oy = oy = * * * = «,_, = 1, eq. (32,4) becomes
(32,10) 1—=2y™?=3Cn—p+k—1,kz*

0

Hence C(n — p + k — 1, k) is the number of terms in S, . Since each term
is of modulus not greater than 1/rk ,

(32,11) IS4 < Cn — p + k — 1, byrg*.
It now follows from ineq. (32,9) that

k
(2,12) oy < ()™ X 00— p 4 = L) Imd 15

As a first application of this formula, let us set
(32,13) M, = max |ag;/a,|, j=0,1---,p—1
From ineq. (32,12) we then obtain
@219 EISMlad TS Cn—p i - Ly, kSp- L

If r, > 1, we may replace the right side of (32,14) by a convergent infinite series
which may be evaluated by setting z = 1/r, in eq. (32,10). Thus,

(32,15) 8" < M, |ag| r™*?(1 — r5?)™"*.

On use of eq. (32,8), we may write ineq. (32,15) as

(32,16) lag™™ < My la5™] (r, — 7™

This inequality permits the immediate application of Th. (27,2) to the polynomial
foo(2) = a5 + a7z + - -+ + al"P)22,

By Th. (27,2), the zeros of f,_,(z) all lie in the circle

lz| <1+ max [lag*?|/lag*?|], k=0,1,"-",p—1;
that is, in the circle

(32,17) lz] <14 My (r, — 1)~"+2,

Among these zeros is «,_,,; whose modulus is r,,. This means that
(32,18) r,<l+4+ M, —1)""?;

i.e., that

(r, — D" <M,

(32’19) T <1+ M:,/(n—p-f-l).
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We have proved (32,19) on the assumption that r, > 1. Since (32,19) is
surely satisfied when r, = 1, we have established a result of Montel [3] and

[5], as follows. -

THEOREM (32,1). At least p zeros of the polynomial f(2) = ay + a1z + -+ +
a,z" lie in the circle

(32,20) |z] < 1 4+ max |a;/a,|/—?+D, j=0,1,---,p—1.

ExXercIses. Prove the following.
1. If the coefficients a; of f(z) satisfy p linear equations,

Ao + Apay + ¢+ + Ajua, =0, j=01--,p—1 pP=n,

v.ith a nonvanishing determinant [A,|, j, k=0, 1, -+, p — 1, then f(z) has
p zeros in a circle [z| = R, where R is a function only of the 4, [Dieudonné 11,
p. 22].

2. Let f(2) = Dr a2, g(z) = D2 bz* and F(z) = f(z)/g(z). If f(z) hasp
zeros in the circle |z| = R = R(a,, a,, ' **, a,,) for fixed p and m, 0 S p =
m and 0 < m = n, and for arbitrary a;, j > m, and if b, = Aa, for 0 < k = m,
then F(z) assumes every value Z at least p times in |z] = R [Nagy 17]. Hint:
Study the zeros of h(z) = f(z) — Zg(2).

3. Th. (32,1) is a generalization of Th. (27,2).

4. If ay # 0, the polynomial f(z) has at most p zeros in the circle

|zl < [1 + max (la,_l/|ao)*/*+], j=01--,n—p—1

Hint: Apply Th. (32,1) to F(2) = z"f(1/2).
5. If ¢ is an arbitrary positive integer, at least p zeros of f(z) lie in the circle

1/q
q
2

=1+ (i el

Hint: Apply the Holder Inequality (27,10) to ineq. (32,12).

6. Let P,(z) denote a polynomial of degree p, having all its zeros in the disk
|2l S riletpy < py <+ < pp and let fu(2) = Po(2) + @Py2) + * * +8,P2)
where the a, are arbitrary parameters. At least p, zeros of f, lie in the disk

lz| < max [ry, (pery + prra)/(pe — p1)]

[Biernacki 1]. At least p, zeros of f,, lie in !zl SRP1s s Pms Tps' s tn)
for m = 3, 4 [Jankowski 1]. Hint: The best choice corresponds to a double zero

of fy(z). Use Th. (15,4).

k=01---,p—1.

33. Further bounds. We shall now make some additional applications of
ineq. (32,12). The first will be to the proof of a result due to Montel [3], a
result similar to those in Van Vleck [3].
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THEOREM (33,1). At least p, p < n, zeros of the polynomial f(z) = a, + a;z +
* + a,z" lie in or on the circle |z| = p, where p is the positive root of the equation

1
(33,1) laplz" =Y C(n—k —1,p — k — 1) |a,| z* = 0.

k=0
For this purpose, let us observe from eq. (32,3) that

(33,2 | faeslD Z a2 [21” = (lag23? 1217 + - -« + [a§™™)).
On use of (32,8) and (32,12), this inequality becomes

2—1 k
(33,3) 1fass(D)| Z laal 127 — r;"*’kZo |z|* Zo Cn—p+j—1,j)lap,l 15’
= i=

After multiplication by r2~? and substitution of |z] = r,, the right side of (33,3)
becomes
F'n—p(rp) = Ianl rp zo z')c(n —p+j—1, J) |ak—yl rk—
S0 <
A reversal of the order of summation in the sum with respect to j and a subse-
quent interchange of this sum with the sum with respect to k permit us to write

F,_,(r,) as
pit

Fn—y(rp) = Ianl r ZIajl rp Z C(n —Dp+ k—1, k)

By mathematical induction, the last sum is seen to have the value C(n — 1 — j,
p—1—j). Thus,

7—1 .
Fn—y(rp)= Ianl r: _goc(n -1 '—]:p -1 _]) |ail r:"

Let us now introduce p, the positive root of eq. (33,1). Then F,_,(p) =0.
Furthermore, since eq. (33,1) has only one positive root and since F,_,(c) > 0,
it follows that r2=? | f,_,(xp_pi1)| = Fo_p(r,) > 0 for r, = |, _,.1| > p in con-
tradiction to the hypothesis that «,_,,, is a zero of f,_,(z). From this result,
we infer that f(z) has its p zeros of smallest modulus in or on the circle |z| = p,

as was to be proved
As another application of the above inequalities, let us set

(33,4) N, = max |a;/a,)| forj=0,1,---,p—1.
By the reasoning similar to that leading to ineq. (32,16) we may infer that for
r,>1

(33,5) ooy - - an—pal(c"_’)l < Ny lay| rp™%(r, — 1777, k=0,1,---,p~1

When used in conjunction with the ineq. (33,11) presented in ex. (33,1) below,
ineq. (33,5) leads to the result

|otyexp * - ,,_,a(,""’l > la,| {1 — N, z Ch—p+k—1,kr, },
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and thus to

(33,6) gty * = - ot pal™?| > |a,| {1 — N, [r*%(r, — 1) — 1]}.

The division of the corresponding sides of ineqs. (33,5) and (33,6) produces
the inequality (if the right side of (33,6) is positive)

(33,7 lai"?/al"?| < Nr2~?[(1 + N)(r, — 1)"2 — N7,

We now conclude on the basis of Th. (27,2) that all the zeros of f,_,(z) lie in
the circle

(33,8) lz] <14 {N,r37?[(1 + N)(r, — 1)"® — Nr2*]"1}.

Among these zeros is «,_,,, whose modulus has been denoted by r,. Replacing
|z| by r, in (33,8), assuming the denominator on the right side of (33,8) to be
positive and clearing of fractions in (33,8), we find that

(1 + N,)(r, _ 1)n—9+1 < Npr;t—9+1,
and thus with @, = N,/(1 + N,) andg = 1/(n — p + 1) that
(33.9) r, <1/(1 = @3).

As may easily be verified, ineq. (33,9) is valid even if the right side of ineq. (33,6)
is zero or negative.
In summary we may state another result of Montel [3], namely

THEOREM (33,2). Atleast p zeros of the polynomialf(z) = ay + ayz + * - - +a,z"
lie in the circle

lz] < 1/(1 — Q9),
where N, = max |a;la,|, j=0, 1, 2, -+, p—1; Q,=N,/(1+ N,) and
g=1/(n—p+1).

Another result which is instructive to establish is the following one due to
Van Vleck [3].

THEOREM (33,3). The polynomial
f@=14+a,2*+a,,22 '+ -+ +a,2", p<na,#0,
has at least p zeros on the disk

|z| = [C(n, p)la,l]/>.
This limit is attained by the polynomial

fo(®) =z — b)"-’“”g C(n — p + j, ))(zlbY

where b is a pth root of [(—1)*! C(n, p)/a,).
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To prove this theorem, we introduce

F(Z) = znf(—]./Z) = z" +2(_1)ﬁajzn—j
and write . i=»

F(z) = H(Z—ﬁj)H(Z‘—)’,), g=n—p+1,

i=1
Wlth |ﬁzl g h’ll g |yj| fori: 1,.2,"',[7_ 1; J=2’ 3’ ”"q°
Denoting by b, the sum of all the products of the §; taken k at a time and by g;
the corresponding sums of the y; with g, = 0 when k > ¢, we have
0 = gl + bl ’
0= gz + b131 + b,,

O=g,.+ b1gp—2 + bzgp—s +- bp71 >
a, =g, + blgp—l + b£9—2 ++ b»—lgl .

Eliminating the b, and thus the §, , we obtain the equation connecting the g + 1
absolutely smallest zeros of F:

(33,10) A, + (—1D?Pa,=0
where
g1 1 0 -« 0 0
g2 g1 1 oo 0 0
N
8o-1 &r2 8ps "' & 1
8» 8v-1 8p2 " 82 &1

From the recurrence formula
A =glAp——1 - ngp—z + -4+ (_l)p D

and the relation g, = >¢y,, we may establish by induction that A, is the sum of
the products of the y, taken p at a time, repetitions of the y; being allowed Since
therefore A, involves C(q + p — 1, p) = C(n, p) terms, we deduce from (33,10)
that

la | < Cn, p) Iyl

The equality sign can occur if and only if each of the C(n, p) terms in A, has
the same argument and a modulus of |y,|?. This implies that

Yi="7v2=""" =7y, = [(—1)*a,/C(n, p)I*/>.

Solving the above system of equations, we find

i=(=1)'A; =(=1)C(n — p + j, ri.
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Hence, the limit [|a,|/C(n, p)]*/? is attained by the pth largest zero of the polynomial

Fy(z) = (z — 71)"2( 1)°’C(n — j, jyriz.
If we now replace z by (—1/z), we may complete the proof of Th. (33,3).

Exercises. Prove the following.
1. At least p zeros of f(z) = D7 a,z* lie in the circle |z| < p where p is the
positive root of the equation

-1
las| 7 = 2 C(n — k, p — k) laz] p* = 0.

Hint: From eq. (32,7), deduce the inequality

P
(33’11) l“la2 e “n—aa;"_ml g |aa| - ZC(” —p+ k — 1’ k)l ap—kl r;k
k=1
and substitute it into the right side of inequality (33,2) [Van Vleck 3].
2. At least p zeros of the polynomial

g(z) =a, + apzp + aa:+17'”+1 + -+ a,z" apa,a, # 0,

lie in the circle |z] = [C(n — 1, p — 1) |a,/a,|]/™. This limit is attainable [Van
Vleck 3].

3. Th. (33,2) reduces to Th. (27,2) when p = n.

4. At least p zeros of f(z) = D7 a,z* lie in the circle |z| < 2(n — p + 1)4,,
where a; # 0 and 4, = max |a/a,,,| for k =0,1,2,---, p— 1. Hint: Apply
Th. (33,2) to the polynomial P({) = f(4,0), noting that, since

12 =1 — (/29 forg=1,2,---,
we may write
(1—21)1<2g [Montel 3].

5. At least one zero of the polynomial f(2) = ay + a,z + - - - + a,2", a4 # 0,
lies in each of the four circles |z| =< r, with

ry = |nay/a,|, ry = |nag/(2a4a, — ad)|*,
= |naj/(3agas — 3a,m,a, + ad)l*,
= |naj/(4aja, — 4aja,a, — 2a3a; — 2a4ala, — ad)|%i.
Hint: Use ex. (13 9); evaluate right side of eq (13,12) and thus r,, for z, = 0 and
p=12,3,4[Nagy 6 and 12].
6. At least one zero of f(z) = ay + a1z + @ 12¥* + a2 + - - - + a,2",
a, # 0, lies in the circle |z| < n'/* |ay/a,| [Nagy 12].
7. At least one zero of f(z) =a, + a,2? + a, 2”7 +--- +a,2" 1 =p,

a,., # 0, lies in the circle |z| = |nay/(p + h)a, | **™, h=0,1,2,---,p—1
[Carmichael-Mason 1, when 2 = 0; Nagy 12, when 0 = & < p].
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34. Lacunary polynomials. In secs. 32 and 33, we found that, when the coeffi-
cients ay, a; , * * -, a, are fixed but the remaining a;, j > p, are arbitrary, there
exist various circles |z| < r which contain at least p zeros of the polynomial.
If in addition we were to fix some of the coefficients a; , j > p, we should obviously
find that the resulting polynomials have p zeros in circles |z| = r;, with r; S 1.

An important class of such polynomials are those of the lacunary type

f@=a+az+ - -+az"+ anlznl + a”'sznz 4+ an,‘znk’

1
(34,) 0<no=P<"1<nz<"'<nk, aoapanla%'”ank#o'

Here, relative to eq. (32,1), the coefficients a; , 0 =< j < p, are fixed; the coefficients
an,, j = 1,2, -, k, are arbitrary and the remaining coefficients a; are zero.

As we stated in sec. 32, Landau [1] and [2] initiated the study of polynomials
of this form in 1906-7. He considered the cases p = 1, k = 1 or 2, proving for
these cases the existence of a circle |z| = R(a,, a,) containing at least one zero of
f(@). He also raised the question as to whether or not a-circle with this same
property existed in the case p = 1 and k arbitrary.

An affirmative reply was given in 1907 by "Allardice [1] who proved that,
when p = 1, at least one zero of f(z) lies in the circle

k
|z] = lao/ai| ’I;Il [n;/(n; — 1)

and by Fejér [1] who proved that, when @, =a,="---=a,_, =0, at least
one zero of f(z) lies in the circle
k 1/»
(342 21 = {laand TT bnfin, — 2]
About sixteen years later, Montel [1] proved that for any polynomial (34,1)
there exists a circle [z| = R(ay, a,, ***, a,, k) containing at least p zeros of
f(z) and Walsh [10] proved that, when ¢y =a,=--- =4, ;=0 and a, #0

for some u = n, , 0 < h < k, there exists a circle |z| = R(a,, a,, k) containing
at least p zeros of f(z). As to the specific determination of the radii of these
circles, Montel [1] showed that, when p = 2 and a, = 0, at least two zeros of
f(2) lie in the circle (see Th. (34,2))

|zl = [lao/ayl (k + 1)k + 2)/2]% = b,

the limit being attained for a, =a, =1 by each of the two polynomials
{(1 £ iz/by*+* [1 F i(k + 1)z/b]}. In 1925 Van Vleck [3] established that, when
aqy=a="""=a,,;,=0,n=p+jj=1,2,---, k, and a,,, # 0 for some
h, 0 = h = k, at least p zeros of f(2) lie in the circle [cf. Th. (33,3)]

lz| S[Cp + h— 1, p — 1)C(n, p + h) |ag]a, 4|1+,
the limit being attained for 4 = 0 by the polynomial

z— b)’“’“% C(n — p + j» j)(z/bY
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where b is a pth root of [(—1)*7C(n, p)ay/a,]. In 1928 Biernacki [1] proved
that, when @, = ay, =+ =a, ;, = 0, at least p zeros of f(z) lie in the circle
(34,2), the limit being attained for n; =p +j, j=1, 2, - - -, k, and that, if all
the zeros of the polynomial

fil@d=a +az+ -+ a,z”

lie in the circle |z] = R, , at least p zeros of f(z), eq. (34,1), lie in the circle

k
(34.3) lzl = RojI=I1 [n;/(n; — P,

the limit being attained only for p = k = 1.

