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Preface

Many breakthroughs in research and, more generally, solutions to problems come as
the result of someone making connections. These connections are sometimes quite
subtle, and at first blush, they may not appear to be plausible candidates for part
of the solution to a difficult problem. In this book, we think of these connections
as bridges. A bridge enables the possibility of a solution to a problem that may
have a very elementary statement but whose solution may involve more complicated
realms that may not be directly indicated by the problem statement. Bridges extend
and build on existing ideas and provide new knowledge and strategies for the solver.
The ideal audience for this book consists of ambitious students who are seeking
useful tools and strategies for solving difficult problems (many of olympiad caliber),
primarily in the areas of real analysis and linear algebra.

The opening chapter (aptly called “Chapter 1”) explores the metaphor of bridges
by presenting a myriad of problems that span a diverse set of mathematical
fields. In subsequent chapters, it is left to the reader to decide what constitutes
a bridge. Indeed, different people may well have different opinions of whether
something is a (useful) bridge or not. Each chapter is composed of three parts: the
theoretical discussion, proposed problems, and solutions to the proposed problems.
In each chapter, the theoretical discussion sets the stage for at least one bridge
by introducing and motivating the themes of that chapter—often with a review of
some definitions and proofs of classical results. The remainder of the theoretical
part of each chapter (and indeed the majority) is devoted to examining illustrative
examples—that is, several problems are presented, each followed by at least one
solution. It is assumed that the reader is intimately familiar with real analysis and
linear algebra, including their theoretical developments. There is also a chapter
that assumes a detailed knowledge of abstract algebra, specifically, group theory.
However, for the not so familiar with higher mathematics reader, we recommend a
few books in the bibliography that will surely help, like [5–9, 11, 12].

Bridges can be found everywhere—and not just in mathematics. One such final
bridge is from us to our friends who carefully read the manuscript and made
extremely valuable comments that helped us a lot throughout the making of the
book. It is, of course, a bridge of acknowledgments and thanks; so, last but not least,
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we must say that we are deeply grateful to Gabriel Dospinescu and Chris Jewell for
all their help along the way to the final form of our work.

In closing, as you read this book, we invite you to discover some of these bridges
and embrace their power in solving challenging problems.

Richardson, TX, USA Titu Andreescu
Targoviste, Romania Cristinel Mortici
Barlad, Romania Marian Tetiva
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Chapter 1
Mathematical (and Other) Bridges

Many people who read this book will probably be familiar with the following result
(very folkloric, if we may say so).

Problem 1. The midpoints of the bases of a trapezoid, the point at which its
lateral sides meet, and the point of intersection of its diagonals are four collinear
points.

A B

E

D C
N

F

M M=′

Solution. Indeed, let ABCD be a trapezoid with AB k CD; let M and N be the
midpoints of the line segments AB and CD, respectively; and let fEg D AD \ BC
and fFg D AC \ BD. We intend to prove that M, N, E, and F are four collinear
points.

Denote by M0 the intersection of EF with AB. By Ceva’s theorem, we have

AM0

M0B
� BC

CE
� ED

DA
D 1:

© Springer Science+Business Media LLC 2017
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2 1 Mathematical (and Other) Bridges

Also, Thales’ interception theorem says that

DE

DA
D CE

CB
, CB

CE
� DE

DA
D 1;

and by putting together the above two equations, we get M0A D M0B, that is, M0 is
actually the midpoint of AB; therefore, M D M0 belongs to EF, which is (part of)
what we intended to prove. �

The reader will definitely find a similar way (or will be able to use the already
proved fact about the collinearity of M, E, and F) to show that N, E, and F are also
collinear.

One can also prove that a converse of this theorem is valid, that is, for instance, if
M, E, and F are collinear, then AB and CD are parallel (just proceed analogously, but
going in the opposite direction). Or try to prove that if the midpoints of two opposite
sides of a trapezoid and the intersection point of its diagonals are three collinear
points, then the quadrilateral is actually a trapezoid (the sides whose midpoints we
are talking about are the parallel sides); this could be more challenging to prove.

As we said, this is a well-known theorem in elementary Euclidean geometry,
so why bother to mention it here? Well, this is because we find in it a very good
example of a problem that needs a (mathematical) bridge. Namely, you noticed that
the problem statement is very easy to understand even for a person who only has a
very humble background in geometry—but that person wouldn’t be able to solve the
problem. You could be familiar with basic notions as collinearity and parallelism,
you could know such things as properties of angles determined by two parallel lines
and a transversal, but any attempt to solve the problem with such tools will fail. One
needs much more in order to achieve such a goal, namely, one needs a new theory—
we are talking about the theory of similarity. In other words, if you want to solve
this problem, you have to raise your knowledge to new facts that are not mentioned
in its statement. You need to throw a bridge from the narrow realm where you are
stuck to a larger extent.

The following problem illustrates the same situation.

Problem 2. Determine all monotone functions f W N� ! R such that

f .xy/ D f .x/ C f .y/ for all x; y 2 N
�

(N� denotes the set of positive integers, while R denotes the reals).

Solution. All that one can get from the given relation satisfied by f is f .1/ D 0

and the obvious generalization f .x1 � � � xk/ D f .x1/ C � � � C f .xk/ for all positive
integers x1; : : : ; xk (an easy and canonical induction leads to this formula) with its
corollary f .xk/ D kf .x/ for all positive integers x and k. But nothing else can be
done if you don’t step into a higher domain (mathematical analysis, in this case)
and if you don’t come up with an idea. The idea is possible in that superior domain,
being somehow natural if you want to use limits.
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Let n be a positive integer (arbitrary, but fixed for the moment), and let us
consider, for any positive integer k, the unique nonnegative integer nk such that
2nk � nk < 2nkC1. Rewriting these inequalities in the form

ln n

ln 2
� 1

k
<

nk

k
� ln n

ln 2

one sees immediately that lim
k!1 nk=k D ln n= ln 2.

Because if f is increasing, �f is decreasing and satisfies the same functional
equation (and conversely), we can assume, without loss of generality, that f is
increasing. Then from the inequalities satisfied by the numbers nk and by applying
the noticed property of f , we obtain

f .2nk / � f .nk/ � f .2nkC1/ , nk

k
f .2/ � f .n/ �

�
nk

k
C 1

k

�
f .2/:

Now we can let k go to infinity, yielding

f .n/ D f .2/
ln n

ln 2

for any positive integer n. So, all solutions are given by a formula of type f .n/ D
a ln n, for a fixed real constant a. If f is strictly increasing (or strictly decreasing),
we get f .2/ > f .1/ D 0 (respectively, f .2/ < f .1/ D 0); thus f .2/ ¤ 0, and,
with b D 21=f .2/, the formula becomes f .n/ D logb n (with greater, respectively
lesser than 1 base b of the logarithm according to whether f is strictly increasing, or
strictly decreasing). The null function (f .n/ D 0 for all n) can be considered among
the solutions, if we do not ask only for strictly monotonic functions. By the way, if
we drop the monotonicity condition, we can find numerous examples of functions
that only satisfy the first condition. For instance, define f .n/ D a1 Ca2 C� � �Cak for
n D pa1

1 � � � pak
k , with p1; : : : ; pk distinct primes and a1; : : : ; ak positive integers and,

of course, f .1/ D 0, and we have a function with property f .mn/ D f .m/ C f .n/

for all positive integers m and n. The interested reader can verify for himself this
condition and the fact that f is not of the form f .n/ D logb n, for some positive
b ¤ 1 (or, equivalently, that this function is not monotone). �

Again, one sees that in order to solve such a problem, one needs to build a bridge
between the very elementary statement of the problem and the much more involved
realm of mathematical analysis, where the problem can be solved.

However, there is more about this problem for the authors of this book. Namely,
it also demonstrates another kind of bridge—a bridge over the troubled water of
time, a bridge connecting moments of our lives. As youngsters are preoccupied
by mathematics, we had (behind the Iron Curtain, during the Cold War) very
few sources of information and very few periodicals to work with. There were,
say, in the 80s of the former century, Gazeta Matematică and Revista matematică
din Timişoara—only two mathematical magazines. The first one was a monthly
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magazine founded long ago, in 1895, by a few enthusiastic mathematicians and
engineers among which Gheorghe Ţiţeica is most widely known. The second
magazine used to appear twice a year and was much younger than its sister, but also
had a national spreading due again to some enthusiastic editors. Anyway, this is all
we had, and with some effort, we could also get access to Russian magazines such
as Kvant or Matematika v Şkole, or the Bulgarian Matematika. Two of the authors of
this book were at the time acquainted with problem 2 through Revista Matematică
din Timişoara. They were high school students at that time and thoroughly followed
up the problem column of this magazine, especially a “selected problems” column
where they first met this problem (and couldn’t solve it). The third author was the
editor of that column—guess who is who! Anyway, for all three of us, a large
amount of the problems in this book represent as many (nostalgic) bridges between
past and present. Problem 2 is one of them, and we have many more, from which a
few examples are presented below.

Problem 3. Are there continuous functions f W R ! R such that

f .f .x// C f .x/ C x D 0 for every real x‹

Solution. No, there is no such function. The first observation is that if a function
with the stated properties existed, then it would be strictly monotone. This is because
such a function must be injective (the reader will immediately check that f .x1/ D
f .x2/ implies f .f .x1// D f .f .x2//; therefore, by the given equation, x1 D x2). Now,
injectivity and continuity together imply strict monotonicity; so if such a function
existed, it would be either strictly increasing or strictly decreasing.

However, if f is strictly increasing, then f ı f and f ı f C f C 1R are also strictly
increasing, which is impossible, because f ı f C f C 1R must equal the identically 0
function (by 1R we mean the identity function of the reals defined by 1R.x/ D x for
every real x). On the other hand, by replacing x with f .x/ in the given equation, we
get f .f .f .x/// C f .f .x// C f .x/ D 0 for all x, and subtracting the original equation
from this one yields f .f .f .x/// D x for all x or f ı f ı f D 1R. This equality is a
contradiction when f (and f ı f ı f also) is strictly decreasing and the solution ends
here. �

By the way, note that if an, an�1, . . . , a0 are real numbers such that the equation
anxn Can�1xn�1 C� � �Ca0 D 0 has no real solutions, then there exists no continuous
function f W R ! R such that anf Œn� C an�1f Œn�1� C � � � C a0f Œ0� D 0. Here f Œn� is
the nth iterate of f (with f Œ0� D 1R), and 0 represents the identically 0 function. This
was a (pretty challenging at the time) problem that we had on a test in the mentioned
above eighties, on a preparation camp. A bridge, isn’t it?

Problem 4. Prove that among any 79 consecutive positive integers, there exists
at least one such that the sum of its digits is divisible by 13. Find the smallest 78
consecutive positive integers such that none of them has its sum of digits divisible
by 13.
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Solution. By S.N/ we will denote the sum of digits of the natural number N. We
can always find among 79 consecutive natural numbers 40 of the form 100k C a0,
100k C a1; : : :, 100k C .a C 3/9, with k a natural number and a � 6 a digit. Among
the sums of digits of these numbers, there are S.k/Ca, S.k/CaC1; : : :, S.k/CaC12,
that is, there are 13 consecutive natural numbers, one of which has to be divisible
by 13.

Now, for the second part, we have to choose the desired numbers in such a
way that no forty of them starting with a multiple of 10 are in a segment of
natural numbers of the form f100k; 100k C 1; : : : ; 100k C 99g. This can only
happen if the numbers are of the form 100a � 39; 100a � 38; : : : ; 100a C 38,
for some natural number a. Actually we will consider numbers of the form
10b � 39; 10b � 38; : : : ; 10b C 38, with b � 2, because it will be important how
many nines there are before the last two digits. The sums of digits of the numbers
10b; 10b C 1; : : : ; 10b C 38 will cover all possibilities from 1 to 12. The sums of
digits of the numbers 10b �39; 10b �38; : : : ; 10b �1 will range from 9.b�2/C7 to
9.b�2/C18, and it is necessary that they cover exactly the same remainders modulo
13 (from 1 to 12). For this to happen, we need to have 9.b � 2/ C 7 � 1 .mod 13/,
which gives b � 10 .mod 13/. So, the smallest possible 78 such numbers are
those obtained for b D 10, thus the (78 consecutive) numbers from 9999999961
to 10000000038. �

This is a problem that we know from the good old RMT.

Problem 5 (Erdős-Ginzburg-Ziv theorem). Prove that among any 2n � 1

integers, one can find n with their sum divisible by n.

Solution. This is an important theorem, and it opened many new approaches in
combinatorics, number theory, and group theory (and other branches of mathemat-
ics) in the middle of the twentieth century (it has been proven in 1961). However,
we first met it in Kvant, with no name attached, and it was also Kvant that informed
us about the original proof. Seemingly the problem looks like that (very known)
one which states that from any n integers, one can choose a few with their sum
divisible by n. The solution goes like this. If the numbers are a1; : : : ; an, consider
the n numbers a1, a1 Ca2,. . . , a1 Ca2 C� � �Can. If there is any of them divisible with
n, the solution ends; otherwise, they are n numbers leaving, when divided by n, only
n�1 possible remainders (the nonzero ones); therefore, by the pigeonhole principle,
there are two of them, say a1 C � � � C ai and a1 C � � � C aj, with, say, i < j that are
congruent modulo n. Then their difference aiC1 C � � � C aj is, of course, divisible by
n (and is a sum of a few of the initial numbers). We put here this solution (otherwise,
we are sure that it is well-known by our readers) only to see that there is no way to
use its idea for solving problem 5 (which is a much deeper theorem). Indeed, the
above solution allows no control on the number of elements in the sum that results
to be divisible by n; hence, it is of no use for problem 5. The proof that we present
now (actually the original proof of the three mathematicians) is very ingenious and,
of course, builds a bridge.
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The first useful observation is that the property from the theorem is multiplica-
tive, that is, if we name it P.n/, we can prove that P.a/ and P.b/ together imply
P.ab/. This permits an important reduction of the problem to the case of prime n
(and it is used in all the proofs that we know). We leave this as an (easy and nice)
exercise for the reader. So, further, we only want to prove (and it suffices, too) that
from any 2p � 1 integers one can always choose p with their sum divisible by p,
where p is a positive prime.

The bridge we throw is towards the following:

Theorem. Let A and B be subsets of Zp, with p prime, and let

A C B D fa C b j a 2 A; b 2 Bg:

Then we have jA C Bj � minfp; jAj C jBj � 1g. (By jXj, we mean the number of
elements of the set X.)

We skip the proof of this (important) theorem named after Cauchy and Davenport
(the second rediscovered it a century after the first one; each of them needed it in
his research on other great mathematical results), but we insist on the following:

Corollary. Let A1; : : : ; As be 2-element subsets of Zp. Then

jA1 C � � � C Asj � minfp; s C 1g:

In particular, if A1; : : : ; Ap�1 are subsets with two elements of Zp, then

A1 C � � � C Ap�1 D ZpI

that is, every element from Zp can be realized as a sum of elements from
A1; : : : ; Ap�1 (one in each set).

This corollary is all one needs to prove Erdős-Ginzburg-Ziv’s theorem, and it can
be demonstrated by a simple induction over s. The base case s D 1 being evident,
let’s assume that the result holds for s two-element subsets of Zp and prove it for
s C 1 such subsets A1,. . . ,AsC1. If s C 1 � p, we have nothing to prove; hence,
we may assume that the opposite inequality holds. In this case, by the induction
hypothesis, there are at least s C 1 distinct elements x1; : : : ; xsC1 in A1 C � � � C As.
Let AsC1 D fy; zg; then the set A1C� � �CAsCAsC1 surely contains x1Cy; : : : ; xsC1Cy
and x1 Cz; : : : ; xsC1 Cz. But the sets fx1 Cy; : : : ; xsC1 Cyg and fx1 Cz; : : : ; xsC1 Czg
cannot be equal, because in that case, we would have

.x1 C y/ C � � � C .xsC1 C y/ D .x1 C z/ C � � � C .xsC1 C z/;

which means .s C 1/y D .s C 1/z. As 1 � s C 1 � p � 1, this implies y D z
in Zp, which is impossible (because y and z are the two distinct elements of AsC1).
Consequently, among the elements x1 C y; : : : ; xsC1 C y and x1 C z; : : : ; xsC1 C z
of A1 C � � � C AsC1, there are at least s C 2 mutually distinct elements, finishing the
proof.
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Now for the proof of Erdős-Ginzburg-Ziv theorem, consider a1 � a2 � : : : �
a2p�1 to be the remainders of the given 2p � 1 integers when divided by p, in
increasing order. If, for example, a1 D ap, then a1 D a2 D : : : D ap, and the
sum of the p numbers that leave the remainders a1; : : : ; ap is certainly divisible
by p; similarly, the problem is solved when any equality aj D ajCp�1 holds (for
any 1 � j � p). Thus we can assume further that (for every 1 � j � p) aj and
ajCp�1 are distinct. Now we can consider the two-element subsets of Zp defined by
Aj D faj; ajCp�1g, 1 � j � p � 1. (We do not use a special notation for the residue
class modulo p of the number x, which is also denoted by x.)

According to the above corollary of the Cauchy-Davenport theorem, A1 C � � � C
Ap�1 has at least p elements; therefore, it covers all Zp. Consequently, there exist
i1; : : : ; ip�1 such that ij is either j or j C p � 1 for any j 2 f1; : : : ; p � 1g and
ai1 C � � � C aip�1 D �a2p�1 in Zp. This means that the sum ai1 C � � � C aip�1 C a2p�1

(where, clearly, all indices are different) is divisible by p, that is, the sum of the
corresponding initial numbers is divisible by p, finishing the proof. �

One can observe that the same argument applies to prove the stronger assertion
that among any 2p � 1 given integers, there exist p with their sum giving any
remainder we want when divided by p. Also, note that the numbers 0; : : : ; 0; 1; : : : ; 1

(n � 1 zeros and n � 1 ones) are 2n � 2 integers among which one cannot find any
n with their sum divisible by n (this time n needs not be a prime). Thus, the number
2n � 1 from the statement of the theorem is minimal with respect to n and the stated
property.

There are now many proofs of this celebrated theorem, each and every one
bringing its amount of beauty and cleverness. For instance, one of them uses the
congruence

X
1�i1<���<ip�2p�1

.xi1 C � � � C xip/
p�1 � 0 .mod p/

(the sum is over all possible choices of a subset of p elements of the set
f1; : : : ; 2p � 1g; in other words, it contains all sums of p numbers among the 2p � 1

given integers, which we denoted by x1; : : : ; x2p�1). Knowing this congruence and
Fermat’s Theorem, one gets N � 0 .mod p/, where N means the number of those
sums of p of the given 2p � 1 integers that are not divisible by p. However, if all

the possible sums weren’t divisible by p, we would have N D
 

2p � 1

p � 1

!
� 1

.mod p/, a contradiction—hence there must exist at least one sum of p numbers that
is divisible by p.

This proof is somehow simpler than the previous one, but it relies on the above
congruence, which, in turn, can be obtained from the general identity

X
S�f1;:::;mg

.�1/m�jSj
 X

i2S

xi

!k

D 0;
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valid for all elements x1; : : : ; xm of a commutative ring and for any 1 � k � m � 1.
For k D m, we need to replace the 0 from the right hand side with mŠx1 : : : xm,
and one can find results for the corresponding sum obtained by letting k D m C 1,
k D m C 2, and so on, but this is not interesting for us here. Let us only remark
how another bridge (a connection between this identity and the Erdős-Ginzburg-Ziv
theorem) appeared, seemingly out of the blue. The reader can prove the identity for
himself (or herself) and use it then for every group of p of the given 2p � 1 integers,
with exponent p � 1, and then add all the yielded equalities; then try to figure out
(it is not hard at all) how these manipulations lead to the desired congruence and,
finally, to the second (very compact) proof of the Erdős-Ginzburg-Ziv’s theorem.
However, we needed a bridge. What this book tries to say is that there are bridges
everywhere (in mathematics and in the real life). At least nostalgic bridges, if none
other are evident.

Let us see now a few more problems whose solutions we’ll provide after the
reader has already tried (a bit or more) to solve independently. As the whole book,
the collection is eclectic and very subjective—and it is based on the good old
sources from our youth, such as Gazeta Matematică (GM), Revista matematică din
Timişoara (RMT), Kvant, the Romanian olympiad or TSTs, and so on. Most of the
problems are folklore (and their solutions, too), but they first came to us from these
sources. When the problems have proposers we mention them; otherwise, as they
can be found in many books and magazines, we avoid any references—every reader,
we are sure, knows where to find them.

Proposed Problems

1. (Mihai Bălună, RMT) Find all positive integers n such that any permutation of
the digits of n (in base ten) produces a perfect square.

2. Let a1; : : : ; an be real numbers situated on a circumference and having zero
sum. Prove that there exists an index i such that the n sums ai, ai C aiC1, . . . ,
ai C aiC1 C � � � C aiCn�1 are all nonnegative. Here, all indices are considered
modulo n.

3. Prove that there exist integers a, b, and c, not all zero and with absolute values
less than one million, such that ja C b

p
2 C c

p
3j < 10�11.

4. Prove that, for any positive integer k, there exist k consecutive natural numbers
such that each of them is not square-free.

5. Find the largest possible side of an equilateral triangle with vertices within a
unit square. (The vertices can be inside the square or on its boundary.)

6. Let A and B be square matrices of the same order such that AB�BA D A. Prove
that AmB � BAm D mAm for all m 2 N

� and that A is nilpotent.
7. (Dorel Miheţ, RMT) Prove that from the set f1k; 2k; 3k; : : :g of the powers

with exponent k 2 N
� of the positive integers, one cannot extract an infinite

arithmetic progression.
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8. Let 1; 4; 8; 9; 16; 27; 32; : : : be the sequence of the powers of natural numbers
with exponent at least 2. Prove that there are arbitrarily long (nonconstant)
arithmetic progressions with terms from this sequence, but one cannot find such
a progression that is infinite.

9. (Vasile Postolică, RMT) Let .an/n�1 be a convergent increasing sequence. Prove
that the sequence with general term

.anC1 � an/.anC1 � an�1/ : : : .anC1 � a1/

is convergent, and find its limit.
What can we say if we only know that .an/n�1 is increasing?

10. Let f be a continuous real function defined on Œ0; 1/ such that lim
n!1 f .nt/ D 0

for every t in a given open interval .p; q/ (0 < p < q). Prove that lim
x!1 f .x/ D 0.

11. (Mihai Onucu Drimbe, GM) Find all continuous functions f W R ! R such that

f .x C y C z/ C f .x/ C f .y/ C f .z/ D f .x C y/ C f .x C z/ C f .y C z/

for all x; y; z 2 R.
12. (Dorel Miheţ, RMT) Let f W Œa; b� ! Œa; b� (where a < b are real numbers) be a

differentiable function for which f .a/ D b and f .b/ D a. Prove that there exist
c1; c2 2 .a; b/ such that f 0.c1/f 0.c2/ D 1.

13. Evaluate

Z �=2

0

1

1 C .tan x/
p

2
dx:

14. Show that

lim
n!1

Z b

a

�
1 C x

n

�n
e�xdx D b � a

for all real numbers a and b.

Solutions

1. Only the one-digit squares (that is, 1, 4, and 9) have (evidently) this property.
Suppose a number with at least two digits has the property. It is well known
that a number with at least two digits and for which all digits are equal cannot
be a square; therefore, there must be at least two distinct digits, say a and b,
with a < b. Then if : : : ab D k2 and : : : ba D l2, we clearly have k < l, hence
l � k C 1, and

2k C 1 D .k C 1/2 � k2 � l2 � k2 D 9.b � a/ � 81:
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So k � 40 and a direct (boring, but simple) inspection show that no perfect
square (with at least two digits) until 402 D 1600 has the required property.

2. Solution I. Among all sums of the form aj C ajC1 C � � � C ajCk�1 (for different
integers j 2 f1; : : : ; ng and k � 1), there must be a minimal one. Because
any cyclic permutation of the numbers affects neither the hypothesis nor the
conclusion of the problem, we can assume that this minimal sum is a1 C � � � C
ai�1. We claim that in this case, ai C aiC1 C � � � C aiCk�1 � 0 for all k. Indeed,
as long as i C k � 1 � n, this means that a1 C � � � C aiCk�1 � a1 C � � � C ai�1.
When i C k � 1 exceeds n, we use the hypothesis a1 C � � � C an D 0 to see that
aiCaiC1C� � �CaiCk�1 � 0 is equivalent to anC1C� � �CaiCk�1 � a1C� � �Cai�1.

Solution II. We proceed by contradiction and suppose that for every i 2
f1; : : : ; ng, there exists some j � 1 such that ai C � � � C aiCj�1 < 0. So we find a
sequence 0 D i0 < i1 < � � � < in with property As D aisC1 C � � � C aisC1

< 0 for
all s 2 f0; 1; : : : ; ng. By the pigeonhole principle, there are j and k, with j < k,
such that ij � ik .mod n/, and in that case, Aj C � � � C Ak�1 < 0 represents a
contradiction, because Aj C � � � C Ak�1 is a multiple of a1 C � � � C an; therefore
it is, in fact, 0.

3. There exist 1018 numbers of the form x C y
p

2 C z
p

3, with x, y, and z integers
from the set f0; 1: : : : ; 106 � 1g. Any two such numbers are distinct (we discuss
this a little bit later), and any such number is at most equal to .106�1/.1Cp

2Cp
3/ < 5 � 106. Divide the interval Œ0; 5 � 106/ into 1018 � 1 disjoint subintervals

with equal lengths 5�106=.1018�1/, and observe that there must be two numbers
in the same interval; thus, there exist two of these numbers having the absolute
value of their difference less than 5 �106=.1018 �1/ < 10�11. If the numbers are
x1 C y1

p
2 C z1

p
3 and x2 C y2

p
2 C z2

p
3, we get ja C b

p
2 C c

p
3j < 10�11

for a D x1 � x2, b D y1 � y2, and c D z1 � z2, which are integers (at least one
of them being nonzero) with absolute values less than one million.

There are two more issues about this problem that we want (and have) to
discuss. One of them is necessary to complete the proof, namely, we still need to
show that two numbers of the form xCy

p
2Cz

p
3 can only be equal whenever

the corresponding coefficients x, y, and z are equal. More specifically, if x1 C
y1

p
2 C z1

p
3 D x2 C y2

p
2 C z2

p
3, and x1; y1; z1; x2; y2; z2 are integers, then

x1 D x2, y1 D y2, and z1 D z2. Equivalently, if x C y
p

2 C z
p

3 D 0, with
integers x, y, and z, then x D y D z D 0. (We need this fact at the beginning
of the above proof, when we number the numbers of the form x C y

p
2 C z

p
3,

with 0 � x; y; z � 1018 � 1: they have to be mutually distinct when they differ
by at least a component. We also need it in the last step of the proof, in order to
show that at least one of the obtained a, b, and c is nonzero.)

Actually, one can prove a more general statement, namely, that if x; y; z; t;
are rational numbers and x C y

p
2 C z

p
3 C t

p
6 D 0, then x D y D z D t D 0.

Indeed, we have z C t
p

2 D 0 if and only if z D t D 0 (this is well-known
and actually is another way to state the irrationality of

p
2). So, if we have

z C t
p

2 D 0, the original equation yields x C y
p

2 D 0, too, and the desired
conclusion easily follows. Otherwise, we can rearrange the equation as
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p
3 D �x C y

p
2

z C t
p

2
D u C v

p
2;

where u and v are rational numbers. But this implies 3 D u2 C 2v2 C 2uv
p

2,
hence, by invoking the irrationality of

p
2 again, we get 2uv D 0 and u2 C

2v2 D 3, which, as the reader can check, immediately leads to contradiction.
Actually a much more general statement is valid, namely, that a1

n
p

b1 C
� � � C am

n
p

bm D 0, with a1; : : : ; am; b1; : : : ; bm 2 Q (b1; : : : ; bm being nonzero)
implies a1 D � � � D am D 0 whenever there do not exist i ¤ j among the
numbers 1; : : : ; m such that bi=bj is an nth power of a rational number. It is
the so-called linear independence of radicals, a rather folkloric result. When
m D 2, one can give a similar proof to the one above; the reader can try to see
that, after a few reductions, it is enough to prove the following: if p1; : : : ; pN

are positive primes and aI are rational numbers indexed after the subsets I of
f1; : : : ; Ng such that

0
@ X

I�f1;:::;Ng
aI

sY
i2I

pi

1
A

2

2 Q;

then (at least) 2N � 1 of the coefficients aI are null. (The product corresponding
to the empty set is 1.) We arrived pretty far away from the initial point, didn’t
we?

The second issue doesn’t belong to this proof—it is more like a reminder.
What we want to say is that this proof looks very similar to the proof of
Dirichlet’s approximation theorem. This theorem says that, given the real
numbers a1; : : : ; ak and given � > 0, there exist integers n and m1; : : : ; mk

such that jnai � mij < � for all 1 � i � k. Indeed, let us consider some positive
integer N satisfying N > 1=� and look at the intervals

I1 D
�
0;

1

N

�
; I2 D

�
1

N
;

2

N

�
; : : : ; IN D

�
N � 1

N
; 1

�

that are partitioning Œ0; 1/. Consider also the k-tuples .b.j/
1 ; : : : ; b.j/

k / defined by

b.j/
i D s if and only if fjaig 2 Is for 1 � i � k and 1 � j � Nk C 1. Each b.j/

i can
only take the N values from the set f1; : : : ; Ng; hence, the Nk C 1 k-tuples can
have at most Nk values. By the pigeonhole principle, there are two of them, say
.b.j/

1 ; : : : ; b.j/
k / and .b.l/

1 ; : : : ; b.l/
k / that are identical. This means that fjaig and

flaig belong to the same interval Is (with s depending on i) for each and every i
from 1 to k, further yielding

jfjaig � flaigj <
1

N
< �
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for all 1 � i � k, or

j.j � l/ai � .Œjai� � Œlai�/j < �

for all i. It is thus enough to choose n D j� l and mi D Œjai�� Œlai� for 1 � i � k.
It is more likely that problem 3 (and many similar ones) was created

following the idea of Dirichlet’s approximation theorem, but for us, the order
was reversed: we first met the problem and only later found out about Dirichlet’s
theorem. A bridge can be crossed in both directions.

4. This is a very easy problem for someone who knows the Chinese remainder
theorem. Namely, one can pick some k distinct primes, say p1 ,. . . ,pk, then, by
the mentioned result, one can conclude that there exists a positive integer x that
solves the system of congruences x � �j .mod p2

j /, 1 � j � k; the numbers
x C 1,. . . , x C k are not square-free and the problem is solved. One can prove
in the same way that there exist k consecutive positive integers that are not mth
power-free (each of which is divisible by a power of a prime with exponent
at least m), or one can prove that there exist k consecutive positive integers
each of which is not representable as the sum of two squares (this one is a bit
more elaborate, but the reader will find her/his way in order to solve it; the only
necessary result is the one stating that a positive integer cannot be represented
as the sum of two squares whenever there is a prime congruent to 3 modulo 4
such that its exponent in the factorization of that integer is odd).

The original proof (from RMT, many years ago) makes no use of Chinese
remainder theorem, but rather of a rudiment of it. Namely, we will only use the
fact that if a and b are relatively prime, then the congruence ax � c .mod b/

has solutions (or, we can say, ax generates a complete system of residues
modulo b whenever x does the same). Although a bit more complicated, we
consider this proof to be instructive; hence, we present it here.

We proceed by induction. The base case is clear, so we assume that we
dispose of k consecutive natural numbers n C 1; : : : ; n C k, each of which is
not square-free, and let p2

j be some prime square that divides the jth number,
for 1 � j � k. Let also pkC1 be a new prime, different from all pj, 1 � j � k.
Then all numbers xp2

1 � � � p2
k C n C j, 1 � j � k, are not square-free, for every

integer x, and we can choose x in such a way that xp2
1 � � � p2

k C n � �k � 1

.mod p2
kC1/. One sees that xp2

1 � � � p2
k C n C j, 1 � j � k C 1, are k C 1 non-

square-free numbers, as we intended to show.
Can this argument be adapted to obtain a proof of the Chinese remainder

theorem? You probably already noted that the answer is definitely yes. Do we
have another bridge? Yes, we do.

5. The answer is
p

6�p
2. Let l be the length of the side of an arbitrary equilateral

triangle ABC whose vertices are within the closed surface bounded by a unit
square. There is always a vertex of the triangle such that the triangle is situated
in the right angle determined by the parallels through that vertex to a pair
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of perpendicular sides of the square. Say A is this vertex, and note that the
projections of the sides AB and AC of the triangle on two sides sharing a
common vertex of the square have lengths l cos ˛ and l cos.�=6 � ˛/, where
˛ is the angle that one of them forms with the side on which it is projected.
Also, 0 � ˛ � �=6. The projections being included in the corresponding unit
sides of the initial square, we obtain

l cos ˛ � 1 and l cos
��

6
� ˛

�
� 1:

A

B

C

αcos�

�6

6cos� ( )-

-
π

π

α

α

α

However, one of ˛ and �=6 � ˛ is at most �=12, thus either cos ˛ �
cos.�=12/ D .

p
6 C p

2/=4, or cos.�=6 � ˛/ � cos.�=12/ D .
p

6 C p
2/=4.

In both cases, by using one of the above inequalities, we conclude that

p
6 C p

2

4
l � 1 , l � p

6 � p
2:

The existence of an equilateral triangle inscribed in the unit square with
precisely this length of its side is easy to prove. The triangle has a vertex in
a vertex of the square, the other two vertices on two sides of the square, and its
sides emerging from that vertex form angles of measure �=12 with the sides of
the square.
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A

B

C

π /12

π /12

By the way, one can state the similar problem in which only the word
“square” is replaced by “cube.” If ABCDA0B0C0D0 is a unit cube (with two
opposite faces ABCD and A0B0C0D0 and AA0, BB0, CC0, DD0 parallel edges),
one can immediately see that triangle ACD0 (for instance) is equilateral withp

2 as length of its side; also, one can readily conclude that there is no bigger
equilateral triangle inscribed in a unit cube. As intuitive as this result might be
(more intuitive than the planar case, isn’t it?), one needs a demonstration for it.
The reader is invited to see that if S is the area of a triangle and S1, S2, and S3 are
the areas of the projections of the triangle on the faces of a rectangular trihedron
(that is, on three planes perpendicular to each other), then S2 D S2

1 C S2
2 C S2

3

(an extension of the Pythagorean theorem, yet some kind of a bridge). In our
case, if S is the area of an equilateral triangle situated within a unit a cube and
we project the triangle on the planes of three faces of the cube that share a
common vertex, we have S2 D S2

1 C S2
2 C S2

3 (S1, S2, and S3 being the areas of
the projections), and, moreover, each Sk � 1=2 (as being the area of a triangle
within a unit square). Thus, we obtain S2 � 3=4, and, consequently, the length
of the side of the equilateral triangle is at most

p
2, finishing the proof. Isn’t

this a mathematical bridge (from plane to solid geometry)?
6. We prove the first part by induction on m. For m D 1, the equality is the given

one; thus, let us suppose that it is true for m and prove it for m C 1. To do this,
it suffices to multiply to the right with Am the relation AB � BA D A and to
multiply to the left with A the induction hypothesis AmB � BAm D mAm, and
then add side by side the two equalities thus obtained.

The second part relies on the first. From the well-known fact that XY � YX
always has zero trace (for X and Y square matrices of the same dimension) and
mAm D AmB�BAm, we conclude that the trace of Am is 0 for all positive integers
m. If a1; : : : ; an are the eigenvalues of A, this means that am

1 C� � �Cam
n D 0 for all
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m, and a canonical application of Newton’s formulae shows that the symmetric
sums of a1; : : : ; an are all 0, therefore that a1 D : : : D an D 0. Now an n � n
matrix with null eigenvalues has characteristic polynomial Xn; therefore, by the
Hamilton-Cayley theorem, An D On, that is, A is nilpotent.

We can also give an alternative proof of the fact that A is nilpotent, using the
equality AmB � BAm D mAm. Namely, if one defines the norm kXk of a matrix
X D .xij/1�i;j�n by

kXk D max
1�i;j�n

jxijj

(with jxj being the usual norm of the complex number x), then one immediately
sees that kX C Yk � kXk C kYk, k˛Xk D j˛kjXk, and kXYk � nkXkkYk for
any n � n complex matrices X and Y and any complex number ˛. Thus we have

mkAmk D kAmB � BAmk � kAmBk C kBAmk � 2nkAmkkBk

for every positive integer m. By choosing a large enough m, we see that this
implies kAmk D 0 for that m, therefore Am D On, finishing this variant of
the proof. (Of course, An D On can be also deduced if one only knows that
Am D On for some m, even though the original problem didn’t actually ask for
that.)

A third approach for solving this problem is presented in Chapter 3.
7. If a < b < c are positive and ak C ck D 2bk, then, by Jensen’s inequality for

the convex function x 7! xk, we have

bk D ak C ck

2
>

�
a C c

2

�k

) b >
a C c

2
;

hence b � a > c � b. (Jensen’s inequality can be avoided; we can write

ck � bk D bk � ak

in the form

.c � b/.ck�1 C ck�2b C � � � C bk�1/ D .b � a/.bk�1 C bk�2a C � � � C ak�1/;

then use a < b < c.)
Suppose now that nk

1 < nk
2 < � � � is an infinite arithmetic progression with

terms from the sequence of powers with exponent k. According to the above
observation, we obtain n2 � n1 > n3 � n2 > � � � , which would be an infinite
strictly decreasing sequence of positive integers—an impossibility.

There is a second approach (that will be useful for the next problem—which
we cannot solve by other means). Namely, if nk

1; nk
2; : : : is an infinite arithmetic

progression, then there are a and b such that nk
j D aj C b for all j � 1. Then



16 1 Mathematical (and Other) Bridges

1X
jD1

1

aj C b
D

1X
jD1

1

nk
j

<

1X
nD1

1

nk
< 1

because the k-series (with k > 1) converges. On the other hand, the generalized

harmonic series
1X

jD1

1

aj C b
diverges to 1, as it is again well-known (and

one gets easily, by comparing with the harmonic series). Thus, we have a
contradiction and the problem is solved.

8. We can start with 12; 52; 72 as such a three-term progression. Or, if we want
to avoid the term 1, we can choose 282; 422; 143—a progression with common
difference 5 �142 D 980. If we have the arithmetic progression nk1

1 ; : : : ; nks
s with

common difference d, then, for k D Œk1; : : : ; ks� (the least common multiple of
k1; : : : ; ks) and n D nks

s C d, the numbers

nknk1

1 ; : : : ; nknks
s ; nkC1

are s C 1 powers with exponent at least 2 forming an arithmetic progression
with common difference nkd. Thus, inductively, we get such progressions with
as many terms as we want.

However, an infinite such progression does not exist, due to the same reason
that we used in the second solution of the previous problem. Indeed, if we had
n

kj

j D aj C b for all j � 1, then, on one hand, we would have

X
j�1

1

n
kj

j

D
X
j�1

1

aj C b
D 1;

and, on the other hand,

X
j�1

1

n
kj

j

< 1 C
X
n�2

X
k�2

1

nk
D 1 C

X
n�2

1

n.n � 1/
D 2:

9. We have

0 < .anC1 � an/.anC1 � an�1/ � � � .anC1 � a1/ �
�

anC1 � a1 C � � � C an

n

�n

and the conclusion

lim
n!1.anC1 � an/.anC1 � an�1/ � � � .anC1 � a1/ D 0

follows by the squeeze principle. In order to infer this, one has to know (apart
from the arithmetic mean-geometric mean inequality) that if lim

n!1 an D a, then
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lim
n!1.a1 C� � �Can/=n D a, too (an immediate consequence of the Stolz-Cesàro

theorem) and, of course, to know that 01 D 0 (that is, to know that if lim
n!1 xn D

0 and lim
n!1 yn D 1, then lim

n!1 xyn
n D 0).

If .an/n�1 is only increasing it can also have limit infinity. For an D n, we
obtain

bn D .anC1 � an/.anC1 � an�1/ � � � .anC1 � a1/ D nŠ;

which has the limit 1. For an D n=2 for even n and an D .n C 1/=2 for odd n,
.bn/n�1 is divergent, having a subsequence with limit 0, and another with limit

1. Finally, for an D 1 C 1

2
C � � � C 1

n
(the harmonic series), we have

0 < bn D 1

n C 1

�
1

n C 1
C 1

n

�
� � �
�

1

n C 1
C � � � C 1

2

�

<
1

n C 1

2

n
� � � n

2
D 1

n C 1
;

hence lim
n!1 bn D 0. So, anything can happen if we drop the convergence

condition for the initial sequence. (This part was not in the original problem.
But, when you deal with mathematics for so long, you learn to ask—and this
is not bad at all. In this case, we found the last limit, which we did not meet
before.)

10. This statement is sometimes called Croft’s lemma. We prove it by contradiction,
namely, if we assume that f does not have limit 0 at infinity, there exist a positive
number � and a sequence .xn/ of real numbers, with limit infinity such that
jf .xn/j > � for all n. Because f is continuous, one can find intervals In such that
xn 2 In and jf .x/j > � for all x 2 In and all n. Clearly, the intervals In can be
chosen as small as we want, and in particular, we can assume that their lengths
are all smaller than a fixed positive number ˛. Further, we use the following:

Lemma. Let 0 < c < d and let ˛ > 0 be given. Then, for every sufficiently
large a > 0, any interval .a; b/ of length b � a < ˛ can be covered by a
“multiple” of .c; d/. (A “multiple” of .c; d/ is n.c; d/ D fnx j x 2 .c; d/g.)

Proof of the lemma. Indeed, let us choose a > c.dC˛/=.d�c/ and b < aC˛.
Then

a

c
� a

d
> 1 C ˛

d

is a rephrasing of the inequality satisfied by a; therefore, we have

a

c
� b

d
>

a

c
� a C ˛

d
> 1;
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yielding the existence of an integer n between b=d and a=c; because b=d < n <

a=c, we have nc < a < b < nd; hence .a; b/ � n.c; d/.
Now back to our problem. Denote In D .an; bn/, where, of course, lim

n!1 an D
lim

n!1 bn D 1. Start with an interval J1 D Œc1; d1� � .p; q/ (with c1 < d1) and

positive integers m1 and n1 (that exist according to the lemma) such that n1J1

includes Im1 . Then find a closed interval J2 D Œc2; d2� (with c2 < d2) such that
n1J2 is a subset of Im1 . This is possible: all we have to do is to choose c2 and d2

in such a way that

am1

n1

< c2 < d2 <
bm1

n1

, am1 < n1c2 < n1d2 < bm1 :

Note that, since Im1 � n1J1 means

n1c1 < am1 < bm1 < n1d1;

c1 < c2 < d2 < d1 and, consequently, J2 � J1 follows. Then (again, by the
lemma) we can find m2 and n2 such that n2J2 includes Im2 , and we can pick n2

and m2 as large as we want; hence, we choose m2 > m1 and n2 > n1. Then we
define a nondegenerate compact interval J3 D Œc3; d3� such that n2J3 � Im2 �
n2J2; we conclude that J3 � J2.

In general, we can define two increasing sequences of positive integers .mk/

and .nk/ and a sequence of compact nested intervals .Jk/ satisfying

nkJkC1 � Imk � nkJk

for all k. Now, the nested intervals Jk must have (at least) a common point t0
that belongs to .p; q/, also, because J1 was chosen inside .p; q/. Since nkt0 2
nkJkC1 � Imk , we conclude that jf .nkt0/j > � for all k, which is a contradiction
to the hypothesis that lim

n!1 f .nt0/ D 0—and finishes our proof.

11. Solution I. The solutions are second degree polynomial functions of the form
f .x/ D Ax2 C Bx (taking 0 value for x D 0). For x D mt, y D t, z D t, with
m 2 Z and t 2 R, we get the recurrence relation

f ..m C 2/t/ � 2f ..m C 1/t/ C f .mt/ D f .2t/ � 2f .t/

satisfied by the sequence .f .mt//, for every real t. Solving this linear recurrence,
we obtain

f .mt/ D f .2t/ � 2f .t/

2
m2 C 4f .t/ � f .2t/

2
m

for all reals t and all integers m. In particular, f .m/ D Am2 C Bm holds for all
m 2 Z, with
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A D f .2/ � 2f .1/

2
and B D 4f .1/ � f .2/

2
:

Next we have, for a nonzero integer n,

f .1/ D f

�
n � 1

n

�
D f .2=n/ � 2f .1=n/

2
n2 C 4f .1=n/ � f .2=n/

2
n

and

f .2/ D f

�
2n � 1

n

�
D f .2=n/ � 2f .1=n/

2
.2n/2 C 4f .1=n/ � f .2=n/

2
.2n/I

some tedious algebra shows that solving for f .1=n/ and f .2=n/ yields

f

�
1

n

�
D A

�
1

n

�2

C B

�
1

n

�
and f

�
2

n

�
D A

�
2

n

�2

C B

�
2

n

�
;

with, of course, the same A and B as before. Now replacing these in the above
relation for f .mt/, with t D 1=n, gives

f
�m

n

�
D A

�m

n

�2 C B
�m

n

�

for all integers m and n ¤ 0. Or we can say that f .r/ D Ar2 C Br for every
rational number r. For finalizing, there is now a standard procedure (based on
the continuity of f ). For an arbitrary real x, there exists a sequence .rn/n�1

of rational numbers such that lim
n!1 rn D x. As we have f .rn/ D Ar2

n C Brn

for all n and f is continuous, we can pass to the limit for n ! 1 and get
f .x/ D lim

n!1 f .rn/ D lim
n!1.Ar2

n C Brn/ D Ax2 C Bx.

Solution II. Let, for any real x and y, fx.y/ D f .x C y/ � f .x/ � f .y/; of course,
fx.y/ D fy.x/ for all x and y. We see that the functional equation can be written
in the form fy.x C z/ D fy.x/ C fy.z/, for all x; y; z 2 R. Because fy is continuous
and satisfies Cauchy’s functional equation, it must be of the form fy.x/ D kyx
for all x, with a fixed real constant ky. Of course, the constant depends on y, and
we rather prefer to use the functional notation ky D g.y/. Thus fy.x/ D g.y/x
for all x; y 2 R. From the initial equation, we get (for x D y D z D 0) f .0/ D 0,
therefore 0 D �f .0/ D f0.x/ D g.0/x for all x implies g.0/ D 0, too. For
arbitrary nonzero x and y, the equality g.y/x D g.x/y can be also expressed
as g.y/=y D g.x/=x, which means that x 7! g.x/=x is a constant function;
thus, there exists k 2 R such that g.x/ D kx for all x ¤ 0. However, this
formula works for x D 0, too, as long as we know g.0/ D 0. Thus, we obtained
f .x C y/ � f .x/ � f .y/ D g.y/x D g.x/y D kxy for all real numbers x and y.
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Now consider the (also continuous) function h defined by h.x/ D f .x/ �
kx2=2 for all x, and note that it also satisfies Cauchy’s functional equation: h.xC
y/ D h.x/ C h.y/ for all x; y 2 R, therefore there exists B 2 R such that
h.x/ D Bx for all x. With A D k=2, we thus conclude that f .x/ D Ax2 C Bx for
all real x, as in the first solution.

Of course, any of the solutions must end with the verification of the
fact that the functions given by such a formula are, indeed, solutions of the
problem, which is not at all complicated. A moment of attention shows that the
verification relies on two identities, namely,

.x C y C z/ C x C y C z D .x C y/ C .x C z/ C .y C z/

and

.x C y C z/2 C x2 C y2 C z2 D .x C y/2 C .x C z/2 C .y C z/2

that hold for all x; y; z 2 R. Knowing these identities is, of course, helpful for
solving the problem (at least for guessing the solutions)—also, they could lead
us to some generalizations of it. We are sure that the reader already recognized
some particular (and simple) cases of the identity that appeared in the solution
of problem 5 from the text (the Erdős-Ginzburg-Ziv theorem). Actually, we
are sure that the reader will be able to extend the above and solve the following
more general problem: prove that the only continuous real functions f satisfying

X
S�f1;:::;mg

.�1/m�jSjf
 X

i2S

xi

!
D 0

for all x1; : : : ; xm 2 R are the polynomials of degree at most m � 1 taking
value 0 for x D 0. Of course, this generalizes (besides our problem) Cauchy’s
functional equation for continuous functions, but actually, everything is based
on it (so that, in the end, we don’t get much of a generalization)—the result
follows inductively, in the vein of the second solution. However, this statement
is a nice converse of the mentioned identity (that can be useful in one proof of
the Erdős-Ginzburg-Ziv theorem).