These results are in agreement with that of Dieudonné [7] which for fixed
ay,a, " ,a,,and a,, u = n,, states that the smallest circle |z| = r containing
q = p zeros of f(z) has a radius of the order of magnitude 7 (n) = O(n'/(?-1+9)
in general as n — 0.

The more general of the above limits, however, require complicated deriva-
tions. For this reason we shall devote this and the next sections to the con-
struction of alternative limits which, though less exact, are much simpler to
establish.

Our first theorem in this direction will be obtained by the use of some previous
results on the zeros of the derivative of a polynomial, specifically ex. (6,4),
Th. (25,4), Th. (26,2) and ex. (25,2). These results state in effect, first, that,
if z, is a zero of f'(z), at least one zero of f(2) lies in the region |z| = |z,|, and,
secondly, that, if at most p — 1 zeros of f'(z) lie in a circle |z| < r, then at most
p zeros of f(z) lie in the circle

(34.4) |z| = r/¢(n, p + D).

Among the known bounds for functions ¢(n, p) are those given in Ths. (25,4) and
(26,2); namely,

(34,5) " $np) Scscf2n—p + 1)
and
n—p
(34,6 $(n, p) = jl_'!(n +Nl(n —J).
We shall apply these theorems to the polynomial
D k
(347) F(z) = zf(1/2) = ¥ az™™ + 3 a, 2™
=0 i=1

and to the other polynomials of the sequence F;(z) defined by the equations
(34.8) Fy(z) = F(2),
(34,9) Fio) = zwrmem @), j=0,1,-,k— L
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By straightforward computation, we may show that

” o
Ffz) = Zo (n, — DMy — B)* - (My_jyq — Ba;z™"*
(34,10)
k—j
+ Zl(nk - ni)(nk—l -_— i) M ("k—5+1 —_ i)a”iz”"—i—”‘.
In particular, we find that
¥4
(34,11) Fk(z) = Z(nk —_ i)(nk—l — l) . (”1 — i)aizp—i.
Let us also define =0

G412)  ful») = 2°F(1)2) =§0 (e — D(tgy — 1) - - - (13 — Dz’

Since a, # 0, fi(2) does not vanish at the origin. Let us denote by p, the
largest and p, the smallest positive number such that all the zeros of fi(z) lie
in the annular ring 0 < p; = |z| = p,. Being according to (34,12) the re-
ciprocals of the zeros of fi(z), the zeros of Fi(z) lie in the ring 1/p, < |z| = 1/p, ,
with at least one zero of F,(z) on each of the circles |z] = 1/p, and |z| = 1/p, .
According to (34,9) the zeros of F;_,(z) are those of F;(z) and a zero of multiplicity
n,—p—1at z=0; thus F; ,(z) has at least one zero on |z] = 1/p, and
exactly n, —p — 1 in |z] < 1/p,. By ex. (6,4), F,_;(z) has at least one zero
in |z| 2 1/p; and at most n; — p zeros in (see ex. (25,2))

(34,13) |z| < [pagp(ny, my — p + DI

Similarly, since the zeros of F;_,(z) are the zeros of F;_;(z) and a zero of multi-
plicity n, — n; — 1 at z = 0, F]_,(z) has at least one zero in |z| = 1/p, and at
most n, — p — 1 zeros satisfying (34,13). Consequently, F, ,(z) has at least
one zero in |z| = 1/p, and at most n, — p zeros in

(34,14) 2| < [ped(ny, my — p + D(nz, ny — p + DI

Continuing in this manner, we may by induction demonstrate that F(z) has at
least one zero in |z| = 1/p, and at most n,, — p zeros in

(34315) Izl < [Pz¢(”1 s N — P + 1)¢("2 s Ny — P + 1) o ¢(nk s M — P + 1)]—1'

Finally, in view of eq. (34,7) by which the zeros of f(z) are defined as the recip-
rocals of the zeros of F(z), we conclude that f(z) has at least one zero in |z| = p;
and at most n, — p zeros in

|zl > ped(ny, my — p + Dlng, ng— p + 1)+ - $lmy, me — p + 1).
Hence, f(z) has at least p zeros in

(34,16) |zl = pab(ny,my —p+ D(ng,ng—p+ 1)+ -y, m, — p + 1).
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These results which are due to Marden [14] may be summarized in the form of

THEOREM (34,1). Given the polynomial
(3417) f@=ayt+az+ - +az®+a,z"+a,z"+ -+ a,z"™
WithO <ny=p<n<n,<--*<nm.andaya, #0. Let
fi@=mny-mag+ @y — Dy — 1) -, — Dayz + - - -
+ (n, — p)(ng — p) -+ - (n, — p)a,z®.

If S denotes the set of zeros of f;, withp, = min (z|:z € S) andp, = max (|z]:z € S),
then f(z) has at least one zero in the circle |z| < p, and at least p zeros in the circle

(4,19) |2l = pep(m, i —p + Dpna, na —p + 1) - (e, ;e — p + 1).

Using the known ¢(n, p) as given in (34,5) and (34,6) we deduce the following
limits due to Marden [14].

(34,18)

COROLLARY (34,1a). In the notation of Th. (34,1), at least p zeros of f(z) lie
in each of the circles

(34,20) |2| = py osc* (/2p),
k. p—1
(34,21) 1zl = pe l_—_!: H (n; + NI(n; — Jj).
In particular if @y =a,=---=a, ; =0, the zeros of fi(z) all have the
modulus
NN 1/p
R RITN ) R
(m —pne—p)---(n.— p)la,

Thus, from Th. (34,1) and Cor. (34,1a) we infer

COROLLARY (34,1b). At least one zero of the polynomial

f@)=ay+a,z*+a,z + - + a, z",
(34,22)
O<p<m<n << n, asa, # 0,

1/p
et

lies in the circle

nyng -
(34,23) Izl = [(n1 — Pz —p) - (m — p)

and at least p zeros lie in each of the circles

ao
aﬂ

(34,24) |z| = R csc*(m/2p),
k p—1
(34,25) lz| = RTTTI (n + D/(n; — ).

=1 i=1
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Limit (34,23) is due to Fejér [1] and (34,24) and (34,25) are due to Marden [14].
The inequalities (34,23) to (34,25) may be replaced by inequalities which are
simpler though not as sharp. We note that
g © " " My
(ny — p)(ny — p) - - - (. — p)

=[(r=2)(-2) (-]

and that accordingly the fraction may be maximized by giving the n, their
minimum values n, = p + k; viz.,

(34,26) Np, k)= Clp + k, k).

Furthermore, if p < k, the right side of (34,16) may be written as
Clp+kp)=lk+D2k+2)-(pk+p)1-2--pl=(k+ 1)

the equality sign holding only when p = 1. The right side of (34,26) may be

treated similarly when p Z k. Thus, in all cases,

(34,27) Nip, k) = (k + 1)7,

the equality sign holding only when p = 1.
Taking (34,26) and (34,27) into consideration, we may restate Cor. (34,1b),
following Marden [14], as

N(p, k) =

CoROLLARY (34,1c). The polynomial
f@=a,+a;z*+a,z" + - +a,z™
p<n<n<- - -<n, aga, # 0,
has at least one zero in the circle
|2l < [Cp + &, K) 1ao/a,|1V? = Ry < (k + 1) laola,[i/? = R,
and at least p zeros in the circles

|z] £ R, csc®(w/2p) < R, csck (w/2p),

p—1 p—1
|zl<R11'I1'I(n + D)in —;)<R21f[11'[1(n + D)f(m = ).

In the case p = 2, the following result due to Montel [1] is an improvement
over that in Cor. (34,Ic). Without losing generality we may state it with
Qg = az = 1.

THEOREM (34,2). Let %, denote the class of polynomials

82 =14 2% 4 byz™ + byz™2 + + -+ 4 b z™
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where the n, are integers with 2 < ny < ny < -+ < n, and the b; are arbitrary
constants. If g, € 9, , then g, has at least two zeros {, and {, on the disk:

(34,28) |zl = [(1/2)(k + Dk + 2)J% = p(k)

such that

(34,29) 3/&) z [P, (/L) = —[p(k)].
The limits are attained by the two polynomials p,(+z) where
(34,30) Pd2) = {1 + [iz/p()T*{1 — [(k + Dyiz/p(k)1}.

The proof will be by induction. We begin with the case k = 1 writing
Gy(2) = zMgy(1/z) = z™ + 22 + b,
G(2) = zM7¥[ny2% + (ny — 2)].
Since the zeros of Gj(z) are z = %i[(n, — 2)/n,]*¥ and since [1 — (2/n)] = 1/3,
we conclude from Lucas’ Theorem (6,1) that G,(z) has zeros z; and z, such that
S(z) = 3%, I(z) < —3%

Taking {, = 1/z; and {, = 1/z,, we see that (34,29) is valid for k = 1 since
p(l) = 3%,
Let us assume that (34,29) is also valid for 1 < £ < K — 1 and turn to the case
k = K. Let us write
GK(Z) = z"K 4 z"K-2% blznx—nx + bzznx—-n, RN bK ,
(3431) Gil(2) = 2™ nyz™ 1  (ng — 2)z"5-+2

+ (ng — ny) bzt o+ (ng — ngy) byl
On setting

(34,32) z = [1 — 2/ng)lZ,

we may write the bracket in eq. (34,31) in the form ¢, H x_,(Z) where ¢, is a constant

and .
Hyg (Z) = Z"51 4+ Z"k12 f ¢, Z™-v"™ 4 -+ 4 Cp 1.

If we set hgx_,(z) = z"51 Hyg_,(1/z), we see that hx_, € G5, and hence hgx_,
has two zeros satisfying (34,29) with k = K — 1. Hence, Hx_, has two zeros
&, and &, such that

(34,33) J(é) Z [p(K— DI, (&) = —[p(K — DI
Since nx > K + 2 and '
(1 — @mlp(K — DI Z {1 — 2/(K + 21 [p(K — D]
Z [K/(K + PHp(K — DI = [p(K)]7,
we conclude from (34,32) and (34,33) that G%(z) has two zeros %, and #, such that

30 2 [P, () = —[p(K)
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From Lucas’ Theorem (6,1), we now conclude that G x(z) has two zeros z; and z,
such that

3D Z PRI, HzH = — [
and hence that (34,29) is valid also for k = K as was to be proved.
Finally, we may easily verify by computation that the p, in (34,30) satisfy the
relations
0 =1, . p0)=0 p0)=2
and thus that p, € 4,,. We may also immediately verify that p, attains the limits
specified in Th. (34,2), thus completing the proof of Th. (34,2).

EXERrCISEs. Prove the following.
1. The polynomial (34,17) has at least p zeros in the circle

|z = ped(ny, my —p+ Dy, my—p + 1) - $(me, ;e — p + 1),
where p, is the positive zero of the polynomial '
w(zsng, g, c o m) =mnycmglagl + (g — Dy —1) -~ (ny, — 1) |lay|z + - = -
+@—p+De—p+ 1) —p+1)la,,|z27
— (n, — p)nz — p) - - - (m — p) la,| z*.
Also p, = 7, where 7 is the positive zero of the polynomial

-1
1p(z;p+l,p+2,"‘,P+k)=k!{— |a,1z"+2C(p+k—j,k)|a,|z"}.
j=0

Hint: Use Ths. (27,1) and (34,1); cf. ex.(33,1) [Marden 14]. Also use ineq. (34,26)
2. The polynomial (34,17) has at least p zeros in the circle

2| = pedp(ry,my—p+ 1) dm, m—p+ 1)
where

k
(34,34) p2 =1+ max [Iaj/apl Il(nf — DI — P)], j=01,---,p—1

Hint: Use Ths. (27,2) and (34,1) [Marden 14].
3. The p, in eq. (34,34) satisfies the inequality
pr= 1+ MCp+k ) =1+ (k+ 1M,

where M, = max |a;/a,l,j=0,1,---,p— 1.
4. At least one zero of polynomial

(34,35) f2) = ay + a;z™ + az™ + - - - + az™

lies in the circle |z] = p where

k—j 1/n;
p = min [Iao/aa‘ll_-{ il (s — n,)] > J=12,---,k~—1 [Fekete4].
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5. All the zeros of eq. (34,35) lie in the circle
lzl é r’ r = max [Ial)/allllnl’ lzag‘/aj+lll/("i+l—"j)], ]= l, 2, Y k - 1'

Hint: Use the method of ex. (30,6).

6. If in ex. (34,5) the coefficients a; satisfy a linear relation Ayay + 4@, + - - - +
Ma, = 0, with 2, # 0, then f(z) has at least one zero in the circle |z| < 2kM,
where M =max (1, |4,/A), j=1, 2, ---, k. Hint: Show |ay/a,| = 2™M
for at least one j, since otherwise |ao| > lao] (27"t 4 2772 4 --- 4 27") >
M(la)] + |ay| + - - - + |al) in contradiction with the relation > 4,a; =0
[Fekete 4].

7. At least one zero of the polynomial (34,17) lies in each circle which has
as diameter the line-segment joining point z = 0 with any of p zeros of (34,18).
[Fejér 1a].

8. The polynomial

P ~ k
f(2) = ao’ZO[Z’/(nl —DNng—j) - (me — D] +’_Zlad7-"’a a, # 0,

has at least p zeros in the circle |z] < csc* (7/2p).

35. Other bounds for lacunary polynomials. A theorem similar to Th. (34,1)
but in which the polynomial fi(z) in eq. (34,18) is replaced by one involving the
first p + 1 terms of f(z) will now be established with the aid of Th. (16,2)".

In Th. (16,2)" let us choose m =p, n=k, f(z2) =P(2) =ay+ az+ --- +
a,z?, and g(z) = (n, — z)(ng — z)* - - (m, — z). Then A(z) = f,(z) and

k
|g(0)/g(m)| = };Il n;/(n; — p) > 1.

If R is the radius of the smallest circle |z] = R which contains all the zeros of
P(z), we learn from Th. (16,2) on setting r, = 0 and r, = R that all the zeros
of fi(2) lie in the circle

k
lz] = R}_[l"j/(":: —p =R

In view of the definition of p, as the radius of the smallest circle |z] < r con-
taining all the zeros of fi(z), we conclude that p, < R'.

In place of Th. (34,1), we may therefore state the following theorem, in some
respects simpler, but'not sharper than Th. (34,1).

THEOREM (35,1). If all the zeros of the polynomial
(35,1) P@=a,+az+-+ a,z®
lie in the circle |z| = R, at least p zeros of the polynomial

f@=a +az+- - +az2”+a,z"+ -+ a,z™,
0<p<nm<--<n, aya,a, - a, # 0,



164 BOUNDS FOR p ZEROS AS FUNCTIONS OF p + 1 COEFFICIENTS [8]
lie in the circle

(35.2) 2] < RI;I ny(ny n, — p + D, —

Using the values of ¢(n, p) in egs. (34,5) and (34,6), we may replace ineq.
(35,2) by the more specific ones

k
(35,3) lz| £ RI:II1 n,/(n; — p):l csc® (7/2p);
J=
k 7—1 ; k p—1 i
@54 | SRIT——TT2 = RITIT 2,
j=1n; — pi=1 n; — i j=li=o n; + i —p

the latter being due to Biernacki [3]. The right sides of (35,2) and (35,3) both
have values in excess of R. That they may not be replaced by values less than
R is clear from the fact that P(z) is one of the polynomlals f(2); that is, the
f(z) witha; = 0, all j > p.

It is known, however, that the right side of ineq. (35,3) may be replaced by
the smaller bound (34,3), a bound whose derivation is quite complicated. But
neither this bound nor those given in (35,3) or (35,4) is known to be attained
by at least one of the p zeros of smallest modulus for at least one polynomial
f(2) of type (34,17). In other words, none of the bounds is as yet known to be
the best possible one.

Of the two bounds (35,3) and (35,4), the second has the advantage that, as
k — oo, it approaches a finite limit, provided the series > 1/n; converges. This
fact suggests the following theorem of the Picard type, due to Biernacki [1]
and [3].

THEOREM (35,2). If the series > 1/m; converges, the entire function

f@=a,+anz™+a,zm+ -, 0<m<m<---,

if not identically zero, takes on every finite value A an infinite number of times.

To prove this theorem, let us choose p as any of the numbers m, , m,, -
and form the polynomial

Olz) = (@ — A) + apz™ + - +a,z® +a,z" + -+ + a,z™

in which the last k terms are the k terms followin® @,z” in f(z). Let us denote
by R the radius of the circle |z] = R in which lie the zeros of the polynomial

Qu(2) = (@ — A) + apz™ + -+ + a,2”.

By Th. (35,1), Q,(2) has at least p zeros in the circle (35,4). The right side of
(35,4) may be written as

RHH [1 = (/(n; + DI < RHH [t — @/(n; + DI =Ry

j=1i=0 =0 j=1
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The infinite products occurring in R, converge due to the convergence of the
series > 1/m;. That is, R, is a number independent of k such that in the circle
|z] = R, lie at least p zeros of Q(2).

On the other hand, the terms in Q,(z) are the terms of f(z) — 4 up to that
in z". Since f(z) is an entire function, Q,(z) converges uniformly to f(z) — 4
in any circle |z] = R, + €, € > 0. But, by Hurwitz’ Theorem (Th. (1,5)), given
any sufficiently small positive ¢, there is at least one zero of f(z) — 4 in each
of the p circles of radius e drawn about the p zeros of Q,(2) in |z| = R,. Hence,
there are at least p zeros of f(z) — A in the circle |z| £ R, + e. Due to the
fact that p is an arbitrary m; , we conclude that f(z) — 4 has an infinite number
of zeros. That is, f(z) assumes the value 4 an infinite number of times.

Exercises. Prove the following.
1. At least p zeros of each of the two polynomials

1422 4+ ayz™ + -+ - + a,2™,
1+z+z’+~--+z”+alz"1+~-+akz""
lie in each of the circles (35,3) and (35,4) with R = 1.
2. The polynomial
P(Z) =1 + z?P + alz?+q + azzﬂzq + -+ akzp+kq’

where p 2 p, and g is not a factor of p, has at least p, zeros in a circle |z| =
R(p,) [Landau 2, case p, = 1; Montel 1, p, arbitrary].
3. The trinomial 1 + z? + az" has at least one zero in each of the sectors

(arg 2) — (2k + 1)(=/p)| = =/n, k=01---,p—1

The limits are attained when a = p(n — p)"~?/?[w"n"/? where w is any pth
root of (—1) [Nekrasoff 1, Kempner 5, Herglotz 1, Biernacki 1].
4. If ny Z 3n,/2, the quadrinomial

14 2% + a,z™ + az™, p<n<n,g,
has at least one zero in each of the sectors
I(arg z) — 2k + 1)/(w[p)| = (7/ny), k=01,---,p—1

The limits are attained when for k =1, 2

a, = —{(=1)pl(n, — p)(ny — PI"/*}{(ny — n)(, — p)(myng) ™2/ Pnyo™},

where w is a pth root of (—1) [Biernacki 1, pp. 603-613].
5. Every quadrinomial 1 + az? + 22? 4 bz", n > 2p, a and b arbitrary, has
at least p — 1 zeros in the circle |z| =< 1 [Dieudonné 6].



CHAPTER IX
THE NUMBER OF ZEROS IN A HALF-PLANE OR A SECTOR

36. Dynamic stability. The problem discussed in the last two chapters, the
determination of bounds for some or all of the zeros of a polynomial f(z), may
be regarded as that of finding a region which will contain a prescribed number
p of zeros of f(z). The converse type of problem is of equal importance. It is
the problem of finding the exact or approximate number of zeros which lie in a
prescribed region such as a half-plane, a sector or a circular region.

In order to see how this problem arises in applied mathematics, let us, as in

Routh [1] and [2], consider the example of a particle of unit mass moving in the
x, y plane subject to a resultant force with the x-component X(z, x, y, , v) and
y-component Y(¢, x, y, u, v), where (x, y) and (u, v) denote respectively the co-
ordinates and the velocity components of the particle at time z. Let us assume that
X and Y possess continuous first partial derivatives in the neighborhood of some
value (0, xo, yo , %y, Vp). The equations of motion are then
36,1) duldt = X(t, x, y, u, v), dvldt = Y(1, X, y, u, v).
Let us denote by x = x,(¢) and y = y,(¢) the solutions corresponding to the set
of initial conditions x(0) = x,, y(0) = y,, #(0) =1u,, v(0) = vy, and by
x = xy(9) + &(?) and y = y,(¢) + 7(¢) the solutions corresponding to the slightly
altered set of initial conditions x(0) = x, + &, , Y(0) = yo + 7, u(0) = 4y + 0,
v(0) = vy + 7 -

Substituting these solutions into eqs. (36,1), subtracting eqs. (36,1) from the
resulting equations and setting ¢ = d&/dt and r = dn/dt, we find for & and 7 the
differential equations

doldt = X(t, %, + E, i+, + 0,0, + 7) — X(t, X1, Y15 Uy, V1)
=X+ X + X0 + X,
drjdt=Y(t, x, + &y +nuy+ o, 0+ 7) — Y, X0, py, Uy, Uy)
=Y, +Yn+ Yo+ Y7,
where the partial derivatives X, X,, X, X,, Y., Y,, Y,, Y, of Xand Y are
formed for the intermediate value (¢, x; + 0¢, y, + 0%, uy + 6o, v; + 67) with

0=60=1. Ifé&,, n, 0, and 7, are all sufficiently small, we may with good
approximation compute £ and n by means of the equations

(36,2) dc/dt == A1§ + Az"] + Aaa + A4T, d"'/dt == BIE + an + Baa + B4T,

where the coefficients are the real constants obtained on evaluating the above
partial derivatives for (0, x,, yo, 4, vy). As is well known, egs. (36,2) have

166
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solutions of the form
E=12e", n=pe"
On substituting these into eqs. (36,2), we obtain for y, 1 and u the equations
My* — Agy — A) = (Asy + 4,),  MBsy + By) = u(y* — By — By),

and, by eliminating 4 and A, we obtain for y a fourth degree equation with real
coefficients

&) =ay + ayy + ayy® + azy® + a,t = 0.

Let us assume the roots to be distinct complex numbers y, = o, + iy, k = 1, 2,
so that the general solution of the system (36,2) will be

& = e*%(, sin Byt + Ay cos Bit) + e*(Ay sin Byt + A4 cos Byt),
7 = €(u, sin Byt + py cos Bif) + €*(us sin Byt + pq COs Byt).

The original solution x = x,(?), y = y,(?) is said to be stable if the disturbance
functions &(), n(¢) approach zero as t — . According to egs. (36,3), this occurs
if ¢; < 0 and «, < 0. For stability it is therefore sufficient that all four roots
of f(y) = 0 have negative real parts. That is, it is sufficient that all four zeros of
the characteristic polynomial flie in the left half-plane.

A refinement is to compare the degrees of stability and of damping of two
systems S; and S, having the characteristic polynomials f; and f, respectively.
If all the zeros of f; lie in the half-plane R(z) < «, and those of f;, in the half-plane
R(z) < a,, the system S, may be regarded as more stable than S, if a, < o; < 0.
If all the zeros of f; lie in sector |arg (—z)| < B, and those of f, in sector
larg (—z)| < B, the system S, may be regarded as having better damping than
8,if 0 = B, < By < m/2 [Cypkin-Bromberg 1, Grossman 1, Koenig 1, Bothwell 1,
Fuller-Macmillan 1, Schmutz 1].

For a more detailed review of the problem of stability in relation to the dis-
tribution of the zeros of a polynomial, the reader is referred to Bateman [1].

(36,3)

EXERCISES. Prove the following.
1. Insec. 36let z = x + iy, { = & + in, w = dz/dt, p = d{/dt and

Z(t, z, w) = X(t, x, y, u, v) + i Y(¢, x, y, u, v).

If Z is an analytic function of z and w in the neighborhood of (z,, 0, wy), then
egs. (36,2) may be replaced by an equation of the form

(36,4) dpldt = Mp + N{

where M and N are complex constants. The particle will have a stable motion
if both zeros of the polynomial f(y) = y* — My — N lie in the left half-plane.

2. If all the zeros of a real polynomial f(z) = X? C(n, k)a,z"* lie in half-plane
R(z) = — p <0, then p* < a,,,Ja, form=0,1, -+, n — k [Zajac 1]. Hint:
Express the a; in terms of the elementary symmetric functions of the zeros of f.
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37. Cauchy indices. We shall now proceed to the determination of the number
of zeros of a polyncmial in a given half-plane. For simplicity we shall start
with the upper half-plane 3(z) > 0.

Our method will consist in applying Th. (1,6) to the case that line L is the
axis of reals and the direction for traversing L is from z = — o0 to z = 4 0.
Hence, if an nth degree polynomial f has no zeros on the real axis, the numbers

pandg,
GL) p=(/Dln+ AmALargf(D],  g=(1/Dln — A[mAL arg f(2)],

are the number of zeros which f has in the upper and lower half-planes respectively.
We shall find it convenient to throw f into the form

f@=a+az+ - +a, 2"+ 2"

and write

(37,2) a; = a;, + iay , k=0,1,--,n—1,
where a; and aj, are real and not all aj are zero. Then on the x-axis

(371,3) f(x) = Py(x) + iPy(x),

where

(37.4) Po(x) = ag + apx + + - + apx" + x7,

Py(x) =ay + aix + -+ + aj_x"'.

Furthermore, on the x-axis, using the principal value of arc cot p(x),

(37,5 arg f(x) = arc cot p(x),  p(x) = Py(x)[Py(x).

In order to calculate the net change in arg f(x), let us denote the real distinct
zeros of Py(x) by x;, x5, - - -, x, (» = n) and let us assume that these are arranged
in increasing order,

(3736) X< X< < X,

Since f(x) # 0, no x, is also a zero of P)(x). From the graph of arc cot p or
otherwise, we may infer that, ¢ being a sufficiently small positive number, the
change A, arg f(z) in arg f(z) as z = x varies from x;, + € to x;,; — €, will
according to eq. (37,5) have the values

Ayargf(z) = +7  if p(x; + €) < 0 and p(x;; — €) > 0,

Acargf(z)=0 if p(x, + p(Xers — €) > 0.
In brief, fork =1,2,---,» — 1,
(7,7) Ay arg fz) = (w/2)lsg p(Xis — €) — sg p(x, + ).

We shall now compute the changes A, arg f(z) and A, arg f(z), as z = x varies
from — oo to x; and from x, to + co respectively. Since x; and x, are the smallest
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and largest zeros of Py(x),

sg p(x, — €) = sg p(—0),  sg p(x, + €) = sg p(+0),
provided P,(x) # 0 for x < x; and x > x,. In this case
(37,8) Ajargf(z) = (7/2)sg p(x1 — €), A, arg f(z) = —(m/2) sg p(x, + ¢).

Let us suppose however that Py(y,) =0fork=1,2,---, p with u =n—1
and

—0 =y < N1<): < <Y <X <Y1 <"
<Yy <%, <ypu< " <Yy <Yppr = 0.
Then there is no net change in arg f(z) as z = x varies from y, to y,., for0 < k < «
or B <k =< u. Also
sgp(xy — € =sgp(yo +€), sgp(x, + € = sgp(ypi1 — €

for sufficiently small positive e. Hence, eq. (37,8) remains valid even if P; has
zeros for x < x; or x > x, .

From (37,7) and (37,8) we may compute the net change A, arg f(x) as x varies
from — o0 to 4+ 0. This net change is

v—1
Ay arg f(z) = ’5’{2 [58 p(kxss — €) — s pCxs + O]

+58 o = O — 58 plx, + 9.
That is,

(37,9) Ay argf(z) = wél[Sg plx, — €) ; sg p(x + e)].

Defined as the Cauchy Index of the function p(x) at the point x = x; [Cauchy 2],
the bracket in eq. (37,9) has the values —1, or +1 or 0 according as p(x;, — €) <0
and p(x; + €) > 0, p(x, — €) > 0 and p(x;, + €) < 0 or p(x;, — €)p(x; + €) > 0.
If, therefore, o is the number of x, at which, as x increases from — oo to oo, p(x)
changes from — to + and 7 the number of x, at which p(x) changes from + to —,
then eq. (37,9) may be rewritten as

(37,10) A, arg f(2) = m(r — o).

In view of egs. (37,1) and (37,10) we may state the Cauchy Index Theorem
essentially as presented in Hurwitz [2].

THEOREM (37,1). Let
(37,11 f@=ay+az+ -+ a, 12" 4 2" = Py(z) + iPy(z)

where Py(z) and Py(z) are real polynomials with P,(z) # 0. As the point z = x
moves on the real axis from — oo to + o, let ¢ be the number of real zeros of Py(z)
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at which p(x) = Py(x)[Py(x) changes from — to +, and v the number of real

zeros of Py(z) at which p(x) changes from + to —. If f(z) has no real zeros, p zeros
in the upper half-plane and q zeros in the lower half-plane, then
(37,12) p=QA2+ (-9l ¢=012r—(r— )]

Exercises. Prove the following.

1. All the zeros of the f(z) of Th. (37,1) lie in the upper (lower) half-plane if
Py(x) has n real zeros x, and if, at each x, , p'(x) < 0 (> 0).

2. Let F2) = Ag+ A1z + - -+ + Apy2™ 7t + (—i)"2",

P(z)=ag+ajz+ -+ a,_;z"* + z*,

Py(z) = ag + ajz + - - + ap_ 42",
where a}, = R(i*4,) and a = 3J(i*4,). Let o be the number of real zeros of
Py(y) at which the ratio p(y) = Py(y)/Py(y) changes sign from — to + and 7
the number of real zeros of Py(y) at which p(y) changes sign from + to —, as
y varies through real values from —oo to +o0. If F(z) has p zeros in
the left half-plane R(z) < 0 and ¢ zeros in the right half-plane R(z) > 0 and
if p 4+ g = n, then p and g are given by eqs. (37, 12) Hint: Apply Th. (37,1)
to f (2) = F(iz).

3. If in Th. (37,1) Py(x) has n real zeros x;, and P,(x) has n — 1 real zeros

X, with , <X;<x%<X; < --<X,,<x,, then p=0 and g=n if
(—1)"Py(x;) < 0, but p = n and g = 0 if (—1)"Py(xp > 0.

4. If p=gq—n=0 or p—n=q=0, then for arbitrary real constants 4
and B the polynomial APy(z) + BP,(z) has n distinct real zeros [Hermite 2;
Biehler 1; Laguerre 1, pp. 109 and 360; Hurwitz 2; Obrechkoff 6].

5. If Py(x) has n real zeros x, with x; < x, < -+ < x,, and if P,(x) > O for
x<x<Xx,, then p=m and g=m or ¢ = m+1 according as n = 2m or
n=2m+ 1. IfPy(x) < 0forx, < x < x,,, the values of p and g are mterchanged

6. If the f(z) of Th. (37,1) has exactly r real zeros &, , &, -- -, & and if in
computing o and 7 the sign changes of p(x) at the points &, be not included, then

p=Q1)n—r+7—0) and ¢g=(1dn—r—17+0).

7. If P(z) is an nth degree polynomial and P*(z) = P(—z), then the (n — 1)st

degree polynomial
Py(2) = [P*(z)P(z) — P(z)P*(2)]/(z.— 2y,

where |P*(z,)| > |P(z,)|, has one less zero than P(z) at points z for which
R(z)R(z,) > 0 and has the same number of zeros as P(z) at points z for which
R(2)R(z,) < 0. Hint: Use Rouché’s Theorem (Th. (1,3)) to show that P(z)
and P(z) + AP*(z) where || < 1 have the same number of zeros in both half-
planes R(z) > 0 and R(z) < 0 [Schur 3; Benjaminowitsch 2; Frank 2].