As said before, in mathematics (and not only in mathematics) there are
bridges everywhere.

12. This is a clever application of the mean value theorem, combined with the
intermediate value theorem for continuous functions. The second allows us to
prove that f has a fixed point (just apply the theorem to the continuous function
g defined by g.x/ D f .x/ � x; since g.a/ � 0 and g.b/ � 0, there surely
exists c 2 Œa; b� with g.c/ D 0)—this is actually a particular case of Brouwer’s
fixed point theorem. So, there is c 2 Œa; b� such that f .c/ D c. The conditions
f .a/ D b ¤ a and f .b/ D a ¤ b show that, in fact, c is (strictly) between a
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and b. Now apply the mean value theorem to f on the intervals Œa; c� and Œc; b�;
accordingly, there exist c1 2 .a; c/ and c2 2 .c; b/ such that

f 0.c1/ D f .c/ � f .a/

c � a
D c � b

c � a

and

f 0.c2/ D f .b/ � f .c/

b � c
D a � c

b � c
:

Of course, f 0.c1/f 0.c2/ D 1 follows.
13. With the change of variable t D �=2 � x, we obtain

Z �=2

0

1

1 C .tan x/
p

2
dx D �

Z 0

�=2

1

1 C .tan.�=2 � t//
p

2
dt

D
Z �=2

0

1

1 C 1=.tan t/
p

2
dt D

Z �=2

0

1

1 C 1=.tan x/
p

2
dx

D
Z �=2

0

.tan x/
p

2

1 C .tan x/
p

2
dx D �

2
�
Z �=2

0

1

1 C .tan x/
p

2
dx;

whence

Z �=2

0

1

1 C .tan x/
p

2
dx D �

4
:

Of course, there is no special significance of the exponent
p

2 in this
problem, and, of course, one has to note that the function under the integral is
always defined and continuous in the entire interval Œ0; �=2�—although it seems
not to be defined at �=2 (or at 0, if the exponent in place of

p
2 is negative).

The trick that we learned from it is that you can make the change of variable

t D a C b � x in an integral
Z b

a
f .x/dx and thus infer the equality

Z b

a
f .x/dx D

Z b

a
f .a C b � x/dx;

which is often useful in the evaluation of definite integrals—when other
approaches fail. For example, one can calculate with this trick

Z �=4

0

ln.1 C tan x/dx .D .�=8/ ln 2/;
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or

Z 1

�1

x ln.1 C ex/dx .D 1=3/;

or one can find the useful result that the integral of an odd integrable function
on an interval symmetric with respect to the origin is 0.

14. First one sees that the function f defined by

f .x/ D
�
1 C x

n

�n
e�x

has derivative

f 0.x/ D � x

n

�
1 C x

n

�n
e�x � 0

on Œ0; 1/. Thus, in the case 0 � a � b, we have, by the monotonicity of the
Riemann integral,

.b � a/

�
1 C b

n

�n

e�b �
Z b

a

�
1 C x

n

�n
e�xdx � .b � a/

�
1 C a

n

�n
e�a:

The conclusion follows in this first case by using the squeeze theorem and the
well-known fact that lim

n!1.1 C t=n/n D et for every real number t.

Consider now that a � b � 0. We have (by changing the variable with
x D �t)

Z b

a

�
1 C x

n

�n
e�xdx D �

Z �b

�a

�
1 � t

n

�n

etdt D
Z �a

�b

�
1 � x

n

�n
exdx

and one can see that the function g defined by

g.x/ D
�
1 � x

n

�n
ex

is again decreasing (although not on the whole interval Œ0; 1/) because it has
derivative

g0.x/ D � x

n

�
1 � x

n

�n
ex

which is � 0 on Œ�b; �a� for n > �a. So, for such n, we have similar
inequalities to those above:

.b � a/
�
1 � a

n

�n
ea �

Z b

a

�
1 C x

n

�n
e�xdx � .b � a/

�
1 � b

n

�n

eb;

yielding the conclusion in this case, too.



Solutions 23

Finally, when a � 0 � b, we can split the integral as follows:

Z b

a

�
1 C x

n

�n
e�xdx D

Z 0

a

�
1 C x

n

�n
e�xdx C

Z b

0

�
1 C x

n

�n
e�xdx;

and we get the result by applying the previous, already proved, cases; accord-
ingly, the integral has limit 0�aCb�0 D b�a, finishing the proof. Of course,
the result remains true for a > b, too.

The last few problems are from the category of nostalgic bridges—they
could mean nothing to other people, although they are deeply deposited in
our minds and souls. However, the reader will recall his own problems of this
kind, and he or she will definitely agree with us when we say that nostalgic
bridges appear at every step we take in this world, during our (more or less
mathematical) lives.



Chapter 2
Cardinality

We say that two nonempty sets A;B are equivalent or of the same cardinality or of
the same power if there is a bijection from A to B: We write this as A � B:

If f W A ! B is a bijection, then we also denote A
f� B: Note that “�” is an

equivalence relation. Indeed, we have

8
ˆ̂
<

ˆ̂
:

(reflexivity) A
1A� A:

(symmetry) if A
f� B; then B

f �1� A:

(transitivity) if A
f� B and B

g� C; then A
gıf� C:

The equivalence class bA D fB j A � Bg is called the cardinality of A, denoted by
jAj or card A:

A nonempty set A is called finite if A � f1; 2; : : : ; ng ; for some positive integer n:
In this case, A has n elements and we put jAj D n:

For finite sets A;B with jAj D jBj and function f W A ! B we have:

f injective , f bijective , f surjective.

As a nice application, we give the following:

Problem. Let p and q be primes, p ¤ q: Then for all integers 0 � r1 � p � 1,
0 � r2 � q � 1, there exists an integer n which gives the remainders r1; r2 when
divided by p and q, respectively.

Solution. Denote by

Zp D ˚
0; 1; : : : ; p � 1� ; Zq D

n
e0;e1; : : : ;Aq � 1

o
; Zpq D

n
b0;b1; : : : ; 1pq � 1

o

the remainder (or residue) class sets relative to p; q;, respectively pq: Remember
that, for any positive integer m, we can define (on the set Z of the integers) the
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relation of congruence modulo m by a � b mod m if and only if a � b is divisible
by m (or, equivalently, if a and b give equal remainders when divided by m). This
is an equivalence relation on Z, and the remainder (or residue, or congruence)
class modulo m of the integer x (that is, its equivalence class with respect to the
congruence relation) is readily seen to be the setbx D f: : : ; x�2n; x�n; x; xCn; xC
2n; : : :g. The set Z=mZ D Zm of all the residue classes modulo m is then a ring with
respect to addition and multiplication defined by ba Cbb D 1a C b and ba �bb D ba � b.
The reader is invited to verify that these operations are well defined (they do not
depend on choosing the representatives of the remainder classes) and that they
indeed provide a ring structure for the set Zm. Also note that Zm D fb0:b1; : : : ;1m � 1g.

Now we go on further with the solution of the problem and define the function
' W Zpq ! Zp � Zq; by the law '.br/ D .r;er/ ; br 2 Zpq: We have

ˇ
ˇZpq

ˇ
ˇ D ˇ

ˇZp � Zq

ˇ
ˇ D pq:

The surjectivity of ' follows if ' is injective. Thus, we have the implications

'.br/ D '.br0/ ) .r;er/ D .r0;er0/

)
�

r D r0
er D er0 )

�
p j r � r0
q j r � r0 ) pq j r � r0;

so br D br0: This means that ' is injective and consequently surjective. There is
n 2 f0; 1; : : : ; pq � 1g such that

'.bn/ D .r1;er2/ , .n;en/ D .r1;er2/ ) n D r1 and en Der2;

thus p j n � r1 and q j n � r2. Observe that this argument can be easily
extended in order to obtain a proof of the very useful Chinese remainder theo-
rem: if a1; a2; : : : ; an are pairwise relatively prime integers, then for any integers
b1; b2; : : : ; bn, the system x � b1.moda1/; : : : ; x � bn.modan/ has a unique
solution modulo a1a2 : : : an. �

If A;B are finite and there is an injective map f W A ! B; then we put jAj � jBj :
If moreover there is an injective map g W B ! A; then jAj D jBj : This result, the
Cantor-Bernstein theorem, is difficult when A and B are infinite. Here is a proof.

Theorem (Cantor-Bernstein). If A,B are nonempty sets and there are injections
f W A ! B; g W B ! A; then jAj D jBj; i.e., there exists a bijection � W A ! B:

Proof. We say that b 2 B is an ancestor of a 2 A if

.g ı f ı g ı : : : ı f ı g
„ ƒ‚ …

2kC1 times

/.b/ D a;
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for some k: Similarly, a 2 A is an ancestor of b 2 B if

.f ı g ı f ı : : : ı g ı f
„ ƒ‚ …

2kC1 times

/.a/ D b;

for some k: Moreover, a0 2 A is an ancestor of a 2 A if f .a0/ 2 B is an ancestor of
a and b0 2 B is an ancestor of b 2 B if g.b0/ 2 A is an ancestor of b.

Denote by M1;M2;M1 the set of all elements of A which have an odd, even,
respectively an infinite number of ancestors. Define analogously N1;N2;N1 for B.

We prove that the function � W A ! B; given by

�.x/ D
�

g�1.x/; x 2 M1 [ M1
f .x/; x 2 M2

is bijective. In this sense, we prove that its inverse is  W B ! A;

 .y/ D
�

f �1.y/; y 2 N1
g.y/; y 2 N2 [ N1

:

These functions �; are well defined because f ; g are injective.
Let x 2 A: If x 2 M1 [ M1; then

�.x/ D g�1.x/ 2 N2 [ N1;

so

 .�.x// D g.�.x// D g.g�1.x// D x:

If x 2 M2; then �.x/ D f .x/ 2 N1 and

 .�.x// D f �1.�.x// D f �1.f .x// D x:

Hence  ı � D 1B:

Let y 2 B: If y 2 N1; then

 .y/ D f �1.y/ 2 M2

and

�. .y// D f . .y// D f .f �1.y// D y:

If y 2 N2 [ N1; then

 .y/ D g.y/ 2 M1 [ M1
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and

�. .y// D g�1. .y// D g�1.g.y// D y:

Hence � ı  D 1A: In conclusion, ��1 D  and consequently, jAj D jBj. �

This theorem allows us to define an order relation by the law

jAj � jBj if and only if there is f W A ! B injective.

As a direct consequence, we have

jAj � jBj if and only if there is g W B ! A surjective.

Using Zorn’s lemma, one can prove that this order relation is actually total. A set A
is called countable if A is equivalent to the set N of nonnegative integers. A is called
at most countable if it is finite or countable.

A set is countable if and only if its elements can be written as a sequence. This
does not happen for the set of the reals or any of its (nondegenerate) intervals (see
problems 2 and 7 below).

Nevertheless, a countable union of countable sets is also a countable set. Indeed,
let A D S

n�1 An, where each An is countable. Let An D fan1; an2; : : : g be an
enumeration of An, for every natural number n � 1, and note that

a11; a12; a21; a13; a22; a31; : : :

is an enumeration of A (basically, the same argument shows that the set of positive
rational numbers is countable, as we will immediately see). Obviously, the result
remains true if every An is at most countable.

For instance, the set Z of all integers is countable because

Z D f0; 1;�1; 2;�2; 3;�3; 4;�4; : : :g :

We can also note that

Z D
[

n2N
f�n;�n C 1;�n C 2; : : :g ;

which is a countable union of countable sets.
For the set Q of rationals we have the decomposition

Q D
[

n2Z�

�
1

n
;
2

n
;
3

n
;
4

n
; : : :

�

;
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so Q is countable. In another way, the set of positive rationals can be ordered as
follows:

1=1 ! 1=2 1=3 ! 1=4 : : :

. % . % : : :

2=1 2=2 2=3 2=4 : : :

# % . % . : : :

3=1 3=2 3=3 3=4 : : :

. % . % : : :

4=1 4=2 4=3 4=4 : : :

# % . % . : : :

5=1 5=2 5=3 5=4 : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : :

Each element appears many times in the table, but we consider each of them only
for the first time.

The set N � N of pairs of nonnegative integers is countable. Indeed,

f W N ! N � N ; f .n/ D .n; 0/

is injective and

g W N � N ! N ; g.m; n/ D 2m � 3n

is injective. According to the Cantor-Bernstein theorem, N � N � N. In addition,
note that the map

' W N� � N
� ! N

� ; '.m; n/ D 2m�1 � .2n � 1/
is bijective. One can even find a polynomial bijection between N � N and N, which
we leave as an interesting exercise for the reader.

Proposed Problems

1. Let A be an infinite set. Prove that for every positive integer n;A has a finite
subset with n elements. Deduce that every infinite set has at least one countable
subset.

2. Prove that .0; 1/ is not countable. Infer that R and R n Q are not countable.
3. Let X; A; B; be pairwise disjoint sets such that A;B are countable. Prove that

X [ A [ B � X [ A:

Deduce that for every countable set B of real numbers, R n B � R:

4. Prove that N � N � N is countable and so is N � N � : : : � N.
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5. Let a < b be real numbers. Prove that .0; 1/ � .a; b/ � R:

6. Let A be a countable set and a 2 A: Prove that A n fag � A: Is this result true
for every infinite set A‹

7. Let a < b be real numbers. Prove that Œa; b� � Œa; b/ � .a; b� � .a; b/:
8. Prove that every "-discrete set of real numbers is at most countable. (A set

A 	 R is called "-discrete if ja � bj > "; for any different elements a; b of A).
9. Let S be a set of real numbers with the property that for all real numbers a < b;

the set S \ Œa; b� is finite, possibly empty. Prove that S is at most countable. Is
every set S with the above property an "-discrete set, for some positive real "?

10. Let S be an infinite and uncountable set of real numbers. For each real number
t, we put

S�.t/ D S \ .�1; t�; SC.t/ D S \ Œt;1/:

Prove that there exists a real number t0 for which both sets S�.t0/ and SC.t0/
are infinite and uncountable.

11. A set M of positive real numbers has the property that the sum of any finite
number of its elements is not greater than 7. Prove that the set M is at most
countable.

12. Prove that the set of polynomials with integer coefficients is countable.
13. Prove that the set of algebraic numbers is countable. Deduce that the set of

transcendental numbers is not countable. (A real number ˛ is called an algebraic
number if there exists a polynomial P 6� 0 with integer coefficients such that
P.˛/ D 0: Otherwise, ˛ is called transcendental.)

14. Prove that for each set X, we have jXj < jP.X/j :We denote by P.X/ the power
set of X (that is, the set of all subsets of X, including the empty set and X).
However, the set of all finite subsets of N is countable (thus jNj D jP.N/j).

15. Let p1; p2; : : : ; pk be distinct primes. Prove that for all integers r1; r2; : : : ; rk

there is an integer n such that n � ri.mod pi/; for all 1 � i � k:
16. Prove that there are no functions f W R ! R with the property

jf .x/ � f .y/j � 1;

for all x; y 2 R; x ¤ y:
17. Prove that there are no functions f W R ! R with the property

jf .x/ � f .y/j � 1

x2 C y2
;

for all x; y 2 R; x ¤ y:
18. Prove that the discontinuity set of a monotone function f W R ! R is at most

countable.
19. Prove that the set of all permutations of the set of positive integers is

uncountable.
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20. Let f ; g be two real functions such that f .x/ < g.x/ for all real numbers x. Prove
that there exists an uncountable set A such that f .x/ < g.y/ for all x; y 2 A.

21. Let R be the real line with the standard topology. Prove that every uncountable
subset of R has uncountably many limit points.

22. Find a function f W Œ0; 1� ! Œ0; 1� such that for each nontrivial interval I 
 Œ0; 1�

we have f .I/ D Œ0; 1�.
23. Let a and k be positive integers. Prove that for every positive integer d, there

exists a positive integer n such that d divides kan C n.

Solutions

1. First we will prove by induction the following proposition:

P.n/ W “The set A has a finite subset with n elements.”

The set A is nonempty, so we can find an element a1 2 A: Then A1 D fa1g is a
finite subset of A with one element, thus P.1/ is true.

Assume now that P.k/ is true, so A has a finite subset with k elements,

Ak D fa1; a2; : : : ; akg 	 A:

The set A is infinite, while Ak is finite, so the set A n Ak is nonempty. If we
choose an element akC1 2 A n Ak; then the set

Ak D fa1; a2; : : : ; ak; akC1g

is a finite subset of A; with k C 1 elements. Hence P.k C 1/ is true.
Further, we prove that A has a countable subset. As we proved, for every

positive integer n; we can find a finite subset An 	 A with n elements. Then the
set

S D
[

n�1
An 
 A

is an infinite subset of A:Moreover, S is countable, as a countable union of finite
sets.

2. Let us assume by contradiction that A D .0; 1/ is countable, say

A D fxn j n 2 N; n � 1g :

Let us consider the decimal representations of the elements of A;
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x1 D 0:a11a12a13 : : : a1n : : :

x2 D 0:a21a22a23 : : : a2n : : :

: : : : : : : : : : : : : : : : :

xn D 0:an1an2an3 : : : ann : : :

: : : : : : : : : : : : : : : : :

For each integer k � 1; we choose a digit denoted bk so that

bk ¤ akk ; bk ¤ 9 ; bk ¤ 0:

Now let us define the number

x D 0:b1b2b3 : : : bn : : : :

Obviously, x 2 .0; 1/; so there is an integer m � 1 for which x D xm: But the
equality x D xm implies

0:b1b2b3 : : : bn : : : D 0:am1am2am3 : : : amm : : : ;

which is impossible, because the decimal of rank m are different, bm ¤ amm:

Now, let us assume by way of contradiction that R D fxn j n � 1g is countable.
Obviously, there exists a subsequence .xkn/n�1 of .xn/n�1 such that

.0; 1/ D fxkn j n � 1g :

This means that .0; 1/ is countable, which we just showed to be false.
Finally, we use the fact that the union of two countable sets is also a

countable set. If R n Q is countable, it should follow that R D Q [ .R n Q/ is
countable, as union of two countable sets. This contradiction shows that R n Q

is not countable.
3. The sets A;B are countable so we can assume that

A D fa1; a2; : : : ; an; : : :g ; B D fb1; b2; : : : ; bn; : : :g :

Let us define the map

f W X [ A [ B ! X [ A

given by the formula

f .x/ D
8
<

:

x; if x 2 X
a2n; if x 2 A; x D an

a2n�1; if x 2 B; x D bn

:
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First, the map f is well defined: it takes (all) values in X [ A: Hence it is
surjective. For injectivity, note that f is injective on each restriction to X, A,
and B. Then f is injective on X [ A [ B; if we take into account that any two of
the sets

f .X/ D X; f .A/ D fa2; a4; : : : ; a2n; : : :g ; f .B/ D fa1; a3; : : : ; a2n�1; : : :g
are disjoint.

For the second part of the problem, let A be a countable subset of R n B:
This choice is possible, because the set R n B is nonempty and infinite. If X D
R n .A [ B/; then

R n B D X [ A; R D X [ A [ B;

with A;B countable, and the conclusion follows, according to the first part of
the problem.

4. We begin by proving the implication

A � B ) A � C � B � C;

for all sets A;B;C: Indeed, if f W A ! B is a bijection, then the map

� W A � C ! B � C

given by

�.a; c/ D .f .a/; c/ ; a 2 A; c 2 C;

is also a bijection, so A � C � B � C:
We have already proved that N � N � N: According to the above remark,

N � N � N � N � N:

Finally, by transitivity,

N � N � N � N � N � N;

so N � N � N � N:

In a similar way, the sets N � N � : : : � N are countable, too. As well, note
that

f W N ! N � N � N ; f .n/ D .n; 0; 0/

is injective and

g W N � N � N ! N ; g.m; n; p/ D 2m � 3n � 5p

is injective. The conclusion follows by Cantor-Bernstein theorem. This method
can also be used to prove that N � N � : : : � N is countable.
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5. One idea is to search a linear function f .x/ D mx C n from .0; 1/ onto
.a; b/: In order to determine the values m; n; we impose the condition f .0/ D
a and f .1/ D b: It gives

�
n D a
m C n D b

)
�

n D a
m D b � a

:

Consequently, the function f W .0; 1/ ! .a; b/; given by

f .x/ D .b � a/x C a

is bijective, so .0; 1/ is equivalent to every interval .a; b/:
For the other part, it is sufficient to prove that R is equivalent to some open

interval. Indeed, we can see that the function � W R ! ���
2
; �
2

�
; given by

�.x/ D arctan x is bijective.
6. Assume that A D fan j n 2 Ng ; so that a0 D a:

Then the bijection f W A n fag ! A given by the formula f .an/ D an�1,
n 2 N, n � 1; shows us that A n fag � A:

a1 a2 a3 a4 a5 : : :

. . . . . .
a0 a1 a2 a3 a4 a5 : : :

:

The result remains true if A is an arbitrary infinite set.
Indeed, let B D fxn j n 2 Ng be a countable subset of A: We choose x0 D a;

then define the function � W A n fag ! A by the formula

�.x/ D
�

x; x 2 A n B
xn�1; x 2 B; x D xn; n � 1

:

In a classical way, we can easily prove that � is bijective. Moreover, we can
indicate its inverse ��1 W A ! A n fag with

��1.x/ D
�

x; x 2 A n B
xnC1; x 2 B; x D xn; n � 1

:

7. We have already proved that A n fxg � A; for every infinite set A and x 2 A: In
our case,

Œa; b� � Œa; b� n fbg , Œa; b� � Œa; b/;

Œa; b� � Œa; b� n fag , Œa; b� � .a; b�
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and further

.a; b� � .a; b� n fbg , .a; b� � .a; b/:

Finally, from transitivity,

Œa; b� � Œa; b/ � .a; b� � .a; b/:

8. For each element x 2 A; consider the interval

Ix D
�

x � "

2
; x C "

2

�
:

If x; y 2 A; x ¤ y; then Ix \ Iy D ;:
Indeed, if there is c in Ix \ Iy; then

" < jx � yj � jx � cj C jy � cj < "

2
C "

2
D ";

which is false. Now, for each x 2 A; we choose a rational number rx 2 Ix:

As we have proved, x ¤ y ) rx ¤ ry; which can be expressed that the map
� W A ! Q given by the law �.x/ D rx; for all x 2 A; is injective. Finally, A is
at most countable because Q is countable.

9. For every integer n; we put Sn D S \ Œn; n C 1� : According to the hypothesis,
all sets Sn; n 2 Z are finite. Thus the set

S D
[

n2Z
Sn

is at most countable, as a countable union of finite sets.
The answer to the question is negative. There exist sets S with the property

from the hypothesis, which are not "-discrete. An example is

S D fln n j n 2 N
�g :

10. First we prove that there exists r such that the set S�.r/ is infinite and
uncountable. If we assume the contrary, then the decomposition

S D
[

n2Z
S�.n/;

is a countable union of at most countable sets. Hence S is countable, a
contradiction. Let

˛ D inf fr j S�.r/ infinite and uncountableg
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and similarly, we can define

ˇ D sup
˚
r j SC.r/ infinite and uncountable

�
;

where cases ˛ D �1 or ˇ D 1 are accepted.
We prove that ˛ � ˇ: If ˇ < ˛; then let ˇ < t < ˛: According to the

definition of ˛; the set S�.t/ is countable, and from the definition of ˇ; the set
SC.t/ is countable. Hence S is countable, as union of two countable sets,

S D S�.t/ [ SC.t/:

Consequently, ˛ � ˇ: Then for every ˛ � t0 � ˇ; the sets S�.t0/ and SC.t0/
are infinite and uncountable, because

S�.t0/ � S�.˛/; SC.t0/ � SC.ˇ/:

11. For each integer n � 1; define the set

An D
�

x 2 M j x >
1

n

�

:

Easily, M D
[

n�1
An: We will prove that every set An is finite or empty, so M is

countable as a countable union of finite sets. Now we can prove that An has at
most 7n elements. If for some n; the set An has at least 7n C 1 elements, say
x1; x2; : : : x7nC1 2 A; then

x1 >
1

n
; x2 >

1

n
; : : : ; x7nC1 >

1

n
:

By adding,

x1 C x2 C � � � C x7nC1 >
7n C 1

n
> 7;

which is a contradiction.
12. For each polynomial P 2 ZŒX�;

P D a0 C a1X C � � � C anXn;

define and denote by

h.P/ D n C ja0j C ja1j C � � � C janj

the height of P; h.0/ D 0: Let us put for each nonnegative integer k;

Pk D fP 2 ZŒX� j h.P/ D kg :
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Each set Pk is finite, possibly empty, so

ZŒX� D
[

k2N
Pk

is countable, as a countable union of finite sets. Indeed, there are only a finite
number of polynomials with h.P/ D k: First, note that if h.P/ D k; then
deg P � k and ja0j ; ja1j ; : : : ; janj � k: Consequently, P is defined by a finite
number of integer coefficients a0; a1; : : : ; an which are less than or equal to k in
absolute value.

13. The set A of algebraic numbers is the set of real roots of all nonconstant
polynomials with integer coefficients. Using this remark, we can write

A D S

P2Z1ŒX�
fx 2 R j P.x/ D 0g ;

where

Z1ŒX� D ZŒX� n f0g :

Consequently, A is countable as a countable union of finite sets. Indeed, each
set from the union has at most k elements, where k D deg P.

14. The function � W X ! P.X/ given by �.x/ D fxg ; for all x 2 X; is injective,
so jXj � jP.X/j : Thus we have to prove that there are no bijections from X
onto P.X/: If we assume by contradiction that there is a bijection f W X !
P.X/; then define the set A D fx 2 X j x … f .x/g ; A 2 P.X/: Because of the
surjectivity of f ; we have A D f .x0/; for some x0 2 X: Now the question is

x0 2 A or x0 … A ‹

If x0 2 A; then x0 … f .x0/; false because f .x0/ D A: If x0 … A; then x0 2 f .x0/;
false, because f .x0/ D A:

The last two implications follow from the definition of the set A: These
contradictions solve the problem.

One way to see that the second statement of the problem is true is to consider
the function that maps every finite subset fn1; : : : ; nkg of N to the natural
number 2n1 C � � � C 2nk (and maps the empty set to 0). This mapping is clearly a
bijection (since every positive integer has a unique binary representation), and
the conclusion follows.

Or, one can see that this is an enumeration of all finite sets of N:

;; f0g; f1g; f0; 1g; f2g; f0; 2g; f1; 2g; f0; 1; 2g; f3g; : : :

(we leave to the reader to decipher how the sets are enumerated; we think that
he/she will do).
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Finally, one can see that the set Pf .N/ of finite parts of N is the union of the
sets Pi, where Pi means the set of finite subsets of N having the sum of their
elements precisely i; since every Pi is finite, Pf .N/ is countable (as a countable
union of finite sets). The reader will surely find a few more approaches.

15. Denote p D p1p2 : : : pk: Let us define the function

f W Zp ! Zp1 � Zp2 � : : : � Zpk

by the formula

f .r mod p/ D .r mod p1; r mod p2; : : : ; r mod pk/ ; r 2 f0; 1; : : : ; p � 1g :

The sets Zp and Zp1 � Zp2 � : : : � Zpk have the same number of elements. In
fact, the problem asks to show that f is surjective. Under our hypothesis, it is
sufficient to prove that f is injective. In this sense, let r; s 2 f0; 1; : : : ; p � 1g be
such that

.r mod p1; r mod p2; : : : ; r mod pk/ D .s mod p1; s mod p2; : : : ; s mod pk/:

It follows that

r mod p1 D s mod p1; : : : ; r mod pk D s mod pk;

or p1jr � s ; p2jr � s ; : : : ; pkjr � s: Hence pjr � s; which is equivalent to
r mod p D s mod p: This proves the injectivity of f :

16. For each integer k, there exists at most one element f .x/ 2 Œk; k C 1/: Therefore
to each real number x, we can assign a unique integer k D k.x/ such that f .x/ 2
Œk; k C 1/: Thus, the function

R 3 x 7�! k.x/ 2 Z

is injective. This is impossible, because R is not countable and Z is countable.
Another method uses the injectivity of f : Indeed, if x ¤ y; then

jf .x/ � f .y/j � 1; so the equality f .x/ D f .y/ is not possible. The inequality
from the hypothesis says that the image of the function f is a 1-discrete set, so
it is at most countable. Now, the map f W R ! Im f is injective, so

cardR � card Im f :

This is impossible, because R is not countable.
17. Let us assume, by way of contradiction, that such a function f does exist. Define

g W .�1; 1/ ! R; given by g.x/ D f .x/; for all x 2 .�1; 1/ : Then

jg.x/ � g.y/j � 1

2
;
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for all x; y 2 .�1; 1/ ; x ¤ y: Indeed,

jg.x/ � g.y/j � 1

x2 C y2
� 1

2
:

Now define h W R ! R by h D 2 � .g ı �/; where � W R ! .�1; 1/ is

�.x/ D 2

�
arctan x:

Finally, the function h W R ! R satisfies

jh.x/ � h.y/j � 1;

for all x; y 2 R ; x ¤ y; which is impossible, as we have seen in the previous
problem.

18. Let D be the discontinuity set of f : It is well known that D contains only
discontinuities of the first kind if f is monotone. We mean that for each x 2 D;
there exist finite one-sided limits denoted

fs.x/ D lim
y%x

f .y/ ; fd.x/ D lim
y&x

f .y/:

If f is increasing, then fs.x/ � fd.x/; with strict inequality if x 2 D: Now, for
every x 2 D; we choose a rational number denoted

rx 2 .fs.x/; fd.x//

and we define the function

D 3 x
f7�! rx 2 Q:

It is injective because of the implication

x < y ) fd.x/ � fs.y/:

Finally, D is countable, because Q is countable.
19. Take any semi-convergent series of real numbers with general term an (for

instance, an D .�1/n
n ) and apply Riemann’s theorem: for any real number a

there exists a permutation � of the set of positive integers such that a�.1/ C
a�.2/ C : : : D a. This gives an injection from the set of real numbers into the
set of permutations of the positive integers. Since the former is uncountable, so
is the desired set.

20. Let us consider a rational number r.x/ between f .x/ and g.x/ and look at the sets
Ax of those real numbers a such that r.a/ D x. The union of these sets (taken
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over all rational numbers x) is the set of real numbers, which is uncountable. So,
at least one of these sets is uncountable, and it clearly satisfies the conditions.

21. Suppose that A is a subset of R that has a countable set of limit points. The
points from A split into two classes: those that are limit points of A (denote by
B this set) and those that are not (let C be this second subset of A). But any
point c from C must have a neighborhood that does not intersect A (with the
exception of c), and this neighborhood may be chosen to be an open interval
that contains c and has rational points as extremities. Therefore C is countable
(possibly finite).

So, if we assume that the set of limit points of A is at most countable, B is
also at most countable; then, since A D B [ C, the countability of A follows,
and this proves the problem’s claim by contraposition.

22. Let us consider on Œ0; 1� the relation “�” defined by

a � b , a � b 2 Q:

Clearly, this is an equivalence relation; thus we can find a complete system of
representatives of the equivalence classes, that is, a set A 
 Œ0; 1� such that any
distinct a; b 2 A are not in the relation � and for each t 2 Œ0; 1�, there is a
(unique) a 2 A for which t � a. We have

Œ0; 1� D
[

a2A

Xa

if we denote by Xa the equivalence class of a. Since

Xa D fy 2 Œ0; 1�jy � a 2 Qg D fa C tjt 2 Q \ Œ�a; 1 � a�g;

we see that each class Xa is dense in Œ0; 1� and is a countable set. If A was
countable, then Œ0; 1�would be countable, too, as a countable union of countable
sets. Since this is not the case, we infer that A is not countable, hence a bijection
' W Œ0; 1� ! A can be found.

Then we can define the desired function f W Œ0; 1� ! Œ0; 1� by setting

f .x/ D t;

for all x 2 X'.t/ and for suitably chosen t 2 Œ0; 1�. Since each x 2 Œ0; 1� belongs
to exactly one set Xa and for each a 2 A there is a unique t 2 Œ0; 1� such that
a D '.t/, the function f is well defined.

Now, let I 
 Œ0; 1� be an interval which is not reduced to one point. I contains
elements from any set Xa, a 2 A (since the classes of equivalence are dense in
Œ0; 1�). An arbitrary t 2 Œ0; 1� being given, the intersection of I with X'.t/ is
nonempty; so we can consider an x 2 I \ X'.t/ for which we have f .x/ D t.
Thus, we see that f takes in I any value t 2 Œ0; 1�, that is, the desired result.
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This is problem 1795, proposed by Jeff Groah in Mathematics Magazine,
2/2008. Two more solutions can be found in the same Magazine, 2/2009.

23. We prove the slightly more general statement that, for positive integers a, k, d,
and N, there exist positive integers ni, 0 � i � d � 1 such that ni > N and
kani C ni � i .mod d/ for all 0 � i � d � 1. Of course, n D n0 is the solution
to our problem.

The proof of the general result is by induction on d. For d D 1, we have
nothing to prove (and even for d D 2, one can easily prove the statement). So,
let’s assume it is true for all positive integers d < D and deduce it for D. Also,
assume that some positive integer N has been fixed.

We can consider the (smallest) period p of a modulo D; that is, p is the
smallest positive integer such that amCp � am for all m > M, M being a
certain nonnegative integer. We then also have amClp � am .mod D/ for all
nonnegative integers m > M and l. Yet, note that p < D because the sequence
of powers of a modulo D either contains 0 (and then p D 1), or it doesn’t (and
then, surely, p is at most D�1). Consequently, d D .D; p/ is also less than D and
we can apply the induction hypothesis to infer that there exist positive integers
mi such that mi > maxfM;Ng and kami Cmi � i .mod d/ for all 0 � i � d �1.

We claim that the numbers kamiCsp C .mi C sp/, with 0 � i � d � 1, and
0 � s � D=d � 1 are mutually distinct modulo D. Indeed, suppose that

kamiCsp C .mi C sp/ � kamjCtp C .mj C tp/ .mod D/;

for i; j 2 f0; 1; : : : ; d � 1g, and s; t 2 f0; 1; : : : ;D=d � 1g. Since p is a period of
a modulo D and mi are (by choice) greater than M, we get kami C .mi C sp/ �
kamj C .mj C tp/ .mod D/, and because d is a divisor of D, this congruence is
also true modulo d. Again by the choice of the mi, kami C .mi C sp/ � kamj C
.mj C tp/ .mod d/ becomes i C sp � j C tp .mod d/, and then i � j .mod d/
(as d is also a divisor of p). But i; j are from the set f0; 1; : : : ; d � 1g, thus i D j.
Going back to the initial congruence, we see that it becomes sp � tp .mod D/,
yielding s.p=d/ � t.p=d/ .mod D=d/. But p=d and D=d are relatively prime,
hence we get s � t .mod D=d/ which, together with s; t 2 f0; 1; : : : ;D=d �1g,
implies s D t and the fact that the two original numbers are equal.

Thus we have the d � .D=d/ D D numbers kamiCsp C .mi C sp/, with
0 � i � d � 1, and 0 � s � D=d � 1 that are mutually distinct modulo D;
therefore they produce all possible remainders when divided by D (and here is
our cardinality argument; remember problem 15, that is, roughly, the Chinese
remainder theorem). This means that we can rename by nh, 0 � h � D � 1, the
numbers mi C sp, 0 � i � d, 0 � s � D=d �1 in such a way that kanh C nh � h
.mod D/ for each 0 � h � D � 1, and this is exactly what we wanted to prove
for completing the induction.

This is Problem 11789, proposed by Gregory Galperin and Yury J. Ionin
in The American Mathematical Monthly. A different solution by Mark Wildon
appeared in the same Monthly from August to September 2016. Note, however,
that our proof is nothing but a rewording of the official solution of the seventh
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shortlisted number theory problem from the 47th IMO, Slovenia, 2006. (The
shortlisted problems can be found on the official site of the IMO.) That problem
asks to show that, given a positive integer d, there exists a positive integer n such
that 2n C n is divisible by d.



Chapter 3
Polynomial Functions Involving Determinants

Some interesting properties of determinants can be established by defining
polynomial functions of the type

f .X/ D det.A C XB/; (3.1)

where A; B are n � n matrices with complex entries. Under this hypothesis, f is a
polynomial of degree � n: The coefficient of Xn is equal to det B and the constant
term of f is equal to det A: Indeed, the constant term of the polynomial f is equal to

f .0/ D det.A C 0 � B/ D det A:

The coefficient of Xn can be calculated with the formula

lim
x!1

f .x/

xn
D lim

x!1
1

xn
det.A C xB/ D lim

x!1 det

�
1

x
A C B

�
D det B:

In the case n D 2; the polynomial f is of second (or first) degree, so we can use
the properties of quadratic functions, respectively linear functions.

A special case of such polynomials is the characteristic polynomial �A.X/ D
det.XIn � A/. Its zeros are called the eigenvalues of A. Using the theory of linear
systems, one shows that if A 2 Mn.C/, then � 2 C is an eigenvalue of A if and only
if there exists a nonzero vector v 2 C

n such that Av D �v. One can give a more
abstract interpretation of the above objects, using vector spaces. Namely, if V is a
vector space over a field F, then any linear map f W V ! V can be represented by a
matrix if the dimension of V is finite, say n. Indeed, once we fix a basis e1; e2; : : : ; en

of V , f is determined by its values on e1; : : : ; en, thus by a matrix A such that f .ei/ D
nX

jD1

ajiej for all j. Because for any other basis e0
1; e0

2; : : : ; e0
n in which one can find an
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invertible matrix P 2 Mn.F/ such that e0
i D

nX
jD1

pjiej, one can easily see that two

matrices A, B represent the same linear map f in two different bases of V if and only
if there exists P 2 GLn.F/, the set of invertible matrices in Mn.F/, such that A D
PBP�1. In this case, we say that A and B are similar. If f is a linear map represented
by a matrix A, we then call the polynomial �f .X/ D XA.X/ D det.XIn � A/ the
characteristic polynomial of f . It is easy to see that �f does not depend on A, because
two similar matrices have the same determinant.

Before passing to some problems, let us point out some other useful facts. First,
observe that if A; B 2 Mn.C/ and A is invertible, then AB and BA are similar. Indeed,
AB D A.BA/A�1. Thus �AB D �BA in this case. But this result holds without the
assumption A 2 GLn.C/. Indeed, let z 2 C and observe that there are infinitely many
" 2 C such that A C "In 2 GLn.C/, because det.A C XIn/ is a nonzero polynomial.
Actually, for the same reason, there is such a sequence "k with lim

k!1 "k D 0. Let

Ak D A C "kIn; then the previous argument shows that

det.zIn � AkB/ D det.zIn � BAk/:

It is enough to make k ! 1 in the previous relation to deduce that

det.zIn � AB/ D det.zIn � BA/;

and so �AB D �BA. The reader should try to understand this technique very
well, since it can be used in many situations. Finally, take A 2 Mn.C/ and let
�1; �2; : : : ; �n be its eigenvalues, counted with multiplicities. By definition,

det.XIn � A/ D .X � �1/.X � �2/ : : : .X � �n/:

On the other hand,

det.XIn � A/ D

ˇ̌̌
ˇ̌
ˇ̌̌
X � a11 �a12 : : : �a1n

�a21 X � a22 : : : �a2n

: : : : : : : : : : : :

�an1 �an2 : : : X � ann

ˇ̌̌
ˇ̌
ˇ̌̌

and a direct expansion shows that the coefficient of Xn�1 is

�.a11 C a22 C � � � C ann/ D � tr.A/:

Thus the trace of a matrix equals the sum of its eigenvalues, counted with
multiplicities. Similarly, the determinant is the product of eigenvalues. Also, if
"1; : : : ; "k are the kth roots of unity, we have
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det.XkIn � Ak/ D det

0
@ kY

jD1

.XIn � "jA/

1
A

D
kY

jD1

det.XIn � "jA/ D
kY

jD1

�
"n

j f

�
X

"j

��

D
kY

jD1

nY
iD1

.X � �i"j/ D
nY

iD1

kY
jD1

.X � �i"j/ D
nY

iD1

.Xk � �k
i /:

Thus det.YIn � Ak/ D
nY

iD1

.Y � �k
i /, which means that the eigenvalues of Ak are

the kth powers of the eigenvalues of A. Similarly, one can show that if g 2 CŒX�,
then the eigenvalues of g.A/ are g.�j/ for j D 1; 2; : : : ; n. The reader is encouraged
to prove this.

Problem. Let A; B 2 M2.R/ such that AB D BA: Prove that

det.A2 C B2/ � 0:

Solution. Let us consider the quadratic function

f .x/ D det.A C xB/ ; x 2 R:

with real coefficients. More precisely, let a; b; c 2 R be such that

f .x/ D ax2 C bx C c:

Then

det.A2 C B2/ D det.A C iB/ � det.A � iB/ D f .i/f .�i/

D .�a C bi C c/.�a � bi C c/ D .c � a/2 � .bi/2

D .c � a/2 C b2 � 0: �

Of course, the previous result holds for n � n matrices. Indeed, the fact that
f .i/f .�i/ is a nonnegative real number is not specific for polynomials of degree
at most 2, but for any polynomial with real coefficients: all we need is to note that
f .i/f .�i/ D jf .i/j2.

Recall the following basic property of the quadratic function f .x/ D ax2 CbxCc:

Œx; y 2 R; f .x/ D f .y/� )
�

x D y or x C y D �b

a

�
:
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In particular, if for some x; y 2 R; x ¤ y; we have f .x/ D f .y/; then the abscissa of

the extremum point of the corresponding parabola is
x C y

2
.

Problem. Let A; B 2 M2.R/: Prove that

det

�
I2 C 2AB C 3BA

5

�
D det

�
I2 C 3AB C 2BA

5

�
:

Solution. Let us define the quadratic function (or linear, if det.BA � AB/ D 0)

f .x/ D det.I2 C AB C x.BA � AB//:

Because AB and BA have the same characteristic polynomial,

det.I2 C AB/ D det.I2 C BA/;

so f .0/ D f .1/: But f is a quadratic function, thus

f .x/ D f .1 � x/ ; 8 x 2 R:

In particular,

f

�
2

5

�
D f

�
3

5

�
;

and the conclusion is clear. Note that the same argument shows that

det

�
I2 C xAB C yBA

x C y

�
D det

�
I2 C yAB C xBA

x C y

�
;

for all real numbers x; y with x C y ¤ 0: �

The following problem is also based on properties of the polynomial det.A C xB/.
However, the arguments are more involved.

Problem. Let n be an odd positive integer and let A; B 2 Mn.R/ such that
2AB D .BA/2 C In: Prove that det.In � AB/ D 0:

Solution. Consider the polynomial f .X/ D det.XIn �AB/. We know that AB and
BA have the same characteristic polynomial, therefore f .x/ D det.xIn � BA/. Using
the given relation, we conclude that

f

�
x2 C 1

2

�
D det

�
x2 C 1

2
In � AB

�
D det

�
x2 C 1

2
In � 1

2
.In C .BA/2/

�

D � f .x/f .�x/

2n
:



3 Polynomial Functions Involving Determinants 47

Because deg.f / is odd, f has at least one real root x. The above relation shows

that all terms of the sequence x1 D x, xnC1 D x2
n C 1

2
are roots of f . This sequence

is increasing and takes only a finite number of distinct values, because f is not 0.
Thus there exists n such that xn D xnC1. This implies xn D 1 and so 1 is a root of f ,
which means that det.In � AB/ D 0. This finishes the proof. �

The following problem was given in the Romanian Mathematical Olympiad
in 1999:

Problem. Let A be a 2 � 2 matrix with complex entries and let C.A/ be the set
of matrices commuting with A. Prove that j det.A C B/j � j det.B/j for all B 2 C.A/

if and only if A2 D O2.

Solution. For one implication, let r1; r2 be the roots of the polynomial det.XI2 �
A/. By taking the matrices B D �riI2 we deduce that jrij2 � 0 and so ri D 0. Thus
det.XI2 � A/ D X2 and from Hamilton-Cayley’s relation, it follows that A2 D O2.
Conversely, suppose that A2 D O2. We will prove more, namely, that det.A C B/ D
det.B/ for all B 2 C.A/. If det.B/ ¤ 0, we can write det.�B2/ D det.xA C B/ �
det.xA � B/ for all complex numbers x. This shows that the polynomial det.XA C B/

divides a nonzero constant polynomial, so it is constant. Thus det.A C B/ D det.B/.
Now, suppose that det.B/ D 0. There exists a sequence xn that converges to 0 and
such that B C xnI2 is invertible for all n. These matrices also belong to C.A/ and so
det.xnI2 C A C B/ D det.xnI2 C B/. It is enough to make n ! 1 in order to deduce
that det.A C B/ D 0 D det.B/. This finishes the proof. �

The following problem, from Gazeta Matematică’s Contest is a nice blending of
linear algebra and analysis.

Problem. Let A; B 2 Mn.R/ be matrices with the property that

j det.A C zB/j � 1

for any complex number z such that jzj D 1. Prove that

.det.A//2 C .det.B//2 � 1:

Solution. Consider the polynomial f .z/ D det.A C zB/. As we have seen, f can
be written in the form det.A/ C � � � C det.B/zn. Now, we claim that if a polynomial

g.X/ D anXn C � � � C a1X C a0

has the property that jg.z/j � 1 for all jzj D 1, then

ja0j2 C ja1j2 C � � � C janj2 � 1:
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Indeed, a small computation, based on the fact that
R 2�

0
eintdt D 0 if n ¤ 0, shows

that

ja0j2 C ja1j2 C � � � C janj2 D 1

2�

Z 2�

0

jg.eit/j2dt � 1:

Using this, we can immediately conclude that .det.A//2 C .det.B//2 � 1. �

Here is an outstanding consequence of the fact that a nonzero polynomial has
only finitely many zeros:

Problem. Let A; B 2 Mn.C/ be matrices such that AB � BA D A. Prove that A
is nilpotent, that is, there exists k � 1 such that Ak D On.

Solution. Let us prove by induction that

AkB � BAk D kAk for k � 1:

For k D 1, this is clear. Assuming that it is true for k, then AkC1B � ABAk D kAkC1.
But AB D BA C A, hence AkC1B � BAkC1 D .k C 1/AkC1.