8. Letf@) =[]l z—z)=z"+az" '+ -+ a,,

g(z)=H H(Z—Z’-—zk)=z"+blz”—1+...+b”,

i=1 k=3j+1
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where n = m(m — 1)/2. If all the a; are real, all the zeros of f(z) lie in the half-
plane R(z) < 0 if and only ifa; >0 forj=1,2,---,mand b, > 0fork =1,
2,---,n[Routh 1, 2; Bateman 1].

9. In Th. (37,1), if all the real zeros x, (k = 1, 2, - - -, ») of Py(x) are distinct,
then

p=[n—Fserw],  a=am[n+Sserew]

where p'(x) = (d/dx)p(x). If v = n, then p = n or ¢ = n according as p'(x;) <0
or p'(x;) > 0 for all k.

10. In ex. (37,3), Py(x) and P,(x) have interlaced zeros if and only if (1) G(x) =
Py(x)%(d/dx)[Py(x)/P,(x)] has real zeros of only even multiplicity and (2) every zero of
G(x) is an my-fold zero of Py(x) and an m,-fold zero of P,(x) where |my — m,| = 1
[Horvath 1].

38. Sturm sequences. By-Th. (37,1) we have reduced the problem of finding
the number of zeros of f(z) in the upper and lower half-planes to the problem
of calculating the difference 7 — 0. In the case of real polynomials this differ-
ence has been computed in Hurwitz [2] by use of the theory of residues and
quadratic forms and in Routh [1] and [2] by use of Sturm sequences We shall
follow the latter method. (Cf. Serret [1].)

Let us construct the sequence of functions Py(x), Py(x), Py(x), - -+, P,(x) by
applying to Py(x) and P,(x) in (37,4) the division algorithm in which the remainder
is written with a negative sign; viz.,

(38’1) Pk—l(x) = Qk(x)Pk(x) - Pk+l(x)’ k = l’ 2’ Y y - l’
and in which P,_;(x), Pi(x), Pi,,(x) and Q,(x) are polynomials with
deg O,(x) = deg P,_;(x) — deg P (x) > 0 (deg = degree of).

The algorithm is continued until, for x sufficiently large, P,(x) = Cg(x) where
C is a constant and g(x).is the greatest common divisor of Py(x) and Py(x). If
g(x) is not a constant, its zeros are non-real since f(x) % 0 at points x of the
real axis. In any case, therefore, for all real x

(38,2) sg P,(x) = const. # 0.
As x varies from — oo to + oo, let us consider
(38’3) V{Pk(x)} = V{PO(x)’ Pl(x)’ STty P"(x)}’

the number of variations of sign in the sequence Py(x), Py(x), - - -, P,(x). This
number cannot change except possibly at a zero £ of some Py(x).

If 0 < k < p, then Py(§) = 0 implies according to eq. (38,1) that P, ,(§) =
—P,,,(§). This in turn implies that P,_,(§)P,,,(§) < O, for otherwise P,_(&) =
P,.,(&) = 0 and consequently P;(&) = 0 for all j > k including j = u, in con-
tradiction to eq. (38,2). In brief, P(§) =0 w1th 0 < k < u does not entail

at x = £ any change in ¥ {Py(x)}.
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In the case that Py(&) = 0, we have already indicated that for any sufficiently
small positive number e, sg Py(£§) = sg Py(§ — €) = sg Py(§ + €) # 0. If also
sg Po(é — €) = sg Py(£ + €), no change in ¥ {P,(x)} occurs at x = £. If, however,
(38,4) P& — OPy(§ + € >0, Py(é+ Py(§+ ¢) <0,
then ¥ {P(x)} will increase by one at x = &; whereas, if
(38.5) Py(§ — OPy(§ — €) <O, P&+ Py(§+ €) >0,
¥ {P(x)} will decrease by one at x = £. But, as Py(x)Py(x) = p(x)[Py(x)]%,
(38,6) sg [Po(x)P1(x)] = sg p(x)
in the neighborhood of any zero x; of Py(x). In terms of the numbers ¢ and +
defined in Th. (37,1), ineqgs. (38,4) are satisfied by = zeros x; of Py(x) and in-
eqs. (38,5) are satisfied by o zeros x;, of Py(x). This means that
(38,7) T — 0 = V{P(+0)} — ¥V {P(—0)}."

In view of this result, we may restate Th. (37,1), as

THEOREM (38,1). Let
(38,8) f@=ay+az+ -+ a, 2" + z" = Py(z) + iPy(2),

where Py(z) and Py(z) are real polynomials and P,(z) # O, be a polynomial which
has no real zeros, p zeros in the upper half-plane and q zeros in the lower half-
plane. Let Pyx), Py(x), - -+, P(x) be the Sturm sequence formed by applying
to Py(x)[Py(x) the negative-remainder, division algorithm. Then

(38,9) P = (1/2)[n + ¥ {Py+ o)} — ¥ {P(—0)}],

(38,10) g = (1/2)[n — 7 {Pu(+ )} + ¥ {P(— 0)}].

In order to compute the right sides of eqs. (38,9) and (38,10), let us write
the term of highest degree in Py(x) as byx™x, b, # 0, and that in Qu(x) as ¢, x™
Clearly, by=1, by=a, ; my=n, m=n—1, m=n—2, my=n-—3,

T, MyEn—p; mp=n—my; Np=mp— My, Ng=My— Mg, N, =
m,_,— m, . By equating the coefficients of x™* on both sides of eq. (38,1), we
find that
(38,11) ck = bk—l/bk # 0.

Obviously, sg Py(+ o) = sg b, and sg P,(— ) = (—1)™ sg b, . Inconsequence,

¥V {P(+ )} — ¥ {P(— 0)}
=Y {L,by, . b} — V{1 (=D)™by, -, b,}
(38,12 =Y {l,¢1, €16, €1C5, " "+, €163 * " €}
=71, (=D)"™ey, (=D ™cicp, c 00, (—D)MHee 0 €, )
=AMer, €3, 00y 0} = A{(=DMey, (= D™y, o0, (—=1)"c,}
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where A {A;, Ay, -, A”} denotes the number of negative A; in the set 4,
Aoy oovy Ao

of specfal interest is the case that u = n when each n, = 1. In that case,
eq. (38,12) becomes

V'{Pk(+w)}—V{Pk(—w)}=‘/’/‘(cla Ca, ""cn)— '@(Claczy""cn)

where P(Ay, Ay, * -, A,) designates the number of positive 4; in set {A,}. In
this case,

m(cl’cz""scn)+ g(claczy""cn)=n=p+q
so that Th. (38,1) becomes
COROLLARY (38,1a). If in Th. (38,1) u = n and if ¢, denotes the coefficient of
the linear term of the quotient Q,(x) in eq. (38,1), then
(38,13) P = '/V‘{cl s cz s T, cn} and q = g(cl s cz PIY cn)~

A further simplification in the case u = n results from the fact that Q,(x) =
x + d, with ¢, # 0. This permits us to write eq. (38,1) in the form

(38,14) Pi"ix—)=c,,x+dk—PLl(§2, k=12---,n—1.
Py(x) Py(x)

From eqs. (38,14) we may eliminate Py(x), Py(x), - - -, P,(x) and put the answer
in the continued fraction form

Py(x) _ 1
PO(x) c1x + dl — 1 "
X + dy —
X+ b X + dy — -
(38,15) .
_ 1
1
CpX+d,  ————
' ! c,x+d,

Conversely, if Py(x)[Py(x) can be expanded in such a continued fraction,
then u = n in the negative-remainder, division algorithm. Writing the con-
tinued fraction (38,15) more compactly, we may reformulate Cor. (38,1a) as

COROLLARY (38,1b). If for the Py(x) and P,(x) of Th. (38,1) there exists the
continued fraction expansion (38,15) abbreviated as

P(x) 1 1 1 1

Pox) (ex+d) (cax +dy) (cax +d) (cax + d)

(38,16)
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where ¢; #0 for j=1, 2,-+-, n, then p=N(c;, ¢, »,) and q =
'q(cl’c2s“'acn)-

This result is due to Wall [1] in the case of real polynomials f(z) and to Frank
[1] in the case of complex polynomials f(z).

Exercises. Prove the following.

1. All the zeros of f(z) have positive imaginary parts if and only if
¥V {P(+ )} — ¥V {P(—0)} =n, or if and only if all ¢; <O in eq. (38,15).
(Cf. Wall [1] and Frank [1].)

2. If F(z), Py(z) and Py(z) are defined as in ex. (37,2), the number p of zeros
of F(z) in the half-plane R(z) < 0 and the number g of zeros of F(z) in the half-
plane R(z) > 0 are given by the eqgs. (38,9), (38,10) and (38,13) and Cor. (38,1b).

3.IfF@)=Ag+ Az + -+ A, 2" 1+ e™2" Py(z) =ay+a;z+ -+ +
a,_,z"' + z" where a;, = R(e***4;) and Py(z) = aj + ajz + - - - + a’_,z" " where
a; = J(e**'4,), and F(z) # O for arg z = « or « + =, then the number p of zeros
of F(Z) in the sector « < arg z < « + = and the number g of zeros of F(z) in the
sector « + 7 < arg z < a + 2w, if p + g = n, are given by eqgs. (38,9), (38,10)
and (38,13) and Cor. (38,1b).

4. Let the f(z) of Th. (38,1) have exactly r real zeros {; , {5, -, {,, let
8() = (z — {)(z — &) - - - (z — {,) and define P(z) + iPy(z) = f(2)/g(z). Then

p=01/2n—r+ ¥ {P(+0)} — ¥{P(—0)}]
and | g=>U112)[n—r — ¥ {P(+ )} + ¥ {P(— 0)}].

5. Let f(2) = X7, az"* be a real polynomial, f*(z) = (—1)"*f(—z), and
(@) = f(2) — 2z{f(z) + f*(2)}, where A = ay/(2a,). Then deg f; = n — 1 and
Ay arg {fi(iy)/f(iy)} = —msg A, where L:R(z) =0. Hint: Write fi(z) =
(1 — 22){1 — §(2)}, where §(z) = {Az/(1 — 22)} {f*(2)/f(2)}. Show |(iy)| <1
for all real y. [Brown 2.]

6. In the notation of ex. (38,5) define the polynomials f(z) = X7~ a{’z"—-* by
the relations f,,(2) = fi(2) — A,z{fi(2) + f}¥(2)}, }; = a§’/(2a{"), j =0, 1, ---,
n - 1. Let p; and g; be the number of zeros of f; in the right and left half-planes
respectively. Then py — go = 27, sg (a{’a{~). Hint: Use ex. (38,5) to show
that

(9541 — Psd) — (45 — p) = sg (ay’ag’™").
[Brown 2.]

39. Determinant sequences. Continuing the discussion of the case 4 = n treated
in Cor. (38,1a) and Cor. (38,1b), we observe that p and ¢q have been expressed as
functions of the ¢, which in turn we shall now express as functions of the coefficients
of f(z) (cf. [Routh 1, 2] and [Frank 1]).
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Let us write
(39,1) P(x)=b, 4o+ bppix+ " +b, X% by i # O
with b, , = 0if j < 0 or K < 0. Comparing (39,1) with egs. (37,4), we see that
(39,2 byn=1; b,;=a;j; b, ;=aj, ji=01---,n—1

On substitution from eq. (39,1) into eq. (38,1) we obtain the relation

n—k+1 X n—k i n—k—1 X
Z bpi1,iX’ = (cpx + dk)zbn—k,jx’ - Z b y1,%.
i=0 7=0 =0

Equating corresponding powers of x on both sides leads us to the following
system of equations for the ¢, .

(39,3) by rrtinri1 = Cbnpn—r = 0,
(39,4) by ri1.n—k = CPnrin—t-1 — by _genre =0,
burt1,i — bpriic1 — Hbpr; + bpp1,; =0,

j=0,1,-",n—k—1.

(39,5)
Let us define

(39,6) B, k1= bpir1,541 — Cxbps,; -
From (39,3), (39,4) and (39,5) it follows that

(39,7 €, = b ri1.nrk41/Onrenr »
(39,8) dk = Bn-—k.'n—k/bn—k.n—k ’
(39,9 b= —Buy;+ dbpy.;.

Let us define the matrix M,,_, with 2n — 1 rows and columns as

bn—l.n—l byin2 bn—l.n—3 e bn—l.O 0 0
bn.n bn.n—l bn.n—z e bn,l bn.o 0
bn—l.n—l bn—l.n—2 U bn—l.l bn—l.o 0
bn.n bn.n—l e bn.2 bn.l bn.O

bn—-l,n—] bn—l,2 'bn—1.1 bn—l.o

0
0 bn,n toe bn,3 bn,z bn.l

o o o o
S O © o o o

0 0 0 ot bpam1 baimee bpans 0 baao



176 THE NUMBER OF ZEROS IN A HALF-PLANE OR SECTOR 9]

We shall now show that by a succession of elementary row operations we may
reduce M,,_, to the matrix M, _, defined as

_bn—l.n—l by 1n2 bnins bnina "7 bpaoe O Y 0
0 byyni bnamnse bpans * bugi1 bpaoe O 0
0 0 bpoms bpons "7 bpay byae O 0
0 0 0 bpoms “° boas b o1 buap 0
0 0 0 0 “oc by3s b3y b,a 0
0 0o 0 0 e . . -

Let us define the row matrices with 2n — 1 elements:
rj,k = [09 0’ Y Os bn—j,n——j ’ bn—j,n—j—l PR bn—j,o ’ 0’ 0’ Y 0]9
Rj,k = [0’ Os DY 0’ Bn—j,n—j ’ Bﬂ—j.n—j—l y T, Bn—j,o ’ 0’ 09 Y 0]9

in which the first k — 1 and last n — k + j — 1 elements are zeros. Then
from eqgs. (39,6) to (39,9) it follows that

Tictk — Cilixe = Rypqas dirie — Rix = Tip1 041 -

We may then write

ria i
To,1 Ii,2
T2 Ta.3
To,2 T2 4
. , _
M 2n—1 = ’ M 2n—1 =
T1,n-1 Tn—1,2n—3
To,n—1 Tp1,2n-2
L rl.n _ — rn.2n—1 -

Starting with M,, ;, let us construct the following sequences of matrices by
applying the indicated row operations.
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na ra na
o1 To,1 — €11 Ry .
Ie ri,2 Ii,e
To,2 To,2 — Gl Ry s
— =
T1,n-1 T1,n—1 T1,n1
To,n—1 To,n—1 — C1l1,n—1 Ry.n
__rl,u _ __rl.n _ __rlm _
B I 7 —’1.1 ] —"1.1 7
T1,2 T2 T1,2
=R, dirie — Ry s 3.3
I3 T3 I3
— : | dins—Ris | = | T
—Rl.n—l
rl.n rl.u rl,n
| —Rin _dlrl.u - Rl.n___ | T2.n+1_|

The latter matrix has the same first three rows as M;, ;, and on omission of
the first two rows and columns would have the same form as M,, ;. It could
therefore be reduced to M;, , by repetition of the above row operations.