Now, consider the map � W Mn.C/ ! Mn.C/, �.X/ D XB � BX. We obtain
�.Ak/ D kAk for all k. Now, view � as a linear map on a finite dimensional vector
space Mn.C/. If A is not nilpotent, it follows that k is an eigenvalue for � and
this is true for all k. This is impossible since it would follow that the characteristic
polynomial of �, which is nonzero, has infinitely many zeros, namely, all positive
integers k. �

Proposed Problems

1. Let A; B 2 M2.R/ be such that AB D BA and det.A2 C B2/ D 0: Prove that
det A D det B:

2. Let A; B 2 M3.R/ be such that AB D BA; det.A2 C B2/ D 0, and
det.A � B/ D 0: Prove that det A D det B:

3. Let U; V 2 M2.R/. Prove that

det.U C V/ C det.U � V/ D 2 det U C 2 det V:

4. Let A; B 2 M2.R/ be such that det.AB C BA/ � 0: Prove that

det.A2 C B2/ � 0:

5. Let A; B 2 M2.Z/ be two matrices, at least one of them being singular, i.e., of
zero determinant. Prove that if AB D BA; then det.A3 C B3/ can be written as
the sum of two cubes of integers.
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6. Let A be a 2 � 2 matrix with rational entries with the property that

det.A2 � 2I2/ D 0:

Prove that A2 D 2I2 and det A D �2:

7. Let A; B 2 M3.R/ be such that det.AB � BA/ D 0: Prove that

det

�
I3 C xAB C yBA

x C y

�
D det

�
I3 C yAB C xBA

x C y

�
;

for all real numbers x; y with x C y ¤ 0:

8. Let A; B 2 M2.R/ be such that det.AB � BA/ � 0: Prove that

det.I2 C AB/ � det

�
I2 C AB C BA

2

�
:

9. Let A; B; C 2 M2.R/ be pairwise commuting matrices so that

det.AB C BC C CA/ � 0:

Prove that det.A2 C B2 C C2/ � 0:

10. Let B be an n � n nilpotent matrix with real entries. Prove that

det.In C B/ D 1:

(An n � n matrix B is called nilpotent if Bk D On; for some positive integer k).
11. Let A be a n � n matrix with real entries so that AkC1 D On; for a given positive

integer k: Prove that

det

�
In C 1

1Š
A C 1

2Š
A2 C � � � C 1

kŠ
Ak

�
D 1:

12. Let A 2 Mn.C/ and k � 1 be such that Ak D On. Prove that there exists
B 2 Mn.C/ such that B2 D In � A.

13. Let A be a 3 � 3 matrix with integer entries such that the sum of the elements
from the main diagonal of the matrix A2 is zero. Prove that we can find some
elements of the matrix A6 whose arithmetic mean is the square of an integer.

14. Let A; B 2 Mn.R/ and suppose that there exists P 2 Mn.C/ invertible such
that B D P�1AP. Prove that there exists Q 2 Mn.R/ invertible such that
B D Q�1AQ.
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Solutions

1. Let us consider the polynomial f .X/ D det.A C XB/: We know that f can be
represented as

f .x/ D det B � x2 C mx C det A;

where m 2 R: But det.A2 C B2/ D 0; so

det.A C iB/ det.A � iB/ D 0 ) f .i/ D f .� i/ D 0;

hence f .x/ D ˛.x2 C 1/; implying det A D det B .D ˛/:

2. The polynomial f .X/ D det.A C XB/ has degree � 3: From

det.A2 C B2/ D det.A C iB/ det.A � iB/ D 0;

we deduce f .i/ D f .�i/ D 0; so f is divisible by x2 C 1: Hence

f .x/ D .x2 C 1/.mx C n/;

for some real numbers m; n: Further, f .�1/ D det.A � B/ D 0; so m D n and
then f .x/ D m.x2 C 1/.x C 1/: Now we can see that det A D det B .D m/:

3. The quadratic function f .x/ D det.U C xV/ can be written as

f .x/ D det V � x2 C mx C det U;

for some m: Further,

det.U C V/ C det.U � V/ D f .1/ C f .�1/

D .det V C m C det U/ C .det V � m C det U/ D 2.det U C det V/:

4. Let us define the quadratic function

f .x/ D det.A2 C B2 C x.AB C BA//:

We have

f .1/ D det.A2 C B2 C AB C BA/ D det.A C B/2 � 0

and

f .�1/ D det.A2 C B2 � AB � BA/ D det.A � B/2 � 0:
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Now, note that if det.AB C BA/ < 0, then f has a maximum. From f .�1/ � 0

and f .1/ � 0; it follows that f .x/ � 0; for all real numbers x 2 Œ�1; 1�: In
particular,

f .0/ � 0 , det.A2 C B2/ � 0:

In case det.ABCBA/ D 0; we also have f .0/ � 0; because f is a linear function
(possibly constant).

We also can proceed using the identity

det.U C V/ C det.U � V/ D 2 det U C 2 det V:

By taking U D A2 C B2, V D AB C BA, we obtain

det.A2 C B2 C AB C BA/ C det.A2 C B2 � AB � BA/

D 2 det.A2 C B2/ C 2 det.AB C BA/

or

det.A C B/2 C det.A � B/2 D 2 det.A2 C B2/ C 2 det.AB C BA/:

It follows that

det.A2 C B2/ C det.AB C BA/ � 0;

which finishes the alternative solution.
5. By symmetry, we may assume that det.B/ D 0. Consider the linear function

f .x/ D det.A C xB/. It can be also written as a C bx for some integers a; b.
If z is a root of the equation z2 C z C 1 D 0, then the fact that AB D BA
implies the identity A3 C B3 D .A C B/.A C zB/.A C z2B/. Thus, det.A3 C
B3/ D f .1/f .z/f .z2/ D .a C b/.a C bz/.a C bz2/ D a3 C b3, which shows that
det.A3 C B3/ is indeed the sum of two cubes.

6. Let us define the quadratic function f .x/ D det.A � xI2/; for all real x: The
coefficient of x2 is equal to det.�I2/ D 1 and

0 D det.A2 � 2I2/ D det.A � p
2I2/ det.A C p

2I2/;

so f .�p
2/f .

p
2/ D 0: Now, because f has rational coefficients, we conclude

that f .
p

2/ D f .�p
2/ D 0; so f .x/ D x2 � 2: Further,

det.A � xI2/ D x2 � 2; (3.2)

for all real numbers x: For x D 0; we obtain det A D �2: The relation (3.2) is
the characteristic equation of A; so A verifies it, A2 � 2I2 D 0 ) A2 D 2I2:
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7. Let us consider the polynomial

P.t/ D det.I3 C tAB C .1 � t/BA/:

We have

P.t/ D det.t.AB � BA/ C I3 C BA/:

The coefficient of t3 is det.AB � BA/ D 0; so deg P � 2: From the equality
P.0/ D P.1/; it follows that

P

�
1

2
� �

�
D P

�
1

2
C �

�
;

for all real numbers �: The conclusion follows by taking

� D 1

2
� x

x C y
:

8. The axis of symmetry of the parabola y D f .x/, where

f .x/ D det.x.AB � BA/ C I2 C BA/:

is x D 1

2
; because of f .0/ D f .1/ and the coefficient of x2 is det.AB�BA/ < 0 ,

so f .x/ < f

�
1

2

�
; for all x 2 R n f1=2g : In particular, f .1/ < f

�
1

2

�
which is

det.I2 C AB/ < det

�
I2 C AB C BA

2

�
:

In case det.AB � BA/ D 0; f is linear and f .0/ D f .1/; so f is constant.
Consequently,

det.I2 C AB/ D det

�
I2 C AB C BA

2

�
:

9. Consider the polynomial function

f .x/ D det.A2 C B2 C C2 C x.AB C BC C CA//:

The coefficient of x2 is equal to det.AB C BC C CA/ � 0; thus the parabola
y D f .x/ is concave. We will prove that f .�1/ � 0 and f .2/ � 0; and then it
will follow that f .0/ � 0: Indeed, we have:

f .2/ D det.A2 C B2 C C2 C 2AB C 2BC C 2CA/ D det.A C B C C/2 � 0:

On the other side,
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f .�1/ D det.A2 C B2 C C2 � AB � BC � CA/

D 1

4
det

�
.A � B/2 C .B � C/2 C .C � A/2

�
:

Now, if X D A � B and Y D B � C; then C � A D �X � Y and further,

f .�1/ D 1

4
det

�
X2 C Y2 C .X C Y/2

� D det.X2 C XY C Y2/

D det

2
4�X C 1

2
Y

�2

C
 p

3

2
Y

!2
3
5 � 0;

by the first problem of the theoretical part (note that X and Y commute).
10. Let us define the polynomial function

P.x/ D det.In � xB/ ; x 2 C:

We will prove that P is constant and so P.�1/ D P.0/ D 1: If Bk D On, then
for all complex numbers x, we have

In D In � .zB/k D .In � zB/.In C zB C � � � C .zB/k�1/:

By passing to determinants, we deduce that P is a divisor of 1 in CŒX�, so it is
indeed constant.

11. Consider the polynomial function

P.x/ D det

�
In C x

1Š
A C x2

2Š
A2 C � � � C xk

kŠ
Ak

�
:

The degree of P is not greater than kn and P satisfies the relation:

P.x/P.y/ D P.x C y/;

for all real numbers x; y: Indeed,

P.x/P.y/ D det

 
kX

iD0

xi

iŠ
Ai

!
� det

0
@ kX

jD0

yj

jŠ
Aj

1
A

D det

2
4
 

kX
iD0

xi

iŠ
Ai

!
�
0
@ kX

jD0

yj

jŠ
Aj

1
A
3
5 D det

2
4 kX

pD0

0
@X

iCjDp

xiyj

iŠjŠ

1
AAp

3
5

D det

0
@ kX

pD0

.x C y/p

pŠ
Ap

1
A D P.x C y/:
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In particular, P.x/P.�x/ D P.0/ D 1; so P is a constant polynomial, because it
does not have complex roots. It follows that

P.1/ D P.0/ D 1:

We can also proceed in a different way. According to the hypotheses, A is
nilpotent. The sum of nilpotent matrices which commute with each other is
a nilpotent matrix. In particular, the matrix

B D 1

1Š
A C 1

2Š
A2 C � � � C 1

kŠ
Ak

is nilpotent. As we have proved in the previous problem,

det.In C B/ D det

�
In C 1

1Š
A C 1

2Š
A2 C � � � C 1

kŠ
Ak

�
D 1:

12. We search for B in the form B D P.A/ for some P 2 CŒX�. First, let us prove
by induction on k that we can find Pk 2 CŒX� such that XkjP2

k.X/ C X � 1. Take
P1 D 1 and assume that Pk is found. Let P2

k.X/CX�1 D XkQ.X/. If Q.0/ D 0,
take PkC1 D Pk, so assume that Q.0/ ¤ 0. Let us search for

PkC1.X/ D Pk.X/ C ˛Xk:

Then

P2
kC1.X/ C X � 1 D P2

k.X/ C X � 1 C 2˛XkPk.X/ C ˛2X2k

D Xk.Q.X/ C 2˛Pk.X/ C ˛2Xk/:

It is enough to choose ˛ such that Q.0/ C 2˛Pk.0/ D 0, which is possible
because P2

k.0/ D 1 ¤ 0.
Now, let B D Pk.A/. We know that

P2
k.X/ C X � 1 D Q.x/ � Xk

for some Q 2 CŒX�. Thus B2 C A � In D AkQ.A/ D 0 and so B2 D In � A.
13. Let f .X/ D det.XI3 � A/ D .X � �1/.X � �2/.X � �3/ and observe that

det.XI3 � A2/ D .X � �2
1/.X � �2

2/.X � �2
3/:

Thus the condition tr A2 D 0 becomes �2
1 C �2

2 C �2
3 D 0, and this implies

�6
1 C �6

2 C �6
3 D 3�2

1�2
2�2

3:
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This can be translated as tr A6 D 3.det A/2 and shows that the arithmetic
mean of the elements on the main diagonal of A6 is a square, namely, .det A/2.

14. Observe that we can write P D X C iY with X; Y 2 Mn.R/. Because PB D AP
and A; B 2 Mn.R/, we deduce that AX D XB and AY D YB. We are not
done yet, because we cannot be sure that X or Y is invertible. Nevertheless, the
polynomial function f .x/ D det.xYCX/ is not identically zero because f .i/ ¤ 0

(P being invertible). Therefore, there exists x 2 R such that f .x/ ¤ 0. Clearly,
Q D X C xY answers the question.



Chapter 4
Some Applications of the Hamilton-Cayley
Theorem

We saw in a previous chapter that the characteristic polynomial of a matrix and its
zeros, the eigenvalues of the matrix, can give precious information. The purpose of
this chapter is to present a powerful theorem due to Hamilton and Cayley that gives
an even stronger relation between a matrix and its characteristic polynomial: in a
certain sense, the matrix is a “root” of its characteristic polynomial. After presenting
a proof of this theorem, we investigate some interesting applications.

Theorem (Hamilton-Cayley). Let K be any field and let A 2 Mn.K/ be a
matrix. Define

det.XIn � A/ D Xn C an�1Xn�1 C � � � C a1X C a0

the characteristic polynomial of A. Then

An C an�1An�1 C � � � C a1A C a0In D On:

The proof of this result is not easy and we will prove it here only for the field of
complex numbers (which is already nontrivial!). Basically, if A is diagonal, the proof
is immediate. So is the case when A is diagonalizable, because by a conjugation,
one easily reduces the study to diagonal matrices. In order to solve the general
case, we will use a density argument: first of all, we will prove that the set of
diagonalizable matrices over C is dense in Mn.C/. This is not difficult: because the
characteristic polynomial of A has complex roots, there exists a complex invertible
matrix P such that P�1AP is triangular. But then, it is enough to slightly modify the
diagonal elements of this triangular matrix so that they become pairwise distinct.
The new matrix is diagonalizable (because it is triangular and has pairwise distinct
eigenvalues), and it is immediate that it can approximate the initial matrix arbitrarily
well. Thus, the claim is proved. Now, consider A a complex matrix and take Ak a
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sequence of diagonalizable matrices that converge to A. Let XnCa.k/
n�1Xn�1C� � �Ca.k/

0

be their characteristic polynomials. We know that

An
k C a.k/

n�1An�1
k C � � � C a.k/

0 In D On; (*)

by the argument in the beginning of the solution. On the other hand, the coefficients
a.k/

j are polynomials in the coefficients of the matrix Ak (simply because each
coefficient of the characteristic polynomial is a polynomial in the coefficients of
the matrix, as can be easily seen from the formula of the determinant). Because Ak

converges to A, it follows that each a.k/
j converges to ak, the coefficient of Xk in the

characteristic polynomial of A. But then, by taking the limit in the relation (*), we
obtain exactly the desired equation satisfied by A. This finishes the proof. �

Now, observe that one can easily compute an�1 in the above formula: all we have
to do is to develop the determinant of XIn �A and take the coefficient of Xn�1. Since

det.XIn � A/ D
X

�2Sn

�.�/ � .Xı1�.1/ � a1�.1// : : : .Xın�.n/ � an�.n//

(here, ıij equals 1 if i D j and 0 otherwise, while �.�/ D 1 if � is even and �1

otherwise), the only term which has a nonzero coefficient of Xn�1 is .X � a11/.X �
a22/ : : : .X �ann/, which gives the coefficient �.a11 Ca22 C� � �Cann/. We recognize
in the last quantity the opposite of the trace of A. Thus, the Hamilton-Cayley relation
becomes

An � tr.A/ � An�1 C � � � C .�1/n det.A/In D On:

In the very easy case n D 2 (for which the proof of the theorem itself is
immediate by direct computation), we obtain the useful formula

A2 � tr.A/A C det.A/I2 D O2:

Note already that the Hamilton-Cayley theorem comes handy when computing
the powers of a matrix. Indeed, we know that A satisfies an equation of the form

An C an�1An�1 C � � � C a1A C a0In D On:

By multiplying by Ak, we obtain

AnCk C an�1AnCk�1 C � � � C a0Ak D On;

which means that each entry of .Ak/k�1 satisfies a linear recurrence with constant
coefficients; thus we can immediately obtain formulas for the coefficients of the
powers Ak. The computations are not obvious, but in practice, for 2 � 2 and 3 � 3

matrices, this gives a very quick way to compute the powers of a matrix. Let us see
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in more detail what happens for 2�2 matrices. By the previous observation, to each
matrix A 2 M2.C/; we can inductively assign two sequences .an/n�1 ; .bn/n�1 of
complex numbers for which An D anA C bnI2; for all positive integers n: Let us find
a recurrence satisfied by these sequences. If we assume that Ak D akA C bkI2; since
we also have A2 D ˛A C ˇI2; where ˛ D tr A and ˇ D � det A; we can write

AkC1 D Ak � A D .akA C bkI2/A D akA2 C bkA

D ak.˛A C ˇI2/ C bkA D .ak˛ C bk/A C akˇI2;

so AkC1 D akC1A C bkC1I2 with

�
akC1 D ak˛ C bk

bkC1 D akˇ
:

Here is an application of the above observation:

Problem. Let A; B 2 M2.C/ be two matrices such that AnBn D BnAn for some
positive integer n. Prove that either AB D BA or one of the matrices An, Bn has the
form aI2 for some complex number a.

Solution. In the framework of the above results, this should be fairly easy. We
saw that we can write An D aA C bI2 and Bn D cB C dI2 for some complex
numbers a; b; c; d. The condition AnBn D BnAn becomes, after simple computations,
ac.AB � BA/ D O2. It is clear that this implies AB D BA or a D 0 or c D 0. But
this is precisely what the problem was asking for. �

The Hamilton-Cayley theorem is not only useful to compute powers of matrices
but also to solve equations. Here are some examples.

Problem. a) The solutions of the equation

X2 D �I2; X 2 M2.C/ (4.1)

are X D iI2; X D �iI2 and any matrix of the form

X D
�

a b
c �a

�
; with a2 C bc D �1:

b) The solutions of the equation X2 D I2, X 2 M2.C/ are X D I2; X D �I2 and
any matrix of the form

X D
�

a b
c �a

�
; with a2 C bc D 1:
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Solution. First of all, note that part b) follows immediately by using the next
equivalence:

X2 D �I2 , .iX/2 D I2:

By considering the determinant, det X2 D 1; we deduce that det X D ˙1: We
therefore have two cases. In the first case, det X D 1, and with the notation ˛ D tr X;

we have

X2 � ˛X C I2 D O2:

Combining this with equation X2 D �I2 and taking into account that X is invertible,
we obtain ˛ D 0: Now, with det X D 1 and tr X D 0; it follows that

X D
�

a b
c �a

�
; with a2 C bc D �1:

It is easy to check that all these matrices are solutions. In the second case,
det X D �1: With ˛ D tr X; we have

X2 � ˛X � I2 D O2:

Therefore, since X2 D �I2, we have X D � 2

˛
I2. By considering the trace, it follows

that ˛ D � 4

˛
) ˛ D ˙2i: Finally, X D iI2 or X D �iI2: �

With these preparations, we can solve the equation

AB C BA D O2: (4.2)

when both matrices A and B are invertible.

Problem. The solutions of the equation AB C BA D O2, with A; B 2 M2.C/

invertible, are

A D
�

x y
z �x

�
; B D A�1 �

�
a b
c �a

�
;

where x; y; z; a; b; c are any complex numbers with x2 C yz ¤ 0; a2 C bc ¤ 0, and
2ax C bz C cy D 0:

Solution. We can assume, without loss of generality, that det.AB/ D 1; by
multiplying eventually by a scalar.

We have

tr.AB C BA/ D 0 ) tr .AB/ C tr .BA/ D 0;
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and from tr .AB/ D tr .BA/ ; we obtain tr.AB/ D 0: We also have det AB D 1 and
from the Hamilton-Cayley relation, we obtain

.AB/2 D �I2 (4.3)

Now we can use the previous problem to solve the above equation. If X denotes any
solution of the equation (4.1), then AB D X ) B D A�1X: With B D A�1X; the
equation (4.2) becomes

A � A�1X C A�1X � A D O2:

By multiplying by A to the left, we derive

AX C XA D O2: (4.4)

The cases X D iI2 and X D �iI2 are not acceptable, because A is invertible.
Consequently, if

A D
�

x y
z t

�
; X D

�
a b
c �a

�

with x; y; z; t; a; b; c 2 C; a2 C bc D �1; xt � yz D 1; then the condition (4.4)
becomes

�
x y
z t

��
a b
c �a

�
C
�

a b
c �a

��
x y
z t

�
D O2:

In terms of linear systems, we obtain

8
ˆ̂<

ˆ̂:

2ax C bz C cy D 0

b.t C x/ D 0

c.t C x/ D 0

�2at C bz C cy D 0:

If t C x ¤ 0; then b D c D 0: From the first and the last equations of the system, we
deduce a D 0: This is impossible, because a2 C bc D �1:

Thus, t C x D 0: In this case, the first and the last equations of the system are
equivalent. It follows that

A D
�

x y
z �x

�
; X D

�
a b
c �a

�
;

for any x; y; z; a; b; c 2 C; satisfying
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a2 C bc D �1; x2 C yz D �1; 2ax C bz C cy D 0:

The general solution of the given equation is .�A; �B/ ; where �; � 2 C
�: This

includes also the case .iA; B/; when det.iAB/ D � det AB: �

The following problem has a very short solution using the Hamilton-Cayley
theorem, but it is far from obvious.

Problem. Let A; B; C; D 2 Mn.C/ such that AC is invertible and AkB D CkD
for all k � 1. Prove that B D D.

Solution. Let

f .x/ D det.xIn � A/ D xn C � � � C .�1/n det A

and

g.x/ D det.xIn � C/ D xn C � � � C .�1/n det C

be the respective characteristic polynomials of A and C, and let

h D 1

det.AC/
fg:

Then h has the form h.x/ D bnx2n C � � � C b1x C 1, and by the Hamilton-Cayley
theorem, we know that

bnA2n C � � � C b1A C In D On

and

bnC2n C � � � C b1C C In D On:

It is enough to multiply the first relation by B and the second one by D and to take
the difference. �

Here is a beautiful problem proposed by Laurenţiu Panaitopol for the Romanian
National Mathematical Olympiad in 1994.

Problem. For a given n > 2, find all 2 � 2 matrices with real entries such that

Xn C Xn�2 D
�

1 �1

�1 1

�

Solution. By taking the determinant of both sides, we observe that we must have
det X D 0 or det.XC iI2/ D 0. Assume for a moment that det.XC iI2/ D 0. Thus the
characteristic polynomial of X, which has real coefficients, has �i as a root. Thus,
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it also has i as a root and these are its roots. That is, the characteristic polynomial
equals X2 C 1, and by the Hamilton-Cayley theorem, we deduce that X2 C I2 D O2,
which is clearly impossible. Thus det X D 0 and if t D tr X, we can write (again
using Hamilton-Cayley)

Xn C Xn�2 D .tn�1 C tn�3/X:

Therefore, if f .x/ D xn C xn�2 � 2, we must have f .t/ D 0. There are now two
cases: either n is even, and in this case, �1 and 1 are the only zeros of f (since f
is increasing on the set of positive numbers and decreasing on the set of negative
numbers), and those two values t D 1 and t D �1 give two solutions by the
above relation. The second case is when n is odd, and in this case, the function f
is increasing and has only one zero, at t D 1. This gives the corresponding solution
X for odd n. �

We continue with a very useful criterion for nilpotent matrices and some
applications of it.

Problem. Let A 2 Mn.C/. Prove that A is nilpotent if and only if tr Ak D 0 for
all k � 1.

Solution. If A is nilpotent, then any eigenvalue of A is zero. Indeed, if � is an
eigenvalue of A, we know that �k is an eigenvalue of Ak, and if Ak D On, this implies
�k D 0 and so � D 0. On the other hand, we saw that tr Ak is the sum of the kth
powers of the eigenvalues of A and so it is 0.

Now, suppose that tr Ak D 0 for k � 1 and let �1; �2; : : : ; �n be the eigenvalues

of A. Thus �k
1 C �k

2 C � � � C �k
n D 0 for all k � 1. Because

1

1 � z
D 1 C z C z2 C : : :

if jzj < 1, we deduce that if z is small enough,

nX

iD1

1

1 � z�i
D

nX

iD1

1X

jD0

zj�
j
i D

1X

jD0

zj
nX

iD1

�
j
i D n:

Thus the rational function
nX

iD1

1

1 � z�i
� n is identically zero, because it has

infinitely many zeros. If all �i are nonzero, this rational fraction has limit �n when
jzj ! 1, which is absurd. Thus, we may assume that �1 D 0. But then �k

2 C
� � � C �k

n D 0 for k � 1, and the previous argument shows that one of �2; : : : ; �n is
0. Continuing in this way, we deduce that all �i are 0. Hamilton-Cayley’s theorem
shows then that An D On and so A is nilpotent. �

We present now two beautiful applications of this criterion.

Problem. Let A 2 Mn.C/. Prove that A is nilpotent if and only if there is a
sequence Ak of matrices similar to A and having limit On.
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Solution. Suppose that Ak are similar to A and tend to On. Now take k � 1. Then
Ak

j is similar to Ak, thus

tr Ak D lim
j!1 tr Ak

j D tr

�
lim

j!1 Ak
j

�
D 0:

By the previous problem, A is nilpotent.
Now, suppose that A is nilpotent. By performing a similarity transformation, we

may assume that A is upper triangular, with 0 on the main diagonal (because A is
nilpotent). It is easy to see that by performing conjugations with matrices of the
form

0

BBB@

c
c2 0

: : :

0 cn

1

CCCA

with c ! 1, we obtain a sequence of matrices that converges to On. �

Problem. Let S � Mn.C/ be a set of nilpotent matrices such that whenever
A; B 2 S, we also have AB 2 S. Prove that for all A1; A2; : : : ; Ak 2 S, we have

.A1 C A2 C � � � C Ak/
n D On:

Solution. Fix a positive integer r and let X D A1 C A2 C � � � C Ak. Observe that
Xr is a sum of products of the matrices A1; A2; : : : ; Ak thus a sum of elements of S,
which are nilpotent. By the criterion, it follows that tr Xr D 0 and the same criterion
implies that X is nilpotent. It is enough to apply Hamilton-Cayley to deduce that
Xn D On. �

Proposed Problems

1. For a second order matrix A D .aij/1�i;j�2, one can prove the Hamilton-Cayley
theorem by computing directly

A2 � .a11 C a22/A C .a11a22 � a12a21/I2

and obtaining the result O2. Find a proof of the Hamilton-Cayley theorem by
direct computation in the case of third-order matrices.

2. Let A be a second-order complex matrix such that A2 D A, A ¤ O2, and A ¤ I2.
For positive integers n, solve in M2.C/ the equation Xn D A.

3. Let A 2 M2.C/ be such that An D O2; for some integer n � 2: Prove that
A2 D O2:
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4. Let A; B 2 M2.C/ be two matrices, not of the form �I2; with � 2 C: If AB D
BA; prove that B D ˛A C ˇI2; for some complex numbers ˛; ˇ:

5. Let A; B 2 M2.C/ be two matrices. Assume that for some positive integers
m; n, we have AmBn D BnAm, and the matrices Am and Bn are not of the form
�I2; � 2 C: Prove that AB D BA:

6. Let M D fA 2 M2.C/ j det.zI2 � A/ D 0 ) jzj < 1g and let A; B 2 M with
AB D BA. Prove that AB 2 M.

7. Let n � 2 and let A0; A1; : : : ; An 2 M2.R/ be nonzero matrices such that
A0 ¤ aI2 for all a 2 R and A0Ak D AkA0 for all k. Prove that

det

 
nX

kD1

A2
k

!
� 0:

8. Let A; B 2 M2.C/ be non-invertible matrices and let n � 2 such that

.AB/n C .BA/n D O2:

Prove that .AB/2 D O2 and .BA/2 D O2:

9. Let A 2 M3.C/ be with tr A D 0: Prove that tr.A3/ D 3 det A:

10. Prove that for all X; Y; Z 2 M2.R/,

ZXYXY C ZYXYX C XYYXZ C YXXYZ

D XYXYZ C YXYXZ C ZXYYX C ZYXXY:

11. Is there a bijective function f W M2.C/ ! M3.C/ such that f .XY/ D f .X/f .Y/

for all X; Y 2 M2.C/?
12. Let A; B 2 M2.C/ be such that tr.AB/ D 0: Prove that .AB/2 D .BA/2:

13. Let A; B 2 M2.C/ be such that .AB/2 D A2B2: Prove that .AB � BA/2 D O2:

14. Let A; B 2 Mn.C/, with A C B non-invertible, such that AB C BA D On: Prove
that det.A3 � B3/ D 0:

15. Let A; B 2 Mn.R/ such that 3AB D 2BA C In. Prove that In � AB is nilpotent.
16. Let A; B; C 2 Mn.R/; where n is not divisible by 3; such that

A2 C B2 C C2 D AB C BC C CA:

Prove that

det Œ.AB � BA/ C .BC � CB/ C .CA � AC/� D 0:

17. Let N be the n � n matrix with all its elements equal to 1=n, and let A D
.aij/1�i;j�n 2 Mn.R/ be such that for some positive integer k, Ak D N. Prove
that

X

1�i;j�n

a2
ij � 1:



66 4 Some Applications of the Hamilton-Cayley Theorem

18. Let A 2 Mn.C/, and let adj.A/ denote the adjugate (the transpose of the
cofactor matrix) of A. Show that if, for all k 2 N, k � 1, we have

det..adj.A//k C In/ D 1;

then .adj.A//2 D On.

Solutions

1. Let A D .aij/1�i;j�3 be a 3 � 3 matrix; we intend to prove that

A3 � s1A2 C s2A � s3I3 D O3;

where s1 D a11 C a22 C a33,

s2 D
ˇ̌
ˇ̌ a22 a23

a32 a33

ˇ̌
ˇ̌C

ˇ̌
ˇ̌ a11 a13

a31 a33

ˇ̌
ˇ̌C

ˇ̌
ˇ̌ a11 a12

a21 a22

ˇ̌
ˇ̌ ;

and s3 D det A. The obvious problem is the calculation of A3, which seems to
be (at least) very unpleasant.

However, we can avoid this laborious calculation! Namely, assume first that
A is nonsingular (hence invertible). In this case, the equality that we need to
prove is equivalent to

A2 � s1A C s2I3 � s3A�1 D O3:

Taking into account that

s3A�1 D det.A/A�1 D adj.A/ D
0

@
d11 �d21 d31

�d12 d22 �d32

d13 �d23 d33

1

A ;

where dij is the cofactor of aij, for all i; j 2 f1; 2; 3g (thus s2 D d11 C d22 C
d33), checking the equation by direct computation becomes a reasonable (and
feasible) task. For instance, for the entry in the second row and first column, we
need to verify that

.a21a11 C a22a21 C a23a31/ � .a11 C a22 C a33/a21 C d12 D 0;

which is true (remember that d12 D a21a33 � a23a31). In a similar manner, we
verify that each entry of A2 � s1A C s2I3 � s3A�1 equals 0.
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In order to finish the proof (which is, for the moment, done only for
nonsingular matrices), we use a standard argument (that we have already seen
before). Namely, suppose that A is a singular matrix, and consider, for each
number x, the matrix Ax D A � xI3; Ax is nonsingular for every x in a (small
enough) neighborhood of the origin (because det.A�xI3/ D 0 for at most three
distinct values of x). Thus the Hamilton-Cayley theorem works for every such
Ax (with x in that neighborhood). Letting x tend to 0, we get the validity of the
theorem for matrix A as well.

A proof of the Hamilton-Cayley theorem that generalizes the proof for
second-order matrices to arbitrary n � n matrices can be found in the article “A
Computational Proof of the Cayley-Hamilton Theorem” by Constantin-Nicolae
Beli, in Gazeta Matematică, seria A, 3-4/2014.

2. The case n D 1 being clear, assume that n � 2. Clearly, A is not invertible,
because otherwise, A D I2. Thus .det X/n D det A D 0 and so det X D 0.
Thus, if ˛ D tr X, by Hamilton-Cayley, we have X2 D ˛X and by induction,
Xn D ˛n�1X. Clearly, ˛ ¤ 0 because otherwise, A D O2. Thus X D ˛1�nA,
that is, there exists z 2 C

� with X D zA. The condition becomes znAn D A.
But A2 D A implies An D A and since A ¤ 0, we must have zn D 1. Thus the
solutions are Xk D e

2i�k
n A with 0 � k � n � 1.

3. By considering the determinant, we obtain det An D 0; so det A D 0: With
˛ D tr A; the Hamilton-Cayley relation becomes A2 D ˛A, and inductively,
An D ˛n�1 � A; for all integers n � 2: Now, An D O2 ) ˛n�1 � A D O2; so
˛ D 0 or A D O2: In both cases, using also A2 D ˛A; we obtain A2 D O2:

4. If we denote A D
�

a b
c d

�
, B D

�
x y
z t

�
; then from AB D BA, we derive

y

b
D z

c
D x � t

a � d
D ˛:

(with the convention that if a denominator is zero, then the corresponding

numerator is also zero). At least one of the fractions is not
0

0
; because b; c

cannot be both zero. Thus ˛ is well defined. It follows that

y D ˛b; z D ˛c; t D ˛d C ˇ; x D ˛a C ˇ;

with ˇ D t � ˛d: Finally,

B D
�

x y
z t

�
D
�

˛a C ˇ ˛b
˛c ˛d C ˇ

�
D ˛A C ˇI2:

5. As we stated, we can define sequences .an/n�1 ; .bn/n�1 ; .cn/n�1 ; .dn/n�1 of
complex numbers such that

Ak D akA C bkI2; Bk D ckB C dkI2;
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for all positive integers k: From the hypothesis, am ¤ 0 and cn ¤ 0: Then

AmBn D BnAm

) .amA C bmI2/ .cnB C dnI2/ D .cnB C dnI2/ .amA C bmI2/

) amcn.AB � BA/ D O2:

Hence AB D BA; because amcn ¤ 0:

6. First, assume that A D ˛I2 with j˛j < 1. Let y1; y2 be the roots of the equation
det.B � xI2/ D 0; then the roots of det.AB � xI2/ D 0 are ˛y1 and ˛y2. Clearly
j˛y1j D j˛j � jy1j < 1 and j˛y2j < 1.

Secondly, assume that A ¤ ˛I2 for all ˛ 2 C. We saw in the previous
problem 4 that there are a; b 2 C with B D aA C bI2.

Let x1; x2 be the roots of det.A � xI2/ D 0; then the roots of det.B � xI2/ D 0

are y1 D ax1 Cb, y2 D ax2 Cb and the roots of det.AB�xI2/ D 0 are z1 D x1y1,
z2 D x2y2. Thus again jzij D jxij � jyij < 1.

7. By problem 4, there are ˛k; ˇk 2 R with Ak D ˛kA0 C ˇkI2. If all ˛k D 0, then

det

 
nX

kD1

A2
k

!
D

nX

kD1

ˇ2
k � 0:

Otherwise, let ˛ D
nX

kD1

˛2
k . Then

nX

kD1

A2
k D ˛A2

0 C 2

 
nX

kD1

˛kˇk

!
A0 C

 
nX

kD1

ˇ2
k

!
I2 D f .A0/

where

f .x/ D ˛x2 C 2

 
nX

kD1

˛kˇk

!
x C

nX

kD1

ˇ2
k :

By the Cauchy-Schwarz inequality, the discriminant of f is negative or zero.
Thus we can write f .z/ D ˛.z � z0/.z � z0/, and so

det

 
nX

kD1

A2
k

!
D det f .A0/ D ˛2j det.A0 � z0I2/j2 � 0:

8. With det AB D det BA D 0; and setting ˛ D tr AB D tr BA; we have, by
Hamilton-Cayley,

.AB/2 D ˛AB; .BA/2 D ˛BA: (4.1)
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By induction,

.AB/n D ˛n�1AB; .BA/n D ˛n�1BA;

for all positive integers n: The given equation .AB/n C .BA/n D O2 yields

˛n�1.AB C BA/ D O2:

If ˛ D 0; then the conclusion follows directly from (4.1). So suppose that
AB C BA D O2. Then

2 tr.AB/ D tr.AB C BA/ D 0;

and again, ˛ D 0. In any case, .AB/2 D O2 and similarly for BA.
9. By the Hamilton-Cayley relation, we obtain the existence of ˛ 2 C with

A3 � tr A � A2 C ˛ � A � det A � I3 D O3:

By considering the trace, we deduce that

tr.A3/ � tr A � tr.A2/ C ˛ � tr A � det A � tr I3 D 0

and with tr A D 0; tr I3 D 3; the conclusion follows.
Alternatively, let a; b; c be the eigenvalues of A. Then a C b C c D 0 is given

and we have to prove that a3 C b3 C c3 D 3abc, which is immediate.
10. Observe that the identity can be written in a more appropriate form

Z.XY � YX/2 D .XY � YX/2Z:

This is clear by the Hamilton-Cayley theorem, because tr.XY � YX/ D 0, so
.XY � YX/2 D ˛I2 for some ˛.

11. The answer is negative. Suppose that f is such a function and consider

A D
0

@
0 1 0

0 0 1

0 0 0

1

A :

One can easily check that A3 D O3 and A2 ¤ O3. Let B 2 M2.C/, B D f �1.A/.
Then .f .B//3 D O3, thus f .B3/ D O3 and so B3 D O2, because f .O2/ D O3

(indeed, let X0 D f �1.O3/; then f .X0/ D O3, and so f .2X0/ D f .2I2/f .X0/ D
O3 D f .X0/, thus 2X0 D X0 and X0 D O2). But previous exercise 3 implies that
B2 D O2, thus O3 D f .O2/ D f .B2/ D .f .B//2 D A2, a contradiction.
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12. By the Hamilton-Cayley relation for the matrices AB and BA; we have

.AB/2 � tr.AB/ � AB C det.AB/ � I2 D O2

and

.BA/2 � tr.BA/ � BA C det.BA/ � I2 D O2:

By a well-known property of the trace, we have tr.AB/ D tr.BA/ D 0; so

.AB/2 D � det.AB/ � I2; .BA/2 D � det.BA/ � I2:

But det.AB/ D det.BA/; hence .AB/2 D .BA/2:

13. Using the Hamilton-Cayley relation for the matrix AB � BA, we have

.AB � BA/2 � tr.AB � BA/ � .AB � BA/ C det.AB � BA/ � I2 D O2

or

.AB � BA/2 D �I2; (4.1)

with � D � det.AB � BA/ because tr.AB � BA/ D 0: From (4.1), it follows that

tr.AB � BA/2 D 2�: (4.2)

Now the conclusion of the problem follows from (4.1) if we can show that
� D 0 or equivalently, according to (4.2), tr.AB � BA/2 D 0: In this sense, note
that

.AB � BA/2 D .AB/2 � ABBA � BAAB C .BA/2: (4.3)

By the hypothesis, tr .AB/2 D tr.A2B2/: Using tr.UV/ D tr.VU/; it follows that
tr.AB/2 D tr.BA/2 and

tr.ABB � A/ D tr.B � AAB/ D tr.A2B2/:

Finally, from (4.3),

tr.AB � BA/2 D tr .AB/2 � tr.A2B2/ � tr.A2B2/ C tr.AB/2

D 2 tr
�
.AB/2 � A2B2

� D 0:

14. Let x 2 C
n; x ¤ 0 be such that

.A C B/x D On:
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It follows that Ax D �Bx, so, using yet the identity AB D �BA, we have

A3x D �A2Bx D ABAx D �BA2x D B3x:

Hence .A3 � B3/x D On for some nonzero vector x 2 C
n, so det.A3 � B3/ D 0:

A direct proof is provided by the equality

A3 � B3 D .A C B/.A2 � AB � B2/:

(Prove it by using AB C BA D On!) From det.A C B/ D 0; the conclusion
follows.

15. Let f .x/ D det.xIn � AB/ be the characteristic polynomial of AB (and BA, too).
Then

f .x/ D det

�
xIn � 2BA C In

3

�
D 2n

3n
det

�
3x � 1

2
In � BA

�

D 2n

3n
det

�
3x � 1

2
In � AB

�
D 2n

3n
f

�
3x � 1

2

�
:

Thus, if z is a root of f , so are the terms of the sequence

x1 D z; xnC1 D 3xn � 1

2
:

Because f has a finite number of roots, the previous sequence has finitely many
terms, which easily implies x1 D 1. Thus all roots of f are equal to 1 and so
f .x/ D .x � 1/n. By Hamilton-Cayley, .AB � In/n D On.

16. Let us consider the complex number

" D cos
2�

3
C i sin

2�

3

and define the matrix

X D A C "B C "2C:

We have

X D A C "B C "2C D A C "2B C "C:

Then the number

det.X � X/ D det X � det X D det X � det X D jdet Xj2 � 0
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is real and nonnegative. On the other hand, by hypothesis and by "2C"C1 D 0,
we get

X � X D .A C "B C "2C/.A C "2B C "C/

D ."2 C 1/.AB C BC C CA/ C ".BA C CB C AC/

D " Œ.AB � BA/ C .BC � CB/ C .CA � AC/� :

Now, because det.X � X/ 2 R, we infer that

"n det Œ.AB � BA/ C .BC � CB/ C .CA � AC/� 2 R;

so det Œ.AB � BA/ C .BC � CB/ C .CA � AC/� D 0:

17. Solution I. First note that the equality Ak D N implies AN D NA and this
shows that the sums of entries in each row and column of A are all equal. Then,
if a is the common value of these sums, an easy induction shows that As (for
positive integer s) has the same property as A, that is, all sums of entries in each
row and column are equal to the same number, which is as. In particular, since
Ak D N, ak D 1 follows; thus, being real, a can be either 1 or �1.

Next, one immediately sees that
X

1�i;j�n

a2
ij represents the sum of entries from

the principal diagonal of AAt, At being the transpose of A; that is,
X

1�i;j�n

a2
ij is the

trace of AAt, which also equals the sum of the eigenvalues of AAt. But, clearly,
AAt is a symmetric real matrix, implying that all its eigenvalues are nonnegative
real numbers.

Finally, for the vector u with all entries 1, we have Au D u and Atu D u, or
Au D �u and Atu D �u (remember that the sums of entries in each row and in
each column of A are either all equal to 1 or are all equal to �1). In both cases,
AAtu D u follows, and this shows that 1 is one of the eigenvalues of AAt (with
corresponding eigenvector u).

Let us summarize: AAt has all eigenvalues nonnegative, and one of them is
1. Of course, this being the case, their sum (i.e., the trace of AAt) is at least 1,
and thus we can finish our proof:

X

1�i;j�n

a2
ij D tr.AAt/ � 1:

This is problem 341 proposed by Lucian Ţurea in Gazeta Matematică, seria
A, 3-4/2011, and here follows his solution.
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Solution II. For any real n � n matrix X D .xij/1�i;j�n, define

m.X/ D
X

1�i;j�n

x2
ijI

thus m.X/ is the sum of the squares of all entries of X. One can prove that
m.XY/ � m.X/m.Y/ for all X; Y 2 Mn.R/, with the obvious consequence
m.Xs/ � .m.X//s for every real matrix X and every positive integer s. In our
case,

1 D m.N/ D m.Ak/ � .m.A//k

follows, that is, m.A/ � 1—which is precisely what we wanted to prove.

For the sake of completeness, let us prove that m.XY/ � m.X/m.Y/ for all
real n � n matrices X D .xij/1�i;j�n and Y D .yij/1�i;j�n. Let XY D .zij/1�i;j�n.
Thus

z2
ij D

 
nX

kD1

xikykj

!2

�
 

nX

kD1

x2
ik

! 
nX

kD1

y2
kj

!
;

by the Cauchy-Schwarz inequality. Summing upon j, we have

nX

jD1

z2
ij �

 
nX

kD1

x2
ik

!0

@
nX

jD1

nX

kD1

y2
kj

1

A D
 

nX

kD1

x2
ik

!
m.Y/;

and, if we sum up again, this time over i, we get exactly the desired result
m.XY/ � m.X/m.Y/.

Of course, this solution shows that in place of N, we can consider any
real matrix such that the sum of the squares of its entries is (at least) 1, and
the statement of the problem remains true. On the other hand, from the first
solution, we see that for any real matrix A such that AAt has an eigenvalue
equal to 1, the sum of the squares of the entries of A is at least 1. We used
the equality Ak D N only to infer that AAt has such an eigenvalue. Thus each
solution provides a kind of generalization of the original problem statement.

18. Let P.x/ D det.xIn � A/ D xn C cn�1xn�1 C � � � C c0 be the characteristic
polynomial of the matrix A, and let �1; : : : ; �n be the eigenvalues of A (i.e., the
zeros of P). The following three facts are well-known and we will use them
soon (prove the first and the second!).

1) The eigenvalues of adj.A/ are �2 � � � �n, . . . , �1 � � � �n�1 (that is, the products
of n � 1 of the eigenvalues of A).

2) adj.A/ D .�1/n�1.An�1 C cn�1An�2 C � � � C c1In/.
3) Hamilton-Cayley theorem: An C cn�1An�1 C � � � C c1A C c0In D On.
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Now we proceed to solve the problem. Let �1 D �2 � � � �n, . . . , �n D
�1 � � � �n�1 be the eigenvalues of the adjugate of A. For any positive integer
k, the matrix .adj.A//k C In has the eigenvalues �k

1 C 1; : : : ; �k
n C 1 (also

well-known), and the determinant of any such matrix is the product of its
eigenvalues. Thus the condition given in the hypothesis can be written in the
form

.�k
1 C 1/ � � � .�k

n C 1/ D 1

for all natural numbers k � 1. After expanding and using Newton’s formulas,
one sees that this happens if and only if �1 D � � � D �n D 0. This means that

c1 D .�1/n�1.�1 C � � � C �n/ D 0;

and at least one of �1; : : : ; �n is zero, hence

c0 D .�1/n det.A/ D .�1/n�1 � � � �n D 0:

Now, the Hamilton-Cayley theorem yields

An C cn�1An�1 C � � � C c2A2 D On

and from the second fact mentioned in the beginning, we get

.adj.A//2 D .An�1 C cn�1An�2 C � � � C c2A/2 D

D .An C cn�1An�1 C � � � C c2A2/.An�2 C cn�1An�3 C � � � C c2In/ D On;

because the first factor is On. The solution ends here.
Note that the core of the problem is the fact that if the adjugate of a matrix is

nilpotent (which we obtained when we found that all its eigenvalues are 0), then
actually the square of the adjugate is the zero matrix. This can be also proved as
follows. Because adj.A/ is nilpotent, there exists a positive integer s such that
.adj.A//s D On, and the determinant of adj.A/ is zero, which means that A is
singular too (because Aadj.A/ D det.A/In). If the rank of A is less than n � 1,
then adj.A/ is the zero matrix and there is nothing else to prove. Otherwise,
Sylvester’s inequality shows that adj.A/ has rank at most 1, and, in fact, the
rank is 1, because adj.A/ is not the zero matrix—look for problem 3 in the
Chapter 5. Thus (see problem 4 in the same chapter), there exist B 2 Mn;1.C/

and C 2 M1;n.C/ such that adj.A/ D BC. In this case, we have CB D t 2 C.
The equality .adj.A//s D On can now be written as .BC/s D On, or

B.CB/s�1C D On, or ts�1adj.A/ D On, and it implies t D 0 (as the adjugate is
not the zero matrix, and only when s � 2—actually when s � 3—there is really
something to prove). Thus CB D 0, and .adj.A//2 D .BC/2 D B.CB/C D On.

This is problem 360, proposed by Marius Cavachi and Cezar Lupu, in Gazeta
Matematică, seria A, 1-2/2012 (and solved in 1-2/2013 by the second method).



Chapter 5
A Decomposition Theorem Related to the Rank
of a Matrix

Here, for sake of simplicity, we often assume that the matrices we are dealing with
are square matrices. Indeed, an arbitrary matrix can be transformed into a square
matrix by attaching zero rows (columns), without changing its rank. Let us consider
for the beginning the following operations on a square matrix, which does not
change its rank:

1. permutation of two rows (columns).
2. multiplication of a row (column) with a nonzero real number.
3. addition of a row (column) multiplied by a real number to another row (column).