Let us denote by. A, the determinant formed from the first 2k — 1 elements
of the first 2k — 1 rows and columns of matrix M,, ; and let us denote by A;
the corresponding determinant of matrix Mj _,. It is well known that the
above operation on the rows of M,, ; make A; = A, . Thus

(39,10 Ay =D =by s,
(39,11) A=A, = bi—l,n—-l n—2,n—2 b:—k—l n—-k—lbn—-k.n—k
for k =2, 3, , n. Since b, ; 96 0 for] =0,1, ---, n, it follows then that

Sg by foni = sgA fork=1,2,-
Due to eq. (39,7) and due to the relatlon b,,.,‘ = 1, we find that

(39’12) '/V‘[cl »C2,°° ", cn] = V[l’ bu—-l,n—l ’ bn—-2.n—-2 s "0, b0.0],
and hence from egs. (39,10) and (39,11) and Cor. (38,1a) that
(39’13) P= V[I’ A1 ’ Az 5%, An]’ q= V[l’ _Al ’ Az » "%, (—l)nAu]°
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As a summary of the preceding results, let us state

THEOREM (39,1). Let the coefficients of the polynomial f(z) = a, + a;z +
«++ 4+ a, 2"t + z" be written in the form a, = a;, + iay, where a, and a; are
real. Assume f(z) # O for z real. Let A, denote the determinant formed from the
first 2k — 1 elements in the first 2k — 1 rows and columns of the matrix

(a7, a’y aly a’y - a O O - 0]
1 a,,y ap s a3 a; ap o -~ 0
0 a,, a,, a,, -+ ai ag o --- 0
0 1 a,, a,, - a a; a -+ 0

0 0 0 0

Then if A, # 0 for k = 1,2, 3, - - -, n, the number p of zeros of f(z) in the upper
half-plane is equal to the number of variations of sign in the sequence 1, A, , A,,
-+, A, , whereas the number q of zeros of f(z) in the lower half-plane is equal to
the number of permanences of sign in this sequence.

” ” " e ”
ap1 Qp2 an—3_ ay

For the practical purpose of finding the numbers p and ¢ for a given poly-
nomial, the computation of the determinants A, may prove to be quite laborious.
Particularly when the computation is to be done by machine, the use of the
method leading to the proof may be preferable to the use of the theorem. That
is to say, it may be more convenient in such a case to reduce the given matrix
M,,_, to the canonical form M;,_, by successive steps each of which (especially
when the a; are real) can be readily performed on a computing machine. The
by, needed in eq. (39,12) are the elements in the main diagonal of matrix M,

n—1 *

EXERCISE. Prove the following.
1. Let D, denote the determinant formed from the first 2k elements in the
first 2k rows and columns of the square matrix (2n x 2n)

Then the A, of Th. (39,1) may be written as A, = (i/2)*D, .

(1 a,, a,. a,, a, 0 0 0]
1 a,, a,, a,, a O 0 0
o 1 a,, a,, a aq O 0
o 1 a,, a,., a, a, 0 0
0 0 1 a,, a, a, a, 0
0 0 1 a,, a a4, d 0
0 0 0 0 a, , G, 5 4,3 a |
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40. The number of zeros with negative real parts. We now return to the problem
which, as we indicated in sec. 36, is of importance in the study of dynamic
stability. Given the polynomial

F(z) = z" + (4, + iB)z"* + - -+ + (4, + iB,)

where the 4; and B; are real numbers, we wish to find the number p of its zeros
in the half-plane R(z) > 0 and the number ¢ of its zeros in the half-plane R(z) < 0.
In particular, we wish to find the conditions for ¢ to be n.
Let us form the polynomial
f@)=i"F(—iz)=ay+az+ -+ a, 2" + z*
where a, = a}, + ia} = i"*(A,_, + iB,_,). Thusform=0,1,2,---,

, _ - _ _ — .
Gsm = Agm s> O gm1= —Bimi1> G ym2= —Agmiz> Hsm-3= Bimsa s

" P n — 4 — n —_—
Anam = BAm s Qpam—1 = A4m+1 s Qpam—2 = —B4m+2 » Anam—3 = A4m+3'

If we further define
A;=B,=0 for j>n,

we may write the determinant A, of Th. (39,1) as

4,, —B,, —A4,, B,, A5, -, (—l)k"'1 Ay
1, —B,, —4,, B,, Ay, -0, ("l)k"'1 Ay s

0, Ay, —B,, —4,, By, -+, (=1 By,
0, 1, —B,, —4,, By, -+, (=11 By,

(40,1) 0, 0, A4y, —By, —4;, -+, (=1 Ag s
0, o, 1,

—B,, —4,, -, (—l)k A2k—4

By shifting certain rows and columns and changing the signs of certain rows and
columns, we may change (40,1) to the form given in Th. (40,1) below.

Since the substitution —iz for z corresponds to a rotation of the plane by an
angle /2 about z = 0, f(z) has p zeros in the upper half-plane and ¢ zeros in
the lower half-plane. According to Th. (39,1), F(z) has therefore as many
zeros in the half-planes R(z) > 0 and R(z) < 0 as there are variations and
permanences respectively in the sequences of the determinants (40,1).

Thus, we have proved

THEOREM (40,1). Given the polynomial having no pure imaginary zeros

F(z) =z"4+ (4, + iB)z" '+ --- 4+ (4, + iB,) (4; , B; real),
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let us form the determinants A, = A, and
Ay, Ay, As, **, Ay, —By, —By, ', —By,
1, A4,, A4, "+, Apys, —B,, —B;, -, — B3

0’ 0, 03 ° .. T Ak ’ 03 03 T, _Bk—l
Oa Bz ’ B4 s Tt sz-z ’ Al ’ Aa s T Azk—a
Oa Bla B3, Y B2k—3’ 1, Aza Tty Azk—4

05 0’ 0’ T, Bk ’ 0’ 0, R Ak-l

fork=2,3,-+-,n, with A; = B; = 0 for j > n. Let us denote by p and q the
number of zeros of F(z) in the half-planes R(z) > 0 and R(z) < O respectively.
IfA,#0fork=1,2, -, n, then
P = ’V(l’ Ala Az, e, An)’
and
q= V(la —Al s A2 PI (—l)nAn)‘

In the case A, > 0, k =1, 2, - - -, n, this theorem is stated explicitly in Frank
[1] and in Bilharz [3], the latter with the A, in the form (40,1).

Of special interest is the case that F(z) is a real polynomial. In that case,
B; = 0 for all j; A, = 6, and A, = 6,0, , where J, is the determinant defined
in Th. (40,2) below.

Since sg AjA, = sg 0, and sg A Ay, = 58 (0, _10ppa) fork =2,3, .-+, n—1,
we may state the following theorem.

THEOREM (40,2). Given the real polynomial
F@)=z"+ Az" '+ - + A4,,
let us form the determinants 6, = A, and
Ay, Ay, As, *+, Apa
1, Ay, Ay, -, Ay,
0, A, Az, -+, Ay,
0, 1, Ay, *+, Ay

0’ 0’ 0’ ) Ak

Sork=2,3,--,n, with A; = 0 for j > n. Let us denote by p and q the number
of zeros of F(z) in the half-planes R(z) > 0 and R(z) < O respectively, where
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p + q = n. Furthermore, let us define r = 0 or 1 according as n is even or odd and
let us set
€1 = (—1)%0 1 ;
€ne = (—1)*6y .
If 6, #0fork=1,2,---, n, then
P= ’V(l’ 61’ 63’ T, 6n—1+f)+ 1/‘(1’ 62’64’ T, 61;—1‘)’
q= 1/‘(1’ €,€3,"°"", G”_1+,.)+ ’V(L €, €, """, En—-r)°

In particular, if 4, > 0 for all k, then p = 0 and ¢ = n. This leads us to the
well-known result due to Hurwitz [2] which we state as the

Hurwitz CRITERION (Cor. (40,2)). If all the determinants 0, defined in Th.
(40,2) are positive, the polynomial F(z) has only zeros with negative real parts.

Real polynomials whose zeros all lie in the left half-plane are called Hurwitz
polynomials. The class of all such polynomials will be denoted by S#.
If fe 52, all the coefficients a; of f may be taken as positive, since we may write

f(z) = a, H(Z + 5 H[(Z + 0‘;’)2 + ﬁ?] = ayz" + alz"‘l +---4+a,
where a; > 0, y; > 0, «; > 0. The converse is not necessarily true as is shown
by the example

X2 4+ x4 4x 4+ 30 = (x + 3)[(x — 1)2 4+ 9].

Nevertheless, if we know that all a; > 0, we need to calculate only half the number
of the determinants &, if we use the following result due to Liénard-Chipart [1].

THEOREM (40,3). In Th. (40,2), F € 3 if and only if the following three con-
ditions are satisfied:

(1) 4, > 0;
(2 eitherAn—-Zf > 0’.1 =12, [n/2] orAn—2j+1 > 0’] =12,---,[(n+ 1)/2];
(3) either 6;5; >0, j=1,2, -+, [nf2lordy_, >0, j=1,2,---, [(n + 1)/2].

In this statement [k/2] denotes the largest integer not exceeding k/2.
This theorem is an immediate consequence of the following.

THEOREM (40,4). In Th. (40,2), let us write
F(z) = G(z%) + zH(z?
where '
G(u) = An + An—z“ + An—4u2 +
H(u) = An—-l + An—3u + An—suz + o
Let also assume 6, ~ 0 and set
’V0=1/(1961’63965’.H)9 'Ve=y(l’62’64’669...)‘
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Then, if G(u) #~ 0 for u > 0,

(40,2) P = 21/-0 fOI’ n=2m,
(40,3) p =274~ (1/2)[1 — sg 4] forn=2m—1,
whereas, if Hu) # 0 for u > 0,

(40,4) p=20+ (1/2)[sg 4; — sg (4,,4,)] forn=2m,
(40,5) p=2Yo—(1/2)[1 —sg(4,,4,)] Jorn=2m—1,

RemMARK. Corresponding results involving ¥, instead of ¥”, may be obtained
by use of the relation ¥’y = p — ¥7, given in the Th. (40,2).

Proor. Let us show that we can determine p by finding the number p, of
zeros that a certain polynomial of degree m has in the right half-plane.

We begin with the cases n = 2m when

Gu) = u™ + Au™ 1t + Au™ 2+ + A4,,
HWu) = Au™ '+ Agu™ 2+ -+ A4, ,.

Let us set
f@) =i"F(—iz) = (=)"[G(—-2*) — iz H(—z)].
Thus in (37,3) and (37,5)
Py(x) = (=1)"G(=x?),  Py(x) = (=)™ xH(—x?),
(40,6) p(x) = —G(—xH)/[xH(—x%].

Now from (40,6) it follows that
(40,7 sg p(x) = F sg [G(—x?)/H(—x?)] according as sg x = 1.

CaseI. G(u) # 0 for u > 0andn = 2m.
We may write

(40,8) 6(w) =TT ( + uGao(a),

k=1

where 0 < u; < u < -+ <u, and Gy(u) # O for real u. Hence

B
Py(x) = (—l)mk].l (—x* + up)Go(—x?).
In the notation of (37,6)
X = ——u:ﬁk, k=1,2,---,u; xk=u;f_‘” k=pu+1Lpu+2--,2u.
Thus (37,9) becomes

(40,9) Ay arg f(2) = (7[2)(S, + S»)
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where
S, = é_jl[sg p(—uf — &) — sg p(—u + )],
S, = kg[sg p(uf — &) — sg p(uy + €)].
Let us set
(40,10) w(u) = Gu)/H(u).

Then from (40,6) and (40,7)

sg plE @ + o] = Fsg w(—u, — 1),

sg pl£(E — ] = Fsg w(—uy, + 1),
where

(40,11) 0 < 7 =2eu; — € =< 2euy;, + € for 0 < € < 2u,.
Hence,

Sy = S, = 3 [sg (—u, — 1) — 5 (=1 + 7).

k=1

Comparing (40,10) with (37,5), we conclude that

Ay arg ¢(2) = (7[2)S,
where
(40,12) &(2) = G(z) + iH(z2)

and thus from (37,9), (37,10) and (37,12) [applied to f and then to ¢] and (40,9) we
conclude that

(40,13) p = (1/2)[2m + (2/m) Ay arg $(2)] = 2p,

where p, is the number of zeros of ¢(z) in the upper half-plane.
To determine p, ; we rotate the plane about the origin /2 radians clockwise,
setting
O(z) = (—)"$(iz) = (—)"[G(iz) + iH(iz)].
Since
(—i)"G(iz) = z™ — iAz™ ! — A2™ 2 + iAgz™ 3 + Agz™ 4 + - - -,

(=)™ H(iz) = Ayz™ ! — idgz™ % — Az™ 3 + id, 2" A 4 - - -,
we infer that

(40,14) O(2) = 2" + 3 (2 + Bz

k=1

Ogpey + i:B2k—1 = (—l)k—lAue—s + i("l)kAac-z s
g + Bar = (— 1 Ay + i(—1)*A44

where
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191

fork=1,2,3,--+. On substituting these values of «; and B, for the 4, and B,
respectively in (40,1), we find
Ay, Ay A5 Ags
1 A, 4y -+ Ay
A, = 0 4, 43 -+ Ay =0y ;.
0 1 Ay -+ Agg
0 0 0 - Ay,

By Th. (40,1). p, = ¥", and thus (40,2) follows.
CaseIl. H(u) # 0 for u > 0 and n = 2m.
Since G may now have positive zeros v, , we modify (40,8) by writing

Go(u) = r_[ ( — 8)Gy(w)

where 0 < v; < v, < -+ <wv, and Gy(u) # O for real u. Since H(u) # 0 for

u>0,
sg w(vy, + €) = sg w(Vpyy — €)

for sufficiently small € > 0. Hence,

v

S; = Z [sg w(v, — €) — sg w(vy + €)]

k=1

sg w(v; — €) — sg w(v, + ¢€)
sg w(+0) — sg w(0)
sg(A,/A;1) — sg 4;.

However, since
Go(—x*) = II (—x* — v)Gy(—x") # 0
k=1
for real x, there are no additional terms in (37,9) corresponding to S; .
ingly, we must modify (40,13) to read

p = (1/2) 2m + (2/m)[Ay arg $(2)] — S4}
=2p, + (1/2)[38 A; — sg (4,—14,)],
as in (40,4).
We next consider the cases n = 2m — 1, where

f(@) =i"F(—iz) = (=)™ [zH(—2%) + iG(—27)]
so that
Hu) =u™+ Agu™*+ Agu™3+---+ 4, ,,
Gu) = Apu™* + Au™ %+ Agu™3+---4+4,,
Pyx) = (=)™ xH(—x%),  Py(x) = (=" G(—x?),
p(x) = xH(—x*)[G(—x?),

Accord-

(40,15) sg p(x) = % sg [H(—x*)/G(—x?)] accordingassg x = 1.
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CaseIII. H(u) # 0 foru > O0andn =2m — 1.
Let us write

(40,16) Hw) = T s + w)Hw)

with 0 <uy <uy <---<wu, and Hy(u) # 0 for u real. Then, as Py(x) has a
zero at x = 0, we must modify (40,9) to read

(40,17) (2/m) Ap arg f(x) = sg p(—e) — sg p(+€) + S; + S,.
Let us set
(40,18) o(u) = uHu)/G(u).

Then, defining n as in (40,11), we find from (40,15) that
sg pl£ (" £ €)] = 58 [H(—u, — 1)/G(—u, — 1)] = Fsg o(—u, — 1),
sg p[F () + €)] = Fsg [H(—u, + 1)/G(—u, + 1)] = £5g o(—u + 1),
N
S, = ZH'Sg o(—u, —n) — sg a(—u, + )],

k=1
m
Sy =2 [—sgo(—t +n) + sgo(—u, — )] = 1,
sg p(—e€) — sg p(+€) = —2 58 (4,4/4,) = + sg o(—7) — sg o(n).
Hence, for y(z) = zH(z) + iG(2),
(40,19) (2/m) Ap arg y(x) = Sy — 2 58 (4pa/4,)-
From (37,9), (37,12), (40,17) and (40,19) we now deduce:
p= (1/2)[2m -1- sg (An—lAn) + Sl]
= (1/2)[2m — 1 + sg (4,14,) + (2/m) Ay arg y(x)]
=2p, — (1/2)[1 — sg (4,14,)].
Finally, since (u) is identical with ¢(u), we again find that p, = ¥, and so we
have established (40,5).
Case IV. G(u) # 0 foru>O0andn =2m — 1.
Since H may now have positive zeros v, , we modify (40,16) by writing

v

Hy(u) = H (u — v)H,(u)

k=1

where 0 < v, < v, < -+ <v, and H(u) # 0 for real u. As in Case II, we
calculate

Sy =3 [sg o(v, — 1) — 58 o(v, + )]

k=1
= 5g 6(+0) — sg () = +sg (4,1/A4,) — 58 4,
which added to (40,19) leads to the formula

(2/m) Ay arg 9(x) = §; — sg (4,1/4,) — 58 4y .
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Since Ay, arg f(x) is the same as in (40,17), we find that

p=(/2)2m — 1 + (2/m) Ay arg p(x) + sg 4]
= p1 — (1/2)[1 — sg 4,].
This establishes (40,3) and completes the proof of Th. (40,4).
Clearly, the Hurwitz Criterion, Cor. (40,2), is an immediate consequence of
Th. (40,3). For other proofs of Cor. (40,2) we refer the reader to Bompiani [1],
Orlando [1] and [2], Fujiwara.[1] and [4], Schur [3], Vahlen [1], Obrechkoff

[6] and [12], Wall [1], Neimark [1], Gantmacher [1], Bueckner [1], and Talbot [1].
Regarding the practical computation of the 4, , the reader is referred to the
remarks following Th. (39,1). In the cases that some of the J, are zero, a useful
formula is the following due to Orlando [1]:
n k—1

(40’20) 61; = (_1)"(”4-1)/2 2129 2, kH2I]i(Zj + zk) = An 61&-—1

=2 j=
where z; are the zeros of F(z). Eq.(40,20) may be established by a mathematical
induction on n. By (40,20) the condition 4, ; = 6, = 0 implies that either

z; = 0 for some j or z; = —z, for some j and k, and conversely. If, however,
8, # 0, we refer to the result given in Gantmacher [1, p. 239] to the effect that, if
6"‘#0, 6m+1=6m+2=.'.=6m+2h—1=0’ 6m+2h¢0’ m<m+2h§n, then

in the expression
pP= 7, 6., 62/61 s "t an/an—ll

we take

Y [0ml0m1 5 6m+1/6m s Omyons1/Omian]
= h + (1/2){1 — (=1)" sg [(Om/Om—1)(Oms2ni1/Omsan)]-

We refer also to the discussion in sec. 44.

ExeRrcises. Prove the following.
1. Th. (40,2) is valid for the number of zeros of the real polynomial

$z) = ag + 1z + -+ + a,z” o > 0,

in the half-planes R(z) > 0 and R(z) < 0, when the J, are replaced by the
determinants

oy Xz Oy Ay T Ogpy
Xy K Oy Kg 7 Oy g
0 o o5 a5 " ayg

o, = 0 o g g " gy .
0 0 0 0 -+ o

Hint: Apply Th. (40,2) to F(z) = (z"/xo)$(1/z).
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2. Let f(z)=apz"+ -+, ap >0 and g(z) = byz" + -+, by >0 be real
polynomials. Let h(z) = f(2) + Ag(z). If fes, then

d=sup{|Al; A real, he#}

has the value d = min [bg'ay, Bz y), k = 1,2, - -, n,where y;* is the sum of the
absolute values of the elements in the inverse of the matrix with determinant J,

[see Th. (40,2)] and B, is the max |b,| over all b; occurring in the determinant
form 6, computed for g(z) [Parodi 2b].

3. If in Th. (40,1) F has a pure imaginary zero, then A, = 0. If in Cor. (40,2)
F has a pair of conjugate imaginary zeros, §,_; = 0. Hint: Show that A, in Th.
(39,1) is the discriminant of the polynomials (37,4).

4. The real parts of the zeros of F(z) in Th. (40,2) are the zeros of D, (), the
determinant §,,_; corresponding to the polynomial F(z — «) [Koenig 1]. Hint:
Use ex. (40,3).

5. In the cases n = 4 and 5, the hypotheses of Th. (40,3) imply those of Cor.
(40,2) [Fuller 1]. Hint: For n = 4 show that 430, = d; 4+ A? and for n = § that
Ay030, = A20, + 0% + A,456%.

6. If the division algorithm (38,1) is applied to the F of Th. (40,2), then the
corresponding P,(z) has the form

(40,21) Py 1(2) = S, 1(2)Py(2) + To(2)Py(2)

involving the real polynomials
k k )
Si1(2) =j§i°‘kfzk—j, T(2) =j_Z° Briz" .

If the coefficients of z¥ on both sides of (40,21) are equated for v =n + k — 1,
n+k—2, -+, n—k—1, the resulting system of 2k + 1 equations in the
2k + 1 unknowns a,; and B, has d, as its determinant [Talbot 1].

7. If the polynomials

gD =C—a)z—a) (z—a,), M= (z—-b)z—1b) - (z—b,)

have real zeros with @, < b, <:--< a, <b,, then the polynomial f(z) =
g(2) + (A + iwh(z), p # 0, has all its zeros in the upper (lower) half-plane
if #> 0 (u < 0)and 4 is real [Han-Kuipers 2].

8. If P and Q are real polynomials and if f(z) = P(z) 4 iQ(z) has p zeros in
the upper and ¢ in the lower half-plane with p = ¢, then F(z) = P(z) 4+ 1Q(2)
has also p zeros in the upper half-plane if J(A) > 0 and at least p — g real
distinct zeros if J(4) = 0 [Montel 7]. Hint: Allow A to vary continuously
from A =ito Areal. A zero of F can leave the upper half-plane only by first
crossing the real axis—an impossibility. '

9. The zeros of F(z) = det (a;; + 29,;), where d;; = 1 and d;, = 0 for j # k,
all lie in the left half-plane if R(ay) > 0 and |ay| > >, lapl, k=1,2,-+, n
[Parodi 1]. Hint: Apply Th. (31,1).

10. Let f(2) = >, a2*, g(2) = 22 o bez* (ay, by real),

w(z) = A (2) + A — Dg(2), A real.
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Ifdegy =m =nfor0 =< A =<1 andif y(iy) # O for all real y, then f has the same
number of zeros as g for R(z) > 0(R(z) < 0). Hint: The zeros of y are continu-
ous functions of A.

11. For [ as in ex. (40,10) let F(z) = ay + a,z™. If f(iy)F(iy) # O for all real
y and if ¢[f(iy) + f(—iy)] = 0 for all positive y and for some constant ¢ of
modulus one, then f has the same number of zeros as F for R(z) > 0 (R(z) < 0)
[Bueckner 1]. Hint: Apply ex. (40,10) with g(z) = F(z) and show [y(iy)| =
[R[w(iy)]l > O for positive y.

12. For fand g of ex. (40,10) with m = n — 1, form

2n—1
#(2) = f(—2)g(2) = go ¢z, D(2) = co + Cgua2t"

If (iy)@(iy) # O for all real y and if ¢ has the same number of zeros as @ both
for R(z) > 0 and for R(z) < 0, then g e implies fe #. Conversely, all
b, > 0 and fe # implies g € # [Bueckner 1]. Hint: The zeros of ® are the
vertices of a regular polygon centered at z = 0 so that their numbers in the right
and left half-planes differ at most by one.

13. The conditions on g and f in ex. (40,12) are satisfied by the following two
polynomial pairs:

n—1

@ F)=34,.7 6= S B

k=0
where
Ay=1,4,,>0,4,>0and 4,=0 forj<Oorj>n,
B, = A fork=n—1,n—-3,n-5,---,

Bk=An_1Ak_A”Ak_1fork=n—2,n—' 4,"' N
(b) any g such that g(z) and g(—z) have no common zeros and the f with

deg f = n — 1 such that f(2)g(—z) + f(—2z)g(z) = 2 for all z [Bueckner 1].
14. If f€ 5 and f(0) = 1, then f has the form

14+¢z -1 0o o0 0 0
1 cz —1 0 0 0
f@) = 0 1 ¢z -1 .- 0 O ,
0 0 o0 0 -+ 1 ¢,z

where ¢; > 0 forj= 1,2, -+, n[Frank 1, 4; Bueckner 1].

15. Let f, in ex. (38,6) be chosen as the F in Th. (40,2). Let 8 denote the
determinant ¢, for the f; in ex. (38,6). Then &, = 6,6%,,j, k=0,1, -+, n,
J < k [Brown 2].
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41. The number of zeros in a sector. The right half-plane is the special case
& (n[2) of the sector F(y) comprised of all points z for which

(4L1) largz] =y <.
In extension of our previous results on the number of zeros of the polynomial
(41,2) f@=ay+az+ -+ a,z", aya, # 0,

in the right half-plane, let us now outline the methods of determining the number
of zeros of f(z) in the region L (y).
For this purpose, let us set

aya, = A%, 0=, <27, z=re%

and
(41.%) F(z) = f(re®)/a,e™ = Py(r, 6) + iPy(r, )
where
414) Py(r, 0) = Ay cos [xg — nB] + Ayrcos [, — (n — 1)0] + - - -
+ A,y cos [, ; — 0] + rn,
41.5) Py(r, 0) = Agsin [ag — n6] + Ayrsin[a; — (n — 1)0] + - - -

+ A4, " 1sin [a,_, — 0].

Let us denote by ry, 7y, =+ +, r, , u = n, the distinct positive zeros of Py(r, y) and
by r{, ry, *-+, r,, v = n, the distinct positive zeros of Py(r, — ), these being
labelled so that

(41,6) 0<rn<<n< <, 0O<r<<r< --<r,.

Let us assume that

(41,7) Py(0, y)Po(0, —y) = Aj cos (a — ny) cos (x + ny) # 0,
which means, since 4, # 0, that for any integer m
(41,8) oy £+ ny # (2m + 1)(x)2).

In this case the Principle of Argument (Th. (1,2)) leads to

THEOREM (41,1). Let the polynomial f(z) = ay+ ayz + - - + a,z" have p
zeros interior to the sector ¥ (y) and no zeros on the boundary s of this region. Let
A, arg f(2) be the net change in arg f(z) as point z traverses s in the positive direction.
Then '

(41,9) 2mp = 2ny + A, arg f(2).

In terms of the ratio
(41310) P(r, 0) = Po("’ 0)/P1(ra 0)
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we may derive a formula similar to (37,9); namely,

2ny + A arg f(z2) = n(k + «') + wﬁ: |:sg plr; + &) _2' sg p(r; — & }’)]

j=1

(41,11)

— a3 [Ss p(r; + € =) ; sg p(r; — e —7)],

i=1
where « and «’ are integers (or zero) such that
41,11y | — ny + «m| < 7/2, lag + ny — &'w| < /2.

For, let us note that, since f(0) = a, # 0, also f(z) # 0 for all |z] = ¢, € being
a sufficiently small positive number. Hence, the number of zeros of f(z) in
&(y) will be the same as in the region S *(y) comprised only of the points of
& (y) for which |z| = e. Let us denote by I' the arc of the circle |z| = € lying

in &#(y) and by f the complete boundary of #*(y). Then.

p—1
Bparg F@) = 7 3 [~58 prsms — & 7) + 58 prs + & V)]

v—1
+ 7 S s plrin — & =7) = 58 p(r + & =]
=

+ A, arg F(z) + A, arg F(z) + Ar arg F(2)
+ Agarg F(z) + A arg F(z),

where the last five terms denote respectively the increments in arg F(z) as point
z moves along the ray 6 = y from r = 0 to r=r, and from r=r, tor = ¢,
along T', and along the ray 6 = —y from r = € to r = r{ and from r =r} to
r = oo. Itis clear that

A, arg F(z) = ([2) sg p(r, + & 7),
Ay arg F(z) = g — ny + «m — (7/2) sg p(r; — €, 9),
Ajarg F(z) = (m/2) sg plri — & —7) + &'m — o — ny,
Ajarg F(z) = —(7[2) sg p(ry + €, —7),
Ap arg F(z) = 2ny.
These formulas lead now to equation (41,11) since
A arg f(z) = A, arg F(z) — 2ny.

Let us denote by o and = the number of r; at which, as r increases from 0 to o,
p(r, y) changes from — to + and from + to — respectively and by ¢’ and =’
the number of r} at which, as r increases from 0 to o, p(r, —y) changes from —
to + and from 4 to — respectively, then (41,9) may be written, due to (41,11), as

(41,12) P=0DI@—7) = (' =)+ (x + ).
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Since the differences (¢ — 7) and (¢’ — 7') may be computed by constructing
Sturm sequences, we may state a theorem analogous to Th. (38,1) (cf. Sherman
[1] and J. Williams [1]).

THEOREM (41,2). Let f(2) = ay+ ayz + **+ + a,z" be a polynomial which
has p zeros in the sector S (y) and no zeros on its boundary s. Let Py(r, 6) and
Py(r, 6) be the real polynomials in r such that

f(re®)/a,e™® = Py(r, 0) + iPy(r, 6)

and let Py(r, 0), Py(r, 0), - - -, P(r, 0) = K(0) be the Sturm sequence in r obtained
by applying the negative-remainder, division algorithm to P(r, 6)/Py(r, 6). Finally,
let the number of variations in sign in the sequence Py(r, 6), Py(r, 6), - - -, P (r, 6)
be denoted by V(r, 0). Then

(41,13) p = (1/2){[V(O, y) — V(, p)] — [V(0, —y) — V(®, —p)] + « + «'}

where k and k' are integers satisfying (41,11)’.
Th. (41,2) is a generalization of the Sturm theorem giving the exact number

of zeros of a real polynomial
f@=a+az+ - +a.z"

on a given interval of the real axis. This suggests that we also attempt to
generalize Descartes’ Rule of Signs to complex polynomials.

Before we can proceed to generalize this Rule, we must first formulate a
suitable generalization of the concept of the number of variations of sign in a
sequence of numbers a; to cover the case that the a; are complex numbers. Let
us denote by 2(y) the double sector consisting of the two sectors (see Fig. (41,1))

(41,14) Dy(y): —ySargz=y<m/2,
(41,15) Dy(y): T—ySargz=mw+ y.

We shall say as in Schoenberg [1] that a variation with respect to 2(y) has
occurred between a, and a,,, if a, lies in one of the sectors D;(y) or Dy(y) and
a,., lies in the other sector.

This concept permits us to state the following result due to Obrechkoff [2] in

the case ¥ = 0 and to Schoenberg [1] when 0 =< y < 7/2.

THEOREM (41,3). If all the coefficients a; of the polynomial f(z) = a, + a,z +
++ + a,z" lie in the double sector D(y), then in the sector S (y) defined by the
inequality
(41,16) larg z| = v < (7 — 29)/n

the zeros of f(z) number at most B(a, , a,, * * -, a,), the number of variations with
respect to D(y) in the sequence ay , a,, "+, a,.
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To prove Th. (41,3) let us set z = re®, a, = A,e* for k=0, 1, -+, n and
41,17) f(re®)e=%% = Qy(r, 6) + iQy(r, 0).
If 0, 7, ¢’ and 7’ have the same meaning as above with now
p(r, 6) = Qo(r, 6)/ Qu(r, 6),

then the above reasoning leads again to eq. (41,12) for the number of zeros
of f(z) in the sector (4},16). In particular we infer from (41,12) that, since
k = k' = 0 here,

(41,18) p=QA/)(0 + 7+ o + 7) = (1/2)m + m),

where m and m’ denote the number of positive real zeros of Qy(r, y) and Qy(r, —y)
respectively.

Fic. (41,1)

On the other hand, from egs. (41,2) and (41,17), we have that

Qu(r, 0) =§OA 7 cos {a; — [(n/2) — j16}.

Let us assume that
lo;l = = 7/2, j=0,1,--n,

and thus that point g; lies in D;(y) or Dy(p) according as 4, > O or 4; < 0. Now
on the boundary rays 6 = + of the sector (41,16),

—2< =y =2y = o; — [(n/2) = jI0 =y + (n/2y < 72

and hence cos {a; — [(n/2) —j]0} >0 for 6 = +y and for all j. Applying
Descartes’ Rule of Sign to Q(r, ¥) and Qy(r, —y), which are real polynomials
in r, we learn that both

mEV (Ao, Ay, o A), M SV (Ao, Ar, e, 4,).
We now conclude from (41,18) that
(41,19) PV (Ag, Ay, 0, Ay,
as required in Th. (41,3).
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In this extension of Descartes’ Rule to complex variables, it is not as yet
known whether or not the difference between the right and left sides of ineq.
(41,19) is zero or an even integer as it is in the case of real polynomials.