We will call these operations elementary operations. We set the following
problem: are these elementary operations of algebraic type? For example, we ask
if the permutation of the rows (columns) i and j of an arbitrary matrix A is in
fact the result of multiplication to the left (right) of the matrix A with a special
matrix denoted Uij: If such a matrix Uij exists, then it should have the same effect
on the identity In: Hence the matrix UijIn is obtained from the identity matrix by
permutating the rows i and j: But UijIn D Uij; so

© Springer Science+Business Media LLC 2017
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Uij D

0
BBBBBBBBBBBBBBBBBBBBBB@

1
: : :

1

0 : : : : : : : : : 1 : : : : : : : : :
::: 1

:::
:::

: : :
:::

::: 1
:::

1 : : : : : : : : : 0 : : : : : : : : :

1
: : :

1

1
CCCCCCCCCCCCCCCCCCCCCCA

: : : i
:::
:::
:::

: : : j

:

Thus Uij is the matrix obtained from the identity matrix by interchanging its ith and
jth rows (all the missing entries in the above expression of Uij are equal to 0). Now
it can be easily seen that the matrix UijA; respectively AUij is the matrix A with
the rows, respectively the columns i and j permuted. The matrix Uij is invertible,
because U2

ij D In: Moreover, det Uij D �1; because the permutation of two rows
(columns) changes the sign of the determinant. In an analogous way, we now search
for a matrix Vi.˛/ for which the multiplication with an arbitrary matrix A leads to
the multiplication of the ith row (column) of A by the nonzero real ˛: In particular,
Vi.˛/In will be the identity matrix having the ith row multiplied by ˛: But Vi.˛/In D
Vi.˛/; so Vi.˛/ must be the matrix obtained by performing one single change to the
identity matrix; namely, its element 1 from the ith row and ith column is replaced
by ˛:

Vi.˛/ D

0
BBBBBBBBBBB@

1
: : :

1

˛ : : : : : : : : :

1
: : :

1

1
CCCCCCCCCCCA

: : : i :

Now it can be easily seen that the matrix Vi.˛/A; respectively AVi.˛/ is the matrix
A having the ith row, respectively the ith column multiplied by ˛: Obviously,
det Vi.˛/ D ˛ ¤ 0; so the matrix Vi.˛/ is invertible. Similarly, let us remark that if,
for i ¤ j, we add the jth row of the identity matrix multiplied by � to the ith row, we
obtain the matrix (again, all missing entries are zeros):
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Wij.�/ D

0
BBBBBBBBBBBB@

1
: : :

1 : : : � : : : : : :

1
:::

1 : : : : : :
: : :

1

1
CCCCCCCCCCCCA

: : : i
:::

: : : j

:

Now, we can easily see that the matrix Wij.�/A; respectively AWij.�/ is obtained
from the matrix A by adding the jth row multiplied by � to the ith row, respectively
by adding the ith column multiplied by � to the jth column.

All the matrices Uij; Vi.˛/; Wij.�/; ˛ 2 R
�; � 2 R are invertible, and we will

call them elementary matrices. Now we can give the following basic result:

Theorem 1. Each matrix A 2 Mn.C/ can be represented in the form

A D PQR;

where P; R 2 Mn.C/ are invertible and Q D
�

Ir 0

0 0

�
2 Mn.C/; with r D rank.A/:

To prove this, let us first note that every matrix A can be transformed into a
matrix Q by applying the elementary operations 1–3. If, for example, a11 ¤ 0; then
multiply the first column by a�1

11 to obtain 1 on the position .1; 1/: Then add the first
line multiplied by �ai1 to the ith row; i � 2 to obtain zeros in the other places of
the first column. Similarly, we can obtain zeros in the other places of the first row.
Finally, a matrix Q is obtained, and in algebraic formulation, we can write

S1 : : : SpAT1 : : : Tq D Q;

where Si; Tj; 1 � i � p, 1 � j � q are elementary matrices. Hence

A D .S1 : : : Sp/�1Q.T1 : : : Tq/�1

and we can take

P D .S1 : : : Sp/�1; R D .T1 : : : Tq/�1: �

The rank is invariant under elementary operations, so

rank.A/ D rank.Q/ D r:
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We can see that for every matrix X; the matrix QX; respectively XQ is the matrix X
having all elements of the last n � r rows, respectively the last n � r columns equal
to zero. Theorem 1 is equivalent to the following:

Proposition. Let A; B 2 Mn.C/: Then rank.A/ D rank.B/ if and only if there
exist invertible matrices X; Y 2 Mn.C/ such that A D XBY:

If rank.A/ D r; then rank.A/ D rank.Q/, and according to theorem 1, there exist
X; Y invertible such that A D XQY: By multiplication by an invertible matrix X,
the rank remains unchanged. Indeed, this follows from the proposition and from the
relations

XB D XBIn; BX D InBX: �

As a direct consequence, we give a proof of the famous Sylvester’s inequality:

Proposition. If A; B 2 Mn.C/, then

rank.AB/ � rank.A/ C rank.B/ � n:

Let r1 D rank.A/; r2 D rank.B/ and consider the decompositions

A D P1Q1R1; B D P2Q2R2;

with Pi; Ri invertible, rank.Qi/ D ri; i D 1; 2: Then

AB D P1 .Q1R1P2Q2/ R2;

so

rank.AB/ D rank .Q1R1P2Q2/ :

The matrix Q1R1P2Q2 is obtained from the (invertible) matrix R1P2 by replacing the
last n � r1 rows and last n � r2 columns with zeros. Consequently,

rank.AB/ � n � .n � r1/ � .n � r2/ D r1 C r2 � n: �

We continue with some applications of the above results. The first one was a
problem proposed in 2002 at the Romanian National Mathematical Olympiad:

Problem. Let A 2 Mn.C/ be a matrix such that rank.A/ D rank.A2/ D r for
some 1 � r � n � 1. Prove that rank.Ak/ D r for all positive integers k.

Solution. Let us consider the decomposition A D PQR, as in theorem 1.

Then A2 D P.QRPQ/R, and we can easily see that QRPQ D
�

D 0

0 0

�
for some

D 2 Mr.C/. The hypothesis implies that D is invertible. Now, observe that



5 A Decomposition Theorem Related to the Rank of a Matrix 79

A2 D PXQR, where X is the invertible matrix with diagonal blocks D and In�r.
Thus

A3 D PXQRPQR D PXXQR D PX2QR:

An immediate induction shows that An D PXn�1QR, and thus rank.Ak/ D r,
because X; P, and R are invertible. �

The next example is a very classical result, due to Moore-Penrose about the
generalized inverse of a matrix. It appeared, however, as a problem in the Romanian
National Mathematical Olympiad in 2005:

Problem. Prove that for any matrix A 2 Mn.C/, there exists a matrix B such
that ABA D A and BAB D B. Prove that if A is not invertible, then such a matrix is
not uniquely determined.

Solution. Let us again write A in the form A D PQR, as in theorem 1. Let us
search for B in the form B D R�1XP�1. This form is natural, since by writing the
conditions ABA D A and BAB D B, the matrix RBP, denoted by X, plays a central
role. With this substitution, the conditions that should be satisfied by B are simply
QXQ D Q and XQX D X. This shows that we can already assume that A D Q!

Now, let us search for X as a block matrix:

�
U V
W T

�
.

The above conditions on X become U D Ir and T D WV . Thus, we have surely
at least one solution (just take X D Q), and moreover, if r < n, there are infinitely
many choices for the matrices V; W, thus infinitely many such X. Therefore, if A is
not invertible, it has infinitely many generalized inverses. �

Problem. Let A 2 Mn.C/ be a matrix such that

det.A C X/ D det.A/ C det.X/

for all X 2 Mn.C/. If n � 2, prove that A D On.

Solution. Take X D A to deduce that .2n � 2/ det.A/ D 0; thus, det.A/ D 0.
Therefore, if A ¤ On, we can write A D PQR, where P; R 2 GLn.C/ and

Q D
�

Ir 0

0 0

�
, r D rank.A/ 2 f1; 2; : : : ; n � 1g. Let X D PSR where S D In � Q.

Then det.X/ D 0 because In � Q is diagonal and has at least one zero on the main
diagonal. However, det.ACX/ D det.P/�det.R/ ¤ 0, a contradiction. Thus A D On.
�

Problem. Let A; B 2 Mn.C/. Prove that the map f W Mn.C/ ! Mn.C/,
f .X/ D AX � XB is bijective if and only if A and B have no common eigenvalues.

Solution. Because Mn.C/ is a finite-dimensional C-vector space, f is bijective
if and only if it is injective.



80 5 A Decomposition Theorem Related to the Rank of a Matrix

Suppose that A, B have no common eigenvalues and let X ¤ On be such that

f .X/ D On, that is, AX D XB. Let X D PQR with P; R 2 GLn.C/ and Q D
�

Ir 0

0 0

�
,

1 � r � n.
Write now P�1AP and RBR�1 as block matrices

P�1AP D
�

A1 A2

A3 A4

�
; RBR�1 D

�
B1 B2

B3 B4

�
:

The condition AX D XB becomes P�1APQ D QRBR�1. This in turn implies
A3 D 0, B2 D 0, A1 D B1. Thus

P�1AP D
�

A1 A2

0 A4

�
; RBR�1 D

�
A1 0

B3 B4

�
:

By the multiplicative property of determinants in block-triangular matrices and
the fact that similar matrices have the same characteristic polynomial, it follows that

�A D �A1�A4 ; �B D �A1�B4 ;

where �Z is the characteristic polynomial of Z. But since A1 2 Mr.C/, �A1 has at
least one zero, which will be a common eigenvalue of A and B, a contradiction. This
shows one implication.

Assume now that A and B have a common eigenvalue � and observe that one can
make A and B triangular with � on the first place of the main diagonal by suitable
similarities, That is, there are P; R 2 GLn.C/ such that

P�1AP D

0
BBB@

� x12 : : : x1n

0 x22 : : : x2n
:::

:::
: : :

:::

0 : : : : : : xnn

1
CCCA ; RBR�1 D

0
BBB@

� 0 : : : 0

y21 y22 : : : 0
:::

:::
: : :

:::

yn1 yn2 : : : ynn

1
CCCA :

But then we easily see that f .X/ D 0, with

X D P

0
BBB@

1

0 0
: : :

0 0

1
CCCAR ¤ 0;

thus f is not injective in this case. �

We end this theoretical part with a classical result.
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Problem. Let A 2 Mn.C/. Find, as a function of A, the smallest integer k such
that A can be written as a sum of k matrices of rank 1.

Solution. As you can easily guess, k D rank.A/. Indeed, if A has rank equal to

r, then A D PQR for some P; R 2 GLn.C/ and Q D
�

Ir 0

0 0

�
. Thus

A D A1 C A2 C � � � C Ar;

where

Ai D P

0
BBBBBBBBBBBB@

0
: : :

1 0
: : :

0
: : :

0 0

1
CCCCCCCCCCCCA

R;

the only 1 being on position .i; i/. Clearly, rank.Ai/ D 1 because

0
BBBBBB@

0 0
: : :

1
: : :

0 0

1
CCCCCCA

has rank 1 and P; R 2 GLn.C/. Thus k � r.
On the other hand, rank.X C Y/ � rank.X/ C rank.Y/ thus if A D A1 C � � � C Ak

with rank.Ai/ D 1, we have

r D rank.A/ D rank

 
kX

iD1

Ai

!
�

kX
iD1

rank.Ai/ D k:

It follows that, actually, k D rank.A/. �
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Proposed Problems

1. Consider the matrices

A D
�

a b
c d

�
; B D

�
x y
z t

�
; C D

0
BB@

ax bx az bz
ay by at bt
cx dx cz dz
cy dy ct dt

1
CCA

with complex entries. Prove that if rank A D rank B D 2; then rank C D 4:

2. Let A D �
aij
�

1�i;j�n ; B D �
bij
�

1�i;j�n be so that

aij D 2i�j � bij

for all integers 1 � i; j � n: Prove that rank A D rank B:

3. Let A 2 Mn.C/ be singular. Prove that the rank of the adjugate matrix adj.A/

(the transpose of the cofactor matrix, sometimes called the adjoint) of A equals
0 or 1.

4. Let A 2 Mn.C/ be with rank.A/ D r, 1 � r � n � 1: Prove that there exist
B 2 Mn;r.C/; C 2 Mr;n.C/ with

rank.B/ D rank.C/ D r;

such that A D BC: Deduce that every matrix A of rank r satisfies a polynomial
equation of degree r C 1:

5. Let A 2 Mn.C/, A D .aij/1�i;j�n be with rank A D 1: Prove that there
exist complex numbers x1; x2; : : : ; xn; y1; y2; : : : ; yn such that aij D xiyj for all
integers 1 � i; j � n:

6. Let A; B 2 Mn.C/ be two matrices such that AB D ACB: Prove that rank.A/ D
rank.B/:

7. Let A be a complex n � n matrix such that A2 D A�, where A� is the conjugate
transpose of A. Prove that the matrices A and A C A� have equal ranks.

8. Let A 2 Mn.C/ be a matrix with rank.A/ D 1: Prove that

det.In C A/ D 1 C tr.A/:

Moreover,

det.�In C A/ D �n C �n�1 � tr.A/;

for all complex numbers �:

9. Let A 2 Mn.Z/, n � 3, with det A D 1 and let B 2 Mn.Z/ have all its entries
equal to 1. If det.I C AB/ D 1; prove that the sum of all entries of the matrix A
is equal to 0.
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10. Let A 2 Mn.R/; A D .aij/, and let X be the square matrix of order n with all
entries equal to a real number x: Prove that

det.A C X/ � det.A � X/ � .det A/2:

11. Let m � n be positive integers, and let A 2 Mm;n.R/ and B 2 Mn;m.R/ be
matrices such that rank A = rank B D m. Show that there exists an invertible
matrix C 2 Mn.R/ such that ACB D Im, where Im denotes the m � m identity
matrix.

12. Let A and B be complex n � n matrices having the same rank and such that
BAB D A. Prove that ABA D B (i.e., B is a pseudoinverse of A).

13. Let A and B be complex n � n matrices of the same rank. Show that if A2B D A,
then B2A D B.

14. Prove that if A is an n � n complex matrix with zero trace, then there exist n � n
complex matrices X and Y such that A D XY � YX.

Solutions

1. We have to prove that if A; B are invertible, then C is invertible. If

.ad � bc/.xt � yz/ ¤ 0;

then

ˇ̌
ˇ̌
ˇ̌
ˇ̌

ax bx az bz
ay by at bt
cx dx cz dz
cy dy ct dt

ˇ̌
ˇ̌
ˇ̌
ˇ̌

D �

ˇ̌
ˇ̌
ˇ̌
ˇ̌

ax az bx bz
ay at by bt
cx cz dx dz
cy ct dy dt

ˇ̌
ˇ̌
ˇ̌
ˇ̌

D �

ˇ̌
ˇ̌
ˇ̌
ˇ̌

a 0 b 0

0 a 0 b
c 0 d 0

0 c 0 d

ˇ̌
ˇ̌
ˇ̌
ˇ̌
�

ˇ̌
ˇ̌
ˇ̌
ˇ̌

x z 0 0

y t 0 0

0 0 x z
0 0 y t

ˇ̌
ˇ̌
ˇ̌
ˇ̌

D

ˇ̌
ˇ̌
ˇ̌
ˇ̌

a b 0 0

0 0 a b
c d 0 0

0 0 c d

ˇ̌
ˇ̌
ˇ̌
ˇ̌
�

ˇ̌
ˇ̌
ˇ̌
ˇ̌

x z 0 0

y t 0 0

0 0 x z
0 0 y t

ˇ̌
ˇ̌
ˇ̌
ˇ̌

D �

ˇ̌
ˇ̌
ˇ̌
ˇ̌

a b 0 0

c d 0 0

0 0 a b
0 0 c d

ˇ̌
ˇ̌
ˇ̌
ˇ̌
�

ˇ̌
ˇ̌
ˇ̌
ˇ̌

x z 0 0

y t 0 0

0 0 x z
0 0 y t

ˇ̌
ˇ̌
ˇ̌
ˇ̌

D �.ad � bc/2.xt � yz/2 ¤ 0:

2. We will show here only that det A D det B; because in the same way, it can
be proved that every minor of A is equal to the corresponding minor of B: We
have, using the definition of the determinant,
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det A D
X
�2Sn

".�/a1�.1/a2�.2/ � � � an�.n/

D
X
�2Sn

".�/.21��.1/b1�.1//.2
2��.2/b2�.2// � � � .2n��.n/bn�.n//

D
X
�2Sn

".�/ � 21C2C���Cn�.�.1/C�.2/C���C�.n// � b1�.1/b2�.2/ � � � bn�.n/

D
X
�2Sn

".�/b1�.1/b2�.2/ � � � bn�.n/ D det B:

Alternatively, note that B D DAD�1, where

D D

0
BBB@

21

22 0
: : :

0 2n

1
CCCA :

3. If rank.A/ � n � 2; then adj.A/ D On; because all minors of order n � 1 of the
matrix A are equal to zero. Further, let us assume that rank.A/ D n � 1: Then

rank.Aadj.A// � rank.A/ C rank.adj.A// � n:

Using also Aadj.A/ D On; we derive

0 � .n � 1/ C rank.adj.A// � n

so rank.adj.A// � 1:

4. Let A D PQR; where P; R are invertible and

Q D
�

Ir 0

0 0

�
:

Because Q2 D Q, we have A D .PQ/.QR/. Observe that rank.PQ/ D
rank.Q/ D r and rank.QR/ D rank.Q/ D r because P; Q are invertible. Also,

we can write P D �
B 0

�
and QR D

�
C
0

�
for B 2 Mn;r.C/ and C 2 Mr;n.C/.

Clearly, BC D A and rank.B/ D rank.C/ D r.
For the second part, we use the Hamilton-Cayley theorem. For the matrix

A D CB 2 Mr.C/; we can find complex numbers a1; : : : ; ar such that

A
r C a1A

r�1 C � � � C arI D 0:
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By multiplying by B to the left and by C to the right, we obtain

BA
r
C C a1BA

r�1
C C � � � C arBC D 0:

Now,

BA
k
C D .BC/kC1 D AkC1; 1 � k � r;

so

ArC1 C a1Ar C � � � C arA D 0:

5. According to the previous problem, in case r D 1; there exist two matrices

B 2 Mn;1.C/; C 2 M1;n.C/

so that A D BC: If

B D

0
BB@

x1

x2

: : :

xn

1
CCA ; C D .y1 y2 : : : yn/ ;

then

A D

0
BB@

x1

x2

: : :

xn

1
CCA
�

y1 y2 : : : yn

� D

0
BB@

x1y1 x1y2 : : : x1yn

x2y1 x2y2 : : : x2yn

: : : : : : : : : : : :

xny1 xny2 : : : xnyn

1
CCA :

6. The given equality can be written as

.A � I/.B � I/ D I;

so the matrices A � I and B � I are invertible. Now the conclusion follows from
the equality A D .A � I/B; taking into account that A � I is invertible.

7. First we prove that In C A is invertible. Let x be any (column) vector such that
.In CA/x D 0 (the 0 from the right is the n�1 zero matrix). Thus Ax D �x, and
A2x D �Ax D x and A�Ax D �A�x D �A2x D �x. Because all eigenvalues
of A�A are nonnegative (indeed, if A�Av D ˛v, with nonzero vector v, then
.Av/�.Av/ D ˛v�v, and v�v > 0, .Av/�.Av/ � 0), it follows that x D 0,
meaning that In C A is invertible.
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Next, A C A� D A C A2 D .In C A/A, with nonsingular In C A, and the
conclusion follows. This is problem 1793 by Götz Trenkler in Mathematics
Magazine 2/2008 (solved in 2/2009 by Eugene A. Herman).

8. Let us consider the matrices B; C of rank 1,

B D

0
BB@

x1

x2

: : :

xn

1
CCA 2 Mn;1.C/; C D �

y1 y2 : : : yn

� 2 M1;n.C/

such that

A D BC D

0
BB@

x1

x2

: : :

xn

1
CCA
�

y1 y2 : : : yn

�D

0
BB@

x1y1 x1y2 : : : x1yn

x2y1 x2y2 : : : x2yn

: : : : : : : : : : : :

xny1 xny2 : : : xnyn

1
CCA :

We also have A D B0C0; where

B0D
0
@

x1 0 : : : 0

: : : : : : : : : : : :

xn 0 : : : 0

1
A2 Mn.C/; C0 D

0
BB@

y1 : : : yn

0 : : : 0

: : : : : : : : :

0 : : : 0

1
CCA2 Mn.C/:

Then

det.In C A/ D det.In C B0C0/ D det.In C C0B0/

D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

1 C
nX

kD1

xkyk 0 : : : 0

0 1 : : : 0

: : : : : : : : : : : :

0 0 : : : 1

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D 1 C
nX

kD1

xkyk D 1 C tr.A/:

The other equality can be obtained by changing A with ��1A: Indeed,

det.In C ��1A/ D 1 C tr.��1A/

) 1

�n
det.�In C A/ D 1 C 1

�
tr.A/

) det.�In C A/ D �n C �n�1 tr.A/:
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9. The matrix A is invertible, so

rank.AB/ D rank.B/ D 1:

A surprising property is that the sum of all entries of the matrix A is equal to
tr.AB/: Indeed, with the notation C D AB; we have

cij D
nX

kD1

aikbkj D
nX

kD1

aik;

for all 1 � i; j � n: Thus

tr.AB/ D tr.C/ D
nX

iD1

cii D
nX

iD1

 
nX

kD1

aik

!
D

nX
i;kD1

aik;

which is the sum of all elements of the matrix A:

By a previous problem, we have tr.AB/ C 1 D det.I C AB/ D 1, so
tr.AB/ D 0.

10. First assume that A is invertible. In this case,

det.A C X/ � det.A � X/ D .det A/2 det.In C A�1X/ det.In � A�1X/;

with

rank.A�1X/ D rank.X/ D 1:

Consequently,

.det A/2 det.In C A�1X/ det.In � A�1X/

D .det A/2Œ1 C tr.A�1X/�Œ1 � tr.A�1X/�

D .det A/2Œ1 � .tr.A�1X//2�

D .det A/2 � .det A/2.tr.A�1X//2 � .det A/2:

Now we can see that the result remains true under the weaker condition
rank.X/ D 1: In case det A D 0; replace A by A C "In and let " ! 0.

11. If m D n, there is nothing to prove (just choose C D A�1B�1), so we consider
further that m < n.

Let P be an n � n permutation matrix such that the determinant of the
submatrix of AP with entries at the intersections of its m rows and first m
columns is nonzero. Let M be the .n � m/ � n matrix consisting of two blocks
as follows:
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M D �
On�m; m In�m

�

and let A1 be the n � n matrix

A1 D
�

AP
M

�
I

using Binet’s rule for computing determinants, one sees that det A1 ¤ 0; hence
A1 is invertible in Mn.R/.

Similarly, because B has rank m, there exists an n � n permutation matrix Q
such that QB has a nonsingular submatrix with entries at the intersections of its
first m rows and its m columns. Let

N D
�

Om; n�m

In�m

�

and

B1 D �
QB N

� I

one sees that B1 is an invertible n � n matrix.
We consider C1 D A�1

1 B�1
1 ; thus we have

In D A1C1B1 D
�

AP
M

�
C1

�
QB N

� D
�

APC1QB APC1N
MC1QB MC1N

�
;

whence (by reading the equality for the upper left m�m corner) Im D APC1QB
follows. Now, for C D PC1Q (which is an n � n matrix), we get ACB D Im and
the proof is complete.

This is problem 335 Proposed by Vasile Pop in Gazeta Matematică, seria A,
1-2/2011.

12. We consider invertible n � n matrices M; N; P; Q such that A D MJN and B D
PJQ, where J is the n � n matrix having the identity matrix Ir (of order r, the
rank of A and B) in the upper left corner and all the other entries equal to zero:

J D
�

Ir Or; n�r

On�r; r On�r

�
:

From BAB D B, we conclude PJQMJNPJQ D PJQ; hence JQMJNPJ D J.
We write QM and NP in the form

QM D
�

R S
T U

�
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and

NP D
�

V X
Y Z

�
;

where R and V are r � r matrices, S and X are r � .n � r/ matrices, T and Y
are .n � r/ � r matrices, and U and Z are .n � r/ � .n � r/ matrices. Then the
equality JQMJNPJ D J becomes

�
Ir Or; n�r

On�r; r On�r

��
R S
T U

��
Ir Or; n�r

On�r; r On�r

�
�

�
�

V X
Y Z

��
Ir Or; n�r

On�r; r On�r

�
D
�

Ir Or; n�r

On�r; r On�r

�

and it yields RV D Ir. Of course, this implies VR D Ir, too, and this is
equivalent to JNPJQMJ D J, or MJNPJQMJN D MJN, that is, ABA D A.

13. Solution I. For X 2 Mn.C/, we also denote by X the linear transform (from
C

n to C
n) having matrix X; then ker.X/ and im.X/ represent the kernel (null

space) and the range of this linear transform, respectively. Since A2B D A,
ker.B/ is contained in ker.A/; having equal dimensions (because of the equality
of the ranks), these subspaces of Cn (of which one is a subspace of the other)
must be equal. From the equality A.AB � In/ D On, it follows that im.AB � In/

is included in ker.A/; therefore it is also included in ker.B/; this yields B.AB �
In/ D On, which means that BAB D B. According to the result of the previous
problem, ABA D A follows.

We can rewrite this as A.BA � In/ D On and thus conclude that im.BA � In/

is included in ker.A/ D ker.B/; therefore B.BA� In/ D On, which is equivalent
to B2A D B, and finishes the proof.

Solution II. We have rank.A/ D rank.A2B/ � rank.A2/ � rank.A/; hence
rank.A2/ D rank.A/. Because the null space of A is contained in the null space
of A2, it follows that these spaces are equal. Also, ker.B/ D ker.A/, as we saw
in the first solution; hence ker.B/ D ker.A/ D ker.A2/.

Now A2B D A implies A2BA D A2, or A2.BA � In/ D On, showing that
im.BA � In/ is contained in ker.A2/ D ker.B/. Consequently, B.BA � In/ D On,
which is equivalent to B2A D B.

This is problem 11239 proposed by Michel Bataille in The American
Mathematical Monthly, 6/2006. The second solution (by John W. Hagood) was
published in the same magazine, number 9/2008.

14. Note first that if a1; : : : ; an are complex numbers that sum to 0, there exist
distinct complex numbers x1; : : : ; xn and a permutation � of f1; : : : ; ng such
that ak D xk � x�.k/ for every 1 � k � n. Indeed, this is clearly true for n D 1

(when there is nothing to prove) and for n D 2 (when we can write a1 D x1 �x2
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and a2 D x2 � x1, with x1 ¤ x2 if a1 ¤ 0, while if a1 D 0, then a2 D 0, too,
and we can take a1 D 0 D x1 � x1 and a2 D 0 D x2 � x2, with x1 and x2

chosen to be different). Further, we use induction on n (a quick look over the
case n D 2 shows what we need to do). Suppose that n � 2 and the assertion is
proved for any m numbers, where m < n. Let a1; : : : ; an be complex numbers
such that a1 C � � � C an D 0. Suppose, in the first place, that fa1; : : : ; ang has no
proper subset that sums to 0. We can find x1; : : : ; xn such that ak D xk � xkC1

for every 1 � k � n (with xnC1 D x1), and the supplementary assumption
assures that all xk are distinct. (Just put, in an arbitrary way, a1 D x1 � x2,
then a2 D x2 � x3,. . . , an�1 D xn�1 � xn, for x3; : : : ; xn that are precisely
defined; an D xn � x1 follows from a1 C � � � C an D 0; if xk D xl, with
1 � k < l � n, then ak C � � � C al�1 D 0 follows, but this is not allowed
in this case.) So we are done by considering the cyclic permutation � defined
by �.k/ D k C 1 for all k < n and �.n/ D 1. Otherwise, there exists such a
proper subset of fa1; : : : ; ang with sum of elements 0. We can assume, without
loss of generality, that a1 C � � � C am D 0, where 1 � m < n. But we also have
a1 C � � � C an D 0; hence amC1 C � � � C an D 0, too. Now m and n � m are both
less than n; therefore, we can use the induction hypothesis to get ak D yk �y�.k/

for all 1 � k � m (with y1; : : : ; ym mutually distinct and � a permutation of
f1; : : : ; mg) and ak D zk � z�.k/ for all m C 1 � k � n (with zmC1; : : : ; zn

mutually distinct and � a permutation of fm C 1; : : : ; ng). If we further choose
some t different from all numbers yi � zj (1 � i � m, m C 1 � j � n), then we
have ak D xk � x�.k/ for all 1 � k � n, and x1; : : : ; xn are all distinct, if we put
xi D yi and �.i/ D �.i/ for all 1 � i � m and xj D zj C t and �.j/ D �.j/ for
every m C 1 � j � n.

Now, in our problem, we are given a matrix A D .aij/1�i;j�n with tr.A/ D 0,
that is, a11 C � � � C ann D 0. By the above observation, there exist distinct
x1; : : : ; xn and a permutation � of f1; : : : ; ng such that aii D xi � x�.i/ for every
1 � i � n. Thus we can write the matrix A in the form A D B � C, with

B D

0
BB@

x1 0 : : : 0

a21 x2 : : : 0

: : : : : : : : : : : :

an1 an2 : : : xn

1
CCA and C D

0
BB@

x�.1/ �a12 : : : �a1n

0 x�.2/ : : : �a2n

: : : : : : : : : : : :

0 0 : : : x�.n/

1
CCA :

Because B and C are triangular, their eigenvalues are the elements on their main
diagonals; therefore both B and C have the distinct eigenvalues x1; : : : ; xn. It is
well-known (and very easy to prove, if one uses, for instance, the canonical
Jordan form) that B and C are similar, that is, there exists an invertible matrix P
such that C D PBP�1. Then we have A D B � PBP�1 D .BP�1/P � P.BP�1/,
which is exactly what we wanted to prove.

However we won’t stop here, because we intend to effectively prove the
similarity of B and C with the help of elementary operations (and elementary
matrices). We first show that B can be transformed by similarity into a diagonal
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matrix having on its main diagonal the same entries as B. To this end, the
important observation is that Wij.˛/BWij.˛/�1 D Wij.˛/BWij.�˛/ is a matrix
that, when compared to B, has only the entries on row i and column j changed;
moreover, for i > j, the entry in position .i; j/ is replaced by ˛.xj � xi/ C aij.
If we choose ˛ D �aij.xj � xi/

�1 (which is possible because xi ¤ xj), the new
matrix Wij.˛/BWij.˛/�1 has the same elements as B except for those on row i
and column j, and it has 0 in position .i; j/. Now we proceed as in the proof of
theorem 1, only we use similarities at each step. Namely, we first transform all
elements that are on the first column under x1 into zeros, beginning with a21

and finishing with an1: we first consider W21.˛/BW21.˛/�1 which is a matrix
with the same elements as B, except for the elements in the second row and first
column. Note, however, that the entries in the second row do not change, due to
the zeros from the first row, except for the entry in position .2; 1/ that becomes
0 for an appropriate ˛; yet, the element in position .1; 1/ remains unchanged,
because of the zeros from the first row. Then multiply this new matrix to the
left with W31.˛/ and to the right with its inverse, in order to obtain a matrix
that differs from B only by the elements on the first column situated under the
second row and has one more zero in position .3; 1/ for suitable ˛, and so on.
After we finish with the first column, we pass to the second, where we change
all entries under x2 into zeros by using the same type of similarities (by using,
in order, W32; : : : ; Wn2), and we continue in this manner until we transform
an;n�1 into 0. (Every time we apply some Wij to the left and W�1

ij to the right
(i > j), only the elements in positions .i; j/; : : : ; .n; j/ change, and the entry in
position .i; j/ becomes 0 if we choose well the value of ˛.) At this moment, we
transformed (by similarities) B into a diagonal matrix B0 that has on the main
diagonal precisely the same elements as B.

In an analogous manner, we can show that C is similar with a diagonal matrix
C0 having the same entries as C on its main diagonal. Because B0 and C0 have
the same elements on the main diagonal (possibly in a different order), and
they have all the other entries equal to 0, they are similar—use matrices of
the form Uij in order to see that (UijB0U�1

ij D UijB0Uij only interchanges the
entries in position .i; i/ and .j; j/, and, since any permutation is a product of
transpositions, the conclusion follows). Finally, by the transitivity of similarity,
we conclude that B and C are similar, and thus we have a complete proof (that
needs no Jordan form or any other advanced tools) of this fact and consequently,
we have an elementary solution to our problem.

Remark. For the sake of (some kind of) completeness, here is the sketch
of a little more advanced proof of the similarity of two (not necessarily
triangular) matrices with the same distinct eigenvalues. Let x1; : : : ; xn be the
distinct eigenvalues and let U1; : : : ; Un be eigenvectors of B corresponding to
x1; : : : ; xn respectively, and let V1; : : : ; Vn be eigenvectors of C corresponding to
x1; : : : ; xn respectively (column vectors, of course). Thus we have BUi D xiUi

and CVi D xiVi for every 1 � i � n. Because x1; : : : ; xn are distinct, the
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eigenvectors U1; : : : ; Un are linearly independent and V1; : : : ; Vn are also
linearly independent; hence, the matrices .U1 : : : Un/ and .V1 : : : Vn/ are
invertible. Let P be the matrix that changes the basis from fU1; : : : ; Ung to
fV1; : : : ; Vng, namely, such that P.U1 : : : Un/ D .V1 : : : Vn/. Then P is invertible
too, and PB D CP, that is, C D PBP�1.



Chapter 6
Equivalence Relations on Groups
and Factor Groups

Let .G; �/ be a group with identity denoted by e and let ; ¤ H � G satisfy the
implications:

a) x; y 2 H ) xy 2 H;
b) x 2 H ) x�1 2 H.

Such a subset H is called a subgroup of G, which will be denoted by H � G: For
every x; y 2 G, we put

xRly.mod H/ , x�1y 2 H

and

xRry.mod H/ , xy�1 2 H:

We will prove that the relations Rl and Rr are equivalence relations on G; also
called the left equivalence relation modulo H; and the right equivalence relation
modulo H; respectively: We will write simply xRly and xRry when no confusion is
possible.

Indeed, xRlx because x�1x D e 2 H: If xRly; then

x�1y 2 H ) .x�1y/�1 2 H ) y�1x 2 H ) yRlx;

so Rl is reflexive and symmetric. For transitivity, let x; y; z 2 G be such that

�
xRly
yRlz

,
�

x�1y 2 H
y�1z 2 H

:

H is a subgroup, so

.x�1y/.y�1z/ 2 H , x�1.yy�1/z 2 H , x�1z 2 H , xRlz:

© Springer Science+Business Media LLC 2017
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For x 2 G, we denote bybxl the equivalence class of the element x;

bxl D fy 2 H j yRlxg:

Analogously, we put bxr D fy 2 H j yRrxg : When the difference between the two
relations is not important, we denote simply bx one of the equivalence classes bxl or
bxr: For every x 2 G; we have bxl D xH, bxr D Hx; where xH D fxh j h 2 Hg and
Hx D fhx j h 2 Hg :

Theorem. Let G be a group and let H be a subgroup of G: Then for every
x; y 2 G; the sets xH; yH; Hx; Hy have the same cardinality.

Proof. We prove that the sets xH and Hx are cardinal equivalent with H: Indeed,
the maps ˛ W H ! xH, ˇ W H ! Hx given by the laws ˛.h/ D xh, ˇ.h/ D hx, h 2 H
are bijective. A classical proof can be given or we can simply note that the inverses
˛�1 W xH ! H, and ˇ�1 W Hx ! H are given by ˛�1.xh/ D h, and ˇ�1.hx/ D h,
respectively.

Denote by

G=Rl D fxH j x 2 Gg ; G=Rr D fHx j x 2 Gg

the set of equivalence classes with respect to Rl and Rr: The sets G=Rl and G=Rr

have the same cardinality; the map

� W G=Rl ! G=Rr; �.xH/ D Hx�1

is bijective. First we prove that � is well defined. More precisely, we have to prove
the implication

xH D x0H ) Hx�1 D Hx0�1:

Indeed, we have

xH D x0H ) x�1x0 2 H , .x�1/.x0�1/�1 2 H , Hx�1 D Hx0�1:

By its definition law, � is surjective. For injectivity, let x; x0 2 G be such that
�.xH/ D �.x0H/: Then

Hx�1 D Hx0�1 , .x�1/.x0�1/�1 2 H , x�1x0 2 H , xH D x0H: �

A subgroup N � G is called a normal subgroup of G, and we denote this by
N E G, if one of the following equivalent assertions is true:

.n0/ for every x 2 G and n 2 N; xnx�1 2 N

.n00/ for every x 2 G; xN D Nx

.n000/ for every x 2 G and n 2 N; there exists n0 2 N such that xn D n0x:
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We prove now that the assertions .n0/ � .n000/ are equivalent.
.n0/ ) .n00/: We prove that xN � Nx; because the reverse inclusion is similar.
Let xn 2 xN be an arbitrary element, with n 2 N: Then

xn D .xnx�1/x 2 Nx;

taking into account that xnx�1 2 N:

.n00/ ) .n000/: For x 2 G and n 2 N; xn 2 xN: But xN D Nx; so xn 2 Nx: There
exists an element n0 2 N such that xn D n0x:

.n000/ ) .n0/: For x 2 G and n 2 N; let n0 2 N such that xn D n0x: It follows
xnx�1 D n0 2 N: �
Example. If G is commutative, then any subgroup of G is normal.

Example. Let G; G0 be groups and let f W G ! G0 be a morphism. The kernel

ker f D ˚
x 2 G j f .x/ D e0�

is a normal subgroup of G (e0 is the identity of G0).
First, if x; y 2 ker f ; then f .x/ D f .y/ D e0 and

f .xy�1/ D f .x/f .y�1/ D f .x/.f .y//�1 D e0 � e0 D e0:

Hence xy�1 2 ker f ; which means that ker f is a subgroup of G: Further, for every
x 2 G and n 2 ker f ; we have xnx�1 2 ker f : Indeed,

f .xnx�1/ D f .x/f .n/f .x�1/ D f .x/ � e0 � f .x�1/

D f .x/f .x�1/ D f .xx�1/ D f .e/ D e0: �

If N is a normal subgroup of G; N E G; then the left equivalence class and the
right equivalence class are identical. Consequently, the sets of equivalence classes
G=Rl and G=Rr coincide. We denote by G=N the factor set G=Rl D G=Rr: Now
we also denote

bx D xN D Nx:

For all classes x; y 2 G=N; we define the operation

bx �by D bxy:

First note that this operation is well defined. If bx D bx0 and by D by0; we must have
bxy D cx0y0: Indeed,

( bx D bx0

by D by0 )
�

x�1x0 2 N
y0y�1 2 N

:
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On the other hand,

.xy/�1.x0y0/ D y�1x�1x0y0 D y�1.x�1x0/.y0y�1/y D y�1ny 2 N;

where n D .x�1x0/.y0y�1/ 2 N: Hence bxy D cx0y0:
The elementbe D eN D Ne D N 2 G=N is the identity since

be �bn D ben D bn; bn �be D bne D bn
and the inverse ofbx is cx�1 W

bx � cx�1 D 1x � x�1 Dbe; cx�1 �bx D bx�1x Dbe:

The group .G=N; �/ is called the factor group with respect to the normal subgroup N:

Theorem (Lagrange). Let G be a finite group. Then for every subgroup H of G;

we have ord H which divides ord G, where ord G is the cardinality of G.

Proof. Let us consider the left equivalence relation R with respect to H.
In general, any two different equivalence classes are disjoint. Because G is finite,

there are only a finite number of equivalence classes, which define a partition of G;

say

G D x1H [ x2H [ � � � [ xnH;

with xk 2 G; 1 � k � n: As we proved,

jx1Hj D jx2Hj D � � � D jxnHj D ord H;

so by taking the cardinality, we derive

ord G D jx1Hj C jx2Hj C � � � C jxnHj D n � jHj :

Hence ord G D n � ord H: �

The number n of the equivalence classes is called the index of H in G; denoted
by n D ŒG W H�: Therefore the relation

jGj D ŒG W H� � jHj

will be called Lagrange’s relation.

The fundamental theorem of isomorphism. Let G and G0 be groups and f W
G ! G0 be a morphism. Then the factor group G= ker f is isomorphic to Im f :

Proof. The proof is constructive, in the sense that we will indicate the requested
isomorphism. We are talking about the map



6 Equivalence Relations on Groups and Factor Groups 97

� W G= ker f ! Im f

given by �.bx/ D f .x/, where x 2 G:

First we prove that � is well defined. To do this, let us consider x; x0 2 G with
bx D bx0: Thus

bx D bx0 , x�1x0 2 ker f , f .x�1x0/ D e0

, f .x�1/f .x0/ D e0 , .f .x//�1f .x0/ D e0:

By multiplying to the left with f .x/; we deduce that f .x/ D f .x0/:
Now we use the fact that f is a morphism to prove that the map � is a morphism,

�.bx �by/ D �.bxy/ D f .xy/ D f .x/f .y/ D �.bx/�.by/:

If x; y 2 G are so that �.bx/ D �.by/; then

f .x/ D f .y/ , f .x/.f .y//�1 D e0

, f .x/f .y�1/ D e0 , f .xy�1/ D e0 , xy�1 2 ker ,bx Dby;

so f is injective. By its definition, f is also surjective. �

We end this chapter with some important and nontrivial results that can be also
obtained using equivalence relations.

Theorem (Cauchy). Let G be a group of order n and let p be a prime divisor
of n. Then there exists an element of order p in G.

Proof. Consider S the set of p-tuples .x1; x2; : : : ; xp/ such that x1x2 � � � xp D e.
Clearly, this set has np�1 elements, because for any choice of x1; x2; : : : ; xp�1, the
element xp is uniquely determined. Moreover, we can define a function f from S
to S by f .x1; x2; : : : ; xp/ D .x2; x3; : : : ; xp; x1/, because if x1x2 � � � xp D e, we also
have x2x3 � � � xpx1 D e (due to the fact that x1 D .x2 � � � xp/�1). This function f is
manifestly injective and thus it is a permutation of S. Also, we have f p.x/ D x for all
x 2 S, (where f p denotes the composition taken p times). Now, define an equivalence
relation by xRy if and only if there exists an integer k such that x D f k.y/. Because
f p.x/ D x for all x, any equivalence class has either 1 or p elements. But the sum
of the cardinalities of the equivalence classes is the cardinality of S, which is a
multiple of p. Because the class of .e; e; : : : ; e/ has one element, it follows that there
is some .x1; x2; : : : ; xp/ 2 S, different from .e; e; : : : ; e/ and whose equivalence class
also has one element. But this implies .x1; x2; : : : ; xp/ D f .x1; x2; : : : ; xp/, that is
x1 D x2 D � � � D xp D x and this element x satisfies xp D e because .x1; : : : ; xp/ 2 S
and x ¤ e. Thus, x has order p. �
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And here is an application:

Problem. Prove that any commutative group whose order is square-free is
cyclic.

Solution. Let G be such a group, whose order is p1p2 : : : pn for some distinct
prime numbers p1; p2; : : : ; pn. By Cauchy’s theorem, there are elements xi whose
order equals pi for all i. We claim that y D x1x2 : : : xn has order p1p2 : : : pn. Indeed,
if yk D e, then ykp2:::pn D e, and because G is abelian, it follows that xkp2:::pn

1 D e.
But the order of x1 is p1, which is relatively prime to p2p3 : : : pn. Thus p1 divides
k. Similarly, all numbers p1; p2; : : : ; pn are divisors of k and so k is a multiple of
p1p2 : : : pn. This shows that G has an element whose order is at least equal to the
order of the group, so G is indeed cyclic. �

It is very easy to prove, using Lagrange’s theorem, that any group whose order is
a prime number is cyclic. The following result is however much more difficult:

Problem. Prove that any group whose order is the square of a prime number is
abelian.

Solution. Let G be a group of order p2, where p is a prime number. Also,
consider the following equivalence relation on G: xRy if and only if there exists g 2
G such that y D gxg�1. For any x, it is easy to check that the set C.x/ D fgjgx D xgg
is a subgroup of G. We claim that the cardinality of the equivalence class of x equals

p2

jC.x/j . Indeed, it is not difficult to check that the function f W G=C.x/ ! Œx� (here

Œx� denotes the equivalence class of x) defined by f .gC.x// D gxg�1 is well defined
and bijective: if g1C.x/ D g2C.x/, then g1 D g2c for some c 2 C.x/ and so

g1xg�1
1 D g2cxc�1g�1

2 D g2xg�1
2

because cxc�1 D x. Also, if gxg�1 D hxh�1, we have h�1g 2 C.x/ and so gC.x/ D
hC.x/. Thus f is injective. Obviously, f is surjective. This proves the claim that

jŒx�j D p2

jC.x/j . Now, G is the disjoint union of the equivalence classes, so p2 equals

the sum of the cardinalities of all classes. By the above argument, any class has a
cardinality equal to 1; p or p2 and a class has cardinality 1 if and only if C.x/ D G,
that is, x commutes with all elements of the group. Let Z.G/ the set of such x. The
previous remark implies that p j jZ.G/j. We need to show that Z.G/ D G, so it
is enough to show that we cannot have jZ.G/j D p. Let us assume that this is the
case. Then G=Z.G/ is a group (clearly, Z.G/ is normal) with p elements, thus cyclic.
Let p.a/ be a generator of this group, where p is the natural projection from G to
G=Z.G/. Then we know that for any x; y 2 G, there are integers k; m such that
p.x/ D p.ak/ and p.y/ D p.am/. It follows that a�kx and a�my are in Z.G/ and this
easily implies that xy D yx. Thus, any two elements of G commute and Z.G/ D G,
contradicting the assumption that jZ.G/j D p. This contradiction shows that we
must have Z.G/ D G and G is therefore abelian. �
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Proposed Problems

1. Let G be a finite group, H a subgroup of G, and K a subgroup of
H; K � H � G: Prove that

ŒG W K� D ŒG W H� � ŒH W K�:

2. Let G be a group and let H be a subgroup of index 2 in G; ŒG W H� D 2: Prove
that H is a normal subgroup of G:

3. Let G be a group, H a subgroup of G, and let x; y 2 G: Find a bijective function
from xH onto yH:

4. Let G be a finite group. Prove that for every x 2 G n feg with ord x D k; we
have k divides ord G:

5. Let G be a group and N a normal subgroup of G: Assume that an element
a 2 G has finite order, ord a D n: Prove that the least positive integer k for
which ak 2 N is a divisor of n: Prove that this remains true if N is any subgroup
of G (not necessarily a normal subgroup).

6. Let G be a cyclic group, G D ˚
xk j k 2 Z

�
; for some element x 2 G: Prove that

G is isomorphic to the additive group of the integers .Z; C/ or to an additive
group Z=nZ, for some integer n � 2:

7. Let G be a group with identity e such that f W G ! G; given by f .x/ D xn is a
morphism for some positive integer n: Prove that

H D fx 2 G j xn D eg ; K D fxn j x 2 Gg

are normal subgroups of G: Moreover, prove that if G is finite, then ord K D
ŒG W H�:

8. Consider the additive group .R; C/ of real numbers with the (normal) subgroup
.Z; C/ : Prove that the factor group R=Z is isomorphic to the multiplicative
group T of complex numbers of module 1.

9. Consider the additive group .C; C/ of complex numbers with the (normal)
subgroup .R; C/ : Prove that the factor group C=R is isomorphic to the additive
group .R; C/ of real numbers.

10. Let G be a group with the property that x2 D e; for all x 2 G: Prove that G is
abelian. Moreover, prove that if G is finite, then ord G is a power of 2:

11. Let G be a group. Denote by .Inn G; ı/ the group of inner automorphisms,

Inn G D ˚
�g j g 2 G

�
;

where �g W G ! G is the automorphism

�g.x/ D gxg�1;
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for all x 2 G: Prove that the group .Inn G; ı/ is isomorphic to G=Z.G/; where
Z.G/ � G is the center of G W

Z.G/ D fx 2 G j xy D yx; 8 y 2 Gg :

12. Let G be a group and let N be a subgroup of Z.G/: Prove that:

a) N is a normal subgroup of G;
b) if G=N is cyclic, then G is abelian.

13. Let p � 3 be prime. Prove that the set of integers 0 � a � p � 1 for which the
congruence

x2 � a.mod p/

has solutions in the set of integers consists of
p C 1

2
elements.

14. Let us consider the group .Z; C/ as a subgroup of the group .Q; C/ of the
rational numbers. Prove that every finite subgroup of the factor group Q=Z is
cyclic.