EXERCISES. Prove the following.

1. If all the coefficients of f(z) = ay + a;z + - -+ + a,z" lie in the sector
larg z| < m/2, then f(z) has no real positive zeros. More generally, if all the
points z = a,e™ lie in the same convex sector, then f(z) # 0 on the ray 6 = w.
Hint: Use Th. (1,1) [Kempner 5].

2. If in Th. (41,3) all the a; are points of the double sector

d=<arg(+2)=d0+ypy<d+m,

and if B is the number of variations of the a; with respect to this double sector,
then f(z) has in the sector S((= — y)/n) at most B zeros. Hint: Apply Th.
(41,3) to {f(2) exp [— (6 + v/2)i]} [Schoenberg 1].

3. If all the zeros z;, of f(2) = @y + @,z + - -+ + a,2" lie in the sector 4:0 =
argz £ 0 + y < 6 + =, then the points (—ay/a,,,) = b, k=0,1,---,n—1,
also lie in 4. Hint: Y7 (1/z,) = 1/b,. According to the proof of Th. (1,1),
1 /b, , as a sum of vectors each of which lies in 4, also lies in 4 and hence b, also
lies in 4. Similarly, express 1/b, in terms of the zeros of the kth derivative of
f(2) and use Th. (6,1) [Takahashi 1].

4. If |f(e®)| = M for f(z) = 272 a,z* with aqa, # 0, then the number N of
zeros in the sector 0 < a < arg z < § =< 2w satisfies the relations

Q = |N — [n(8 — o)[27]| < 16[n log (M |aa,| 9P,
Q < 16{nlog [(1ao] + las| + - * - + |ay]) laoa,|*1}*
[Erdés-Turén 1, 2].
5. The real polynomial f(z) = @, + @,z + * * * + a,z" has at most V' + 2(na/m)

zeros in the sector |arg z| < a < /2 where V = ¥ (ay, a;, * * *, a,) [Obrechkoff
1].



CHAPTER X
THE NUMBER OF ZEROS IN A GIVEN CIRCLE

42, An algorithm. Like that of Chapter IX, the subject of the present chapter
is not only of theoretic interest but also of practical importance. It enters in
the study of certain questions of stability. These may pertain to a linear difference
equation with constant coefficients such as arise for example in econometric
business cycle analysis [Samuelson 1] or to the numerical solution of first order
differential equations [Wilf 1]. In such cases the requirement for a stable
solution is that all the zeros of the characteristic polynomial lie in the unit circle.
Similarly the stability of a discretely operating physical system may depend upon
the system’s transfer function being a rational function with-all its poles inside the
unit circle [Jury 1, 2].

Let us denote by p (p = n) the number of zeros which the polynomial

(42’1) f(z)=a0+alz+ --~+anz"=a,,I'I(z—z,)

=1
has in a given circle, which, without loss of generality, may be taken as the
unit circle [z] = 1. One way to determine p would be to map the interior of
the unit circle |z| < 1 upon the left half w-plane by means of the transformation

42,2) w=G—=Dfc+1, z=>1+w/(l-mw.
Then p becomes the number of zeros which the transformed polynomial
(42,3) Fw) = (1 = w)'f((1 + w)[1 = w))

has in left half-plane and so may be found by applying to F(w) the theorems of
Chapter IX. (Cf. Hurwitz [3], Frank [1b].) The result thus obtained appears,
however, less elegant than that which we shall presently derive by applying
Rouché’s Theorem (Th. (1,3)) directly to f(z).

Let us associate with f(z) the polynomial
424) f*2)=zf(1/2)=az" + az" ' + - + 4, do}'Il(Z —z3)
whose zeros z¥ = 1/z, are, relative to circle |z| = 1, the inverses of the zeros
z, of f(z). This means that any zero of f(z) on the unit circle is also a zero of
[*(2) and that, if f(z) has no zeros on the circle [z| = 1, then f*(z) has also no
zeros on the circle |z| =1 and has » — p zeros in this circle. Furthermore,
on the unit circle, the value of f*(z) is

(42,5) f*(e“)—aon(e"’— 1/2) = BECD T (i ) einapem

1 2 Zn =1
194
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and, consequently,

(42,6) [f*(e)] = 1f()].

From f(z) and f*(z) let us construct the sequence of polynomials fi(z) =
Snzializ*, where fi(z) = f(z) and

(42,7) fin(@) = &f(2) — a2 f}2), j=0,1,---,n—1
Thus,
(42,8) a(:’+1) = a-(:)a(i) ai‘)j i‘j_)’_k

In each polynom1a1 fi(z), the constant term a{” is a real number which we
shall denote by §;; viz.,

(42,9) 001 = lad"® — a2 = ai™",  j=0,1,2,- -,n—1.

As to the zeros of these polynomials, Cohn [1] has proved two lemmas which
we shall combine in the compact form due to Marden [16].

LemMA (42,1). If f; has p; zeros interior to the unit circle C: |z| =1 and if
0,41 # O, then f;,, has

(42,10) Pin=(Q[D{n —j—[(n — j) — 2p;] 58 6.1}

zeros interior to C. Furthermore, f; ., has the same zeros on C as f; .

To prove this lemma, let us begin with the case that d,,; > 0. From eq.
(42,6) with f(2) replaced by fi(z) and from eq. (42,9), we infer that

(42,11) a2, £} (2)| < la§’f(2)l, zeC.

Let € (>0) be chosen so small that ineq. (42,11) holds for ze C’: |z]| =1 — €
and that f(2) #0 for 1 — e =|z] < 1. It follows from Rouché’s Theorem
that the polynomial fj,,(z) has in C the same number p; of zeros as a\f(z).
Since sg d;,; = 1, this number is in agreement with formula (42,10).

Let us next take the case that d;,; < 0. Since now

(42,12) la’f (™) < 182,15 (),

the same reasoning as in the previous case here shows that the polynomial
fi+1(2) has in C the same number (n — j — p,) of zeros as a{’,f}(z). Since now
sg 0;.; = —1, this number is also in agreement with formula (42,10).

As to the zeros of f;,; on C, we see from eq. (42,7) that on C every zero of f;,
being also one of /¥ , is a zero of f;,, and that because of ineq. (42,11) and (42,12)
any point on C, not a zero of f;, is also not a zero of f;,, .

Thus, we have proved that Lemma (42,1) is valid in both cases.
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Let us now apply Lemma (42,1) to each f(z) in the sequence (42,7). We
learn thereby that
pr=(1/2){n — (n — 2p) sg 4,},
pe=(12{(n—1) — [n — 1 — 2p,] sg 8}
=/2{n—1) — [(n— 1) — n + (n — 2p) sg 6,] sg 65}
= (1/){(n — 1) — (n — 2p) 58 (8,8) + sg o}
The expression for p, is the special case of the formula
Pr=QDI0 —j+1) = (n = 2p) s (3ud, - 6))
+ 5g (0205 + 9,;) +5g' (8504 + 6;) + - + sg 4]
Let us assume that we have verified formula (42,13) also for j =3, 4, ---,
k — 1 and on that basis let us compute p,. From eqs. (42,10) and (42,13) with
Jj =k — 1, we obtain
p=02)n—k+1—[n—k+1)—2p,]sgd}
=(1){n—k+D)—-[n—k+1)—(n—k+2)
+ (n—2p)sg (610, - -+ G y) — 58 (0205 - * * 6, y)
— 58 (030, * -+ O_y) — * + - — 88 O, ;] 58 6}
==k +1) = (0 —2p)sg (8,0, -~ 8) + sg (3sds - &)
+ 55 (0505 + - 0+« + 58 O
This shows by mathematical induction that formula (42,13) holds for all j,
25j=n

In particular, since f,(z) = const. and hence p, = 0, we derive from eq. (42,13)
with j = n the relation

1—(n—2p)sg(8:0,- -~ 8,) + 58 (805 - - - 9,)
+ 58 (80, 0,) + -+ + 586, =0.
If solved for p, eq. (42,14) yields the value

(42,13)

(42,14)

@15 p=ap(n-3sn)
where
(42,16) P,=268,0," 8, k=1,2,-,n.

To interpret formula (42,15), let us denote by » the number of negative P,,
k=1,2,---,n Then, as (n — ») is the number of positive P, , we may write
(42,15) as

p=UDIn+v—(n—»]=r

In other words, we have now as in Marden [16] established
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THEOREM (42,1). If for the polynomial
f@=a+az+"+a,z"

p of the products P, defined by eq. (42,16) are negative and the remaining n — p
are positive, then f(2) has p zeros in the unit circle |z| = 1, no zeros on this circle
and n — p zeros outside this circle.

We observe that Th. (42,1) does not contain a hypothesis that f(z) # 0 for
|z] = 1. This is implied in the hypothesis d,, # 0, as will be seen in secs. 44
and 45.

A convenient way to find the J, is by construction of the matrix

aO al T an—Z a, 1 a,
a, 4,, " @ a 4
(1) w ... 0 oY)
Qo a A, Qn,°; 0
(1) =(1) e =(1) =(1)
a,-1 Aps a () 0
_af,") o --- 0 0 0_|

comprised of the 2n + 1 rows p;, j=1,2, -+, 2n+ 1. Row p, consists of
the coefficients in f(z) = @y + a;z + -+ * + a,z" and row p, consists of the con-
jugate imaginaries of these coefficients written in the reverse order. In general

Pars1 = G0 Po1 — GperkPor k=1,2,--+,n,
and row p,., consists of the conjugate imaginaries of the coefficients of the
TOW py.; Written in the reverse order. Since by definition §, = a®, the J, are
the first elements in the rows pgy, k=1,2,---, n.

Exercises. Prove the following.

1.If0; >0for j=2,3,---, n, thenf(z) # 0in |z] = 1 or |z| = 1 according
as 6, >0o0r 6;<0. Ifsgd,=(—1)y,thenp=2m+1if n=4m+ 1 and
p=2m+2ifn=4m+k,k=2,30or4andm=0,1,2,---.

2. Let dr) be the values of the d; of Th. (42,1) for a, = b,r* and p(r) the
corresponding value of p. Then p(r) is the number of zeros of the polynomial
g(2) = by + b,z + - -+ + b,z" in the circle [z] < r.

3. Let d,(r, s) be the values of the é, of Th. (42,1) for a; = r 32 . C(k, j)s*7b,
and p(r, s) the corresponding value of p. Then p(r, s) is the number of zeros
of g(z) = by + byz + - - - + b,z" in the circle |z — s| < r.

4. If the a; are all real and if 0 < a, < a,; <--- < a,, then also all the
a'® ineq.(42,8) arerealand 0 < a®, < a®, | < --- < a¥, fork=1,2,---,n,
and thus f(z) # 0 in |z|] = 1 [Enestrém 1, Kakeya 1, Cohn 1].

5.1f6;#0forj=1,2,---,n— 1butif 4, = 0, then the zero of the f, _,(2)
(see egs. (42,7)) lies on the circle |z| = 1.
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6. If |ag| < |a,l, f(2) has all its zeros in the unit circle if and only if f*(z) has
all its zeros in the unit circle [Schur 2].

7. If a c.r. (characteristic root)-of an n x n matrix 4 = (a,;) lies in the left half-
plane, then the corresponding c.r. of the matrix B = [4 — E]![4 + E] lies
inside the unit disk and conversely [Wegner 1]. Hint: See sec. 31 and eq. (42,3).

43. Determinant sequences. While the algorithm given in sec. 42 does enable
us to find the number p of zeros of the polynomial f(z) in the unit circle, a set
of conditions expressed directly in terms of the coefficients of f(z) is desirable,
at least from a theoretical standpoint. This type of condition is embodied in
the following theorem.

ScHUR-COHN CRITERION (Th. (43,1)). If for the polynomial f(z) = ay +
az + ¢+ + a,z" all the determinants

a 0 0 0 0 a4, apy c Apgn
al ao 0 ct 0 0 an ce a,,_k+2
(] Ap—2 a3 "' a4 0 o - a,
Ak - = = -~ s k= 1,2’ >N,
a, 0 0 -+ 0 ay dl tc £/
a-n—l dn 0 - 0 0 a-o Tt dk_z
dpgt1 Gppre Gniys """ 4 0 0 -0 4

are different from zero, then f(z) has no zeros on the circle |z| = 1 and p zeros in this
circle, p being the number of variations of sign in the sequence 1, A, , A, , - -+, A,.

Th. (43,1) is due to Schur [2] in the case A, > 0 all k and essentially to Cohn
[1] in the general case. We shall follow the derivation in Marden [16].

In order to prove Th. (43,1), we need to express the A, in terms of the &,
entering in Th. (42,1). For this purpose, we shall first develop a reduction
formula for the determinants:

(3 .. a? ) )
ag 0 0 0 a; an A j—te+1
ay” ag” 0 0 0 0 a;j—)f R AP
(5 (4) (4) e () e (7)
AP a1 a2 A3 ) 0 0 An—j
xr = .
ﬁ:,j_)j 0 0 Ce 0 d‘()f) di:) . d,(ci_’l
=(4) =(7) R =(4) e =(4)
al i ay_; 0 0 0 Ao s
5(3) 5(4) =(4) e -(i) ‘e =(3)
An i+l njrt2 Gn—j—r+3 an-; 0 0 0

where the a{”’ are the quantities defined in eq. (42,8).



[§43] DETERMINANT SEQUENCES 199

With this in mind, let us introduce the determinant of order 2k

d:)n 0 0 --- 0 _a;{l’ 0 0o --- 0
0 a’ o --- 0 0 —a?, 0 -+ 0
| O 0o o0 --- a 0 0 0 --- —a?,
k —di,’_),- 0 0 --- 0 af,” 0 0 --- 0
0o —a?, 0 0 0 a? 0 -+ 0
0 0 0 --- —a?, o0 0 0 --- a

To evaluate A\, let us multiply its last k rows by a!/’, and add the resulting rows

n—

to the first k rows multiplied by a{”. Using eqgs. (42,8), we thus find
(43,1 AP = (a+yE,

Let us now form the product A{’A{?, which is by the laws of determinant
multiplication and by egs. (42,8):

(3+1) A G+ L (74+1)
ao 0 0 0 0 An—j an"i ki
a:’“’ a(()j+l) 0 ... 0 0 0 Ce a;ﬁ-}_’ﬂz
a’(‘j_-{il) al(;j—-zl) al(cj_-t,l) . a‘(,"“’ 0 0 ... 0

_ (5. _

0 0 0 A 0 a(‘,’“’ ala+l) ... a,‘j_‘;"
~(3+1) v =(i+1) .. (3+1)
a, iy 0 0 0 0 a, as
=(i+1) =(3+1) =(3+1) .. ... =(j+1)

Ap i k+1 Qn—jx+2 Gn—jx+3 0 0 0 ay

Developing this determinant with respect to the kth and (k + 1)st columns
according to the Laplace method, we obtain the result

j = 1
(43’2) Al(c:) Al(ci) = a:)j+l)a:)i+l) Al(ci_-ii )'

If now we use eqgs. (43,1), (43,2) and (42,9), we are led to the following conclusion.

LeMMA (43,1). The determinants A\? satisfy the relation
(43,3) AI?) = Alij-‘i”/ (61-4;1)16_2 if 6,'+1 #0.

Let us now apply Lemma (43,1) to the determinant A, in Th. (43,1), bearing
in mind that a; = a!”. Thus, by iteration of (43,3), we have

A= o — —A®, if 6,6, 7 0.
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When 6,0, - - * 64, # O, this suggests the formula
1 1 1 Awn O

k=5,f_—2:5;k——3”.62—1 ! —éf—z‘s’z‘_s"'atc—z
which may be established by mathematical induction.
By virtue of this formula,

_A__k_ _ O . 6f_15§_2 e 67:—1 _ 6162 e 6,,_,_1
Ay 57%05% -6, Ops1 Opi1 '
This means that
(43,4) g (ApArt1) = S8 Pryy -

If now we apply Th. (42,1) in conjunction with eq. (43,4), we may complete
the proof of Th. (43,1).
Th. (43,1) may also be proved by using either of the two equivalent Hermitian

forms
n n

Hy=310,u; + Gu gty + -+ Gu,)|* — X lagu; + awjy + - + a,_ju,l’
i=1 i=1
n—1

Hy = 3 Auuiy,
370

where A4, are the coefficients in the Bezout resultant

B(f, f*) — f(Z)f*(W) - f(W)f*(Z) —_ ElAijjWn_l_k.

zZ—Ww 3, k=0

Form H,; was used in Schur [2] and Cohn [1] and form H, was used in Fujiwara
[5]. If H, or H, is reduced to the canonical form of a sum of n positive and
negative squares, the p and ¢ of Th. (43,1) are respectively the number of
positive squares and the number of negative squares. This method is analogous
to that which had been previously used in Hermite [1] to determine the number
of zeros of a polynomial in the half-planes J(z) > 0 and 3(z) < 0.

Exercises. Prove the following.
1. With the polynomial f(z) = ao + a1z + - - - + a,2" let there be associated
the triangular matrices

(a0 a1 ay o @
0 a a5 -+ a_

A, = o b N k=1,2---,n
0 0 0 --- g,

Let 4, and A denote the corresponding matrices for f(z) and f*(z) respectively.
Furthermore let M7 denote the transpose of any given matrix M. Then the



[§44] POLYNOMIALS WITH ZEROS ON OR SYMMETRIC IN UNIT CIRCLE 201

determinants A, of Th. (43,1) may be written symbolically as

AT, 4F
BTk [Cohn 1].

2. Let A7 represent the matrix obtained from 4, by interchanging the jth
and (k — j)throws, j=1,2,--+, k. Then, if f(z) is a real polynomial,

A, = det [(AF + AY) - (4f — AD)] [Cohn 1].

3. The determinant A, is the resultant of the two polynomials f(z) and f*(z)
and hence vanishes if and only if f(z) has a zero on the circle |zl =1 or at
least one pair of zeros which are symmetric in this circle, or both. Hint: The
resultant of two nth degree polynomials f(z) and g(z) may be written (cf. Bocher’s
Algebra, New York, 1924, pp. 198-199) in terms of the corresponding triangular
matrices 4, and B, as
Ay, AF

n

R(f, g) = [Cohn 1].

no
=% 'l
Bn’ Bﬂ

44. Polynomials with zeros on or symmetric in the unit circle. In Th. (42,1)
and Th. (43,1) we assumed that f has no zeros on the circle C: |z| = 1 and also
that none of the §; or A; , j=1,2,---, n, is zero.

Let us lift the first restriction partly by assuming that we may factor the poly-
nomial f(2) = ay + @,z + * - + + a,z" in the form

“44,1) 1@) = v(2)g(@)
where
(44,2) p(z) = ﬁ (z — r;e®)(z — r7%e*) ﬁ (z — &%),
=1 =1
(44,3) g(Z)=bo+blz+...+bkzk’ 0§k=n—2‘u—v.

The factor p, having only zeros on or symmetric in C, is said to be self-inversive.
The factor g will be assumed not to have any such zeros. Now, since

(44,4) ¥*(2) = (—1)"e""y(2),
where o=0,+0,+ +0,+2¢ +¢+ - +4),
(44,5) f*2) = (—=1)""e""y(2)g*(2).

That is, y is a common factor of f and f*. Conversely any common factor of
fand f* has the form (44,2).

The polynomial y(z) may be found by applying to f(z) and f*(z) the Euclid
algorithm for finding their greatest common divisor. But y(z) may also be found
by use of the sequence (42,7) of polynomials fi(z). In fact, let us denote by
gx(2) the sequence (42,7) in which f(z) is replaced by g(z). Then, since in (44,1)
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a, = (—1)"*e'°by and a,, = by, it follows that

fi(2) = (—=1)" e “byy(2)g(z) — bu(—1)" e~ y(2)g*(2)
and, hence, that
(44,6) Ji(2) = ()" e y(2)gy(2).

Similarly
fi(2) = (=1)*" e Hoy(2)gy(2),

(44’7) . . . . .
fk(z) — (—l)k(”‘k)e_"“zp(z)bf,"’ ,
fer1(2) = 0.

In other words, if f(z) and f*(z) have a common factor y(z) of degree n — k, it
is a factor of all the fj(z), j= 1, 2, - -, k, and f;,,(z) = 0 together with §; = 0,

j>k
Conversely, if
(44,8) ferr(2) = a°f(2) — a2 f(2) =0,

we may show that f(z) is a factor common to all the f;(z) and f*(2), j =k — 1,
k —2,---,1, and to f(z) and f*(z). For, from eq. (42,7) we obtain

zf:+1(z) = a(” P} (Z) d:zj—),fj(z),
0,11f4(2) = a(’)ff+1(z) + a(n’lfzf;:-l (2),

81:1f7(2) = a2, f110(2) + 672f 1 (2).
If we substitute from (44,8) into (44,9) with j = k — 1, we find from the equations,

if a®, # 0,

O fror(2) = (k_n + ailk—_kl:f)-l 7" a’fmk—)k)zlfk(z)’

Sfia(z) = "‘:’ + ay (@ a)21 /),
that fi(z) is a common factor of fk_l(z) and f;*,(z). By application of egs.
(449) with j=k — 1, k-2, - , we may also show fi(2) is a factor of f(2)
and f*(2).

The number of zeros of (f/f*) in the circle |z| < 1is the same as the number

of zeros of g(z) in this circle. If we set €; = b{?, the ¢, are the d, for g(z) and

so the number of zeros of f(@ in |z] < 1 is the number of negatlve products
(162" €),j=1,2,---, k. Since from egs. (44,1) and (44 7) we find

(i) = (_1)(f+1)(n—k) —(1+1)iab‘()f),

and thus

(44,9)

(f) - 3 (n—k) —diap ()
an_; = (—1) by

(4) |2 lb(ﬁ)l

(3),2 Ian—j

)
0,11 = lag — |bZ il = €41 -



[§451 SINGULAR DETERMINANT SEQUENCES 203

In other words, we have proved the following generalization of Th. (42,1)
due to Marden [16].

THEOREM (44,1). For a given polynomial f(z) = ay+ ayz + * -+ + a,z", let
the sequence (42,7) be constructed. Then, if for some k < n, P, # 0 in eq. (42,16)
but f,,1(z) = 0, then f has n — k zeros on or symmetric in the circle C: |z| = 1 at
the zeros of fi(2z). Ifpofthe P;,j=1,2,---,k, are negative, f has p additional
zeros inside C and q = k — p additional zeros outside C.

The zeros of f;(z) may be determined by use of Th. (45,2).

Exercises. Prove the following.

1. The number p in Th. (44,1) may be taken as the number of variations of
sign in the sequence 1, A, , A,, - -+, A, of determinants (43,1) [Marden 16; cf.
Cohn 1, p. 129].

2. Let f(z) be a real polynomial of degree » and let

g(@) = (2 + )f((z + Dz — ) f(z — D)/(z + 1))

Then f(z) has k zeros on the circle |z| = 1 if and only if g(z) has k positive real
zeros [Kempner 2, 3 and 7].

3. Let the polynomials s,, , be defined by the relations s, ,(z2) =1 +z+ -+ +
z",

sm,n(z) = zsm—l,k(z)a m=1, 23 o
k=0

Then all the zeros of S,, ,(2) = [d™/(dz)™]s,, .(2), forn=m+ 1,m + 2, lie
on the circle |z| = 1 [Turan 2].

45. Singular determinant sequences. Returning to polynomials f(z) which do
not have any zeros on the circle |z| = 1, let us consider the case that, for some
k<n, 86,6, # 0but

(45,1) Oerr = ag"™ = @ — a2 * = 0.

In such a case the number p of zeros of f(z) in the unit circle C: |z] < 1 may
be found either by a limiting process or by a modification of the sequence (42,7).

The limiting process may be chosen as one operating upon the circle C or
upon the coefficients of fi(z). That is, since f(z) has no zeros on the circle C, we
may consider in place of f,(z) the polynomial

(45,2) Fi(z) = fi(r2)

which, for r = 1 4 € and e a sufficiently small positive quantity, has as many
zeros in the circle |z] < 1 as does fi(z). Alternatively, we may consider in
place of f;(z) the polynomial

n—k
(45,3) Fy(2) = (1 + &a” + 3 a2z’ = eal? + f(2),
i=1
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which, for € a sufficiently small real number, has also as many zeros in the unit
circle as does f,(2).

A more direct procedure for covering the case of a vanishing d,,, is to modify
the sequence (42,7). The modification will apply even when fi(z) has zeros for
|z| = 1.

Observing that, according to (45,1), in

(454) M) =aP +al'z + - + g

the first and last coefficients have equal modulus, we shall find useful the fol-
Jowing two theorems due to Cohn [1].

THEOREM (45,1). If the coefficients of the polynomial g(z) = by + byz 4+« -+ +
b,,z™ satisfy the relations:

(45,5) b, = uBo s by = uBl PR bm—q+1 = ui’c—l s bm—a # ui’a

whereq < m[2 and |u| = 1, then g(z) has for |z| < 1 as many zeros as the polynomial

(45,6) Gy(2) = ByG(2) — BpyoG*(z) = 3 B2,
where =
m+q X
@5,7) G(z) = (2° + 2b/|b)g(z) = 3 B;z',
i=0
(45,8) b=(bp— u5q)/bm R
d
o IB®| < [BY].

THEOREM (45,2). If g(z) = by + byz + - -+ + b,2z™ is a self-inversive poly-
nomial; i.e., if

(459  b,=uby,, b, =ub, -+ , by,=ub,, lu =1,

then g has as many zeros on the disk |z| < 1 as the polynomial

m—1

(45,10) &1(2) = [g(D* = Z_:o(m — Dbm-sz’.
That is, g and g’ have the same number of zeros for |z| > 1.

Since polynomial f;(z) in (45,4) is a polynomial g(z) of the type in either
Th. (45,1) or Th. (45,2), these theorems permit the replacement of f;(z) by a
polynomial which is also of degree not exceeding n — k and in which relations
(45,5) and (45,9) are not satisfied.

Let us first prove Th. (45,1). As the factor (z? + 2b/|b|) does not vanish
for |z] =1, g(z) has as many zeros for |z| =< 1 as G(z). Since, however, B, =
2(b/\bl)b, and B,,,, = b,, , we learn from (45,5) that

Dy = |Bof* = [Bpyol® = 4 |bo|* — |bl* = 3 [b,|* > O,
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and, from (42,10) with n — j replaced by m and §,,, replaced by D,, we learn
that G(z) and G,(z) have the same number of zeros for |z| < 1. If we compute
Gy(2) by use of egs. (45,6) and (45,7), we find B = 0 if j > m; that is, Gy(2)
is a polynomial of the same degree as g(z). Also,

BY = 4 |by|* — |b,I* = 3 |b,l%,
BY) = byb (2 |b| + 3) = |bo|*u(2 |b] + 3)

and thus [B{P| < [BY)|.
To prove Th. (45,2), we follow Bonsall-Marden [1] in establishing

LemMA (45,2). If g is a self-inversive polynomial, its derivative g’ has no zeros
on the circle C: |z| = 1 except at the multiple zeros of g.

It suffices to show that, if g({) # 0 for { € C, then g'({) # 0. Let us write
[cf. eq. (44,2)]

@511) g(z)="b H(Z —z)=5b H(Z =iz — 7;)1_[(2 )

i=1 J=1
wherep = 0,g=0and2p +g=m, |yl <land y}f = 1/p;forj=1,2,---,p
and A, =¢% for j=1,2,---,q9. (If por g =0, we omit the corresponding
product in (45,11).) Then

gD =3w,, O
But the transformation =
(45,12) w=((—2)

carries C into the straight line L which passes through the point w = 1/(2{) and
is perpendicular to the ray R from the origin to point w = 1/(2{). Since this
transformation also carries the points 4, into points on L and the point pairs y;
and y¥ into point pairs symmetric in L, the centroid W = (3 w;)/m of the points
w; lies on L and hence W # 0 as was to be proved.

For the proof of Th. (45,2) we first consider the case that g(z) # 0 for |z| = 1
(i.e., ¢ = 0) and hence, by Lem. (45,2), g'(z) # 0. For any { € C we have seen
that the corresponding vector W has a positive component along R. As { moves
counterclockwise on C, the line L rotates clockwise and thus arg [g'({)/g(0)]
decreases by 27. By the Principle of Argument (Th. (1,2)) g'(z) has one less
zero than g(z) inside C and hence the same number of zeros as g(z) outside C.

In the case thatg 7 0, we let € = (1/4) inf'|A; — A, [forj# k,j,k=1,2,--,
draw circles I'; of radius € about each 4,, and let C’ be the smallest Jordan curve
enclosing C and all the I';, j =1, 2, - -+, ¢q. Since the vector ({ — ;)" rotates
clockwise as { moves counterclockwise on I'; N C’, the vector W rotates clockwise
as before as { moves counterclockwise on C’ and we reach the same conclusions.
We have thus completed the proof of Th. (45,2).
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In summary, we may say that, if the first and last coefficients of the f,(z) in
(45,4) have the same modulus, then by applying Th. (45,1) or Th. (45,2) we
may replace fi(z) by another polynomial having the same number of zeros in
the circle |z} = 1 as does fi(z), but having first and last coefficients of unequal
modulus. This replacement permits us to resume the computation of the J;
inasmuch as the new d,,, is not zero.

ExeRrcISES. Prove the following.

1. Let A,(r) be the value of the determinant A, of Th. (43,1) for a, = br¥,
k=0,1, .-+, n. Then the polynomial g(z) = by + b,z + * -+ + b,z" has on
the disk |z] < r the number p(r) of zeros and in the ring r, < |z] < ry the
number m(r, , r,) of zeros, these numbers being

P(r) = V{l’ Al(r): Az("): Y An(’)},
m(rl > ’z) = V{l’ Al(’z), Az(’z), Tt An(’z)} - V{l’ Al(rl), .Az("l), Tt An(’l)}'

It is assumed that all the A,(r), A,(r,) and A,(r,) are different from zero [Cohn 1].

2. If in the sequence (42,7) fi(2) is the first f;(z) of the type g(z) in Th. (45,2),
and if the polynomial f;,,(z) = z"*-1f;(1/z) has m zeros in the unit circle, then
fi(z) and f(z) have each [n — k — 2m] zeros on the unit circle [Cohn 1].

3. A necessary and sufficient condition for all the zeros of g(z) to lie on the
unit circle is that g(z) satisfy conditions (45,9) and that all the zeros of g'(z) lie
in or on this circle {[Cohn 1].

4. A necessary and sufficient condition that all the zeros of f(z) = a, +
@z + -+ + a,z" lie on the circle |z| =1 is that in eq. (42,8) all @}’ =0 and
that also f”(z) have all its zeros in or on this circle [Schur 2].

5. Let N(f, E) and Q(f, E) denote respectively the total multiplicity of the
zeros of f on a set E and the number of distinct poles of f on E. Let k and X
be polynomials with deg k > deg K; k(z) = f(z)g(2) and K(z) = F(z)G(z) where
f. & F, G are polynomials, f and F are self-inversive and N(g, |z| > 1) =
N(G, |z| < 1). Then with ¢(z) = k(2)/K(z)

N\ 1zl > 1) =N, Izl > 1) + O(¢, Izl = 1)
[Bonsall-Marden 2]. Hint: Use reasoning similar to that for Th. (45,2).
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