15. How many morphisms f W .Z2 � Z2; C/ ! .S3; ı/ are there?
16. Let .G; �/ be a finite group with n elements, and let S be a nonempty subset of

G. Prove that if we denote by Sk the set of all products s1 � � � sk, with si 2 S for
all 1 � i � k, then Sn is a subgroup of G.

17. Let .G; �/ be a finite group whose order is square-free, let x be an element of G,
and let m and n be relatively prime positive integers. Prove that if there exist y
and z in G such that x D ym D zn, then there also exists t in G such that x D tmn.

18. Let A be a nonsingular square matrix with integer entries. Suppose that for every
positive integer k, there is a matrix Xk with integer entries such that Xk

k D A.
Prove that A must be the identity matrix.

Solutions

1. By Lagrange’s relation,

ŒG W H� � ŒH W K� D jGj
jHj � jHj

jKj D jGj
jKj D ŒG W K�:

2. We have ŒG W H� D 2; so there are only two left (or right) equivalence classes
which define a partition of G: One of the sets of the partition is always H; so
the partition is G D H [ .G n H/: Then H is a normal subgroup of G; because

G=Rl D G=Rr D fH; G n Hg :
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3. We will prove that the application ! W xH ! yH given by the law !.xh/ D yh,
h 2 H is bijective. By its definition, ! is surjective. For injectivity, if !.xh/ D
!.xh0/; then

!.xh/ D !.xh0/ ) yh D yh0

) y�1.yh/ D y�1.yh0/ ) h D h0 ) xh D xh0:

4. Let us consider the set

H D ˚
e; x; x2; : : : ; xk�1

�
:

Any two elements of H are different. Indeed, if there exist integers 0 � i <

j � k � 1 such that xi D xj; then xj�i D e; with 0 < j � i < k: But the last
relation contradicts the fact that ord x D k: We also have the representation
H D ˚

xi j i 2 Z
�

: Hence for any elements xi; xj 2 H; it follows

xi.xj/�1 D xi � x�j D xi�j 2 H;

which means that H is a subgroup of G: According to Lagrange’s theorem,

ord H j ord G , k j ord G:

5. Let us consider the factor group G=N: We have an D e 2 N; soban Dbe in G=N:

We also have ak 2 N; sobak Dbe in G=N; where k is the minimal value with this
property. In other words, k is the order of the element ba in G=N: We also have
ban Dbe; so k divides n:

Let’s now assume that the subgroup N is not normal. For the sake of
contradiction, let us put n D kq C r; with 1 � r � k � 1: We have

ar D an�kq D an � .ak/�q D .ak/�q 2 N;

because ak 2 N: We obtained ar 2 N; with r < k; which contradicts the
minimality of k: Hence k D 0; which means that k divides n:

6. The application f W .Z; C/ ! G given by f .k/ D xk, k 2 Z is a surjective
morphism,

f .k C k0/ D xkCk0 D xk � xk0 D f .k/f .k0/:

According to the fundamental theorem of isomorphism, Z= ker f ' G; where
Im f D G: If f is injective, then ker f D f0g I thus

Z= ker f ' Z= f0g ' Z;

so Z ' G: If f is not injective, then let k < k0 be integers with
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f .k/ D f .k0/ , xk D xk0 , xk0�k D e:

If n is the least positive integer with xn D e; then ker f D nZ: Hence

G ' Z= ker f ' Z=nZ:

7. In general, the kernel of a morphism is a normal subgroup, and here, H D
ker f E G: For any elements xn; yn 2 K; we have

xn.yn/�1 D xn.y�1/n D .xy�1/n 2 K;

so K is a subgroup of G: It is also normal, because for every xn 2 K and y 2 G;

we have

yxny�1 D .yxy�1/.yxy�1/ � � � .yxy�1/ D .yxy�1/n 2 G:

For the second part of the problem, we use the fundamental theorem of
isomorphism,

G= ker f ' Im f

and taking into account that ker f D H; Im f D K; we obtain G=H ' K: Hence

jG=Hj D jKj , ord K D ŒG W H�:

8. Let us consider the application f W .R; C/ ! .C�; �/ given by f .x/ D e2i�x.
Clearly, f is a morphism and x 2 ker.f / if and only if e2i�x D 1, that is, x is
an integer. On the other hand, it is clear that Im f D T: By the fundamental
theorem of isomorphism, we deduce that

R= ker f ' Im f , R=Z ' T:

9. Let us consider the application f W .C; C/ ! .R; C/ given by f .z/ D Im z;
where Im z denotes the imaginary part of the complex number z: Clearly, f is a
morphism and ker f D R: Obviously, Im f D R: By the fundamental theorem
of isomorphism, we deduce that

C= ker f ' Im f , C=R ' R:

10. For every x; y 2 G; we have x2 D e; y2 D e; .xy/2 D e: Thus

.xy/2 D x2y2 , xyxy D xxyy:

By multiplying with x�1 to the left and with y�1 to the right, we obtain
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x�1.xyxy/y�1 D x�1.xxyy/y�1 , yx D xy;

so G is abelian.
For the second part, we will use Cauchy’s theorem: let G be a group of order

n in which any element has order at most 2. If p > 2 is a prime divisor of n,
by Cauchy’s theorem, G has an element of order p, which is a contradiction.
Therefore any prime divisor of n is 2 and n is thus a power of 2.

11. Let us consider the application � W G ! Inn G given by the law �.g/ D �g: For
every g; g0 2 G; we have

�.g/ ı �.g0/ D �.gg0/:

Indeed, for all x 2 G; we have

�g.�g0.x// D �g.g0xg0�1/ D g.g0xg0�1/g�1 D .gg0/x.gg0/�1 D �gg0.x/;

thus

�g ı �g0 D �gg0 , �.g/ ı �.g0/ D �.gg0/:

Hence � is a (surjective) morphism. If g 2 ker �; then

�.g/ D 1G , �g D 1G:

It follows that for every x 2 G;

�g.x/ D x , gxg�1 D x , gx D xg;

which is equivalent to g 2 Z.G/: Then with ker � D Z.G/;

G= ker � ' Inn G , G=Z.G/ ' Inn G:

12. a) Every element of N is also an element of Z.G/; so every element of N
commutes with all elements of the group G: Then for every x 2 G and
n 2 N;

xnx�1 D nxx�1 D n 2 N;

so N is a normal subgroup of G:

b) Let us assume that G=N D< ba >; for some a 2 G: Now let x 2 G be
arbitrary. We havebx 2< ba >; so there is an integer k such that

bx D bak ,bx D bak , xa�k 2 N:
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Hence xa�k D n , x D akn; for some n 2 N: Finally, for every x; y 2 G;

let k; p 2 Z and n; q 2 N such that x D akn, y D apq: It follows that

xy D akn � apq D akapnq D akCpnq

and

yx D apq � akn D apakqn D apCkqn;

so xy D yx:

13. Let us define the application f W Z�
p ! Z

�
p by the formula f .x/ D x2: Easily, f is

a morphism from the group
�
Z

�
p ; �� to itself with ker f D

nb1;1p � 1
o

: Indeed, if

bx 2 ker f ; thenbx2 D b1, so p divides x2 � 1: The number p is prime, so p divides
x � 1 or p divides x C 1: Thus x D 1; respectively x D p � 1: Now, according
to the fundamental theorem of isomorphism,

Im f ' Z
�
p = ker f :

In particular,

card Im f D card.Z�
p = ker f / D cardZ�

p

card ker f
D p � 1

2
:

If we add the solution a D 0; we obtain

p � 1

2
C 1 D p C 1

2

elements.
14. Let H be a finite subgroup of the group Q=Z with ord H D n: We can assume

that

H D fba1;ba2; : : : ;bang ;

for some rational numbers a1; a2; : : : ; an 2 Œ0; 1/: Then for every bh 2 H with
h 2 Q \ Œ0; 1/; we have

ord H �bh D b0 , n �bh D b0 , nh 2 Z:

It follows that h D k
n ; for some integer 1 � k � n � 1: We proved that

H �
(

b0;
b1
n

; : : : ;
1n � 1

n

)
:

The other inclusion is true, because ord H D n: In conclusion, H D
*b1

n

+
:
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15. The answer is 10. Each element of the group Z2 � Z2 is of order at most 2, so
.f .x//2 D e; for all x 2 Z2 � Z2: It follows that

Im f � fe; .12/ ; .23/ ; .31/g :

If for some x; y 2 Z2 � Z2; f .x/ D .12/, f .y/ D .23/, then

f .x C y/ D f .x/f .y/ D .12/ .23/ D .231/ … Im f ;

a contradiction. Hence f .x/ D e or Im f D fe; �g ; where � 2 S3 is transposition.
According to the fundamental theorem of isomorphism,

Im f ' .Z2 � Z2/ = ker f :

In particular,

2 D card Im f D card Œ.Z2 � Z2/ = ker f � D card .Z2 � Z2/

card ker f
;

so ker f has 2 elements. One of them is .0; 0/ and the other can be chosen in
three ways.

In conclusion, there are 3 � 3 D 9 such morphisms, and if we add the null
morphism, we obtain ten morphisms.

16. Fix some s 2 S. We have sSk � SkC1; hence jSkj D jsSkj � jSkC1j for all
k 2 N

�, where jXj denotes the number of elements of the (finite) set X. Thus
we have the nondecreasing set of cardinalities

jSj � jS2j � jS3j � � � � :

Note that if, for some j, we have jSjj D jSjC1j, then jSkj D jSkC1j for all k � j.
Indeed, we have sSj � SjC1 and jsSjj D jSjj D jSjC1j; thus sSj D SjC1, which
implies sSjC1 D sSjS D SjC1S D SjC2, yielding jSjC1j D jsSjC1j D jSjC2j, and
the conclusion follows inductively.

Now, if in the sequence of inequalities jSj � jS2j � � � � � jSnj we have
equality between two consecutive cardinalities, then jSkj D jSkC1j for all k � j,
with j � n � 1. Otherwise (when all inequalities are strict), we get jSnj � n; but
jSnj � jGj D n; thus jSnj D n, and this yields jSkj D n for all k � n. Either
way, we have

jSnj D jSnC1j D jSnC2j D � � � :

As we have seen before, this also leads to sSk D SkC1 for all k � n, and,
by iterating, we obtain snSn D S2n, that is, Sn D S2n D SnSn (as sn D e,
the unit element of G, as a consequence of Lagrange’s theorem). Thus Sn is
closed under the multiplication of G, and the fact that it contains the identity is
obvious: e D sn 2 Sn; that is, Sn is a subgroup of G.
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This appeared as (a folklore) problem B in Nieuw Archief voor Wiskunde,
issue 3/2007. The above solution is from the same magazine, 1/2008.

17. Let o.g/ denote the order of an element g 2 G. From x D ym, we infer that

o.x/ D o.ym/ D o.y/

�
;

where � D .o.y/; m/ is the greatest common divisor of the order of y and m.
We have that � divides the order of y, which in turn divides the order jGj of the
group; thus, � divides jGj. Also o.x/ D o.y/=� and m=� are relatively prime.

Similarly, for � D .o.z/; n/, we have that � divides jGj and that o.x/ and n=�

are relatively prime.
Also, � and � are themselves relatively prime, since they are divisors of m

and n, respectively; therefore their product divides the order of the group. So,
we can write jGj D ���, with integer �, and, because jGj is square-free, any
two of �, �, and � are relatively prime.

Now x�� D ym�� D e (the identity element of G), because m�� D .m=�/jGj
is a multiple of the order of the group, and similarly, x�� D zn�� D e. It follows
that both numbers �� and �� are divisible by o.x/, the order of x, and therefore,
their greatest common divisor � is also divisible by o.x/. As � is prime to both
� and �, the same is true for the order of x. So, in the end we get that o.x/

is prime to any of the numbers m=�, n=�, �, and �, hence it is prime to their
product mn. Again, we can find integers p and q such that 1 D po.x/ C qmn;
thus we have

x D xpo.x/xqmn D .xq/mn D tmn

for t D xq 2 G.

Remark. Let .M; �/ be a monoid. We say that M has property (P) if, whenever
m and n are positive integers, and x 2 M has the property that there are y and z
in M such that x D ym D zn, there also exists t 2 M for which x D tŒm;n� (where
Œm; n� is the least common multiple of m and n). The reader will easily prove that
commutative finite groups have property (P). Also, by using the result of this
problem, we can prove that finite groups with square-free order have property
(P). We say that a ring has property (P) if its multiplicative monoid has it. Then
factorial rings, like the ring of integers, have property (P), and with a more
elaborate argument, one can prove that any factor ring of a principal ring has
property (P). The proof is essentially the same as in the case of factor rings
Z=nZ, and this is the starting point for the problem above, too. Actually to say
that Z=nZ has property (P) represents a rewording of the fact that if an infinite
arithmetic progression of integers contains a power with exponent m, and a
power with exponent n, then it also has a term that is a power with exponent
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Œm; n�. This is a known folklore problem that appeared a few times in various
mathematical contests. A particular case was the subject of problem 11182
from The American Mathematical Monthly from November 2005 (proposed
by Shahin Amrahov).

18. Let p be a prime number that does not divide the determinant of A (which is
nonzero). In the group G of invertible matrices with entries in the field Z=pZ,
the equation Xk

k D A is also valid for every positive integer k (we don’t use
different notations for the respective reduced modulo p matrices). In particular,
we have XjGj

jGj D A, but every matrix from G has the jGjth power the identity
matrix, according to Lagrange’s theorem. Thus A D I in this group, meaning
that all elements of A � I (this time regarded as an integer matrix) are divisible
by p. Since this happens for infinitely many primes p, it follows that A � I is the
zero matrix; thus A D I, the identity matrix, as claimed.

This is problem 11401, proposed by Marius Cavachi in The American
Mathematical Monthly 10/2008 and solved by Microsoft Research Problem
Group in the same Monthly, 10/2010.



Chapter 7
Density

We say that a set A � R is dense in R if any open interval of real numbers contains
elements from A: One of the practicalities of dense sets follows from the fact that
two continuous functions from R to R are equal if they are equal on a dense subset
of R. We have the following characterization of dense sets:

Theorem. Let A � R: The following assertions are equivalent:

a) A is dense in R.
b) for every real number x; there exists a sequence of elements of A, converging

to x.

Proof. If A is dense, then for every real number x and every positive integer n;

we have
�

x � 1

n
; x C 1

n

�
\ A ¤ ;:

Therefore, for each positive integer n; we can choose an element

an 2
�

x � 1

n
; x C 1

n

�
\ A:

We obtained a sequence .an/n�1 of elements of A, which clearly converges to x. For
the converse, let .a; b/ � R and let x 2 .a; b/ be fixed. Then there exists a sequence
.an/n�1 with elements in A; converging to x: But .a; b/ is a neighborhood of the
limit xI thus we can find an element an0 2 .a; b/: Because an0 2 A; it follows that
.a; b/ \ A ¤ ;: In conclusion, A is dense in R. �

The set Q of rational numbers is dense in R. We will prove that each nonempty
interval contains at least one rational number. Indeed, let .a; b/ be an interval, with
a < b: Looking for two integers m; n; say n positive, so that a < m

n < b, we
observe that it is enough to prove the existence of a positive integer n such that
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nb � ba > 1. Indeed, if such an integer exists, the interval .na; nb/ has length
greater than 1, so it contains an integer m. Then m

n 2 .a; b/. But it is clear that
n D 1 C �

1
b�a

�
is a solution. Moreover, one can easily prove that any nonempty

interval contains infinitely many rational numbers. The inequality x � 1
n < Œnx� � x

shows that lim
n!1

Œnx�

n D x. In fact, this is another proof that Q is dense in R. Indeed,

for every x 2 R; the sequence of rational numbers
�

Œnx�

n

�
n�1

converges to x: Now,

our assertion follows from the theorem. For instance, the sequence

hp
2
i

;

h
2
p

2
i

2
;

h
3
p

2
i

3
;

h
4
p

2
i

4
; : : : ;

h
n
p

2
i

n
; : : :

is a nice example of a sequence of rational numbers which converges to
p

2:

Further, the set R n Q of irrational numbers is dense in R. Indeed, let .a; b/

be a nonempty interval. As we have proved, the interval
�

ap
2
; bp

2

�
contains at

least one rational number, say q: Then q
p

2 2 .a; b/ and q
p

2 is irrational. So
we proved that there are no intervals consisting only of rational numbers. Observe
that this is also immediate by a cardinality argument: we have seen that any interval
is uncountable, so it cannot be included in the set of rational numbers, which is
countable. Finally, here is one more possible argument: we assert that each interval
of the form .0; "/; " > 0; contains at least one irrational number. Indeed, we have
the implication:

p
2 2 .0; 2/ )

p
2

n
2
�

0;
2

n

�
;

for all positive integers n: If q is rational, in .a; b/; then let ! be irrational in
.0; b � q/: Now, the number ! C q is irrational and ! C q 2 .q; b/ � .a; b/:

Finally, note that the notion of density has nothing to do with the order structure
of R—it is a topological notion. It can easily be extended to other spaces, such
as Rn. Indeed, if kxk is the Euclidean norm of the vector x 2 R

n, then we say that
a set A is dense if every open ball B.x; r/ (defined as the set of points y 2 R

n such
that ky � xk < r) contains at least one element of A. All properties of continuous
functions related to dense sets that we discussed remain clearly true in such a larger
context.

A very useful and general result is the following:

Theorem (Stone-Weierstrass). Let K be a compact subset of the set of real
numbers and let A be an algebra of continuous functions defined on K and having
real values. Suppose that all constant functions belong to A and also that for any
distinct points x; y 2 K, there exists f 2 A such that f .x/ ¤ f .y/. Then A is dense in
the set of continuous functions on K, with real values, for the uniform convergence
norm. That is, for any continuous function f defined on K, with real values and for
any � > 0, there exists g 2 A such that jf .x/ � g.x/j < � for all x 2 K.
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The proof of this result is far from being easy and will require several steps.
First, observe that if we define A to be the closure of A in .C.K/; k � k1/ (i.e., the
set of continuous functions on K with kf k1 D max

x2K
jf .x/j), then A is also an algebra

having the same properties as A. Hence we can directly assume that A is closed.
Now, let us show that with this assumption, if f 2 A, then jf j 2 A. By working with

f

kf k1
instead of f , we may assume that kf k1 � 1. Write

jf j D
p

1 C .f 2 � 1/ D
1X

nD0

 
1=2

n

!
.f 2 � 1/n;

where

 
1=2

n

!
D

1

2

�
1

2
� 1

�
: : :

�
1

2
� n C 1

�

nŠ
:

This is just a consequence of the Taylor series of .1 C x/˛ . On the other hand, using
Stirling’s formula, we obtain that

X
n�1

ˇ̌̌
ˇ̌
 

1=2

n

!ˇ̌̌
ˇ̌ < 1;

and since kf 2 � 1k1 � 1, it follows that jf j can be approximated with polynomials
in f to any degree of accuracy: simply take the partial sums of the above series.
Since these polynomials in f belong to A D A, so does jf j. This finishes the proof of
the first step.

This shows that min.f ; g/ 2 A and max.f ; g/ 2 A if f ; g 2 A. Indeed, it is enough

to note that min.f ; g/ D f C g � jf � gj
2

and the hypothesis made on A shows that

min.f ; g/ 2 A. The next step will be to prove that for all x ¤ y 2 K and for all real
numbers a; b, there exists f 2 A such that f .x/ D a and f .y/ D b. This can be done
by taking

f .t/ D a C .b � a/
g.t/ � g.x/

g.y/ � g.x/
;

where g 2 A is such that g.y/ ¤ g.x/. Then f 2 A (because A is stable
under multiplication, addition, and contains the constant functions) and clearly
f(x)=a; f .y/ D b.

Consider x; y 2 K and a continuous function f defined on K. We know (by the
previous step) that there exists gx;y 2 A such that gx;y.x/ D f .x/ and gx;y.y/ D f .y/.
Let � > 0 be fixed and also fix a point x 2 K. By continuity of f � gx;y at y, for
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all y 2 K, there exists an open interval Iy centered at y and such that gx;y.t/ <

f .t/ C � for all t 2 Iy. Because the intervals Iy are an open cover of the compact
set K, there exist y1; y2; : : : ; yn 2 K such that K is covered by Iy1 ; Iy2 ; : : : ; Iyn . The
function gx D min.gx;y1 ; gx;y2 ; : : : ; gx;yn/ belongs to A (recall the first step of the
proof), gx.x/ D f .x/, and also, gx.t/ � f .t/ < � for all t 2 K. By continuity at x, for
all x 2 K, there exists an open interval Jx centered at x such that f .t/ < gx.t/ C � for
all t 2 Jx. Using again the compactness of K, we can extract from the open cover
.Jx/x2K a finite cover Jx1 ; Jx2 ; : : : ; Jxs . Then the function g D max.gx1 ; gx2 ; : : : ; gxs/

belongs to A and satisfies jg.x/ � f .x/j < � for all x 2 K. This finishes the proof of
the theorem. �

Here is an application, which can hardly be proved by elementary arguments.

Problem. Let f W Œ0; 1� ! R be a continuous function such that for all
nonnegative integers n,

Z 1

0

f .x/xndx D 0:

Prove that f D 0.

Solution. We deduce that
Z 1

0

f .x/P.x/dx D 0 for all polynomials P with real

coefficients. Now, let � > 0 and let P be a polynomial such that jP.x/ � f .x/j < �

for all x 2 Œ0; 1�. Such a polynomial exists by the Stone-Weierstrass theorem applied
to the algebra of polynomial functions on Œ0; 1�. Let M be such that jf .x/j � M for
all x 2 Œ0; 1� (it exists by the continuity of f ). Then

Z 1

0

f .x/2dx D
Z 1

0

f .x/.f .x/ � P.x//dx � M�:

Because this is true for all �, it follows that
Z 1

0

f .x/2dx D 0; hence f D 0, due to

the continuity. �

We present now a quite challenging problem, from Gazeta Matematica’s contest:

Problem. Find all continuous functions f W R ! R such that

f .2x � y/ C f .2y � x/ C 2f .x C y/ D 9f .x/ C 9f .y/ for all x; y:

Solution. We clearly have f .0/ D 0. By taking x D y, we deduce that
f .2x/ D 8f .x/. Also, with y D 0, we deduce that f .�x/ D �f .x/. Finally, by taking
y D 2x we deduce that f .3x/ D 27f .x/. Using these results, we can immediately
prove that f .x/ D x3f .1/ for all x 2 A, where A D f2m3njm; n 2 Zg. We claim
that A is dense in Œ0; 1/. This follows if we prove that Z C Z.log2 3/ is dense in R.
This is clearly a noncyclic additive subgroup of R. The conclusion follows from the
following general and useful result:
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Lemma. Any additive subgroup of the additive group of real numbers is either
cyclic or dense.

Indeed, let G be such a group and suppose it is not the trivial group. Let ˛ be
the greatest lower bound of the set X D G \ .0; 1/. Suppose that G is not cyclic.
We claim that ˛ 2 G. Otherwise, there exists a decreasing sequence xn of positive
elements of G that converges to ˛. Then xn�1 � xn is a positive element of G that
converges to 0; thus ˛ D 0 2 G, which is a contradiction. Therefore, ˛ 2 G. Now,
assume that ˛ ¤ 0. If x 2 G and x > 0, then y D x � ˛ � Œ x

˛
� 2 G and ˛ > y � 0.

Thus y D 0 and so any element of G is an integer multiple of ˛, also a contradiction.
This shows that ˛ D 0 and there exists a sequence xn 2 G that converges to 0, with
xn > 0. Therefore, if .a; b/ is any interval and c 2 .a; b/, for sufficiently large n, we
have Œ c

xn
�xn 2 .a; b/ \ G and so G is dense. �

Coming back to the problem, we deduce that f .x/ D x3f .1/ on a dense set;
therefore f .x/ D x3f .1/ everywhere. Thus, any such function is of the form f .x/ D
ax3 for some a. It is not difficult to check that any such function satisfies the given
relation, so these are all solutions of the problem. �

We said in the beginning of the chapter (and we saw in the previous problem) that
dense sets are practical when dealing with continuous functions. The next problem,
taken from the 2000 Putnam Competition highlights this assertion:

Problem. Let f be a continuous real function such that

f .2x2 � 1/ D 2xf .x/

for all real numbers x. Prove that f .x/ D 0 for all x 2 Œ�1; 1�.

Solution. Let F.x/ D f .cos x/

sin x
, defined and continuous except on Z� . The given

relation implies that F.2x/ D F.x/. But F is clearly 2� periodic. Hence

F.1/ D F.2kC1/ D F.2kC1 C 2n�/ D F
�
1 C n�

2k

�

for all integers n; k. It is however easy to see that the set
nn�

2k
j n; k 2 Z

o
is dense

in R, since for instance

lim
n!1

h
2n � ˛

�

i
�

2n
D ˛; for all ˛ 2 R:

This shows that F is constant on each interval of the form .k�; .k C 1/�/. Change
x and �x in the given relation and conclude that f is odd; thus F.x/ D F.x C �/.
This, combined with the previous result shows that F is constant on R nZ� and this
constant is 0, because F is odd. Thus f .x/ D 0 for x 2 .�1; 1/ and by continuity,
this also holds for x 2 f�1; 1g. �
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The next problem, given on the Putnam Competition in 1989, uses the density of
the rational numbers in a very unexpected way:

Problem. Does there exist an uncountable set of subsets of N such that any two
distinct subsets have finite intersection?

Solution. Surprisingly, the answer is yes and the construction is not intricate.
Consider for each x 2 .0; 1/ a sequence .xn/n�1 of rationals converging to x.

Let Ax be the set consisting of the numbers xn. Because the limit of a convergent
sequence is unique, Ax \ Ay is finite if x ¤ y. Also, we have uncountably many
sets Ax, because .0; 1/ is uncountable. Now, it is enough to consider a bijection
f W Q ! N (an earlier chapter shows that f exists) and to consider the sets f .Ax/.
They satisfy the conditions of the problem. �

Proposed Problems

1. Prove that the set A D
nm

2n
j m 2 Z ; n 2 N

o
is dense in R.

2. Let .an/n2N be a sequence of nonzero real numbers, converging to zero. Prove
that the set A D fman j m 2 Z ; n 2 Ng is dense in R.

3. Prove that the following sets are dense in R:

a) A D
n
p C q

p
2 j p; q 2 Z

o
;

b) B D
n
a 3
p

4 C b 3
p

2 C c j a; b; c 2 Z

o
:

4. Prove that the set A D
nm

2n
� n

2m
j m; n 2 N

o
is dense in R.

5. Prove that the set A D fm sin n j m; n 2 Zg is dense in R.
6. Let x be a real number. Prove that the set of all numbers of the form fnxg; n 2 N;

is dense in Œ0; 1� if and only if x is irrational (here, f�g denotes the fractional part
function).

7. Prove that the following sets are dense in Œ1; 1/:

a) A D ˚
m
p

n j m; n 2 N ; m � 2
�
;

b) A D
(

m

r
1 C 1

2
C 1

3
C � � � C 1

n
j m; n 2 N ; m � 2

)
.

8. Let .an/n2N be a sequence of real numbers with limit C1; such that

lim
n!1.anC1 � an/ D 0:

Prove that the set A D fam � an j m; n 2 Ng is dense in R.
9. Is

p
2 the limit of a sequence of numbers of the form 3

p
m � 3

p
n, with positive

integers m; n ‹
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10. Is
p

3 the limit of a sequence of numbers of the form

1

n
C 1

n C 1
C � � � C 1

m
;

with positive integers m > n ‹

11. Let f ; g W R ! R, f continuous, g monotone. Prove that if

f .x/ D g.x/;

for all rational numbers x; then f D g:

12. Let f W R ! R be a continuous function such that

f .x/ D f

�
x C 1

n

�
;

for all reals x and for all nonnegative integers n: Prove that f is constant.
13. Let f W R ! R be a continuous function such that

f .x/ D f .x C p
2/ D f .x C p

3/;

for all real numbers x: Prove that f is constant.
14. Define a function f W N ! Œ0; 2/; by

f .n/ D fpng C fpn C 1g:

Prove that Im f is dense in Œ0; 2�:

15. Let M be the set of real numbers of the form
m C np
m2 C n2

; with m; n positive

integers. Prove that if u; v 2 M; u < v; then there exists w 2 M so that u <

w < v:

16. Let .an/n2N be a sequence decreasing to zero, and let .bn/n2N be a sequence
increasing to infinity, such that the sequence .bnC1 � bn/n2N is bounded. Prove
that the set A D fambn j m; n 2 Ng is dense in Œ0; 1/:

17. Let .bn/n2N be a sequence increasing to infinity, such that

lim
n!1

bnC1

bn
D 1:

Prove that the set

A D
	

bm

bn
j m; n 2 N




is dense in Œ0; 1/:
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18. Let .an/n�1 � .1; 1/ be a sequence convergent to 1; such that

lim
n!1.a1a2 � � � an/ D 1:

Prove that the set A D fanC1anC2 � � � am j n; m 2 N; n < mg is dense in Œ1; 1/:

19. Are there positive integers m > n such that

1p
n C 1

C 1p
n C 2

C � � � C 1p
m

1 C 1p
2

C � � � C 1p
n

2
�p

2007 � 1

2007
;
p

2007 C 1

2007

�
‹

20. Is there a dense set of the space that does not contain four coplanar points?

Solutions

1. For each real ˛; we have

lim
n!1

Œ2n˛�

2n
D ˛:

Indeed, using the inequality x � 1 < Œx� � x; we derive

2n˛ � 1

2n
<

Œ2n˛�

2n
� ˛

or

˛ � 1

2n
<

Œ2n˛�

2n
� ˛:

In conclusion, for every real number ˛; there exists the sequence
�

Œ2n˛�

2n

�
n�1

with elements from A; which converges to ˛: Hence A is dense in R:

Otherwise, let .a; b/ be a nonempty interval of real numbers. The question
is whether there exists an element of A lying in .a; b/ : In other words, can we
find integers m; n; n � 1 so that

a <
m

2n
< b‹

This inequality is equivalent to

2na < m < 2nb;
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which we now prove. Indeed, first let us choose a positive integer n >

log2. 1
b�a /: Thus

2n >
1

b � a
) 2nb � 2na > 1:

Now the interval .2na; 2nb/ contains at least one integer, because its length is
greater than 1. Finally, if m is that integer, then

2na < m < 2nb ) a <
m

2n
< b ) m

2n
2 .a; b/ :

2. Let us consider real numbers a < b and prove that the interval .a; b/ contains

at least one element of A: Because lim
n!1

b � a

janj D 1; we can find n0 such that

b � a

jan0 j
> 1: The length of the interval

�
a

jan0 j
;

b

jan0 j
�

is greater than 1, so it

contains an integer m0 W
a

jan0 j
< m0 <

b

jan0 j
:

This means that

a < m0jan0 j < b;

so A is dense in R. In particular, for an D 1

2n
, we deduce that the set

nm

2n
j m 2 Z ; n 2 N

o

is dense in R.
3. a) The sequence an D .

p
2 � 1/n converges to zero; therefore the set

n
m � .

p
2 � 1/n j m 2 Z ; n 2 N

o

is dense in R, by the previous exercise. Now, there are integers an; bn such
that

.
p

2 � 1/n D an

p
2 C bn:

Indeed, using the binomial theorem, we have

.
p

2 � 1/n D
nX

kD0

.�1/k

�
n
k

�
.
p

2/n�k:
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Hence

m.
p

2 � 1/n D man

p
2 C mbn:

Because
n
p
p

2 C q j p; q 2 Z

o
�
n
m.

p
2 � 1/n j m 2 Z ; n 2 N

o
;

the conclusion follows. Note that we could also use the fact that A is
an additive subgroup of R, which is not cyclic because

p
2 62 Q. The

conclusion follows from a result discussed in the theoretical part of the text.
b) The sequence an D .

3
p

2 � 1/n converges to zero. Therefore the set

n
m � .

3
p

2 � 1/n j m 2 Z ; n 2 N

o

is dense in R. Now there are integers an; bn; cn such that

.
3

p
2 � 1/n D an

3
p

4 C bn
3

p
2 C cn:

Indeed, using the binomial theorem, we have

.
3

p
2 � 1/n D

nX
kD0

.�1/k

�
n
k

�
.

3
p

2/n�k:

Hence

m.
3

p
2 � 1/n D man

3
p

4 C mbn
3

p
2 C mcn:

Because
n
a

3
p

4 C b
3

p
2 C c j a; b; c 2 Z

o
�
n
m.

3
p

2 � 1/n j m 2 Z ; n 2 N

o
;

the conclusion follows.
4. If x 2 A; then �x 2 A: For ˛ > 0; note that

lim
n!1

�
Œ2n˛�

2n
� n

2Œ2n˛�

�
D ˛:

Thus for every real number ˛ > 0; the sequence

xn D Œ2n˛�

2n
� n

2Œ2n˛�
; n � 1

of elements from A converges to ˛: Since 0 2 A, we are done.



Solutions 119

5. We prove that for each " > 0; there is a positive integer t such that

jt � 2k�j < ";

for some integer k: Indeed, let us consider a positive integer N with 1=N < ":

Two of the N C 1 numbers f2s�g (where fxg denotes the fractional part of the
real number x), 1 � s � N C 1, must be in the same interval of the form

�
j

N
;

j C 1

N

�
; 0 � j � N � 1:

If these numbers are f2p�g and f2q�g, with 1 � p < q � N C 1, then the
absolute value of their difference is less than the length 1=N of each interval:

jf2p�g � f2q�gj <
1

N
< ":

Thus we have jt � 2k�j < " for either t D Œ2p�� � Œ2q�� and k D p � q, or
t D Œ2q�� � Œ2p�� and k D q � p (depending on which of these choices gives a
positive t).

Note that actually there are infinitely many pairs .t; k/ with positive integer t
and integer k such that jt�2k�j < " (because we can repeat the above reasoning
for N bigger and bigger) and that in these pairs t cannot assume only finitely
many values (we encourage the reader to think of the complete proof of these
statements); hence we can find such pairs .t; k/ (having all the above properties)
with t as large as we want.

Now we can find such a pair .t1; k1/ for " D 1, that is, with the property that

jt1 � 2k1�j < 1:

We then consider " D 1=2, and we pick a pair .t2; k2/, with t2 > t1, and such
that

jt2 � 2k2�j <
1

2
:

In general, if .tj; kj/ were found such that t1 < t2 < � � � < tn and

jtj � 2kj�j <
1

j

for every 1 � j � n, we can pick a pair .tnC1; knC1/ of integers (tnC1 being
positive) such that

jtnC1 � 2knC1�j <
1

n C 1
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and tnC1 > tn. Thus there exists a sequence .tn/n�1 of positive integers such that

jtn � 2kn�j <
1

n
;

with integers kn: Consequently,

lim
n!1 sin tn D 0

and finally, the set

fm sin tn j m 2 Z ; n 2 N
�g

is dense in R, by exercise 2. The conclusion follows because this is a subset of
the set fm sin n j m; n 2 Zg.

6. Let us suppose that x is rational, x D p

q
; where p; q are relatively prime integers.

In this case,

ffnxg j n 2 Ng D
	

0;
1

q
;

2

q
; : : : ;

p � 1

q




so this set cannot be dense in Œ0; 1� :

So assume that x is an irrational number. We need to prove that the set of
fractional parts of the numbers nx with positive integer n is dense in Œ0; 1�. We
first show that if � D infffnxg jn 2 N

�g, then � D 0.
Assume, to get a contradiction, that � > 0; thus we can find some positive

integer N such that

1

N C 1
� � <

1

N
:

We conclude that � < .�C1/=.N C1/ < 1=N; hence there exists a positive
integer k such that

1

N C 1
� � � fkxg <

� C 1

N C 1
<

1

N
:

It follows that 1 � .N C 1/fkxg < 1 C 1=N; therefore the integral part of
.N C 1/fkxg is 1. Thus we have

f.N C 1/kxg D f.N C 1/kx � .N C 1/Œkx�g
D f.N C 1/fkxgg
D .N C 1/fkxg � Œ.N C 1/fkxg�
D .N C 1/fkxg � 1 < �

D infffnxg jn 2 N
�g;
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which is clearly a contradiction. Note that this part of the proof does not require
the assumption that x is irrational (and, indeed, we have already seen that � D 0

in the case of rational x).
Now let 0 � a < b � 1 and consider a positive integer p such that p is small

enough in order that .b � a/=fpxg > 1. (Here is where we use the irrationality
of x, which implies that fnxg is never 0; hence we can find p with not only
fpxg < b � a but also with fpxg > 0.) Then, having length greater than 1, the
interval from a=fpxg to b=fpxg contains at least one integer m, for which we
have

0 � a < mfpxg < b � 1:

Thus 0 < mfpxg < 1; hence m is positive and fmpxg D mfpxg is between a
and b, finishing our proof. (Alternatively, one can proceed as in problem 2, by
considering a sequence of positive fractional parts fnkxg tending to 0, etc.)

This is actually a celebrated theorem of Kronecker (1884). Note that it also
implies the (already proved) result saying that if x is irrational, then Z C xZ is
dense in R. In fact, we can prove that, for a positive irrational number x, the set
fmx�n jm; n 2 N

�g is dense in R. Indeed, let us consider arbitrary real numbers
a and b, with a < b. Assume first that 0 < a < b, and choose a positive integer
p > b; we then have 0 < a=p < b=p < 1, and Kronecker’s theorem implies the
existence of some positive integer q with the property that a=p < fqxg < b=p,
so that a < pqx � pŒqx� < b, that is mx � n 2 .a; b/ for the positive integers
m D pq, and n D pŒqx� (n is positive because x > 0 and q can be chosen as big
as we want, for instance q > 1=x). Now if a and b are arbitrary real numbers
with a < b, there is a positive integer k such that 0 < a C k < b C k; thus
(according to what we just proved) there are positive integers m and n such that
a C k < mx � n < b C k; thus mx � .n C k/ is in .a; b/, which we had to prove.

7. Let 1 < a < b: Because

lim
m!1.bm � am/ D 1;

we can find m0 such that

bm0 � am0 > 1:

Further, the interval .am0 ; bm0 / contains at least one integer,

n0 2 .am0 ; bm0 / \ ZI

thus

am0 < n0 < bm0 , a < m0
p

n0 < b:
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Moreover, because am0 > 1; we can denote by k the smallest integer so that

1 C 1

2
C � � � C 1

k
> am0 :

But

bm0 > am0 C 1;

so

am0 < 1 C 1

2
C � � � C 1

k
< bm0

or

a <
m0

r
1 C 1

2
C � � � C 1

k
< b:

8. Let a; b 2 R; a < b: Let n0 be so that m > n0 implies

amC1 � am < b � a:

We have

lim
m!1.am � an0 / D 1;

so let m0 > n0 C 1 be the smallest integer with the property that

am0 � an0 > a:

Therefore am0�1 � an0 � a and

am0 � an0 D .am0 � am0�1/ C .am0�1 � an0 / < .b � a/ C a D b:

In conclusion, a < am0 � an0 < b:

9. The answer is yes. The sequence

an D 3
p

n; n � 1

has limit 1 and

lim
n!1.anC1 � an/ D 0:

Indeed,

lim
n!1.anC1 � an/ D lim

n!1
�

3
p

n C 1 � 3
p

n
�

D lim
n!1

1
3
p

.n C 1/2 C 3
p

n.n C 1/ C 3
p

n2
D 0:
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As we have proved, the set

A D fam � an j m; n 2 Ng D ˚
3

p
m � 3

p
n j m; n 2 N

�
is dense in R.

10. The answer is yes. The sequence

an D 1 C 1

2
C � � � C 1

n
; n � 1

is increasing, unbounded and

lim
n!1.anC1 � an/ D 0:

For all m > n, we have

am � an D 1

n C 1
C � � � C 1

m
:

As we have proved, the set

A D fam � an j m; n 2 Ng D
	

1

n C 1
C � � � C 1

m
j m; n 2 N ; m > n




is dense in RC.
11. For each real number x; consider two sequences of rational numbers .an/n�1

and .bn/n�1 converging to x such that

an � anC1 � x � bnC1 � bn;

for all positive integers n: The function g is monotone, say increasing; thus the
sequence .g.an//n�1 is increasing and bounded above:

g.an/ � g.x/:

Let l D lim
n!1 g.an/: On the other hand,

g.an/ D f .an/ ! f .x/;

because of continuity of f at xI thus l D f .x/: Analogously, we deduce

lim
n!1 g.an/ D lim

n!1 g.bn/ D f .x/:

By taking n ! 1 in the relations

g.an/ � g.x/ � g.bn/;



124 7 Density

we derive

f .x/ � g.x/ � f .x/;

so f D g:

12. We have

f

�
x C 2

n

�
D f

�
x C 1

n

�
D f .x/

and by replacing x with x � 2

n
;

f .x/ D f

�
x � 1

n

�
D f

�
x � 2

n

�
:

By induction,

f .x/ D f
�

x C m

n

�

for all integers m; n ¤ 0: For x D 0;

f
�m

n

�
D f .0/;

for all m 2 Z, n 2 N
�: The continuous function f is equal to the constant

function f .0/ on Q, so

f .x/ D f .0/;

for all reals x:

There is also another argument: we proved that a continuous, periodic,
nonconstant function has a minimum period. It is not this case, when f has

periods of the form
1

n
; for every positive integer n:

13. First, with x ! x C p
2 and so on, we obtain

f .x/ D f .x C p
2/ D f .x C 2

p
2/ D : : : ;

and with x ! x C p
3 and so on, we obtain

f .x/ D f .x C p
3/ D f .x C 2

p
3/ D : : :

so

f .x/ D f .x C m
p

2/ D f .x C n
p

3/;
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for all integers m; n: Moreover,

f .x C m
p

2 C n
p

3/ D f .x C m
p

2/ D f .x/

and for x D 0;

f
�

m
p

2 C n
p

3
�

D f .0/;

for all m; n 2 Z: It follows that f is constant because the set

fm
p

2 C n
p

3 j m; n 2 Zg

is dense in R (using the same argument as in exercise 3a).
14. Let 0 < a < b < 2: For each positive integer k; with

k >
1

b � a

�
2 � b2 � a2

4

�
;

the length of the interval

 �
k C a

2

�2

;

�
k C b

2

�2

� 1

!

is greater than 1, so at least one integer n lies in this interval. For such an n; we
have

�
k C a

2

�2

< n <

�
k C b

2

�2

� 1

) k C a

2
<

p
n <

p
n C 1 < k C b

2
:

Hence

a

2
<
˚p

n
�

<
b

2

and

a

2
<
np

n C 1
o

<
b

2
:

In conclusion,

a <
˚p

n
�C

np
n C 1

o
< b:
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15. The function

f W Œ1; 1/ \ Q ! R;

given by the formula

f .x/ D x C 1p
x2 C 1

is decreasing. The set M is the image of the function f : Let u; v 2 M; u < v be
of the form

u D m1 C n1q
m2

1 C n2
1

; v D m2 C n2q
m2

2 C n2
2

;

with m1 > n1 and m2 > n2: We can write

u D
m1

n1

C 1

s
m2

1

n2
1

C 1

; v D
m2

n2

C 1

s
m2

2

n2
2

C 1

or

u D f

�
m1

n1

�
; v D f

�
m2

n2

�
:

Hence from

m2

n2

�
m1

n1

C m2

n2

2
� m1

n1

we deduce that

w D f

0
B@

m1

n1

C m2

n2

2

1
CA 2 M

lies between u and v; because of the monotony of f :

16. Assume that bnC1 � bn < M: Let 0 < a < b: Choose an integer m such that

am <
b � a

M
:
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We can find an integer n such that

a

am
< bn <

b

am
;

because the situation

bk <
a

am
<

b

am
< bkC1

is not possible. Indeed, this would imply

bkC1 � bk >
b � a

am
> M;

which is a contradiction. In conclusion, a < ambn < b:

17. With the notation an D ln bn; we have lim an D 1 and

lim
n!1.anC1 � an/ D lim

n!1 ln
bnC1

bn
D 0:

As we have proved, the set

fam � an j m; n 2 Ng

is dense in R, so the set

	
bm

bn
j m; n 2 N




is dense in Œ0; 1/:

18. Let us define the sequence .bn/n�1 by the formula

bn D a1a2 � � � an:

We have

bnC1

bn
D a1a2 � � � ananC1

a1a2 � � � an
D anC1 > 1;

so the sequence .bn/n�1 is increasing. Then

lim
n!1

bnC1

bn
D lim

n!1 anC1 D 1I
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hence we have the hypothesis of the previous problem. Thus the set

A D
	

bm

bn
j m; n 2 N; n � 1




is dense in Œ0; 1/ and the conclusion follows if we take into account that

bm

bn
D a1a2 � � � am

a1a2 � � � an
D anC1anC2 � � � am:

19. The answer is yes. We will use problem 17 with the sequence

bn D 1 C 1p
2

C � � � C 1p
n

; n � 1:

As we know, the sequence .bn/n�1 is unbounded and is clearly increasing.
Moreover,

bnC1

bn
D 1 C 1

bn
p

n C 1
;

so
bnC1

bn
converges to 1. Hence the set

A D
	

bm

bn
j m; n 2 N; m; n � 1




is dense in Œ0; 1/: But for m > n; we have

bm

bn
D

�
1 C 1p

2
C � � � C 1p

n

�
C
�

1p
n C 1

C 1p
n C 2

C � � � C 1p
m

�

1 C 1p
2

C � � � C 1p
n

D 1 C
1p

n C 1
C 1p

n C 2
C � � � C 1p

m

1 C 1p
2

C � � � C 1p
n

:

Finally, if m > n are so that

bm

bn
2
�

1 C p
2007 � 1

2007
; 1 C p

2007 C 1

2007

�
;
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then by subtracting unity, we obtain

1p
n C 1

C 1p
n C 2

C � � � C 1p
m

1 C 1p
2

C � � � C 1p
n

2
�p

2007 � 1

2007
;
p

2007 C 1

2007

�
:

20. Surprisingly, the answer is yes. Indeed, take an to be the sequence of points in
space with all coordinates rational numbers and consider the balls Bn centered
at an and having radius 1

n . It is clear that any sequence .xn/n�1 with xn 2 Bn

for any n � 1 defines a dense subset of the space. But since a ball cannot be
covered by a finite number of planes, by induction, we can construct a sequence
xn 2 Bn such that xn is not on any plane determined by three of the points
x1; x2; : : : ; xn�1. This shows the existence of such a set.



Chapter 8
The Nested Intervals Theorem

It is well known that every monotone sequence of real numbers has a limit, finite or
infinite. If .xn/n�1 is increasing, then

lim
n!1 xn D sup

n�1

xn

(where it is possible for the supremum to be 1) and if .xn/n�1 is decreasing, then

lim
n!1 xn D inf

n�1
xn

(where the infimum can be �1). The monotone convergence theorem gives further
information, namely, that every bounded monotone sequence of real numbers is
convergent, i.e., it surely has a finite limit. The proof is based on the least upper
bound axiom, asserting that any nonempty bounded above set of real numbers has
a least upper bound. (Actually this statement is equivalent to the nested intervals
theorem that follows, and each of them expresses the completeness of the system of
real numbers.)

As a direct consequence of the monotone convergence theorem, we give the
following result. We note that if I D Œa; b� is a closed interval, then l.I/ D b � a
denotes the length of I:

The Nested Intervals Theorem. Let

I1 � I2 � � � � � In � � � � ;

be a decreasing sequence of closed intervals. Then

\

n�1

In ¤ ;:

© Springer Science+Business Media LLC 2017
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Moreover,
\

n�1

In is a singleton in case lim
n!1l.In/ D 0:

Proof. If In D Œan; bn�; n � 1; then from the inclusions

Œa1; b1� � Œa2; b2� � � � � � Œan; bn� � � � �

we deduce the inequalities

a1 � a2 � � � � � an � � � � � bn � � � � � b2 � b1:

Hence .an/n�1 is increasing and .bn/n�1 is decreasing. Let us denote

a D lim
n!1 an; b D lim

n!1 bn:

From an � bn, it follows a � b: Further, we will prove that
\

n�1

In D Œa; b�: If

z 2
\

n�1

In; then z 2 In ) an � z � bn for all integers n � 1: By taking n ! 1 in

the last inequality, we derive a � z � b; thus z 2 Œa; b�:

Conversely, if z 2 Œa; b�; then an � a � z � b � bn so an � z � bn; for all
integers n � 1 and then z 2

\

n�1

In:

For the second part, we have

lim
n!1.bn � an/ D 0;

so

lim
n!1an D lim

n!1bn D a:

Finally,
\

n�1

In D fag: Indeed, if x 2
\

n�1

In; then an � x � bn for all n � 1, and for

n ! 1; we deduce a � x � a; which is x D a. �

This theorem is an important tool to establish some basic results in mathematical
analysis, as we can see below.

Problem. Let f W Œa; b� ! R be a continuous function. If f .a/f .b/ � 0; prove
that there exists c 2 Œa; b� such that f .c/ D 0:

Solution. Let us consider the decomposition

Œa; b� D
�

a;
a C b

2

�
[

�
a C b

2
; b

�
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and denote by I1 D Œa1; b1� one of the intervals

�
a;

a C b

2

�
or

�
a C b

2
; b

�
such that

f .a1/f .b1/ � 0:

If the

Ik D Œak; bk�; 1 � k � n � 1

are already defined, then let In D Œan; bn� be one of the intervals

�
an�1;

an�1 C bn�1

2

�
or

�
an�1 C bn�1

2
; bn�1

�

such that f .an/f .bn/ � 0: Inductively, we defined the decreasing sequence .In/n�1

of closed intervals with l.In/ D b � a

2n
and

f .an/f .bn/ � 0; (8.1)

for all n � 1: Let fcg D
\

n�1

In: As we proved, an ! c and bn ! c: If we take

n ! 1 in (8.1), we get that .f .c//2 � 0; because of the continuity of f :

In conclusion, f .c/ D 0. �

In fact, this is basically a proof of the following:

Theorem (Cauchy-Bolzano). Let I � R be an interval. Then any continuous
function f W I ! R has the intermediate value property.

Proof. We have to show that for any a; b 2 I and for each � between f .a/ and
f .b/; we can find c between a and b such that f .c/ D �:

We assume that a < b; without loss of generality. The function g.x/ D f .x/ � �

is continuous on Œa; b�, and, from the bounds on �, g.a/g.b/ � 0: Consequently,
g.c/ D 0 for some c 2 Œa; b�. �

Cauchy-Bolzano’s theorem has many other interesting proofs. We present here a
proof of this theorem using the compactness of Œa; b�:

Assume, by way of contradiction, that the continuous function g W Œa; b� ! R

takes the values g.a/ and g.b/ of opposite signs and g.x/ ¤ 0; for all x in Œa; b�: For
each x 2 Œa; b�, we have g.x/ ¤ 0; so there is an open interval Ix 3 x such that g has
the same sign as g.x/ on Ix \ Œa; b�:

The family .Ix/x2Œa;b� is an open cover for the compact set Œa; b�: Consequently,
there are

x1; x2; : : : ; xn 2 Œa; b�

such that

Ix1 \ Ix2 \ � � � \ Ixn � Œa; b�:
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Assume that

x1 < x2 < � � � < xn;

so the intervals

Ix1 ; Ix2 ; : : : ; Ixn

are denoted from left to right. In particular, a 2 Ix1 and b 2 Ixn :

The function g keeps the same sign on Ix1 \ Œa; b� and Ix2 \ Œa; b�.
Because Ix1 \ Ix2 ¤ ;; g will keep the same sign on .Ix1 [ Ix2 / \ Œa; b� :

Inductively, g keeps the same sign on

.Ix1 [ Ix2 [ � � � [ Ixk / \ Œa; b� ;

for each 1 � k � n: In particular, g keeps the same sign on

.Ix1 [ Ix2 [ � � � [ Ixn/ \ Œa; b� D Œa; b�;

which contradicts the fact that g.a/ and g.b/ have opposite signs.
Moreover, we know that continuous functions transform connected sets into

connected sets. The interval Œa; b� is connected, so g.Œa; b�/ is connected. This
remark can be another proof of the Cauchy-Bolzano theorem. �

The next application is the following fixed point result:

Theorem (Knaster). Any increasing function f W Œa; b� ! Œa; b� has at least one
fixed point.

Proof. We have f .a/ � a and f .b/ � b: If

f

�
a C b

2

�
� a C b

2
;

then put a1 D a, b1 D a C b

2
: In case

f

�
a C b

2

�
>

a C b

2
;

we put a1 D a C b

2
, b1 D b: Either way, for the interval I1 D Œa1; b1�, we have

f .a1/ � a1; f .b1/ � b1:
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By induction, we can define the decreasing sequence In D Œan; bn�; n � 1 of closed
intervals with

l.In/ D b � a

2n

and

f .an/ � an; f .bn/ � bn; (8.2)

for all n � 1: Let c be the common limit of .an/n�1 and .bn/n�1: If we take n ! 1 in

an � f .an/ � f .bn/ � bn;

we derive

lim
n!1f .an/ D lim

n!1f .bn/ D c:

Further, by the monotonicity of f and from the inequalities

an � c � bn;

we deduce

f .an/ � f .c/ � f .bn/:

Finally, for n ! 1; we have c � f .c/ � c; that is, f .c/ D c. �

Let us try to extend the lemma of the nested intervals to higher dimensions. Let
us recall first some basic facts about the topology of Rn. By definition, a set A � R

n

is open if for all x 2 A, there exists r > 0 such that B.x; r/ � A. Here, B.x; r/ is the
open ball centered at x and having radius r, that is, the set

fy 2 R
n j kx � yk < rg;

where kxk D
q

x2
1 C � � � C x2

n is the Euclidean norm. A is called closed if Rn n A

is open. The interior of a set A is the largest open set contained in A. If Int.A/

denotes the interior of A, then x 2 Int.A/ if and only if there exists r > 0 such that
B.x; r/ � A. Finally, if A is bounded, the diameter of A is defined by

diam.A/ D sup
x;y2A

kx � yk:

A famous theorem asserts that for a subset A of Rn, the following statements are
equivalent:
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1) A is compact, that is if A �
[

i2I

Oi, where Oi are open sets and I is an arbitrary

set, then there exists a finite subset J of I such that A �
[

i2J

Oi.

2) A is closed and bounded;
3) Any sequence whose terms are in A has a subsequence converging to an element

of A.

We will not prove this theorem here, but will use it to generalize the lemma of the
nested intervals:

Theorem. Let .Kn/n�1 be a decreasing sequence of nonempty compact sets.

Then
\

n�1

Kn is nonempty and moreover, if lim
n!1 diam.Kn/ D 0, then

\

n�1

Kn is a

singleton.

Let us briefly present the proof. Choose a sequence xn 2 Kn and observe that
all its terms lie in the compact set K1. Thus it has a subsequence .xnk /k�1 which
converges to a certain x 2 K1. Observe that xnk 2 Kp for all k � p (because nk �
k � p, thus xnk 2 Knk � Kp), thus x 2 Kp, too (because Kp is closed). Because p

was arbitrary, x 2
\

p�1

Kp, and the first part is proved. The second part is obvious: if

a ¤ b 2
\

n�1

Kn, then

diam.Kn/ � ka � bk; 8 n � 1

thus passing to the limit, a D b, a contradiction. �
We end this theoretical part with a very useful result called Baire’s theorem. It has

a very easy statement, but the consequences are striking.

Theorem (Baire).

1) Let .Fn/n�1 be a sequence of closed sets in R
d, each of them having empty

interior. Then
[

n�1

Fn also has empty interior.

2) Let .On/n�1 be a sequence of dense open sets in R
d. Then

\

n�1

On is also dense.

Observe that it is enough to prove just the second assertion because the first one
is obtained by considering On D R

d nFn. So, let us fix an open ball B.x; r/ and let us
prove that

\

n�1

On intersects this ball. Because O1 is dense in R
d, it intersects B.x; r/

and because it is open, there is a closed ball B.x1; r1/ � B.x; r/ \ O1. Because O2 is

dense in R
d and open, there is r2 � r1

2
and x2 such that the closed ball B.x2; r2/ �

B.x1; r1/\O2. Inductively, we construct xn and rnC1 � rn

2
such that B.xnC1; rnC1/ �

B.xn; rn/ \ OnC1.



8 The Nested Intervals Theorem 137

Now, kxnC1 � xnk � rn � r1

2n�1
, thus

X

n�1

.xnC1 � xn/ is absolutely convergent,

thus convergent. This implies that xn converges to a certain � 2 R
d. It is immediate

to see that � 2
0

@
\

n�1

On

1

A \ B.x; r/, which finishes the proof of the theorem. �

Actually, using exactly the same idea (except for the argument showing that xn

converges) one can show that we can replace Rd by any complete metric space. Here
is a beautiful application, for which you can find another solution by studying the
proposed problems.

Problem. Prove that there is no function f W R ! R which is continuous exactly
at the rational numbers.

Solution. We will prove first that the set of points where a function is continuous
is a countable intersection of open sets. Indeed, let us define

!.f ; x/ D inf
r>0

sup
a;b2.x�r;xCr/

jf .a/ � f .b/j

and On D
�

x 2 R j !.f ; x/ <
1

n

�
.

We claim that f is continuous precisely on
\

n�1

On. Indeed, it is pretty clear that f

is continuous at x if and only if !.f ; x/ D 0 (just use the definition of continuity and
the triangle inequality).

Now, we prove that each On is open. Let x 2 On and let r > 0 be such that

sup
a;b2.x�r;xCr/

jf .a/ � f .b/j <
1

n
:

Clearly, there is ı > 0 such that if jx � yj < ı, then

�
y � r

2
; y C r

2

	
� .x � r; x C r/;

thus

sup
a;b2.y� r

2 ;yC r
2 /

jf .a/ � f .b/j � sup
a;b2.x�r;xCr/

jf .a/ � f .b/j <
1

n

and so !.f ; y/ <
1

n
. This shows that .x � ı; x C ı/ � On and so On is open.
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Finally, suppose that Q D
\

n�1

On, where On are open sets. Then

R n Q D
[

n�1

.R n On/ ) R D
[

x2Q
fxg [

[

n�1

.R n On/:

Because fxg and R n On are closed sets, using Baire’s theorem, we deduce that
either some fxg or some R n On has nonempty interior. The first case is clearly
impossible. The second case would imply that R n Q has nonempty interior, that is,
Q is not dense in R, which is again impossible. �

Proposed Problems

1. Let .xn/n�1 be a sequence of real numbers such that xnC2 lies between xn and
xnC1; for each integer n � 1: If xnC1 � xn ! 0; as n ! 1; prove that .xn/n�1

is convergent.
2. Prove that the interval Œ0; 1� is not a countable set, using the lemma of the nested

intervals.
3. Consider a continuous function g W Œa; b� ! R, with g.a/ � g.b/ and f W

Œa; b� ! Œg.a/; g.b/� increasing. Prove that there exists c 2 Œa; b� such that
f .c/ D g.c/:

4. Is there a function f W Œ0; 1� ! R with the property that

lim
x!a

jf .x/j D 1;

for all rational numbers a from Œ0; 1�‹

5. Let f W Œ0; 1� ! Œ0; 1/ be an integrable function such that f � 0 and

Z 1

0

f .x/ dx D 0:

Prove that there is c in Œ0; 1� with f .c/ D 0: Deduce that the set of zeroes of the
function f is dense in Œ0; 1� :

6. Let f ; g W Œa; b� ! R be two functions whose continuity sets are dense in Œ0; 1�:

Prove that there exists z in Œa; b� such that f and g are both continuous at z.
(By the continuity set of a function f , denoted Cf we mean the set of all points
x such that f is continuous at x).

7. It is well known that the Riemann (or Thomae) function is continuous at every
irrational point and it is discontinuous at every rational point.

(a) Does there exist a function s W Œ0; 1� ! R which is continuous at every
rational point from Œ0; 1� and discontinuous at every irrational point from
Œ0; 1� ‹

(b) Is there any continuous function f W R ! R that maps the rational numbers
to irrationals and vice versa?
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8. (a) Find a function f W R ! RC with the property:

any x 2 Q is a point of strict local minimum of f : (*)

(b) Find a function f W Q ! RC with the property that every point is a point of
strict local minimum and f is unbounded on any set Q\I, with I an interval
(that is not reduced to one single point).

(c) Let f W R ! RC be a function unbounded on any set Q \ I (with I an
interval). Prove that f does not have the property (*).

9. Let f W R ! R be a continuous function with the property that lim
n!1 f .nx/ D 0

for all x 2 R. Prove that lim
x!1 f .x/ D 0:

10. Let f W Œ0; 1� ! Œ0; 1� be a continuous function with the property that

0 2 fx; f .x/; f .f .x//; f .f .f .x///; : : :g

for all x 2 Œ0; 1�. Prove that f n is identically 0 for some n.
11. Prove Lagrange’s mean value theorem by using the nested intervals theorem.

Solutions

1. Let In be the closed interval with extremities at xn and xnC1: The length of the
interval In is equal to jxnC1 � xnj ; so

lim
n!1 l.In/ D lim

n!1 jxnC1 � xnj D 0:

From the fact that xnC2 lies between xn and xnC1; it follows that InC1 � In; so
the sequence .In/n�1 of closed intervals is decreasing. We can therefore find a
real ˛ such that

\

n�1

In D f˛g :

Moreover, the sequence .xn/n�1 is convergent to ˛; as the sequence of the
extremities of intervals In; n � 1:

2. Let us assume, by way of contradiction, that

Œ0; 1� D fxn j n 2 N; n � 1g :

Let I1 be one of the intervals

�
0;

1

3

�
;

�
1

3
;

2

3

�
;

�
2

3
; 1

�
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for which x1 … I1: Further, we divide the interval I1 into three equal closed
intervals and denote by I2 one of them so that x2 … I2: In a similar way, we can
inductively define a decreasing sequence of closed intervals

I1 � I2 � I3 � : : : � In � : : :

such that xn … In; for all integers n � 1: The length of the intervals tends to zero
as n ! 1;

l.In/ D 1

3n
;

so all intervals have a unique common point, say

\

n�1

In D fcg :

Because c 2 Œ0; 1�; we can find an integer k � 1 so that c D xk: But xk … Ik; so

xk …
\

n�1

In;

which is a contradiction. In conclusion, Œ0; 1� is not countable.
3. We have f .a/ � g.a/ and f .b/ � g.b/: If

f

�
a C b

2

�
� g

�
a C b

2

�
;

then put

a1 D a; b1 D a C b

2
:

In case

f

�
a C b

2

�
> g

�
a C b

2

�
;

we put

a1 D a C b

2
; b1 D b:

Either way, for the interval I1 D Œa1; b1� we have

f .a1/ � g.a1/; f .b1/ � g.b1/:
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By induction, we can define the decreasing sequence In D Œan; bn�, n � 1 of
closed intervals with

l.In/ D b � a

2n

and

f .an/ � g.an/; f .bn/ � g.bn/; (8.2)

for all n � 1: Let c be the common limit of .an/n�1 and .bn/n�1: If we take
n ! 1 in

g.an/ � f .an/ � f .bn/ � g.bn/;

we derive

lim
n!1f .an/ D lim

n!1f .bn/ D g .c/ :

Further, by the monotonicity of f and from the inequalities an � c � bn; we
deduce

f .an/ � f .c/ � f .bn/:

Finally, for n ! 1; we have g .c/ � f .c/ � g.c/; which is f .c/ D g.c/:

4. The answer is no. Because

lim
x!1=2

jf .x/j D 1;

we can find a closed neighborhood I1 of 1=2 for which jf .x/j > 1; for all
x 2 I1 n ˚

1
2



: Now, if we take a rational number r1 in the interior of I1 n ˚

1
2



;

then from

lim
x!r1

jf .x/j D 1;

we deduce the existence of a closed neighborhood I2 of r1; say I2 � I1 and

l.I2/ <
1

2
l.I1/

such that jf .x/j > 2; for all x 2 I2 n fr1g : Inductively, we can construct a
decreasing sequence of closed intervals .In/n�1 with

l.In/ <
1

2n�1
l.I1/
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such that for each n � 1; jf .x/j > n; for all x 2 In n frng : If c is the common
point of all intervals In; n � 1; then we must have

jf .c/j > n;

for all n � 1; which is impossible.
5. For each " > 0, there is a closed interval denoted I."/ for which f .x/ < "; for

all x 2 I."/: Assuming the contrary, then there exists "0 > 0 with the following
property: for every interval I � Œ0; 1�; we can find x 2 I such that f .x/ � "0:

Then for every partition .xk/0�k�n of Œ0; 1�, we choose �k 2 Œxk�1; xk� so that
f .�k/ � "0: Now we can find a sequence of partitions with norm converging to
zero for which the Riemann sums

��.f ; �k/ D
nX

kD1

f .�k/.xk � xk�1/ �
nX

kD1

"0.xk � xk�1/ D "0:

Therefore

Z 1

0

f .x/ dx � "0 > 0;

which is a contradiction. Thus, the assertion we made is true. Now let I1 �
Œ0; 1�; I1 D Œa1; b1� be such that f .x/ < 1; for all x 2 I1: Hence

0 �
Z b1

a1

f .x/ dx �
Z 1

0

f .x/ dx D 0;

so

Z b1

a1

f .x/ dx D 0:

We can apply the assertion for the restriction f jI1 : Indeed, there exists a closed
interval I2 � I1 so that f .x/ < 1

2
; for all x 2 I2: By induction, we can find

a decreasing sequence .In/n�1 of closed intervals for which f .x/ < 1
n ; for all

x 2 In: Finally, if c is a common point of all intervals In; n � 1; then

0 � f .c/ <
1

n
;

for all n � 1; so f .c/ D 0:

Next, let Œa; b� � Œ0; 1� and define the restriction

f jŒa;b� W Œa; b� ! R
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of the function f : Because f jŒa;b� � 0; it follows that

0 �
Z b

a
f .x/ dx �

Z 1

0

f .x/ dx D 0;

so

Z b

a
f .x/ dx D 0:

According to the first part of the problem, there exists c 2 Œa; b� so that
f .c/ D 0: In conclusion, f has a zero in every interval Œa; b� � Œ0; 1� :

6. We have to prove that Cf \Cg ¤ ;: Let x0 2 Cf \ .a; b/: From the continuity of
f at x0; we can find a closed interval x0 2 I0 � .0; 1/; with l.I0/ > 0 for which

x; y 2 I0 ) jf .x/ � f .y/j < 1:

Indeed, I0 can be taken with the property that

x 2 I0 ) jf .x/ � f .x0/j <
1

2
:

In this way, for any x; y 2 I0; we have

jf .x/ � f .y/j � jf .x/ � f .x0/j C jf .y/ � f .x0/j <
1

2
C 1

2
D 1:

Further, let x1 2 Cg \ I0: Similarly, we can find a closed interval x1 2 I1 �
I0; l.I1/ > 0 for which

x; y 2 I1 ) jg.x/ � g.y/j < 1:

We also have

jf .x/ � f .y/j < 1; jg.x/ � g.y/j < 1;

for all x; y 2 I1: By induction, we can define a decreasing sequence .In/n�1 of
closed intervals, with l.In/ ! 0 as n ! 1; such that

jf .x/ � f .y/j <
1

2n�1
; jg.x/ � g.y/j <

1

2n�1
;

for all x; y 2 In: If fcg D
\

n�1

In; then obviously c 2 Cf \ Cg:
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7. We denote by r both the Riemann (or Thomae) function, given by r.x/ D 0 if x
is irrational, and r.x/ D 1=q if x is rational, written x D p=q in its lowest terms
(that is, p and q are relatively prime integers, and q > 0), and its restriction
to the interval Œ0; 1�. The restriction is used in the first part and the function
defined on the entire set of the reals—in the second.

For (a) the answer is no. If such a function s exists, then the continuity set of
s is dense in Œ0; 1� ; Cs D Q \ Œ0; 1� : Consider here also the Riemann function
r with the continuity set

Cr D .R n Q/ \ Œ0; 1� :

Now we have the functions r; s W Œ0; 1� ! R with the continuity sets dense
in Œ0; 1� ;

Cr D Cs D Œ0; 1� :

According to the previous problem, there exists a point z 2 Cr \ Cs: This is
impossible, because the following relations are contradictory:

z 2 Cr , z 2 .R n Q/ \ Œ0; 1�

and

z 2 Cs , z 2 Q \ Œ0; 1� :

For (b) the answer is still no. Suppose, on the contrary, that f W R ! R is
continuous and has the property that f .x/ is an irrational (respectively rational)
number whenever x is rational (respectively irrational). Let r be Riemann’s
function defined on the entire set of reals. Thus r is continuous (and takes
value 0) exactly at the irrational points. Let g D r ı f and note that g is also
continuous at every rational point q (as q is transformed by f into an irrational
point, at which r is continuous). On the other hand, let i be any irrational
number, and assume that g is continuous at i. If .qn/n�1 is a sequence of rational
numbers with limit i, we must have

g.i/ D lim
n!1 g.qn/ , r.f .i// D lim

n!1 r.f .qn// D 0

(because each f .qn/ is irrational); hence f .i/ has to be irrational—which is not
true. Thus, the function g is not continuous at i—consequently, g is continuous
precisely at the rational points. Now the existence of r and g (actually of their
restrictions to Œ0; 1�) is contradictory—the contradiction being the same as in
part (a) of the problem; therefore such a function f cannot exist.
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8. (Claudiu Raicu) For (a), we could define

f .x/ D

8
ˆ̂<

ˆ̂:

0; x D 0

1 � 1

q
; x D p

q
2 Q

�

1; x 2 R n Q:

;

where we write p=q for a fraction in its lowest terms, as defined in the statement
of problem 7. Actually, one sees that this is 1 � r, for r defined in that
problem, too.

Similarly, for (b) it is enough to choose

f

�
p

q

�
D

�
q; p ¤ 0

0; p D 0
:

Let us now solve (c). Suppose, by way of contradiction, that such a function
exists. Let

I0 � I1 � I2 � : : : � In�1;

such that f .Ik/ � Œk; 1/ for k D 1; 2; : : : ; n � 1. Then there is some xn 2
Q\In�1 with f .xn/ � n and consider a segment In � In�1 such that f .xn/ � f .x/

for all x 2 In. Such In exists because xn is a point of local minimum. Then,
f .In/ � Œn; 1/. We can continue inductively to construct a sequence

I0 � I1 � I2 � : : :

such that f .Ik/ � Œk; 1/ for all k. If

x 2
1\

kD0

Ik;

then f .x/ � k for all k, a contradiction.
9. Suppose, by way of contradiction, that the conclusion is false. Then there is a

sequence xn ! 1 such that

lim
n!1 f .xn/ D l ¤ 0:

Suppose, without loss of generality, that l > 0 and let 0 < � < l. Then there is
N 2 N such that f .xn/ > � for all n � N. By continuity, it follows that for every
n � N, there is a closed interval In D Œ˛n; ˇn� 3 xn such that f .x/ > � for all
x 2 In.
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We will prove that there is x 2 R such that fnx W x 2 Rg \ Ik ¤ ; for
infinitely many k 2 N. Clearly we can assume, without loss of generality, that
ˇn � ˛n ! 0.

We will build inductively a sequence of closed intervals .Ikn/n�1 as follows.
Choose k1 arbitrarily. Consider kn fixed. It is easily checked using ˇn � ˛n ! 0

and ˛n; ˇn ! 1 that for large enough knC1, there is Mn 2 N such that
ŒMn˛kn ; Mnˇkn � 	 Œ˛knC1

; ˇknC1
�. So, let us choose knC1 with this property. By

the construction,

Œ˛k1 ; ˇk1 � 	
�

˛k2

M1

;
ˇk2

M1

�
	

�
˛k3

M1M2

;
ˇk3

M1M2

�
	 � � �

)
1\

nD1

"
˛knQn�1
1 Mi

;
ˇknQn�1
1 Mi

#
¤ ;:

Then, for x from this set, we see that, in fact, fnx W x 2 Rg\Ik ¤ ; for infinitely
many k, which contradicts the fact that lim

n!1 f .nx/ D 0 since f .nx/ > � for

infinitely many n 2 N. Hence, our supposition was false and the problem is
solved.

Note that this problem (called Croft’s lemma) was also discussed in
Chapter 1. The reader might be interested to compare two wordings of
(basically) the (same) solution.

10. It is clear that f .0/ D 0 and f .x/ < x for all x > 0. There are 2 possible cases.
First Case. There is some 	 > 0 such that f .x/ D 0 for all x 2 Œ0; 	�. Then,

for all x, there is some open interval V.x/ 3 x and some n.x/ such that

f n.x/.V.x// � Œ0; 	�:

Let x1; x2; : : : ; xp such that

V.x1/ [ V.x2/ [ : : : [ V.xp/ 	 Œ0; 1�:

Then it is clear that for

n D 1 C max
1�i�p

n.xi/; f n 
 0:

Second Case. We build inductively a sequence In D Œan; bn� with the properties:

f .x/ > 0; 8x 2 In and bnC1 < max
x2In

f .x/

The construction is clear due to the hypothesis of the second case. Let us define

Kn D ˚
x 2 I1 W f .x/ 2 I2; : : : ; f n�1.x/ 2 In



:
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We obviously have Kn ¤ ; and Kn 	 KnC1. Since Kn is compact, we have

x 2
\

n

Kn:

For such x,

0 … fx; f .x/; f .f .x//; f .f .f .x///; : : :g;

which is a contradiction, hence the second case is impossible.
11. Let f W Œa; b� ! R be a continuous function, differentiable on .a; b/. We intend

to prove that there exists c 2 .a; b/ such that R.a; b/ D f 0.c/, where we define,
for all x; y 2 Œa; b�, x ¤ y,

R.x; y/ D f .x/ � f .y/

x � y
:

We also let

R.x; x/ D f 0.x/

for every x 2 .a; b/. To begin, we note the following properties of the
function R.

First, R is continuous at any point where it is defined, by the continuity of f
and by the definition of derivative at points .x; x/, x 2 .a; b/. It follows that, if
we fix some ˛ 2 .a; b/, the function x 7! R.˛; x/ is continuous at every point
of Œa; b�.

We also have that, for all x < y < z in Œa; b�, R.x; z/ is between R.x; y/ and
R.y; z/. This is because

R.x; z/ D y � x

z � x
R.x; y/ C z � y

z � x
R.y; z/ D .1 � t/R.x; y/ C tR.y; z/

with t D .z � y/=.z � x/ 2 .0; 1/. This is an almost trivial identity (isn’t it?) but
it becomes critical in this proof of Lagrange’s theorem (due, as far as we know,
to the Romanian mathematician Dimitrie Pompeiu). Note that if two of R.x; y/,
R.y; z/, and R.x; z/ are equal, then all three are equal. Of course, R.x; y/ D
R.y; x/ holds for every distinct x; y 2 Œa; b�.

And now for the proof. If we have R.a; x/ D R.x; b/ for all x 2 .a; b/,
then R.a; x/ D R.x; b/ D R.a; b/ and f .x/ D R.a; b/.x � a/ C f .a/, hence
f 0.x/ D R.a; b/ for all x 2 .a; b/, and there is nothing left to prove. Thus
we can assume that there is such u 2 .a; b/ with R.a; u/ ¤ R.u; b/, say with
R.u; a/ D R.a; u/ < R.u; b/. Because the function x 7! R.u; x/ is continuous
and R.a; u/ < R.a; b/ < R.u; b/, there exists v 2 .a; b/ such that R.a; b/ D
R.u; v/. If v D u, this means R.a; b/ D R.u; u/ D f 0.u/ and the proof ends
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here. Otherwise, we have an interval I1 D Œa1; b1� (with fa1; b1g D fu; vg) such
that a < a1 < b1 < b and R.a; b/ D R.a1; b1/.

Now let a0
2 D .a1 C b1/=2 and look at R.a1; a0

2/ and R.a0
2; b1/. If they

are equal, then (as we noticed above), we also have R.a1; b1/ D R.a1; a0
2/ D

R.a0
2; b1/; in this case, we consider the interval I2 D Œa2; b2� to be one of the

intervals Œa1; a0
2�, Œa0

2; b1� (it doesn’t matter which). Observe that I2 is included
in I1, has length half the length of I1, and has the property that R.a; b/ D
R.a1; b1/ D R.a2; b2/. If not, then R.a1; b1/ is strictly between R.a1; a0

2/ and
R.a0

2; b1/, and, since the function x 7! R.a0
2; x/ is continuous, there must be

some b0
2 2 .a1; b1/ such that R.a1; b1/ D R.a0

2; b0
2/. If a0

2 D b0
2, the proof ends

here, because R.a; b/ D R.a1; b1/ D R.a0
2; a0

2/ D f 0.a0
2/. Otherwise, we just

built an interval I2 D Œa2; b2� which is included in I1, has length at most half the
length of I1, and which is such that R.a; b/ D R.a1; b1/ D R.a2; b2/. Of course,
a2 and b2 are (in the second case) a0

2 and b0
2 in increasing order.

Clearly, this process can be iterated in order to get a sequence of nested
compact intervals I1 � I2 � � � � such that each InC1 D ŒanC1; bnC1� is included
in In D Œan; bn�, has length at most half the length of In, and also, we have
R.a; b/ D R.a1; b1/ D � � � D R.an; bn/ D � � � . (If at some moment we get
an D bn, the proof ends because this means R.a; b/ D f 0.an/. Otherwise the
process continues indefinitely.) Moreover, the first interval is included in .a; b/

(and, consequently, all of them are). This means that the common point c of all
intervals In is in .a; b/, too. As l.InC1/ � .1=2/l.In/ for all n, the sequence of
lengths of intervals goes to zero; therefore we have

lim
n!1 an D lim

n!1 bn D c

and, finally,

R.a; b/ D lim
n!1 R.an; bn/ D R.c; c/ D f 0.c/:

Note that this (rather complicated) proof shows that Lagrange’s theorem can be
obtained with very little knowledge on derivatives (basically, only the definition
of the derivative is needed). Thus we can obtain other theorems (such as Rolle’s
theorem) using a method different from the usual one, and we can obtain the
equivalence of the important theorems in the analysis on the real line.



Chapter 9
The Splitting Method and Double Sequences

We use here the splitting method to establish some useful convergence results. The
splitting method is a useful tool to compute the limits of certain sequences of real
numbers, whose general form is a sum sn of n terms, which do not behave in the
same way. In fact, this method consists of decomposing the sum sn into two sums,
which are analyzed separately, using different methods in general, adapted to the
behavior of the terms composing them. We give first some examples of problems
which use the splitting method and then some general results, with lots of practical
applications.

The next problem is typical for this type of argument and was discussed in the
Jury of the Romanian Mathematical Olympiad, 2002.

Problem. Let f W Œ0; 1/ ! Œ0; 1/ be continuous, with lim
x!1 f .x/ D 0: Prove that

lim
n!1

�Z 1

0

f n.x/dx C
Z 2

1

f n�1.x/dx C � � � C
Z n

n�1

f .x/dx

�
D 0:

(Here, f k.x/ denotes .f .x//k.)

Solution. Let M 2 .0; 1/ satisfy f .x/ � M, for all real numbers x 2 Œ0; 1/: Let
us see why such an M exists: there exists some n such that if x > n, then f .x/ < 1

2
.

On the other hand, f has a maximum M1 < 1 on Œ0; n� because it is continuous. Thus
M D max.M1; 0:5/ is a possible choice. Let us take " > 0; actually " < 1=2, and
consider a rank k for which f .x/ < � for all x 2 Œk; 1/: We have the decomposition

zn D
Z 1

0

f n.x/dx C
Z 2

1

f n�1.x/dx C � � � C
Z n

n�1

f .x/dx

D
�Z 1

0

f n.x/dx C
Z 2

1

f n�1.x/dx C � � � C
Z k

k�1

f nC1�k.x/dx

�
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C
�Z kC1

k
f n�k.x/dx C

Z kC2

kC1

f n�k�1.x/dx C � � � C
Z n

n�1

f .x/dx

�
:

First,

Z 1

0

f n.x/dx C
Z 2

1

f n�1.x/dx C � � � C
Z k

k�1

f nC1�k.x/dx

� Mn C Mn�1 C � � � C MnC1�k <
MnC1�k

1 � M
:

Further, lim
n!1

MnC1�k

1 � M
D 0; so we can find a rank n1 for which

Z 1

0

f n.x/dx C
Z 2

1

f n�1.x/dx C � � � C
Z k

k�1

f nC1�k.x/dx < "; 8 n � n1:

On the other hand,

Z kC1

k
f n�k.x/dx C

Z kC2

kC1

f n�k�1.x/dx C � � � C
Z n

n�1

f .x/dx

< "n�k C � � � C "2 C " <
"

1 � "
< 2";

so

Z kC1

k
f n�k.x/dx C

Z kC2

kC1

f n�k�1.x/dx C � � � C
Z n

n�1

f .x/dx < 2":

Finally, by adding the previous inequalities, we obtain zn < 3", 8 n � n1; so the
problem is solved. �

The reader will immediately be convinced that the following problem is not an
easy one. However, it becomes much more natural in the framework of the splitting
method.

Problem. Prove that

lim
n!1

1n C 2n C 3n C � � � C nn

nn
D e

e � 1
:

Solution. If we write the sequence starting with the last term, we obtain

an D
�n

n

�n C
�

n � 1

n

�n

C
�

n � 2

n

�n

C � � � C
�

2

n

�n

C
�

1

n

�n
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or

an D 1 C
�

1 � 1

n

�n

C
�

1 � 2

n

�n

C � � � C
�

1 � n � 2

n

�n

C
�

1 � n � 1

n

�n

:

Now we can see that the sequence .an/n�1 is closely related to the limit

lim
n!1

�
1 C e�1 C e�2 C � � � C e�n

	 D e

e � 1
:

More precisely, using first the inequality
�

1 � k

n

�n

< e�k;

we deduce that

an < 1 C e�1 C e�2 C � � � C e�nC1 <
1

1 � e�1
;

or an <
e

e � 1
, 8 n � 1:

On the other hand, for all integers n > k � 1; we have

an � 1 C
�

1 � 1

n

�n

C
�

1 � 2

n

�n

C � � � C
�

1 � k

n

�n

:

If we consider now the inferior limit with respect to n; we obtain

lim inf
n!1 an � lim inf

n!1

�
1 C

�
1 � 1

n

�n

C
�

1 � 2

n

�n

C � � � C
�

1 � k

n

�n�

D 1 C e�1 C e�2 C � � � C e�k;

so

lim inf
n!1 an � 1 C e�1 C e�2 C � � � C e�k;

for all positive integers k: Further, by taking the limit as k ! 1 in the last inequality,
we infer that

lim inf
n!1 an � e

e � 1
:

Now the conclusion follows from the inequalities:

e

e � 1
� lim inf

n!1 an; an <
e

e � 1
: �
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Here is another typical application of the splitting method:

Problem. Let .an/n�1 be a decreasing sequence of real numbers with

lim
n!1 an D 1:

Prove that the sequence with general term bn D
�
1 C a1

n

� �
1 C a2

n

�
� � �
�
1 C an

n

�
converges to e.

Solution. Let us consider the term

bkCm D
�

1 C a1

k C m

��
1 C a2

k C m

�
� � �
�

1 C ak

k C m

�
� � �

� � �
�

1 C akC1

k C m

�
� � �
�

1 C akCm

k C m

�
:

The product of the first k factors can be estimated as follows:

�
1 C a1

k C m

��
1 C a2

k C m

�
: : :

�
1 C ak

k C m

�

�
�

1 C a1

k C m

�k

� e
ka1

kCm

Assume next that for a given " > 0; k is chosen such that 1 < akCm < 1 C "; for all
positive integers m: Hence

�
1 C akC1

k C m

�
� � �
�

1 C akCm

k C m

�
�
�
1 C akC1

m

�
� � �
�
1 C akCm

m

�

�
�

1 C 1 C "

m

�m

� e1C":

In conclusion,

bkCm � e
ka1

kCm C1C" � e1C2";

for fixed (but arbitrary) " > 0 and sufficiently large m, because for big enough m;

we have ka1

kCm � ": Since " can be any positive number, this implies lim sup
n!1

bn � e.

On the other hand,

�
1 C 1

n

�n

�
�
1 C a1

n

� �
1 C a2

n

�
� � �
�
1 C an

n

�
D bn

for all n � 1; this yields e � lim infn!1 bn and finishes the proof. �
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Alternatively (but without using the method that we are discussing now), if one
considers the sequence with general term cn D bn=.1 C .1=n//n, then one notes
(like above) that 1 � cn for all n � 1. Yet, by the inequality 1 C x � ex; x 2 R that
we already used, we see that

cn D
�

1 C a1 � 1

n C 1

��
1 C a2 � 1

n C 1

�
� � �
�

1 C an � 1

n C 1

�
� edn ;

where

dn D .a1 � 1/ C .a2 � 1/ C � � � C .an � 1/

n C 1
;

and lim
n!1 dn D 0 follows from the hypothesis and the Cesàro-Stolz theorem. Thus

we have the inequalities

�
1 C 1

n

�n

� bn �
�

1 C 1

n

�n

edn

for all n � 1. Now the squeeze theorem finishes the proof. �
Finally observe that the condition about the monotonicity of .an/n�1 is not

necessary; we can assume only that an ! 1 and an � 1 for all n, and both proofs
work.

It is not difficult to see that by changing the order of the terms of a convergent
series, usually we do not obtain the same sum (a famous theorem of Riemann asserts
much more: if .an/ is a sequence of real numbers and

X
n�1

an is convergent, but

X
n�1

janj D 1, then for any ˛ 2 R, one can permute the terms of the series
X
n�1

an

so that the sum of the resulting series is ˛). However, if the series is absolutely
convergent, we have the following beautiful application of the splitting method:

Problem. Let .an/n be a sequence of real numbers such that
X
n�1

janj converges.

Let � be a permutation of the set of positive integers. Prove that

1X
nD1

an D
1X

nD1

a�.n/:

Solution. Because
X
n�1

janj < 1,
1X

nD1

an converges. Let l be its sum and let us

prove that
1X

nD1

a�.n/ converges to l. Let " > 0 and choose N such that
X
n�N

janj < ".
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Let M � N be such that f�.1/; �.2/; : : : ; �.M/g contains f1; 2; : : : ; Ng and let
m � M C N. Finally define A D f1; 2; : : : ; mg n f1; 2; : : : ; N � 1g and B D
f�.1/; : : : ; �.m/g n f1; 2; : : : ; N � 1g. Then

ˇ̌̌
ˇ̌

mX
iD1

a�.i/ � l

ˇ̌̌
ˇ̌ �

ˇ̌̌
ˇ̌

mX
iD1

ai � l

ˇ̌̌
ˇ̌C

ˇ̌̌
ˇ̌

mX
iD1

a�.i/ �
mX

iD1

ai

ˇ̌̌
ˇ̌

�
ˇ̌̌
ˇ̌

mX
iD1

ai � l

ˇ̌̌
ˇ̌C

ˇ̌̌
ˇ̌X

i2B

ai �
X
i2A

ai

ˇ̌̌
ˇ̌ �

X
i2A

jaij C
X
i2B

jaij C
ˇ̌̌
ˇ̌

mX
iD1

ai � l

ˇ̌̌
ˇ̌

� 2" C
ˇ̌̌
ˇ̌

mX
iD1

ai � l

ˇ̌̌
ˇ̌ :

Because l D
1X

iD1

ai, for sufficiently large m, we have

ˇ̌̌
ˇ̌

mX
iD1

ai � l

ˇ̌̌
ˇ̌ < " and thus

ˇ̌̌
ˇ̌

mX
iD1

a�.i/ � l

ˇ̌̌
ˇ̌ < 3" for sufficiently large m. This shows that

1X
iD1

a�.i/ D l. �

The following two problems have shorter solutions, but are far from being
obvious.

Problem. Let .an/n�1 be a sequence of positive real numbers such that
X
n�1

an

converges. Prove that
X
n�1

a
1� 1

n
n also converges.

Solution. The idea is that if an is very small, so is a
1� 1

n
n , while if an is not very

small, say an � M, then a
1� 1

n
n � an

n
p

M
. Therefore we split the sum into two parts:

one corresponding to those an greater than or equal to 2�n, and the second one

corresponding to an < 2�n. If an � 2�n, then a
1� 1

n
n � 2an, so the first sum is

bounded by 2
X
n�1

an. If an < 2�n, then a
1� 1

n
n � 1

2n�1
, so the second sum is bounded

by
X
n�1

1

2n�1
. Therefore the partial sums of

X
n�1

a
1� 1

n
n are bounded and so the series

converges. �

Problem. Find lim
n!1

p
n C 3

p
n C � � � C n�1

p
n C n

p
n

n
.
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Solution. If an D
p

n C 3
p

n C � � � C n�1
p

n C n
p

n

n
, then clearly an � n � 1

n
.

On the other hand, let M > 0 and split
nX

iD2

i
p

n in S1 D
X

2�i<M ln n

i
p

n and S2 D
X

n�i�M ln n

i
p

n. The first sum is at most M ln n
p

n D o.n/, while the second one is

at most n � e
1
M , because for i � M ln n, we have i

p
n D n

1
i � n

1
M ln n D e

1
M . Thus

S1 C S2

n
� M ln np

n
C e

1
M . Now, if " > 0, there is M with e

1
M < 1 C "

2
and for such

a fixed M, we have
M ln np

n
<

"

2
for large n, thus an < 1 C " for large n. Therefore

lim
n!1 an D 1. �

Let us give now some important theoretical results concerning double sequences
and their convergence. We discuss this in the same chapter because, as the reader
will immediately notice, all proofs are based on the splitting method. We will
discuss Toeplitz’s theorem, which is in fact a useful convergence criterion for a
class of sequences of real numbers. We will study some of its consequences and
applications, with a particular emphasis on a very useful result, the Cesàro-Stolz
theorem.

Theorem (Toeplitz). Let A D .ank/n�k�1 be an infinite triangular matrix with
nonnegative entries,

A D

0
BBBBBBB@

a11 0 0 0 0 : : :

a21 a22 0 0 0 : : :

a31 a32 a33 0 0 : : :

: : : : : : : : : : : : : : : : : :

an1 an2 an3 : : : ann : : :

: : : : : : : : : : : : : : : : : :

1
CCCCCCCA

:

Assume that:

a) The sum of the elements in each row is equal to 1, i.e.,
nX

kD1

ank D 1; for all

positive integers n:

b) Each sequence determined by each column is convergent to zero, i.e.,
lim

n!1 ank D 0; for all positive integers k:

Then, for any sequence .tn/n�1 which has a limit (finite or infinite),

lim
n!1

nX
kD1

anktk D lim
n!1 tn:
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Proof. Let ˛ D lim
n!1 tn and letetn D

nX
kD1

anktk; n � 1:

First, we consider the case ˛ 2 R: By changing .tn/n�1 to .tn � ˛/n�1; we can
assume that ˛ D 0 (note that we used here the first hypothesis of the matrix A).
For any " > 0; we can find a positive integer N D N."/ such that jtnj < "

2
, for all

integers n � N: If n > N; then

etn D .an1t1 C � � � C anNtN/ C .an;NC1tNC1 C � � � C anntn/:

From b), we deduce that

lim
n!1.an1t1 C � � � C anNtN/ D 0;

so there exists n" � N such that

jan1t1 C � � � C anNtN j <
"

2
; 8 n � n":

Finally, for all n � n"; we have

jetnj <
"

2
C

nX
kDNC1

ank jtkj � "

2
C "

2

nX
kD1

ank D "

2
C "

2
D ":

To complete the proof, we assume now that tn ! 1; as n ! 1: Let M > 0 and
N � 1 be so that tn � 3M, for all integers n � N: We can find N1 > N with

jan1t1 C � � � C anNtN j � M;

for all integers n � N1 and let N2 � N1 be such that an1 C � � � C anN � 1
3
; for all

integers n � N2: Now

etn D .an1t1 C � � � C anNtN/ C .an;NC1tNC1 C � � � C anntn/

� �M C 3M
nX

kDNC1

ank D �M C 3M.1 �
NX

kD1

ank/

� �M C 3M

�
1 � 1

3

�
D M;

for all integers n � N2 and consequentlyetn ! 1; as n ! 1. �

A direct consequence that is very useful in practice is the not so well-known
Cesàro-Stolz theorem:
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Theorem (Cesàro-Stolz). Let .xn/n�1 and .yn/n�1 be two sequences of real
numbers. Assume that .yn/n�1 is increasing, unbounded, and that there exists

˛ D lim
n!1

xn � xn�1

yn � yn�1

:

Then lim
n!1

xn

yn
D ˛:

Proof. We have the following identity

xn

yn
D

nX
kD1

yk � yk�1

yn
� xk � xk�1

yk � yk�1

D
nX

kD1

anktk;

where

ank D yk � yk�1

yn
; tk D xk � xk�1

yk � yk�1

; k � 1

and x0 D y0 D 0: For all n � 1; we have

nX
kD1

ank D
nX

kD1

yk � yk�1

yn
D 1

yn
� .yn � y0/ D 1

and for each k � 1;

lim
n!1 ank D lim

n!1
yk � yk�1

yn
D 0;

because yn ! 1; as n ! 1: Now tn D xn � xn�1

yn � yn�1

! ˛; soetn D xn

yn
! ˛. �

To see the strength of this criterion, consider the following B6 Putnam problem
from 2006:

Problem. Let k be an integer greater than 1. Suppose a0 > 0 and define

anC1 D an C 1
k

p
an

for n � 0: Evaluate lim
n!1

akC1
n
nk :

Solution. It is clear that the sequence is increasing. We claim that it tends to 1.
Indeed, otherwise it converges to a finite limit l and passing to the limit in the given
relation, we obtain a contradiction. Now, in order to get rid of nk and to apply the
Cesàro-Stolz theorem, it is better to take the kth root of the sequence whose limit

we are asked to compute. Thus, we will use Cesàro-Stolz for the sequence a
1C1=k
n

n .
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If we manage to compute the limit of a1C1=k
nC1 � a1C1=k

n , then the previous sequence
will have the same limit. However, this boils down to finding the limit as x tends to
1 of �

x C 1
k

p
x

�1C1=k

� x1C1=k:

By changing the variable to x1=k D t, we need to compute the limit for t ! 1 of

tkC1

 �
1 C 1

tkC1

�1C1=k

� 1

!
:

However, it is clear that this limit is 1 C 1=k, simply because another change of

variable (t�k�1 D u) shows that it is the same as the limit of .1Cu/1C1=k�1

u as u tends

to 0. Thus the limit of a
1C1=k
n

n is 1 C 1=k, and now it is clear that the answer to the
problem is .1 C 1=k/k. �

Using the same splitting method, we will establish probably the most useful result
of this chapter, Lebesgue’s dominated convergence theorem for sequences. It gives
a very easy-to-verify condition for passing to the limit in an infinite sum.

Lebesgue’s theorem. Let .amn/m;n�1 be a double sequence of real numbers for
which there exists a sequence .an/n�1 such that lim

m!1 amn D an and jamnj � ˛n;

for all positive integers m; n and some sequence .˛n/n�1 : Then, if the series
1X

nD1

˛n

converges,

lim
m!1

1X
nD1

amn D
1X

nD1

an:

Proof. First note that janj � ˛n; so the series
1X

nD1

amn and
1X

nD1

an are absolutely

convergent. With the notations

� D
1X

nD1

an; tm D
1X

nD1

amn;

we have

j� � tmj �
pX

nD1

jan � amnj C
1X

nDpC1

jan � amnj

�
pX

nD1

jan � amnj C 2

1X
nDpC1

˛n:
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For each real " > 0; let n0 be such that
1X

nDn0

˛n <
"

4
: Then for sufficiently large m;

j� � tmj �
n0X

nD1

jan � amnj C "

2
< n0 � "

2n0

C "

2
D ": �

We end this theoretical part with an application of the previous result:

Problem. Let ˛ > 1 be a real number. Prove that

lim
n!1

p
n

˛n
e�n

nX
kD0

.˛n/k

kŠ
D ˛p

2�.˛ � 1/
:

Solution. Let

xn D
nX

kD0

.˛n/k

kŠ
D .˛n/n

nŠ

nX
kD0

nŠ

.n � k/Š
� 1

.˛n/k
:

Let ank D nŠ

.n � k/Š
� 1

.˛n/k
if k � n and 0 if k > n. Then 0 � ank � 1

˛k
and

because
X

k

1

˛k
converges and lim

n!1 ank D 1

˛k
, we deduce that

lim
n!1

nX
kD0

nŠ

.n � k/Š
� 1

.˛n/k
D

1X
kD0

1

˛k
D ˛

˛ � 1
:

Therefore

xn D
nX

kD0

.˛n/k

kŠ
� ˛

˛ � 1
� .˛n/n

nŠ
:

It is enough to use Stirling’s formula nŠ �
�n

e

�n p
2�n to deduce that

lim
n!1

p
n

.˛e/n

nX
kD0

.˛n/k

kŠ
D ˛p

2�.˛ � 1/
: �
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Proposed Problems

1. Let .ank/n;k�1 be a triangular matrix with the following properties:

a) lim
n!1 ank D 0; for each k � 1;

b) there is K > 0 such that

nX
kD1

jankj � K;

for all positive integers n: If the sequence .tn/n�1 converges to zero, prove
that the sequence .etn/n�1 given by the formula

etn D
nX

kD1

anktk;

also converges to zero.

2. Assume that the hypothesis of Toeplitz’s theorem hold. Prove that if .tn/n�1 is
bounded, then .etn/n�1 is bounded and

sup
n�1

jetnj � sup
n�1

jtnj :

3. Let .xn/n�0 ; .yn/n�0 be sequences converging to zero and such that the series
1X

nD0

yn is absolutely convergent. Prove that

lim
n!1.x0yn C x1yn�1 C � � � C xn�1y1 C xny0/ D 0:

4. Let .xn/n�0 ; .yn/n�0 be sequences convergent to x; respectively y: Prove that

lim
n!1

x0yn C x1yn�1 C � � � C xn�1y1 C xny0

n
D x � y:

5. If xn ! x as n ! 1; prove that

lim
n!1

�
n
0

�
x0 C

�
n
1

�
x1 C � � � C

�
n
n

�
xn

2n
D x:

6. Let .xn/n�1 be a sequence such that lim
n!1.xnC1 � �xn/ D 0; for some j�j < 1:

Prove that lim
n!1 xn D 0:
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7. Let .xn/n�1 be a sequence such that lim
n!1.10xnC2 C 7xnC1 C xn/ D 18: Prove

that lim
n!1 xn D 1:

8. Let .xn/n�1 be a bounded sequence such that

xnC2 � 3xnC1 � xn

2
;

for all positive integers n: Prove that .xn/n�1 is convergent.
9. Let .an/n�0 and .bn/n�0 be sequences of real numbers such that

bn D an � ˛anC1

with ˛ a fixed real number, j˛j < 1. Assume that .bn/n�0 is convergent and

lim
n!1 an˛n D 0:

Prove that .an/n�0 is convergent.
10. Let .amn/m;n�1 be a double sequence of positive integers and assume that each

positive integer appears at most ten times in the sequence .amn/m;n�1 : Prove
that there exist positive integers m; n such that amn > mn:

11. Let .an/n�1 be a sequence of positive real numbers such that the series

1X
nD1

1

an

converges. Prove that

1X
mD1

1X
nD1

1

am.am C an/
D 1

2

 1X
nD1

1

an

!2

;

then find the sum of the series

1X
m�1

1X
nD1

m2n

3m.n � 3m C m � 3n/
:

12. Let an 2 C be a sequence such that lim
n!1 nan D 0 and lim

x%1

1X
nD0

anxn D 0. Prove

that
1X

nD0

an D 0.
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13. Let f W Œ0; 1� 7! R be a Lipschitz function and let the series
P1

kD0 ak be
convergent with sum a. Prove that

lim
n!1

nX
kD0

akf

�
k

n

�
D af .0/:

14. Let f W Œ0; 1� 7! R be a continuous function and let the series
P1

kD0 ak be
absolutely convergent (hence convergent) with sum a. Prove that

lim
n!1

nX
kD0

akf

�
k

n

�
D af .0/:

Solutions

1. For " > 0; we consider an integer n."/ for which jtnj < "
2K for all integers

n � n."/: For every n > n."/; we have

jetnj �
ˇ̌
ˇ̌̌
ˇ

n."/X
kD1

anktk

ˇ̌
ˇ̌̌
ˇC

nX
kDn."/C1

janktkj

�
ˇ̌̌
ˇ̌̌ n."/X

kD1

anktk

ˇ̌̌
ˇ̌̌C

0
@ nX

kDn."/C1

jankj
1
A � "

2K
�
ˇ̌̌
ˇ̌̌ n."/X

kD1

anktk

ˇ̌̌
ˇ̌̌C "

2
:

Let k."/ be such that

janmj <
"

2.jt1j C � � � C ˇ̌
tn."/

ˇ̌
/
;

for all integers n � k."/ and all m D 1; 2; : : : ; n."/:

Hence for every n > n."/ C k."/; we have

ˇ̌
ˇ̌̌
ˇ

n."/X
kD1

anktk

ˇ̌
ˇ̌̌
ˇ �

n."/X
kD1

jankj � jtkj � "

2.jt1j C � � � C ˇ̌
tn."/

ˇ̌
/

� .jt1j C � � � C ˇ̌
tn."/

ˇ̌
/ D "

2
:

Finally, jetnj < "; for all integers n > n."/ C k."/:

2. The proof is identical to the previous one.
3. We can use problem 1. Let us put ank D yn�k for n; k � 1; n � k: We have

lim
n!1 ank D lim

n!1 yn�k D 0;
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for each positive integer k and

nX
kD1

jankj D
nX

kD1

jyn�kj < K;

for some K > 0; because of the absolute convergence of the series
1X

kD0

yk: Now

let tn D xn�1 for all n � 1, hence .tn/n�1 has limit 0. By the result of problem 1,
the sequence with general term

etn D
nX

kD1

anktk D
nX

kD1

yn�kxk�1

also converges to zero—which is the desired conclusion.
We can also give a direct proof. Let M > 0 be such that jxnj � M and

jynj � M for all positive integers n: For " > 0; let n."/ be such that

jynC1j C jynC2j C � � � C ˇ̌
ynCp

ˇ̌
<

"

2M

for all integers n � n."/; p � 1; and jxnj < "
2K for all integers n � n."/; where

K D
1X

nD1

jynj : Now, for all n > 2n."/; we have

jx1yn�1 C x2yn�2 C � � � C xn�2y2 C xn�1y1j

� �jx1j � jyn�1j C jx2j � jyn�2j C � � � C ˇ̌
xn�n."/�1

ˇ̌ � ˇ̌yn."/C1

ˇ̌	

C �ˇ̌
xn�n."/

ˇ̌ � ˇ̌yn."/

ˇ̌C � � � C jxn�1j � jy1j	

� M � "

2M
C "

2K
� K D ":

4. We can assume x D 0; by taking .xn � x/n�0 instead of .xn/n�0: Further, we can
assume that y D 0 by changing .yn/n�0 to .yn � y/n�0: If M > 0 is such that
jynj � M; for all nonnegative integers n; then

ˇ̌̌
ˇx0yn C � � � C xny0

n

ˇ̌̌
ˇ � jx0j � jynj C � � � C jxnj � jy0j

n
� M � jx0j C � � � C jxnj

n
:

By the Cesàro-Stolz theorem,

lim
n!1

jx0j C � � � C jxnj
n

D 0;

so the problem is solved.
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Observe also that if the two sequences converge to 0 (we saw that we can
always make this assumption), then the result is clear from Cauchy-Schwarz’s
inequality combined with the Cesàro-Stolz theorem:

ˇ̌
ˇ̌x0yn C x1yn�1 C � � � C xny0

n C 1

ˇ̌
ˇ̌�

s
x2

0 C x2
1 C � � � C x2

n

n C 1
�
s

y2
0 C y2

1 C � � � C y2
n

n C 1
:

5. We can use Toeplitz’s theorem with

ank D 1

2n

�
n
k

�
; tn D xn:

First, for each integer k � 1; we have

�
n
k

�
< nk; so

lim
n!1 ank D lim

n!1
1

2n

�
n
k

�
D 0:

Finally,

nX
kD0

ank D
nX

kD0

1

2n

�
n
k

�
D 1:

We can also give a proof which uses the splitting method. We assume that
.xn/n�0 converges to zero. For arbitrary fixed " > 0; let n."/ be an integer for
which jxnj � "

2
; for all integers n � n."/: Let us put M D sup fjxnj j n 2 Ng :

Then for all n > n."/; we have

ˇ̌
ˇ̌̌
ˇ̌
ˇ̌

�
n
0

�
x0 C � � � C

�
n

n."/

�
xn."/ C � � � C

�
n
n

�
xn

2n

ˇ̌
ˇ̌̌
ˇ̌
ˇ̌

�

�
n
0

�
jx0j C � � � C

�
n

n."/

� ˇ̌
xn."/

ˇ̌

2n

C

�
n

n."/ C 1

� ˇ̌
xn."/C1

ˇ̌C � � � C
�

n
n

�
jxnj

2n
:
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First,

�
n
0

�
jx0j C � � � C

�
n

n."/

� ˇ̌
xn."/

ˇ̌

2n

� M �

�
n
0

�
C � � � C

�
n

n."/

�

2n
< M � "

2M
D "

2
;

for sufficiently large n; say n � n1."/: On the other hand,

�
n

n."/ C 1

� ˇ̌
xn."/C1

ˇ̌C � � � C
�

n
n

�
jxnj

2n

� "

2
�

�
n

n."/ C 1

�
C � � � C

�
n
n

�

2n
<

"

2
:

Finally,

ˇ̌̌
ˇ̌̌
ˇ̌̌

�
n
0

�
x0 C � � � C

�
n
n

�
xn

2n

ˇ̌̌
ˇ̌̌
ˇ̌̌ < ";

for all integers n > max fn."/; n1."/g ; which solves the problem.
It is interesting to note that in the case when the sequence converges to 0, a

simple argument based on Cauchy-Schwarz’s inequality and the Cesàro-Stolz
theorem does not work. Indeed, it boils down to the fact that the sequence whose
general term is n

4n � �2n
n

	
is bounded, which is false (the reader can prove this, as

an exercise).
6. We know that the sequence

yn D xnC1 � �xn; n � 1

converges to zero. From the equalities

yn

�nC1
D xnC1

�nC1
� xn

�n
; n � 1;
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we deduce that

xn D �n�1x1 C
n�1X
kD1

�n�k�1yk:

Now it is sufficient to prove that the sequence

exn D
nX

kD1

�n�kyk; n � 1

is convergent to zero. This follows from a corollary of Toeplitz’s theorem, more
precisely, from problem 1. Indeed, with ank D �n�k; we have

lim
n!1 ank D lim

n!1 �n�k D 0;

for all positive integers k and

nX
kD1

jankj D
nX

kD1

j�jn�k � 1

1 � j�j :

7. First we will prove a more general result. Let a; b; c be real numbers, a ¤ 0

such that the quadratic equation ax2 C bx C c D 0 has two real solutions in
.�1; 1/: Then each sequence .xn/n�1 with the property

lim
n!1.axnC2 C bxnC1 C cxn/ D 0

is convergent to zero. Indeed, if we denote by �; � 2 .�1; 1/ the solutions of
the quadratic equation, then according to Viète’s formulas,

� C � D �b

a
; �� D c

a
:

Now,

lim
n!1.axnC2 C bxnC1 C cxn/ D 0

becomes

lim
n!1

�
xnC2 C b

a
xnC1 C c

a
xn

�
D 0

or

lim
n!1 ŒxnC2 � .� C �/xnC1 C ��xn� D 0
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which can be also written as

lim
n!1 Œ.xnC2 � �xnC1/ � �.xnC1 � �xn/� D 0:

In this way, with the notation un D xnC1 � �xn, n � 1; we have

lim
n!1.unC1 � �un/ D 0

and j�j < 1: We have seen that this implies lim
n!1 un D 0, that is,

lim
n!1 .xnC1 � �xn/ D 0:

Using again the result of the previous problem, we conclude that .xn/n�1

converges to zero. In our case, note that the quadratic equation

10x2 C 7x C 1 D 0

has two real solutions in .�1; 1/: Let us denote an D xn � 1, n � 1: We have

lim
n!1.10anC2 C 7anC1 C an/ D lim

n!1 Œ10.xnC2 � 1/ C 7.xnC1 � 1/ C .xn � 1/�

D lim
n!1Œ.10anC2 C 7anC1 C an/ � 18� D 0:

This implies an ! 0 and then xn ! 1; as n ! 1:

8. Let us define the sequence

yn D xnC1 � 1

2
xn; n � 1:

Clearly, if .xn/n�1 is bounded, so is the sequence .yn/n�1 (just note that jynj �
jxnC1j C jxnj

2
). The given inequality allows us to prove the monotony of the

sequence .yn/n�1 : Indeed,

ynC1 � yn D
�

xnC2 � 1

2
xnC1

�
�
�

xnC1 � 1

2
xn

�

D xnC2 � 3

2
xnC1 C 1

2
xn � 0;

so the sequence .yn/n�1 is decreasing. Hence .yn/n�1 is convergent and let l
be its limit. Searching for a real number ˛ so that the sequence zn D xn � ˛,
n � 1 satisfies lim

n!1
�
znC1 � 1

2
zn
	 D 0, we immediately obtain ˛ D 2l: Thus

the sequence zn D xn � 2l, n � 1 satisfies
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lim
n!1

�
znC1 � 1

2
zn

�
D 0:

and, as we know, this is possible only if zn ! 0; so xn ! 2l:
9. By induction, for n � 1, we have

an D �
n�1X

kD�1

bk

�
1

˛

�n�k

D � 1

˛n

n�1X
kD�1

bk˛
k;

where b�1 D �a0˛: Since an˛n tends to zero, the partial sums on the right-hand
side in

�an˛n D
n�1X

kD�1

bk˛
k

also approach zero. They may therefore be replaced by the negatives of their
corresponding remainders

�an˛n D �
1X

kDn

bk˛
k or an D

1X
kD0

bnCk˛
k:

If b is the limit of the sequence .bn/n��1, then we can estimate the difference

ˇ̌̌
ˇan � b

1 � ˛

ˇ̌̌
ˇ D

ˇ̌̌
ˇ̌

1X
kD0

.bnCk � b/˛k

ˇ̌̌
ˇ̌ � 1

1 � j˛j � sup
k�n

jbk � bj ;

which becomes arbitrarily small for large values of n. Hence .an/n2N converges
to b=.1 � ˛/:

10. Let us assume, by way of contradiction, that amn � mn; for all positive integers
m; n: For every positive integer k; the set

Ak D ˚
.i; j/ j aij � k




has at most 10k elements. On the other hand, Ak contains all pairs .i; j/ with
ij � k and there are

�
k

1

�
C
�

k

2

�
C � � � C

�
k

k

�
:

such pairs. Thus, for all positive integers k;

10k �
�

k

1

�
C
�

k

2

�
C � � � C

�
k

k

�
:
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This inequality cannot be true for large k; because

lim
k!1

�
k

1

�
C
�

k

2

�
C � � � C

�
k

k

�

k
D 1:

11. By interchanging m and n; we have

s D
1X

mD1

1X
nD1

1

am.am C an/
D

1X
mD1

1X
nD1

1

an.am C an/
:

Thus

2s D
1X

mD1

1X
nD1

�
1

am.am C an/
C 1

an.am C an/

�

D
1X

mD1

1X
nD1

1

aman
D
 1X

mD1

1

am

! 1X
nD1

1

an

!
D
 1X

nD1

1

an

!2

:

For the second part, let us take an D 3n

n to obtain

1X
mD1

1X
nD1

1

am.am C an/
D

1X
mD1

1X
nD1

m2n

3m.n � 3m C m � 3n/
D 1

2

 1X
nD1

n

3n

!2

D 9

32
:

Indeed, if we differentiate

1

1 � x
D
X
n�0

xn

for jxj < 1, we obtain
x

.1 � x/2
D
X
n�1

nxn; thus
X
n�1

n

3n
D 3

4
.

12. Let f .x/ D
1X

nD0

anxn, which is defined for jxj < 1 because an is bounded. Then

for all 0 � x < 1,

ˇ̌
ˇ̌̌ NX

nD0

an

ˇ̌
ˇ̌̌ � jf .x/j C

ˇ̌
ˇ̌̌X
n>N

anxn C
NX

nD0

an.xn � 1/

ˇ̌
ˇ̌̌

� jf .x/ C
X
n>N

janjxn C
NX

nD0

janj.1 � xn/
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� jf .x/j C 1

N
sup
n�N

jnanj
X
n>N

xn C .1 � x/

NX
nD0

janj.1 C x C � � � C xn�1/

� jf .x/j C 1

N
sup
n�N

jnanj xNC1

1 � x
C .1 � x/

NX
nD0

njanj

� jf .x/j C 1

N.1 � x/
sup
n�N

jnanj C N.1 � x/
1

N

NX
nD0

njanj

Choose x D 1 � 1

N
, then

ˇ̌̌
ˇ̌

NX
nD0

an

ˇ̌̌
ˇ̌ �

ˇ̌̌
ˇf
�

1 � 1

N

�ˇ̌̌
ˇC sup

n�N
jnanj C 1

N

NX
nD0

njanj:

By making N ! 1 in the previous inequality, we obtain

lim
N!1

NX
nD0

an D 0;

because

lim
N!1 f

�
1 � 1

N

�
D 0; lim

N!1 sup
n�N

jnanj D 0

(because lim
n!1 njanj D 0) and

lim
N!1

1

N

NX
nD0

njanj D 0

by the Cesàro-Stolz theorem.
13. Solution I. The fact that f is Lipschitz means that there exists a constant L > 0

such that jf .x/�f .y/j � Ljx�yj for all x; y 2 Œ0; 1�; consequently, jf ..k�1/=n/�
f .k=n/j � L=n for all positive integers n and k � n. We have

nX
kD0

akf

�
k

n

�
� af .0/ D

nX
kD1

.a0 C a1 C � � � C ak�1 � a/

�
f

�
k � 1

n

�
� f

�
k

n

��

C.a0 C a1 C � � � C an � a/f
�n

n

�
I



Solutions 171

therefore, using the triangle inequality and the Lipschitz condition, we obtain

ˇ̌̌
ˇ̌

nX
kD0

akf

�
k

n

�
� af .0/

ˇ̌̌
ˇ̌ � L � 1

n

nX
kD1

ja0 C a1 C � � � C ak�1 � aj

C ja0 C a1 C � � � C an � ajjf .1/j:

Now, the hypothesis tells us that limn!1 ja0 C a1 C � � � C an � aj D 0, and the
Cesàro-Stolz theorem ensures that

lim
n!1

1

n

nX
kD1

ja0 C a1 C � � � C ak�1 � aj D 0;

as well. Thus, the sequence on the right hand side of the above inequality has
limit 0, which proves that the left hand side also has limit 0, finishing the proof.

Solution II. We need the following simple (and interesting by itself) lemma:
if .xn/n�0 is a convergent sequence of real numbers, then

lim
n!1

jxn � xn�1j C � � � C jxn � x0j
n

D 0:

This can be proven by using the splitting method; we proceed further.
Because .xn/n�0 is convergent, it is also bounded, hence there exists M > 0

such that jxnj < M for all n; it follows that jxm � xnj < 2M for all m and n.
Further, since .xn/n�0 is convergent, it is also a Cauchy sequence; consequently,
for a given " > 0, there exists a positive integer N such that jxm � xnj < "=2 for
all m; n � N. We then have, for n > maxfN; 4NM="g,

jxn � xn�1j C � � � C jxn � x0j
n

D jxn � xn�1j C � � � C jxn � xN j
n

Cjxn � xN�1j C � � � C jxn � x0j
n

<
.n � N/"

2n
C 2NM

n
<

"

2
C "

2
D ";

and the lemma is established.
Now for the problem, we observe that

nX
kD0

akf

�
k

n

�
�

nX
kD0

akf .0/

D
n�1X
kD0

.an C � � � C an�k/

�
f

�
n � k

n

�
� f

�
n � k � 1

n

��
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by an Abel summation formula again. The triangle inequality and the Lipschitz
condition yield

ˇ̌
ˇ̌̌ nX

kD0

akf

�
k

n

�
�

nX
kD0

akf .0/

ˇ̌
ˇ̌̌ � L � 1

n

n�1X
kD0

jan C � � � C an�kj

D L � 1

n

n�1X
kD0

jSn � Sn�k�1j;

where Sp D a0 C a1 C � � � C ap is the pth partial sum of the series
1X

nD0

an. As

.Sn/n�0 is a convergent sequence, the lemma applies and shows that the right
hand side from the previous inequality has limit 0; thus, the left hand side also
tends to 0; that is,

lim
n!1

 
nX

kD0

akf

�
k

n

�
�

nX
kD0

akf .0/

!
D 0:

Now lim
n!1

nX
kD0

akf .0/ D af .0/ completes the proof.

14. Solution I. Let A D
1X

nD0

janj; of course, jaj � A, and if A D 0, there is nothing

to prove, as a D 0 and all an D 0 follow from such an assumption; thus, we
may assume that A > 0.

Let " > 0 be given. It is not hard to prove (e.g., by using the Stone-
Weierstrass theorem—see the Chapter 7) that the set of Lipschitz functions is
dense in the set of continuous functions (all defined on Œ0; 1�, say). Thus, for our
continuous function f (and the considered ") there exists a Lipschitz function
g W Œ0; 1� ! R such that jf .x/ � g.x/j < "=.3A/ for all x 2 Œ0; 1�. Yet, according
to the previous problem, for the function g we have

lim
n!1

nX
kD0

akg

�
k

n

�
D ag.0/I

consequently, there exists a positive integer N such that for all positive integers
n � N, we have

ˇ̌
ˇ̌̌ nX

kD0

akg

�
k

n

�
� ag.0/

ˇ̌
ˇ̌̌

<
"

3
:
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Now, by the triangle inequality and all of the above remarks, we have
ˇ̌̌
ˇ̌

nX
kD0

akf

�
k

n

�
� af .0/

ˇ̌̌
ˇ̌ �

nX
kD0

jakj
ˇ̌̌
ˇf
�

k

n

�
� g

�
k

n

�ˇ̌̌
ˇ

C
ˇ̌̌
ˇ̌

nX
kD0

akg

�
k

n

�
� ag.0/

ˇ̌̌
ˇ̌C jajjf .0/ � g.0/j

<
"

3A

nX
kD0

jakj C
ˇ̌̌
ˇ̌

nX
kD0

akg

�
k

n

�
� ag.0/

ˇ̌̌
ˇ̌C "

3A
jaj

<
"

3A
� A C "

3
C "

3A
� A D "

for every positive integer n � N, and the proof is complete.

Solution II. The function f is continuous and therefore bounded on the
compact interval Œ0; 1�. Thus there exists M > 0 such that jf .x/j � M for
all x 2 Œ0; 1�, implying that jf .x/ � f .y/j � 2M for all x; y 2 Œ0; 1�. Because
the sequence of partial sums of the series

P1
kD0 jakj is convergent, it is also a

Cauchy sequence, hence, for any positive ", there exists a positive integer N
such that

jamj C jamC1j C � � � C janj <
"

4M
;

for all positive integers m and n with N < m � n. Yet, because f is continuous
on the compact interval Œ0; 1�, it is also uniformly continuous; thus there exists
ı > 0 such that jf .x/ � f .y/j < "=.2A/ whenever x; y 2 Œ0; 1� and jx � yj < ı.
And here comes the splitting: namely, for n > maxfN; N=ıg, we have

ˇ̌
ˇ̌̌ nX

kD0

akf

�
k

n

�
�

nX
kD0

akf .0/

ˇ̌
ˇ̌̌ �

nX
kD0

jakj
ˇ̌̌
ˇf
�

k

n

�
� f .0/

ˇ̌̌
ˇ

D
NX

kD0

jakj
ˇ̌̌
ˇf
�

k

n

�
� f .0/

ˇ̌̌
ˇC

nX
kDNC1

jakj
ˇ̌̌
ˇf
�

k

n

�
� f .0/

ˇ̌̌
ˇ

<
"

2A

NX
kD0

jakj C 2M
nX

kDNC1

jakj <
"

2A
� A C 2M � "

4M
D �;

and we are done.

(Note that for 0 � k � N and n > N=ı, we have jk=n � 0j D k=n � N=n < ı.)
This is problem 180, from Gazeta Matematică—seria A, 3/2004, solved in

the same magazine, 3/2005. The problem, as well as the previous one, was
proposed by Dan Ştefan Marinescu and Viorel Cornea.



Chapter 10
The Number e

The basic symbol of mathematical analysis is the well-known number e: It is
introduced as the limit of the sequence

en D
�

1 C 1

n

�n

; n � 1:

We have the following result:

Theorem. The sequence .en/n�1 is monotonically increasing and bounded.
Moreover, the sequence .fn/n�1 defined by

fn D
�

1 C 1

n

�nC1

; n � 1:

converges to e and is decreasing.

Proof. Indeed, in order to prove the boundedness, one can easily prove by
induction with respect to k the inequality

�
1 C 1

n

�k

� 1 C k

n
C k2

n2
; 1 � k � n:

Then, by taking k D n, we obtain en � 3: On the other hand, Bernoulli’s inequality
gives

�
1 C 1

n

�n

� 1 C n � 1

n
D 2;
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so en � 2: We proved that en 2 Œ2; 3� for all positive integers n: We use again
Bernoulli’s inequality to establish that .en/n�1 is monotone; we have:

enC1

en
D
�

1 � 1

.n C 1/2

�n

� n C 2

n C 1

>
n3 C 3n2 C 3n C 2

n3 C 3n2 C 3n C 1
> 1;

so .en/n�1 is (strictly) increasing. Clearly, lim
n!1 fn D e: Finally, with Bernoulli’s

inequality,

fn
fnC1

D
�

1 C 1

n.n C 2/

�nC1

� n C 1

n C 2

>

�
1 C n C 1

n.n C 2/

�
� n C 1

n C 2

D n3 C 4n2 C 4n C 1

n3 C 4n2 C 4n
> 1;

so .fn/n�1 is decreasing. This finishes the proof of the theorem. �

More generally, we can consider the function en W R ! R; given by

en.x/ D
�
1 C x

n

�n
; x 2 R:

As above, the sequence of real numbers .en.x//n>�x is increasing, and for all real
numbers x;

lim
n!1

�
1 C x

n

�n D ex:

The following result is particularly important, so we present it as a theorem:

Theorem. The sequence

xn D 1 C 1

1Š
C 1

2Š
C � � � C 1

nŠ

converges to e. Moreover, we have the inequality

0 < e � xn <
1

n � nŠ

and e is irrational.
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Proof. We have, by the binomial formula,

�
1 C 1

n

�n

D 1 C 1

1Š
C 1

2Š

�
1 � 1

n

�
C � � � C 1

nŠ

�
1 � 1

n

��
1 � 2

n

�
: : :

�
1 � n � 1

n

�

< 1 C 1

1Š
C 1

2Š
C � � � C 1

nŠ
D xn:

On the other hand, we clearly have

xn < 1 C
�

1 C 1

2
C 1

4
C � � � C 1

2n�1

�
D 1 C 1 � 1

2n

1 � 1
2

< 3:

Thus, .xn/n�1 is strictly increasing and bounded from above. From en � xn; we
deduce that lim

n!1 xn � e. On the other hand, for all p and all n > p,

en > 1 C 1

1Š
C 1

2Š

�
1 � 1

n

�
C � � � C 1

pŠ

�
1 � 1

n

�
� � �
�

1 � p � 1

n

�
;

and if we take the limit as n ! 1; we obtain

e � 1 C 1

1Š
C 1

2Š
C � � � C 1

pŠ
;

for all positive integers p: For p ! 1; e � lim
p!1 xp: In conclusion,

lim
n!1

�
1 C 1

1Š
C 1

2Š
C � � � C 1

nŠ

�
D e:

Now, for any positive integers n and m � 2,

1

.n C 1/Š
C 1

.n C 2/Š
C � � � C 1

.n C m/Š

� 1

.n C 1/Š
C 1

.n C 1/Š.n C 2/
C � � � C 1

.n C 1/Š.n C 2/m�1

D 1

.n C 1/Š
�
�
1 C 1

n C 2
C � � � C 1

.n C 2/m�1

�
D 1

.n C 1/Š
�

1 � 1
.nC2/m

1 � 1
nC2

:

Consequently,

xmCn � xn � 1

.n C 1/Š
�

1 � 1
.nC2/m

1 � 1
nC2

:
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For m ! 1; it follows that

0 < e � xn � 1

.n C 1/Š
� n C 2

n C 1
;

for all positive integers n: Thus

0 < e � xn <
1

nŠ � n
:

To prove that e is irrational, let us assume, by way of contradiction, that e D p

q
; with

positive integers p; q. Then

p

q
D 1 C 1

1Š
C 1

2Š
C � � � C 1

qŠ
C �q

qŠ � q
:

By multiplying with qŠ � q, we conclude that

qŠ � p D qŠ � q

�
1 C 1

1Š
C 1

2Š
C � � � C 1

qŠ

�
C �q;

or

�q D qŠ � p � qŠ � q

�
1 C 1

1Š
C 1

2Š
C � � � C 1

qŠ

�
:

This is a contradiction, because �q 2 .0; 1/ and the right-hand side of the last
equality is an integer. In conclusion, e is irrational and the proof is done. �

Problem. a) Prove that ex � x C 1 for all real numbers x.
b) Let a > 0 be such that ax � x C 1; for all real numbers x. Prove that a D e:

Solution. a) Let us define the function f W R ! R; given by

f .x/ D ex � x � 1:

Note that f is differentiable, with f 0.x/ D ex �1, so f 0 is negative on .�1; 0/ and
positive on .0; 1/: Therefore, f decreases on .�1; 0/ and increases on .0; 1/:

It follows that 0 is a point of minimum for f , which finishes the proof.
Another solution is based on Bernoulli’s inequality:

�
1 C x

n

�n � 1 C x

n
� n D 1 C x:

Now, by taking the limit as n ! 1 in the previous inequality, we obtain ex �
x C 1:
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b) Let us define the function f W R ! R; by f .x/ D ax � x � 1: The given inequality
can be written as f .x/ � f .0/, for all x: Hence x D 0 is a point of minimum for
f , and according to Fermat’s theorem, f 0.0/ D 0: But this is equivalent to a D e.
Note that we can use only sequences in order to solve this problem. Indeed, if we

take x D 1

n
in the given inequality, we obtain

a1=n � 1

n
C 1 ) a �

�
1 C 1

n

�n

;

and for n ! 1; we deduce that a � e: Similarly, by taking x D � 1

n C 1
;

a�1=.nC1/ � 1 � 1

n C 1
) a �

�
n C 1

n

�nC1

or

a �
�

1 C 1

n

�nC1

:

For n ! 1; it follows that a � e. �

If we replace in (10.1) x by x � 1; we obtain the inequality

ex�1 � x; (10.1)

for all real numbers x: This inequality can be used to deduce the AM-GM inequality

a1 C a2 C � � � C an

n
� n

p
a1a2 : : : an; (10.2)

for all positive real numbers a1; a2; : : : ; an: The inequality (10.2) is equivalent to

a1 C a2 C � � � C an � n;

for all positive real numbers a1; a2; : : : ; an; with a1a2 � � � an D 1: Assuming this,
note that

ea1�1 � a1

ea2�1 � a2

: : : : : : : :

ean�1 � an

and by multiplication,

ea1Ca2C���Can�n � 1
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or

a1 C a2 C � � � C an � n � 0 , a1 C a2 C � � � C an � n:

This proof is due to G. Pólya and it is still considered to be the most beautiful proof
of this famous inequality.

In the framework of this new result, we can give another proof for the mono-
tonicity of the sequence .en/n�1. Indeed,

1 C 1

n
D 1

n � 1
C 1

n � 1
C � � � C 1

n � 1„ ƒ‚ …
n�1 times

C 1

n

> n n

r
1

n � 1
� 1

n � 1
� � � 1

n � 1
� 1

n

D n

r� n

n � 1

�n�1 D n

s�
1 C 1

n � 1

�n�1

which implies en > en�1:

Further, we use in a different way the AM-GM inequality to obtain other
interesting results. Indeed,

mCnC1

s�
1 C 1

n

�n �
1 � 1

m C 1

�mC1

<
n
�
1 C 1

n

	C .m C 1/
�
1 � 1

mC1

	
m C n C 1

D 1;

thus

�
1 C 1

n

�n

<

�
1 C 1

m

�mC1

;

for all positive integers m; n: With the given notations, this means en < fm for all
positive integers m; n: In particular,

en.nC2/ < fnC1 )
�

1 C 1

n.n C 2/

�n.nC2/

<

�
1 C 1

n C 1

�nC2

) .n C 1/2n

nn.n C 2/n
<

.n C 2/nC2

.n C 1/nC2

) .n C 1/n.n C 1/nC1 < nn.n C 2/nC1

)
�

n C 1

n

�n

<

�
n C 2

n C 1

�nC1

) en < enC1:

This is (yet) another proof of the monotonicity of the sequence .en/n�1:
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Proposed Problems

1. Let F be the family of all functions f W R ! R satisfying the relation

f .x C y/ D f .x/f .y/;

for all real numbers x:

a) Find all continuous functions from F ;
b) Find all monotone functions from F :

2. Find all functions f W R ! R which satisfy the following two conditions:

a) f .x C y/ � f .x/f .y/; for all real numbers x; y;
b) f .x/ � x C 1; for all real numbers x:

3. Find all functions f W .0; 1/ ! R which satisfy the following two conditions:

a) f .xy/ � f .x/ C f .y/; for all positive real numbers x; y;
b) f .x/ � x � 1; for all positive real numbers x:

4. For all positive integers n, prove that:

a)
e

2n C 2
< e �

�
1 C 1

n

�n

<
e

2n C 1
;

b)
e

2n C 1
<

�
1 C 1

n

�nC1

� e <
e

2n
:

5. Prove that

lim
n!1 n

�
e �

�
1 C 1

n

�n�
D lim

n!1 n

"�
1 C 1

n

�nC1

� e

#
D e

2
:

6. Find the limit of the sequence .xn/n�1 given by the implicit relation

�
1 C 1

n

�nCxn

D e; n � 1:

7. Find the limit of the sequence .xn/n�1 given by the implicit relation

�
1 C 1

n

�nCxn

D 1 C 1

1Š
C � � � C 1

nŠ
; n � 1:

8. a) Prove that ex � ex for all real numbers x:

b) Prove that if a > 0 has the property ax � ax for all real numbers x; then
a D e:
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9. a) Prove that ex � xe for all positive numbers x:

b) Prove that if a > 0 has the property ax � xa for all positive numbers x; then
a D e:

10. Let a > 0 be such that xx � aa for all positive numbers x: Prove that a D e�1:

11. Let x < y be two positive real numbers such that xx D yy: Prove that there exists
a positive real r such that

x D
�

1 � 1

r C 1

�rC1

; y D
�

1 � 1

r C 1

�r

:

12. Let x < y be two positive real numbers such that xy D yx: Prove that there exists
a positive real r such that

x D
�

1 C 1

r

�r

; y D
�

1 C 1

r

�rC1

:

13. Prove that:

a) lim
n!1

n
p

nŠ

n
D 1

e
;

b) lim
n!1

�
nC1
p

.n C 1/Š � n
p

nŠ
�

D 1

e
:

Solutions

1. We have

f .x/ D f 2
� x

2

�
� 0:

If f .˛/ D 0 for some real ˛; then

f .x/ D f .˛/f .x � ˛/ D 0;

for all real x: Otherwise, we can define the function g W .0; 1/ ! R; by g.x/ D
ln f .x/: We have

g.x C y/ D ln f .x C y/ D ln Œf .x/f .y/�

D ln f .x/ C ln f .y/ D g.x/ C g.y/;

so g.x C y/ D g.x/ C g.y/: If f is continuous or monotone, then g has the same
properties. Hence g.x/ D ax; for some real a; and, consequently, f .x/ D eax in
both cases f monotone and f continuous.
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2. From f .0/ � f 2.0/ and f .0/ � 1, it follows that f .0/ D 1: By induction and
using the observation that f � 0 (because f .2x/ � .f .x//2 � 0), we deduce that

f .x1 C x2 C � � � C xn/ � f .x1/f .x2/ : : : f .xn/:

For x1 D x2 D � � � D xn D x

n
; we have

f .x/ � f n
� x

n

�
�
�
1 C x

n

�n
;

so

f .x/ �
�
1 C x

n

�n
:

For n ! 1; we deduce f .x/ � ex: On the other hand,

1 D f .0/ � f .x/f .�x/ � exe�x D 1;

so f .x/ D ex:

3. Clearly, f .1/ D 0: By induction,

f .x1x2 : : : xn/ � f .x1/ C f .x2/ C � � � C f .xn/:

For x1 D x2 D � � � D xn D n
p

x; we have

f .x/ � nf
�

n
p

x
	 � n

�
n
p

x � 1
	

For n ! 1; we deduce that f .x/ � ln x: On the other hand,

0 D f .1/ � f .x/ C f

�
1

x

�
� ln x C ln

1

x
D 0;

so f .x/ D ln x:

4. a) The inequality is equivalent to

2n

2n C 1
e <

�
1 C 1

n

�n

<
2n C 1

2n C 2
e

or

1C ln n � ln

�
n C 1

2

�
< n ln.n C1/�n ln n < 1C ln

�
n C 1

2

�
� ln.n C1/:
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This double inequality is true for n D 1; 2; 3: For the left inequality, let us
consider the function f W Œ4; 1/ ! R given by

f .x/ D x ln.x C 1/ � .x C 1/ ln x C ln

�
x C 1

2

�
:

We have to prove that f .x/ > 1; for all real numbers x � 1: We have

f 0.x/ D x

x C 1
C ln.x C 1/ � x C 1

x
� ln x C 2

2x C 1

with

f 00.x/ D 5x2 C 5x C 1

x2.x C 1/2.2x C 1/2
> 0:

It follows that f 0 is increasing. Thus for x > 4;

f 0.x/ > f 0 .4/ D ln
5

4
� 41

180
> 0:

Then f is increasing, so for x � 4;

f .x/ � f .4/ D ln

�
54

45
� 9

2

�
> 0:

The right inequality can be proved in a similar way.
b) Let us multiply the inequality

2n

2n C 1
e <

�
1 C 1

n

�n

<
2n C 1

2n C 2
e

by 1 C 1

n
; to obtain

2n

2n C 1
� n C 1

n
e <

�
1 C 1

n

�nC1

<
2n C 1

2n C 2
� n C 1

n
e

or

2n C 2

2n C 1
e <

�
1 C 1

n

�nC1

<
2n C 1

2n
e:

Thus

2n C 2

2n C 1
e � e <

�
1 C 1

n

�nC1

� e <
2n C 1

2n
e � e:
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or

e

2n C 1
<

�
1 C 1

n

�nC1

� e <
e

2n
:

5. By multiplying the inequalities from the previous problem by n; we obtain

ne

2n C 2
< n

�
e �

�
1 C 1

n

�n�
<

ne

2n C 1

and

ne

2n C 1
< n

"�
1 C 1

n

�nC1

� e

#
<

e

2
:

The conclusion follows.
6. We have

�
1 C 1

n

�nCxn

D e ) .n C xn/ ln

�
1 C 1

n

�
D 1

) n C xn D 1

ln
�
1 C 1

n

	 ;

so

xn D 1

ln
�
1 C 1

n

	 � n:

Using l’Hôpital’s rule, we deduce that

lim
n!1 xn D lim

n!1
1 � n ln

�
1 C 1

n

	
ln
�
1 C 1

n

	 D lim
x!0

1 � 1
x ln.1 C x/

ln.1 C x/

D lim
x!0

x � ln.1 C x/

x2
D 1

2
:

7. We clearly have

xn D 1

ln.1 C 1
n /

� n C ln.1 C 1
1Š

C � � � C 1
nŠ

/ � 1

ln.1 C 1
n /

:

Using the previous problem, it suffices to show that

n

�
ln

�
1 C 1

1Š
C � � � C 1

nŠ

�
� 1

�
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converges to 0. This is clear, because we know that

0 > ln

�
1 C 1

1Š
C � � � C 1

nŠ

�
� 1 > ln

�
1 � 1

en � nŠ

�
:

8. a) This is clear, because we have seen that ex�1 � x for all x, thus ex � ex.
b) The function g.x/ D ax � ax has minimum at x D 1; thus, according to

Fermat’s theorem, g0.1/ D 0: This implies a D e:

9. a) Let us consider the function

f .x/ D ln x

x
; x 2 .0; 1/:

We have

f 0.x/ D 1 � ln x

x2
;

so f is increasing on .0; e� and decreasing on Œe; 1/: Therefore,

f .x/ � f .e/ D 1

e
) ln x

x
� 1

e

) e ln x � x ) ln xe � ln ex ) xe � ex:

b) If ax � xa; then

ln ax � ln xa , x ln a � a ln x , ln x

x
� ln a

a
;

hence a D e:

10. If we denote

f .x/ D x ln x; x 2 .0; 1/;

then a is an absolute minimum point of f : We have

f 0.a/ D 0 , 1 C ln a D 0 , a D e�1:

Indeed, x D e�1 is an absolute minimum point because f is decreasing on
.0; e�1� and increasing on Œe�1; 1/:

11. Let r be positive so that y D
�

1 C 1

r

�
x: Then

xx D yy , xx D
��

1 C 1

r

�
x

�.1C 1
r /x
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, x D
�

1 C 1

r

�.1C 1
r /

x1C 1
r

, x1�.1C 1
r / D

�
1 C 1

r

�1C 1
r

, x� 1
r D

�
1 C 1

r

�1C 1
r

, x D
�

1 � 1

r C 1

�rC1

:

Finally,

y D
�

1 C 1

r

�
x D

�
1 � 1

r C 1

�r

:

12. By taking the .1=xy/-th power, we obtain

.xy/
1
xy D .yx/

1
xy , x

1
x D y

1
y :

Thus

�
1

x

� 1
x

D
�

1

y

� 1
y

:

From the previous problem, there exists a positive real number r such that

1

x
D
�

1 � 1

r C 1

�r

D
�

r

r C 1

�r

and

1

y
D
�

1 � 1

r C 1

�rC1

D
�

r

r C 1

�rC1

:

Hence

x D
�

1 C 1

r

�r

; y D
�

1 C 1

r

�rC1

:
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13. a) As a consequence of the Cesàro-Stolz theorem, we have the root formula,

lim
n!1

n
p

an D lim
n!1

anC1

an
;

under the hypothesis that the limit on the right-hand side exists. Here,

lim
n!1

n
p

nŠ

n
D lim

n!1
n

r
nŠ

nn
D lim

n!1

.nC1/Š

.nC1/nC1

nŠ
nn

D lim
n!1

1�
1 C 1

n

	n D 1

e
:

b) We have

lim
n!1

�
nC1
p

.n C 1/Š � n
p

nŠ
�

D lim
n!1

n
p

nŠ

 
nC1
p

.n C 1/Š
n

p
nŠ

� 1

!

D lim
n!1

2
4n �

n
p

nŠ

n
�

nC1
p

.nC1/Š
npnŠ

� 1

ln
nC1

p
.nC1/Š

npnŠ

� ln
nC1
p

.n C 1/Š
n
p

nŠ

3
5

D 1

e
� lim

n!1

 
n ln

nC1
p

.n C 1/Š
n
p

nŠ

!
D 1

e
� lim

n!1 ln
nC1
p

Œ.n C 1/Š�n

nŠ

D 1

e
� lim

n!1 ln nC1

s
Œ.n C 1/Š�n

.nŠ/nC1
D 1

e
� lim

n!1 ln
nC1

r
.n C 1/n

nŠ
D 1

e
:



Chapter 11
The Intermediate Value Theorem

Let I � R be an interval. We say that a function f W I ! R has the intermediate
value property (or IVP, for short) if it takes all intermediate values between any two
of its values. More precisely, for every a; b 2 I and for any � between f .a/ and f .b/;

we can find c between a and b such that f .c/ D �: A direct consequence of this
definition is that f has IVP if and only if it transforms any interval into an interval.
Equivalently, a function with IVP which takes values of opposite signs must vanish
at some point.

Theorem (Intermediate value theorem). The class of continuous functions is
strictly included in the class of functions with IVP.

Proof. Let f W Œa; b� ! R be a continuous function. If f .a/f .b/ < 0; we will
prove that there exists c 2 .a; b/ such that f .c/ D 0: We assume, without loss of
generality, that f .a/ < 0 and f .b/ > 0: From the continuity of f ; we can find " > 0

such that f remains negative on Œa; a C "/ � Œa; b�: Let us define the set

A D fx 2 .a; b/ j f is negative on Œa; x/ g:

The set is nonempty, because aC" 2 A: Let c D sup A: We will prove that f .c/ D 0:

Let .cn/n�1 � Œa; c/ be a sequence convergent to c: From f .cn/ < 0; we deduce
f .c/ � 0 and consequently c < b: If f .c/ < 0; then from the continuity of f at c; we
can find ı > 0 such that f remains negative on Œc; c C ı/: This means that c C ı is in
A; a contradiction. In conclusion, f .c/ D 0:�

On the other hand, the first proposed problem gives an example of a function
with IVP which is not continuous.

Another important property of IVP-functions which we use here is the following:

Proposition. Each one-to-one IVP-functionf W I ! R is strictly monotone.

Proof. Let us assume, by way of contradiction, that there are a < b < c in I for
which f .b/ is not between f .a/ and f .c/ (as it would be if f was monotone). One
immediately sees that we can assume f .c/ < f .a/ < f .b/; without loss of generality.
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190 11 The Intermediate Value Theorem

Because f .a/ is an intermediate value between f .c/ and f .b/; we can find d 2 .b; c/

so that f .d/ D f .a/: But this contradicts the injectivity of f ; because d ¤ a. �

Problem. Prove that there are no functions f W R ! R with IVP, such that

f .f .x// D �x; 8 x 2 R:

Solution. If x; y satisfy f .x/ D f .y/; then f .f .x// D f .f .y// and further, x D y:

Thus f is injective. But any injective function with IVP is strictly monotone.
Consequently, f ı f is increasing. This is a contradiction, because f ı f D �1R
is decreasing. �

Also, the above proposition implies that any increasing function having IVP is
continuous. Indeed, such a function has one-sided limits at any point because it is
increasing, and because it cannot “jump” values, these one-sided limits are identical.
This is the idea that underlies the following problem, proposed for the Romanian
National Olympiad in 1998:

Example. Let f W R ! R be a differentiable function such that

f 0.x/ � f 0
�

x C 1

n

�

for all x 2 R and all positive integers n. Prove that f 0 is continuous.

Solution. Consider the following function:

fn.x/ D n

��
f .x C 1

n

�
� f .x/

�
:

By the hypothesis, fn has a nonnegative derivative; therefore it is increasing. Thus, if
x < y, we have fn.x/ � fn.y/ for all n. By making n ! 1, we conclude that f 0.x/ �
f 0.y/. Thus, f 0 is increasing. Using Darboux’s theorem, proved in Chapter 14, as
well as the observation preceding the solution, we conclude that f 0 is continuous. �

We now present a quite challenging problem in which the IVP plays a crucial
role. Here is problem E3191 from the American Mathematical Monthly:

Problem. Find all functions f W R ! R with IVP such that

f .x C y/ D f .x C f .y//

for all x; y 2 R.

Solution. The constant functions are clearly solutions, so we suppose further
that f is nonconstant. Let a D inf Im f , b D sup Im f , where Im f denotes the range
of f . The assumption we made shows that a < b. We have f .y/ D f .f .y// for all
y 2 R (by setting x D 0 in the given relation); thus f .x/ D x for x 2 .a; b/.

Suppose that a 2 R. By IVP and f .x/ D x for x 2 .a; b/, we must have f .a/ D a;
thus there is d > 0 such that f .x/ D x on Œa; aC2d�. But then any 0 < t < d satisfies
f .a � t/ D a C s for some s > d, because if s � d then
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a D f .t C a � t/ D f .t C f .a � t// D f .a C s C t/ D a C s C t;

a contradiction. On the other hand, f .a � t/ > a C d for all t 2 .0; d/ and f .a/ D a
contradict IVP. Thus it is impossible for a to be finite, that is, a D �1. Similarly,
b D 1 and f .x/ D x, for all x 2 R. �

The following problem was the highlight of the Romanian National Olympiad
in 2000.

Problem. A function f W R2 ! R is called olympic if for any n � 3 and any
A1; A2; : : : ; An 2 R

2 distinct points such that f .A1/ D � � � D f .An/, the points
A1; A2; : : : ; An are the vertices of a convex polygon.

Let P 2 CŒX� be nonconstant. Prove that f W R2 ! R, f .x; y/ D jP.x C iy/j is
olympic if and only if all the roots of P are equal.

Solution. If P.z/ D a.z � z0/n and f .A1/ D � � � D f .An/, then all Ai are on a
circle of center z0, thus are the vertices of a convex polygon. Now, suppose that not
all the roots of P are equal and consider z1; z2 two roots of P such that jz1 � z2j ¤ 0

is minimal.
Let d be the line containing z1 and z2, and let z3 D z1 C z2

2
. Denote by s1; s2 the

half lines determined by z3. By the minimality of jz1 � z2j, we must have f .z3/ > 0

and because

lim
jzj!1

z2s1

f .z/ D lim
jzj!1

z2s2

f .z/ D 1

and f has IVP, there exist z4 2 s1 and z5 2 s2 with f .z3/ D f .z4/ D f .z5/, a
contradiction. �

Example. The continuous function f W R ! R has the property that for any
real number a, the equation f .x/ D f .a/ has only a finite number of solutions.
Prove that there exist real numbers a; b such that the set of real numbers x such that
f .a/ � f .x/ � f .b/ is bounded.

Solution. First, we will prove that f has limit at 1 and at �1. Indeed, if this is
not the case, there exist sequences an and bn which tend to 1 and such that f .an/,
f .bn/ have limit points a < b. This implies the existence of a number c such that
f .an/ < c < f .bn/ for sufficiently large n. Using the intermediate value theorem, we
deduce the existence of cn between an and bn such that f .cn/ D c for all sufficiently
large n. Clearly, this contradicts the hypothesis. �

Now, let l1 D lim
x!1 f .x/ and l2 D lim

x!�1 f .x/. We have two cases: the first one

is when l1 ¤ l2. Let us suppose, without loss of generality, that l1 < l2, and let
us consider real numbers a; b such that l1 < a < b < l2. There are numbers A; B
such that f .x/ < a for x < A and f .x/ > b for x > B. Using the intermediate
value theorem, it follows that a; b 2 Im .f / and clearly the set of those x for which
f .x/ 2 Œa; b� is a subset of ŒA; B�, thus bounded. The second case is l1 D l2 D l.
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Clearly, f is not constant, so we can choose a < b < l in the range of f if Im .f / is
not a subset of .l; 1/, and we can choose l < a < b in the range of f if Im .f / is not
a subset of .�1; l/. Now, we can argue as in the first case to deduce that the set of
those x for which a � x � b is bounded. This finishes the solution. �

Proposed Problems

1. Prove that the function f W R ! R; given by

f .x/ D
8<
:

sin
1

x
; x 2 R n f0g

0; x D 0

has IVP.
2. Let f W Œ0; 1� ! Œ0; 1� be such that f .0/ D 0 and f .1/ D 1: Does the surjectivity

of f imply that f has IVP?
3. Let f W Œ0; 1/ ! R be a function continuous on .0; 1/: Prove that the

following assertions are equivalent:

a) f has IVP;
b) there exists a sequence .an/n�1 � .0; 1/ for which

lim
n!1 an D 0 and lim

n!1 f .an/ D f .0/:

4. Let f W Œ0; 1/ ! Œa; b� be continuous on .0; 1/ such that

lim
n!1 f

�
1

2n

�
D a; lim

n!1 f

�
1

2n C 1

�
D b:

Prove that f has IVP.
5. Let f W Œa; b� ! R be a continuous function such that f .a/f .b/ < 0: Prove that

for all integers n � 3; there exists an arithmetic progression x1 < x2 < � � � < xn

such that

f .x1/ C f .x2/ C � � � C f .xn/ D 0:

6. Prove that there are no differentiable functions f W R ! R, such that

f 0.x/ � f .x/ D
�

sin x; x 2 .�1; 0/

cos x; x 2 Œ0; 1/
:

7. Prove that there are no functions f W R ! R with IVP such that
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f .f .x// D cos2 x; 8 x 2 R:

8. Prove that there are no functions f W R ! Œ0; 1/ with IVP, such that

f .f .x// D 2x; 8 x 2 R:

9. Find all functions f W R ! R with IVP, such that f .2/ D 8; f .�2/ D �8 and

f .f .x// D f 3.x/; 8 x 2 R:

10. Let f W Œ0; 1� ! R be integrable. Assume that 0 � a < c < b < d � 1 such thatZ b

a
f .x/ dx < 0 and

Z d

c
f .x/ dx > 0: Prove that there exist 0 � ˛ < ˇ � 1 such

that
Z ˇ

˛

f .x/ dx D 0:

11. Find all functions f W R ! R having the intermediate value property such
that f Œ0� C f Œ1� is increasing and there exists such positive integer m that
f Œ0� C f Œ1� C � � � C f Œm� is decreasing.

Note that f Œn� D f ı f ı� � �ı f is the nth iterate of f (with f Œ0� D 1R, the identity
function on the reals) and that we call increasing (respectively decreasing) a
function h with property that h.x/ � h.y/ (respectively h.x/ � h.y/) whenever
x < y.

12. Let f W R ! R be a continuous function and let a; b 2 f .R/ (i.e., in the range
of f ) with a < b. Prove that there exists an interval I such that f .I/ D Œa; b�.

13. Let f W Œ0; 1� ! Œ0; 1/ be a continuous function such that f .0/ D f .1/ D 0 and
f .x/ > 0 for 0 < x < 1. Show that there exists a square with two vertices in the
interval .0; 1/ on the x-axis and the other two vertices on the graph of f .

14. Let a1; : : : ; an be real numbers, each greater than 1. If n � 2, prove that there is
exactly one solution in the interval .0; 1/ to

nY
jD1

.1 � xaj/ D 1 � x:

Solutions

1. We prove that if I is an interval, then f .I/ is an interval. If zero is not an
accumulating point of I; then f is continuous on I and consequently, f .I/ is
an interval.

Obviously, f .R/ � Œ�1; 1�; so it is sufficient to prove the equality

f ..0; "// D Œ�1; 1�;

for all " > 0: Indeed, for positive integers n > "�1; we have
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1
�
2

C 2n�
;

1

� �
2

C 2n�
2 .0; "/

and

f

�
1

�
2

C 2n�

�
D 1; f

�
1

� �
2

C 2n�

�
D �1:

Now, using the continuity of f on the interval

�
1

� �
2

C 2n�
;

1
�
2

C 2n�

�
; we

deduce that f ..0; "// D Œ�1; 1�:

2. The answer is no. The function f W Œ0; 1� ! Œ0; 1�; given by

f .x/ D
�

2x; x 2 Œ0; 1=2/

2x � 1; x 2 Œ1=2; 1�

is surjective but it does not have IVP because

f

��
2

5
;

3

5

��
D

�
0;

1

5

�
[

�
4

5
; 1

�
:

3. First we prove that

8 n 2 N
�; 9 an 2

�
0;

1

n

�
; such that jf .an/ � f .0/j <

1

n
;

where a0 D 1: Indeed, if there is n0 2 N
� for which

jf .x/ � f .0/j � 1

n0

; 8 x 2
�

0;
1

n0

�
;

then

f .x/ 2
�

�1; f .0/ � 1

n0

�
[ ff .0/g [

�
f .0/ C 1

n0

; 1
�

;

for all x 2
�
0;

1

n0

�
: This is a contradiction, because f

��
0;

1

n0

��
cannot be an

interval.
Reciprocally, if a > 0 and � 2 .f .0/; f .a//; then from lim

n!1an D 0; we

conclude that there exists n1 2 N such that an < a; 8 n � n1: Because
lim

n!1f .an/ D f .0/ < �, there is n2 2 N such that f .an/ < �; 8 n � n2: Now,

for n0 D maxfn1; n2g, we have an0 < a; f .an0 / < �: Further, f is continuous
on Œan0 ; a� and f .an0 / < �, f .a/ > �; so there exists c 2 .an0 ; a/ � Œ0; a� such
that f .c/ D �:
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4. If I � Œ0; 1/ is an interval having the origin as an accumulating point, then

.a; b/ � f .I/ � Œa; b�;

so f .I/ is an interval. To this end, we will use the previous result. Let n0 be a
positive integer such that

f

�
1

2n

�
� f .0/ � f

�
1

2n C 1

�
; 8 n � n0:

Note that f is continuous on

�
1

2n C 1
;

1

2n

�
; so we can find an 2

�
1

2n C 1
;

1

2n

�

for which f .an/ D f .0/: In conclusion, an ! 0 and f .an/ ! f .0/; as n ! 1:

5. Assume that f .a/ < 0 and f .b/ > 0; without loss of generality. Let " > 0 be
such that

f .x/ < 0; 8 x 2 Œa; a C "�; f .x/ > 0; 8 x 2 Œb � "; b�

and let us consider the arithmetic progressions

a1 < a2 < � � � < an 2 Œa; a C "�; b1 < b2 < � � � < bn 2 Œb � "; b�:

Define F W Œ0; 1� ! R by the formula

F.t/ D
nX

kD1

f ..1 � t/ak C tbk/; t 2 Œ0; 1�:

The function F is continuous and

F.0/ D
nX

kD1

f .ak/ < 0; F.1/ D
nX

kD1

f .bk/ > 0;

so we can find � 2 .0; 1/ such that F.�/ D 0; i.e.,

nX
kD1

f ..1 � �/ak C �bk/ D 0:

Finally, we can take the arithmetic progression xk D .1 � �/ak C �bk:

6. If we assume by contradiction that such a function exists, then define
g W R ! R; by g.x/ D e�xf .x/: Its derivative

g0.x/ D e�x.f 0.x/ � f .x// D
�

e�x sin x; x 2 .�1; 0/

e�x cos x; x 2 Œ0; 1/
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has IVP. This is impossible, because g0 has at zero a discontinuity of the first
kind,

lim
x%0

g0.x/ D lim
x!0

e�x sin x D 0

and

lim
x&0

g0.x/ D lim
x!0

e�x cos x D 1:

7. From f .cos2 x/ D cos2.f .x// 2 Œ0; 1�, x 2 R; we deduce that y 2 Œ0; 1� )
f .y/ 2 Œ0; 1�: This fact allows us to define the function g W Œ0; 1� ! Œ0; 1�; by
g.x/ D f .x/, x 2 Œ0; 1�: Obviously, g.g.x// D cos2 x:g is injective and g has
IVP, so it is strictly monotone. Therefore, g ı g is increasing, a contradiction.

8. The function f is injective and f has IVP, so f is continuous and strictly
monotone. If f .˛/ D ˛; for some real ˛; then

f .f .˛// D f .˛/ ) 2˛ D ˛;

which is impossible. If f .x/ < x; for all real numbers x; then

f .f .x// < f .x/ < x ) 2x < x; 8 x 2 R;

a contradiction. Consequently, f .x/ > x; for all real numbers x and further, f is
increasing. The limit l D lim

x!�1 f .x/ does exist.

Because f .x/ � 0 for all x, we have l 2 R and f .l/ D 0.
Finally, from the monotonicity, we conclude that f .l � 1/ < 0; a contradic-

tion.
9. Im f is an interval and f .y/ D y3; for all real numbers y in Im f : Indeed, if

y D f .x/; for some real x; then

f .y/ D f .f .x// D f 3.x/ D y3:

We prove that Im f D R and so f .x/ D x3; for all real numbers x: To this end,
define u1 D �2; v1 D 2;

unC1 D u3
n; vnC1 D v3

n ; n � 1:

It is easy to see that un ! �1 and vn ! 1 as n ! 1: Finally, note that
un; vn 2 Im f for all positive integers n: Indeed, if un 2 Im f , un D f .˛/; then

unC1 D u3
n D f 3.˛/ D f .f .˛// 2 Im f :
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10. The function F W Œ0; 1� ! R; given by

F.t/ D
Z .1�t/bCtd

.1�t/aCtc
f .x/ dx; t 2 Œ0; 1�

is continuous, and consequently it has IVP. According to the hypothesis,

F.0/ D
Z b

a
f .x/ dx < 0

and

F.1/ D
Z d

c
f .x/ dx > 0;

so F.�/ D 0 for some � in .0; 1/: More precisely,

f .�/ D
Z .1��/bC�d

.1��/aC�c
f .x/ dx D 0;

so we can choose ˛ D .1 � �/a C �c; ˇ D .1 � �/b C �d:

11. Let fn D f Œ0� C f Œ1� C � � � C f Œn� for every n � 0. Thus, the problem gives us that,
for all x; y 2 R, with x � y, we have f1.x/ � f1.y/, and fm.x/ � fm.y/.

First, f is injective. Indeed, let x; y be real numbers such that f .x/ D f .y/, and
assume, without loss of generality, that x � y. Clearly we have f Œn�.x/ D f Œn�.y/

for all n � 1; thus fm.x/ � fm.y/ becomes f Œ0�.x/ � f Œ0�.y/, that is, x � y, and,
consequently, we have x D y. Being injective and with the intermediate value
property, f must be strictly monotone, which implies that f Œ2� D f ı f is strictly
increasing; therefore, f Œ2n� is strictly increasing for all n � 0. Thus

f2n D f1 C f1 ı f Œ2� C � � � C f1 ı f Œ2n�2� C f Œ2n�

is strictly increasing, while

f2nC1 D f1 C f1 ı f Œ2� C � � � C f1 ı f Œ2n�

is increasing.
Because f Œm� is decreasing, it follows that m is odd, and f Œm� is constant (being

decreasing and increasing at the same time). But, clearly, this can happen only
if f1 is in turn constant. This means that there exists some c 2 R such that
f1.x/ D c , f .x/ D �x C c for all x 2 R, and, indeed, the reader can easily
check that these functions satisfy all conditions from the problem statement.

This was proposed by Dorel Miheţ for the Romanian National Mathematics
Olympiad in 2014.
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12. There exist real numbers p and q such that f .p/ D a and f .q/ D b. Of course,
p ¤ q, and we can assume, without loss of generality, that p < q. The set of
those x in Œp; q� for which f .x/ D a is bounded and nonempty (it contains p);
thus it has a supremum, and let it be ˛. The set of those x 2 Œ˛; q� for which
f .x/ D q is bounded and nonempty (it contains q); thus it has an infimum, and
let it be ˇ. By passing to the limit, and using the continuity of f , we see that
f .˛/ D a, and f .ˇ/ D b. We claim that f .Œ˛; ˇ�/ D Œa; b�.

The inclusion Œa; b� � f .Œ˛; ˇ�/ follows immediately from the fact that f has
the intermediate value property. Conversely, let us prove that f .Œ˛; ˇ�/ � Œa; b�.
Let x 2 Œ˛; ˇ�, and suppose that f .x/ < a, so that we have f .x/ < a < b D
f .ˇ/. Again by the intermediate value property, we obtain the existence of some
y 2 .x; ˇ/, with f .y/ D a, but this contradicts the supremum property of ˛.
Similarly, the assumption that f .x/ > b (and thus f .x/ > b > a D f .˛/) leads
to a contradiction of the infimum property of ˇ. It remains the only possibility
that f .x/ belongs to Œa; b�, finishing the proof.

This problem was also proposed for the 11th grade in the Romanian National
Mathematics Olympiad, in 2007.

13. The set

A D fx 2 Œ0; 1� W x C f .x/ � 1g

is nonempty (it contains 1) and, of course, bounded; hence it has an infimum,
and let it be c. Since 0Cf .0/ < 1 and f is continuous, the inequality xCf .x/ < 1

holds for all x in a neighborhood of the origin (and in Œ0; 1�, of course); therefore
c > 0. Yet we have xC f .x/ < 1 for all x 2 Œ0; 1�, x < c, and xC f .x/ � 1 for all
x 2 A (and A contains a sequence with limit c), and these relations immediately
yield c C f .c/ D 1. To summarize: there is a c 2 .0; 1� such that c C f .c/ D 1

and x C f .x/ < 1 for all x 2 Œ0; c/.
Since f is continuous, it is bounded and attains its extrema on the interval

Œ0; 1�. Thus there is a d 2 Œ0; 1� such that f .x/ � f .d/ for all x 2 Œ0; 1�; actually
the conditions from the problem statement imply that d 2 .0; 1/.

Now let the continuous function g W Œ0; 1� ! Œ0; 1/ be defined by g.x/ D
x C f .x/. Since g.0/ D 0 < d < 1 D c C f .c/ D g.c/, there exists ˛ 2 .0; c/

such that g.˛/ D d , ˛ C f .˛/ D d (because g has the intermediate value
property).

Now consider the function h W Œ0; c� ! R defined by h.x/ D f .xCf .x//�f .x/

for all x 2 Œ0; c� (for which 0 � x C f .x/ � 1, thus h is well defined); certainly,
h is also a continuous function. We have

h.˛/ D f .˛ C f .˛// � f .˛/ D f .d/ � f .˛/ � 0;

h.c/ D f .c C f .c// � f .c/ D f .1/ � f .c/ D �f .c/ � 0;
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and also,

h.d/ D f .d C f .d// � f .d/ � 0:

The last relation holds (at least) if d � c.
Now, as h has the intermediate value property, there exists � 2 Œ˛; c� such

that h.�/ D 0 , f .� C f .�// D f .�/, and ˛ > 0 assures � > 0. However, we
cannot be sure of the fact that � < 1. If � is exactly 1, then c D 1 follows as
well; therefore d < c, and we can find another � in the interval Œ˛; d� with the
property that h.�/ D 0, and in this case, we have � � d < 1. Either way, there
exists � 2 .0; 1/ such that h.�/ D 0, that is, f .� C f .�// D f .�/.

Finally we see that the quadrilateral with vertices .�; 0/, .� C f .�/; 0/, .� C
f .�/; f .� C f .�///, and .�; f .�// is a square (the first two points are on the
x-axis; the others are on the graph of f ).

This is problem 11402 proposed by Cătălin Barboianu in The American
Mathematical Monthly.

14. We first use (a form of) Bernoulli’s inequality, namely, 1 � xa � a.1 � x/ for
a > 1 and x � 0. Thus, for x 2 .0; 1/, we have

f .x/ D
nY

jD1

.1 � xaj/ � a1 � � � an.1 � x/n < 1 � x;

the last inequality being satisfied if we choose x > 1 � 1= n�1
p

a1 � � � an.
On the other hand, the inequality .1 � s1/ � � � .1 � sn/ > 1 � s1 � � � � �

sn (somehow also related to Bernoulli’s inequality) can be proved by an easy
induction for s1; : : : ; sn 2 .0; 1/. Thus, for x 2 .0; 1/,

f .x/ D
nY

jD1

.1 � xaj/ > 1 � xa1 � � � � � xan > 1 � x;

where the last inequality holds if we choose x < .1=n/1=.a�1/, with a D min
1�j�n

aj.

The intermediate value theorem applied to the function x 7! f .x/�.1�x/ shows
that there is at least one solution in .0; 1/ to the equation f .x/ D 1 � x.

Now suppose that the equation f .x/ D 1 � x has two solutions x1 and x2,
with 0 < x1 < x2 < 1, and let g.x/ D log f .x/ � log.1 � x/, and h.x/ D
.1 � x/g0.x/. Of course, 0, x1 and x2 would be solutions for g.x/ D 0, as well,
therefore, by Rolle’s theorem, g0.x/ D 0, and consequently, h.x/ D 0 would
have at least two solutions in .0; 1/ (one between 0 and x1, and one in the
interval .x1; x2/). Finally, this would produce at least one solution in .0; 1/ for
the equation h0.x/ D 0 (again by Rolle’s theorem). But we have

h.x/ D �
nX

jD1

aj.x
aj�1 � xaj/.1 � xaj/�1 C 1;
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and

h0.x/ D �
nX

jD1

ajx
aj�2.xaj � 1 � aj.x � 1//.1 � xaj/�2I

hence we see that h0 is negative in .0; 1/, according to the same inequality of
Bernoulli mentioned in the beginning. The contradiction thus obtained finishes
the proof.

This is problem 11226, proposed by Franck Beaucoup and Tamás Erdélyi in
The American Mathematical Monthly 6/2006, with the solution of the Microsoft
Research Problem Group in the same Monthly, 1/2008. Yet another (a bit more
complicated) solution can be found in Chapter 14 about derivatives and their
applications.



Chapter 12
The Extreme Value Theorem

The extreme value theorem asserts that any continuous function defined on a
compact interval with real values is bounded and it attains its extrema. Indeed, let
us consider a continuous function f W Œa; b� ! R: If we assume by contradiction
that f is unbounded, then for each positive integer n; we can find an element xn in
Œa; b� such that jf .xn/j > n. In this way, we define a bounded sequence .xn/n�1:

The Bolzano-Weierstrass theorem implies (due to the compactness of Œa; b�) the
existence of a convergent subsequence .xkn/n�1. We have jf .xkn/j > kn; for all
positive integers n. In particular, the sequence .f .xkn//n�1 is unbounded. This is a
contradiction, because the sequence .f .xkn//n�1 is convergent to f .l/; where l is the
limit of the sequence .xkn/n�1: Then suppose that M D sup

x2Œa;b�

f .x/ is the least upper

bound (or supremum) of f (which is finite, as shown above). There exists a sequence
.un/n�1 � Œa; b� such that lim

n!1 f .un/ D M. By Bolzano-Weierstrass theorem again,

.un/n�1 has a convergent subsequence; let us call .ukn/n�1 this subsequence, and let
c 2 Œa; b� be its limit. We then have M D lim

n!1 f .un/ D lim
n!1 f .ukn/ D f .c/, and thus

f attains its supremum M. In a similar manner, we show that f attains its infimum,
thus finishing the proof of the theorem. �

The fundamental reason for which the above proof works lies in the fact that a
continuous function carries compact sets into compact sets. Thus if we consider a
compact metric space .X; d/ and a continuous function f defined on X and having
real values, f will also be bounded and will achieve its extrema, because its image
will be a compact connected set, thus a compact interval. For the special case
discussed in the beginning of this chapter, we present another interesting proof.
Using the continuity of f ; for every x in Œa; b�; we can choose "x > 0 and an
open interval Ix D .x � "x; x C "x/ containing x such that jf .y/ � f .x/j < 1; for
all real numbers y 2 Ix \ Œa; b�. Further, with the notation Mx D jf .x/j C 1; we have
jf .y/j < Mx for all y 2 Ix: The family .Ix/x2Œa;b� is an open cover of the compact set
Œa; b�: Consequently, we can find x1; x2; : : : ; xn 2 Œa; b� such that

Œa; b� � Ix1 [ Ix2 [ � � � [ Ixn :

© Springer Science+Business Media LLC 2017
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Now, one can easily see that f is bounded in absolute value by

maxfMx1 ; Mx2 ; : : : ; Mxng:

For the second part of the proof, we proceed as above. Alternatively, one can
consider the function x 7! g.x/ D 1=.M � f .x//, with M D sup

x2Œa;b�

f .x/. If we assume

f .x/ < M for all x 2 Œa; b�, then g is continuous, thus bounded on Œa; b�, according
to the first part of the theorem. However, this cannot happen, as there are values of
f as close to M as we want. �

Here is a spectacular application of this theorem in linear algebra:

Theorem. Any symmetric real matrix is conjugate to a real diagonal matrix.

Proof. Indeed, take A to be a symmetric matrix of order n and define the
quadratic form q.x/ D hAx; xi, where h�i is the standard Euclidean scalar product
on R

n. This is clearly a continuous function in R
n with real values. Consider Sn�1,

the unit sphere of R
n. This is a compact set, because it is clearly bounded and

closed. Therefore, q has a maximum � on Sn�1, attained at a point v. We will
prove that � is an eigenvalue of A. Indeed, by the definition of �, the quadratic
form q1.x/ D �kxk2 � q.x/ is positive and vanishes at v. The Cauchy-Schwarz
inequality implies b.u; v/2 � q1.u/q1.v/ for all u, where b is the bilinear form
associated to q1. Thus b.u; v/ D 0 for all u and this implies Av D �v. Thus we
have found an eigenvalue of A. Because A is symmetric, the subspace orthogonal to
v is invariant by A, and thus applying the previous argument in this new space and
repeating this allow us to find a basis consisting of (orthogonal) eigenvectors. Thus
A is diagonalizable. �

If you are still not convinced about the power of this result, consider its use
in the following proof of the celebrated fundamental theorem of algebra, due to
D’Alembert and Gauss:

Theorem. Any nonconstant polynomial with complex coefficients has at least
one complex zero.

Proof. Consider

P.X/ D anXn C an�1Xn�1 C � � � C a1X C a0

a complex polynomial and suppose that n � 1 and an ¤ 0. Let f .z/ D jP.z/j.
Because

f .z/ � janjjzjn � jan�1jjzjn�1 � � � � � ja1jjzj � ja0j;

it follows that lim
jzj!1

f .z/ D 1. In particular, there exists M such that for all jzj � M,

we have f .z/ � f .0/. Because f is continuous on the compact disc of radius M and
centered at the origin, its restriction to this compact set has a minimum at a point
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z0 such that jz0j � M. Now, if jzj � M, we have f .z/ � f .0/ � f .z0/. Otherwise,
we know that f .z/ � f .z0/. Thus f attains its minimum at z0. Suppose that P does

not vanish on the set of complex numbers. Consider Q.z/ D P.z C z0/

P.z0/
. It is still a

polynomial and g.z/ D jQ.z/j attains its minimal value, equal to 1, at 0. Let

Q.z/ D 1 C bjz
j C � � � C bnzn;

where bj ¤ 0. Let bj D rei˛ with r > 0 and ˛ 2 R. The triangle inequality shows
that

ˇ
ˇ
ˇQ

�

�e
i.��˛/

j

�ˇ
ˇ
ˇ � j1 � r�jj C

nX

kDjC1

jbkj�jC1;

for all � > 0 such that � < min
�

1; 1
r

�

. Thus, for � > 0 sufficiently small, we have

ˇ
ˇ
ˇQ

�

�e
i.��˛/

j

�ˇ
ˇ
ˇ < 1;

which is a contradiction. This shows that necessarily P must vanish at some z 2 C.
�

Let us continue with some concrete examples of application of the extreme value
theorem:

Problem. Find all continuous functions f W Œ0; 1� ! R such that

f .x/ D
1X

nD1

f .xn/

2n
; 8 x 2 Œ0; 1�:

Solution. Because
1X

nD1

1

2n
D 1, any constant function is solution of the equation.

Now let f be a solution, and consider 0 < a < 1 and x 2 Œ0; a� such that f .x/ D
max
Œ0;a�

f . Because xn 2 Œ0; a� for all n, we have f .xn/ � f .x/ for all n and because

f .x/ D
1X

nD1

f .xn/

2n
;

we must have f .xn/ D f .x/ for all n. Take n ! 1 to obtain f .x/ D f .0/. Therefore
f .0/ � f .t/ for all t 2 Œ0; a� and all a < 1; thus f .0/ D max

Œ0;1�
f . But if f is a solution,

�f is also a solution; thus �f .0/ D max
Œ0;1�

.�f / D � min
Œ0;1�

f . Thus, min
Œ0;1�

f D max
Œ0;1�

f , and

f is constant. �
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Here is a problem from the Putnam Competition:

Problem. Let f ; g W Œ0; 1� ! R and K W Œ0; 1��Œ0; 1� ! R be positive continuous
functions and suppose that for all x 2 Œ0; 1�,

f .x/ D
Z 1

0

K.x; y/g.y/dy; g.x/ D
Z 1

0

K.x; y/f .y/dy:

Prove that f D g.

Solution. We may assume that

a D min
Œ0;1�

f

g
� b D min

Œ0;1�

g

f

and let x0 2 Œ0; 1� be such that a D f .x0/

g.x0/
. Thus g.x/ � af .x/ for all x. Also,

Z 1

0

K.x0; y/.g.y/ � af .y//dy D f .x0/ � ag.x0/ D 0

and because y ! K.x0; y/.g.y/ � af .y// is a continuous nonnegative function with
average 0, it must be identically 0. Thus, since K.x0; y/ > 0 for all y, we have
g D af . But then

f .x/ D
Z 1

0

K.x; y/g.y/dy D a
Z 1

0

K.x; y/f .y/dy D ag.x/ D a2f .x/I

thus a D 1 and f D g. �

We end this theoretical part with a nontrivial problem taken from the American
Mathematical Monthly:

Problem. Let f W R ! R be a twice continuously differentiable function such
that

2f .x C 1/ D f .x/ C f .2x/

for all x. Prove that f is constant.

Solution. With x D 0 and x D 1, we obtain f .0/ D f .1/ D f .2/. Let F D f 00,
and differentiate the given equality twice to obtain

2F.x C 1/ D F.x/ C 4F.2x/:

Thus

F.x/ D 1

2
F

� x

2
C 1

�

� 1

4
F

� x

2

�

:
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Now take a � 2 and let I D Œ�a; a�. Let M D max
x2I

jf .x/j. Clearly, if x 2 I, we

have
x

2
2 I and 1 C x

2
2 I. Thus

jF.x/j � M

2
C M

4
D 3M

4

for all x 2 I and so M � 3M

4
; hence M D 0. Therefore F is identically 0 and f is

of the form ax C b. Because f .0/ D f .1/ D f .2/, we deduce that a D 0, and so f is
constant. �

Proposed Problems

1. Let f ; g W Œa; b� ! R be continuous such that

sup
x2Œa;b�

f .x/ D sup
x2Œa;b�

g.x/:

Prove that there exists c 2 Œa; b� such that f .c/ D g.c/:

2. Let f ; g W Œa; b� ! R be continuous such that

inf
x2Œa;b�

f .x/ � inf
x2Œa;b�

g.x/ � sup
x2Œa;b�

g.x/ � sup
x2Œa;b�

f .x/:

Prove that there exists c 2 Œa; b� such that f .c/ D g.c/.
3. Let f W Œ0; 1/ ! R be continuous such that the limit lim

x!1 f .x/ D l exists and

is finite. Prove that f is bounded.
4. Let f W Œ0; 1/ ! Œ0; 1/ be continuous such that lim

x!1 f .f .x// D 1: Prove that

lim
x!1 f .x/ D 1:

5. Let f W R ! R be a continuous function which transforms every open interval
into an open interval. Prove that f is strictly monotone.

6. a) Prove that there are no continuous and surjective functions f W Œ0; 1� ! .0; 1/ :

b) Prove that there are no continuous and bijective functions f W .0; 1/ ! Œ0; 1�.
7. Let f W R ! R be continuous such that

jf .x/ � f .y/j � jx � yj

for all real numbers x; y 2 R: Prove that f is surjective.
8. Let f W R ! R be continuous and 1-periodic.

a) Prove that f is bounded above and below, and it attains its minimum and
maximum.
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b) Prove that there exists a real number x0 such that f .x0/ D f .x0 C �/:

9. Prove that there exists " > 0 such that

jsin xj C jsin.x C 1/j > ";

for all real numbers x: Deduce that the sequence

xn D jsin 1j
1

C jsin 2j
2

C � � � C jsin nj
n

; n � 1;

is unbounded.
10. Let f W Œ0; 1� ! Œ0; 1/ be a continuous function. Prove that the sequence

an D n

s

f

�
1

n

�n

C f

�
2

n

�n

C � � � C f
�n

n

�n
; n � 2

is convergent.
11. Let f W R ! R be a continuous function. Assume that for any real numbers a; b;

with a < b; there exist c1; c2 2 Œa; b�; with c1 � c2; such that

f .c1/ D min
x2Œa;b�

f .x/; f .c2/ D max
x2Œa;b�

f .x/:

Prove that f is nondecreasing.
12. Let f W R ! R be a continuous function. Assume that for any real numbers a; b;

with a < b; there exist c1; c2 2 Œa; b�; with c1 ¤ c2; such that

f .c1/ D f .c2/ D max
x2Œa;b�

f .x/:

Prove that f is constant.
13. Let f W R ! R be a continuous function. Assume that for any real numbers a; b;

with a < b; there exists c 2 .a; b/ such that f .c/ � f .a/ and f .c/ � f .b/: Prove
that f is constant.

14. Let f ; g W Œa; b� ! Œa; b� be continuous such that f ı g D g ı f : Prove that there
exists c 2 Œa; b� such that f .c/ D g.c/:

15. Let .X; d/ be a metric space and let K � X be compact. Prove that every function
f W K ! K with the property that

d.f .x/; f .y// < d.x; y/

for all x; y 2 K; x ¤ y has exactly one fixed point.
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Solutions

1. Let us define the function h W Œa; b� ! R by the formula h.x/ D f .x/ � g.x/:

The function h is continuous as a difference of two continuous functions. By the
extreme value theorem, we can find ˛; ˇ 2 Œa; b� such that f .˛/ D g.ˇ/ D M;

where M denotes

M D sup
x2Œa;b�

f .x/ D sup
x2Œa;b�

g.x/:

We have f .x/ � M and g.x/ � M for all real numbers x 2 Œa; b� : Thus

h.˛/ D f .˛/ � g.˛/ D M � g.˛/ � 0

and

h.ˇ/ D f .ˇ/ � g.ˇ/ D f .ˇ/ � M � 0;

so there exists c 2 Œa; b� such that h.c/ D 0 , f .c/ D g.c/:

2. Let ˛; ˇ 2 Œa; b� be such that

f .˛/ D inf
x2Œa;b�

f .x/; f .ˇ/ D sup
x2Œa;b�

f .x/:

By hypothesis, f .˛/ � g.x/ � f .ˇ/ for every real number x 2 Œa; b� : Define
the function h W Œa; b� ! R by h.x/ D f .x/ � g.x/: The function h is continuous
as a difference of two continuous functions. Then h.˛/ D f .˛/ � g.˛/ � 0

and h.ˇ/ D f .ˇ/ � g.ˇ/ � 0; so there exists c 2 Œa; b� such that h.c/ D 0 ,
f .c/ D g.c/:

3. For " D 1 in the definition of the limit, there exists ı > 0 for which jf .x/ � lj �
1; for all real numbers x 2 Œı; 1/: It follows that jf .x/j � 1 C jlj for all x 2
Œı; 1/: Also the restriction f jŒ0;ı� W Œ0; ı� ! R is a continuous function defined
on a compact interval, so it is bounded, say jf .x/j � M; for all x 2 Œ0; ı� :

Consequently, jf .x/j � maxfM; 1 C jljg for all nonnegative real numbers x:

4. Let us assume, by way of contradiction, that there exists a strictly increasing,
unbounded sequence .an/n�1 � Œ0; 1/ such that f .an/ � M; for all positive
integers n and for some real number M: By the Bolzano-Weierstrass theorem,
we can assume that the sequence .f .an//n�1 is convergent (by working
eventually with a subsequence of it). If lim

n!1 f .an/ D L; then by using the

continuity of f at L; we obtain lim
n!1 f .f .an// D f .L/; which contradicts the fact

that lim
x!1 f .f .x// D 1:

5. Because any injective continuous function is strictly monotone, it is sufficient
to prove that f is injective. Let us assume, by way of contradiction, that there
exist two real numbers a < b such that f .a/ D f .b/: The function f cannot
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be constant on Œa; b� ; because in this case, for every a < c < d < b; the set
f ..c; d// D ff .a/g is not an open interval. Thus the restriction f jŒa;b� attains its
minimum or maximum on .a; b/ ; say min

x2Œa;b�
f .x/ D f .�/; for some real number

� 2 .a; b/ : In particular, f .x/ � f .�/; for all reals x 2 .a; b/ ; so f .a; b/

cannot be an open interval. This follows from the fact that the set f ..a; b//

has a minimum and open intervals do not have minima.
6. a) If such a function exists, then f .Œ0; 1�/ D .0; 1/ : This contradicts the fact

that f .Œ0; 1�/ D Œm; M� ; where

m D inf
x2Œ0;1�

f .x/; M D sup
x2Œ0;1�

f .x/;

which is a consequence of the extreme value theorem.
b) Suppose that such a function exists. The function f is continuous and

injective, so it will be strictly monotone, say increasing. By surjectivity, there
exists c 2 .0; 1/ such that f .c/ D 0: Then for every real number 0 < x < c;

by monotony, it follows that f .x/ < f .c/ D 0; which is impossible.
Alternatively, if a function f has the given properties, then its inverse

f �1 W Œ0; 1� ! .0; 1/ is continuous and surjective, which contradicts a).
7. If x1; x2 2 R are so that f .x1/ D f .x2/; then from the relation

jf .x1/ � f .x2/j � jx1 � x2j ; , 0 � jx1 � x2j ;

it follows that x1 D x2: Hence f is injective. But f is continuous, so it is strictly
monotone. For y D 0, we obtain jf .x/j � � jf .0/j C jxj ; so lim

jxj!1
jf .x/j D 1:

For example, if f is strictly increasing, then

lim
x!�1 f .x/ D �1; lim

x!1 f .x/ D 1

and by continuity, f is surjective.
8. a) Observe that because of the periodicity of f , we have f .x/ D f .x� Œx�/ for all

real numbers x. This shows that the range of f is exactly f .Œ0; 1�/. This is a
compact interval by the extreme value theorem, so f is bounded and attains
its extrema.

b) Let us define the function � W R ! R

�.x/ D f .x C �/ � f .x/;

for all real numbers x: The function f is continuous, so � is continuous. If we
show that the function � takes values of opposite signs, then the problem is
solved. Let ˛ be such that f .˛/ � f .x/ for all real numbers x. The existence
of such a number follows from a). Then

�.˛/ D f .˛ C �/ � f .˛/ � 0
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and

�.˛ � �/ D f .˛/ � f .˛ � �/ � 0:

9. Let us consider the continuous function f W Œ0; 2�� ! R; given by

f .x/ D jsin xj C jsin.x C 1/j :

Let x0 2 Œ0; 2�� be such that f .x0/ D min
x2Œ0;2��

f .x/: We prove that " D f .x0/ is

positive. Indeed, " � 0, and if " D 0; then

jsin x0j C jsin.x0 C 1/j D 0

) jsin x0j D 0 and jsin.x0 C 1/j D 0:

We can find integers m; n such that x0 D m�; x0 C 1 D n�; so

m� D n� � 1 ) � D 1

n � m
;

which is impossible because the above fraction on the right is smaller than 1 in
absolute value. Now, for this "; we have

jsin xj C jsin.x C 1/j � "; 8 x 2 Œ0; 2��:

Moreover, this inequality holds for all real numbers x; because sin is 2�-
periodic. For the second part, note that

x2n D
� jsin 1j

1
C jsin 2j

2

�

C
� jsin 3j

3
C jsin 4j

4

�

C � � �

C
� jsin.2n � 1/j

2n � 1
C jsin 2nj

2n

�

>
jsin 1j C jsin 2j

2
C jsin 3j C jsin 4j

4
C � � � C jsin.2n � 1/j C jsin 2nj

2n

>
"

2
C "

4
C � � � C "

2n
D "

2

�

1 C 1

2
C � � � C 1

n

�

;

and the conclusion follows from the fact that

lim
n!1

�

1 C 1

2
C � � � C 1

n

�

D 1:
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One can prove (but the proof is much more involved) that if f is a continuous

periodic function such that the series
jf .1/j

1
C jf .2/j

2
C � � � converges, then

f .n/ D 0 for all positive integers n.
10. We will prove that lim

n!1 an D M; where M D max
x2Œ0;1�

f .x/: Assume that f .x0/ D
M: Let " > 0: There exists ı > 0 for which

f .x/ > M � "; 8 x 2 .x0 � ı; x0 C ı/ \ Œ0; 1�:

For each n > 1=ı; we can find 1 � k0 � n such that

k0

n
2 .x0 � ı; x0 C ı/:

Then

an D n

s

f

�
1

n

�n

C f

�
2

n

�n

C � � � C f
�n

n

�n

� n

s

f

�
k0

n

�n

D f

�
k0

n

�

� M � ":

We derive

M � " � an � n
p

nM

for all integers n � 1=ıI thus .an/n�1 converges to M:

11. Let us assume that f .a/ > f .b/ for some a < b: Define

A D fx 2 Œa; b� j f .x/ � f .a/g :

A is nonempty, a 2 A; so let c D sup A: If .an/n�1 � A is a sequence that
converges to c; then f .an/ � f .a/: By taking n ! 1; we obtain f .c/ � f .a/;
thus c < b.

If .rn/n�1 � .c; b/; then f .rn/ < f .a/, and moreover, if .rn/n�1 converges to
c; we deduce that f .c/ � f .a/: In conclusion, f .c/ D f .a/: Now, let c � c1 �
c2 � b be such that

f .c1/ D min
x2Œc;b�

f .x/; f .c2/ D max
x2Œc;b�

f .x/:

Because f .c/ > f .x/; for all x in .c; b�; we must have c2 D c; which is
impossible.
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12. Let M D max
x2Œa;b�

f .x/ and define the set

A D fx 2 Œa; b� j f .x/ D Mg :

Let c D inf A; then f .c/ D M. We will prove that f .a/ D M: Indeed, if f .a/ <

M, then a < c, and the assumption of the problem fails on the interval Œa; c�.
We proved that for all a < b; f .a/ D max

x2Œa;b�
f .x/ and analogously, f .b/ D

max
x2Œa;b�

f .x/: In conclusion, f is constant.

13. Let a < b and let c1 2 Œa; b� be such that f .c1/ D max
x2Œa;b�

f .x/: According to the

hypothesis, we can find c2 2 .c1; b/ such that f .c2/ � f .c1/ and f .c2/ � f .b/:

Thus f .c1/ D f .c2/ D max
x2Œa;b�

f .x/: The conclusion follows from the previous

problem.
14. We have to prove that the function h W Œa; b� ! R given by h.x/ D f .x/ �

g.x/ has a zero in Œa; b� : If we suppose that this is not the case, then, because
the function h is continuous, it keeps a constant sign on Œa; b� ; say h > 0:

According to the extreme value theorem, there exists x0 2 Œa; b� for which
h.x0/ D inf

x2Œa;b�
h.x/ > 0: It follows that f .x/ � g.x/ > h.x0/ for all real numbers

x in Œa; b� : Thus

f .f .x// � g.g.x// D Œf .f .x// � g.f .x//� C Œf .g.x// � g.g.x//�

> h.x0/ C h.x0/:

By induction,

f Œn�.x/ � gŒn�.x/ > nh.x0/;

for all real numbers x 2 Œa; b� and all positive integers n: The last inequality
cannot be true, if we take into account that f and g are bounded (they are
continuous on a compact interval).

15. If c; c0 2 K; c ¤ c0 are so that f .c/ D c; and f .c0/ D c0; then for x D c and
y D c0, we obtain

d.f .c/; f .c0// < d.c; c0/ , d.c; c0/ < d.c; c0/;

a contradiction that proves the uniqueness of a fixed point of f (if any). Let us
define the application � W K ! R by the formula �.x/ D d.x; f .x// for all
x 2 K: The function � is continuous, because f is continuous. According to the
extreme value theorem, there exists x0 2 K such that �.x0/ D min

x2K
�.x/: Hence

d.x0; f .x0// � d.x; f .x// for all x 2 K, and we will prove that f .x0/ D x0: If
f .x0/ ¤ x0; then by hypothesis,

d.f .x0/; f .f .x0/// < d.x0; f .x0// , �.f .x0// < �.x0/;

which contradicts the minimality of �.x0/:



Chapter 13
Uniform Continuity

We say that a function f W D � R ! R is uniformly continuous if for all " > 0;

there exists �."/ > 0 such that:

x; x0 2 D;
ˇ
ˇx � x0ˇˇ � �."/ ) ˇ

ˇf .x/ � f .x0/
ˇ
ˇ � ":

Note that this is equivalent to the fact that for all " > 0; there exists �."/ > 0 such
that:

x; x0 2 D;
ˇ
ˇx � x0ˇˇ < �."/ ) ˇ

ˇf .x/ � f .x0/
ˇ
ˇ < ":

Also, it is easy to deduce that every uniformly continuous function is continuous,
but the converse is not always true, as we can see from the following example.

Example. The function f W R ! R, f .x/ D x2 is continuous, but it is not
uniformly continuous.

Proof. If f is uniformly continuous, then jf .x/ � f .y/j � "; for all real numbers
x; y; with jx � yj � �."/: In particular, for " D 1; we can find � > 0 such
that jf .x/ � f .y/j � 1; for all real numbers x; y; with jx � yj � �: Consequently,
jf .y C �/ � f .y/j � 1; for all real numbers y: Therefore

ˇ
ˇ
ˇ.y C �/2 � y2

ˇ
ˇ
ˇ � 1 , j2�y C �2j � 1

for all y, which is clearly impossible. �

The following theoretical result is a criterion for uniformly continuous functions.

Proposition. Let f W D � R ! R: The following assertions are equivalent:

a) f is uniformly continuous.
b) for all sequences .xn/n�1; .yn/n�1 � D with lim

n!1.xn � yn/ D 0; we have
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lim
n!1.f .xn/ � f .yn// D 0:

Proof. a))b). Let " > 0: The uniform continuity of f implies the existence of
�."/ > 0 such that

jf .x/ � f .y/j � "; (13.1)

for all real numbers x; y 2 D; with jx � yj � �."/: Because lim
n!1.xn � yn/ D 0; there

exists a positive integer n."/ such that jxn � ynj � �."/; for all integers n � n."/:

Using (13.1), we derive jf .xn/ � f .yn/j � "; for all n � n."/; so

lim
n!1.f .xn/ � f .yn// D 0:

b))a). Assuming by contradiction that f is not uniformly continuous, we deduce
the existence of a real number "0 > 0 so that

8 � > 0; 9 x�; y� ; jx� � y� j � �; jf .x�/ � f .y�/j � "0:

If � D 1

n
, n � 1; then we can find sequences .xn/n�1; .yn/n�1 for which

jxn � ynj � 1

n
and jf .xn/ � f .yn/j � "0;

for all positive integers n. This contradicts lim
n!1 .f .xn/ � f .yn// D 0:�

We recall that f is a Lipschitz function if

jf .x/ � f .y/j � L jx � yj ;

for all x; y in D and some positive real L: It is immediate that every Lipschitz
function is uniformly continuous: for each " > 0; it is enough to take �."/ WD "

L .
One method to recognize a Lipschitz function is to verify that it has a bounded

derivative. In this case, if sup
x2D

jf 0.x/j D L < 1; then, using Lagrange’s mean value

theorem,

jf .x/ � f .y/j D ˇ
ˇf 0.c/

ˇ
ˇ � jx � yj � L � jx � yj :

As a direct consequence, a differentiable function with a bounded derivative is
uniformly continuous.

We have seen that uniform continuity implies continuity, but the converse is not
true. However, we have the following useful result.

Theorem. If f W D ! R is continuous and D is compact, then f is uniformly
continuous.
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Proof. Assuming the falsity of the conclusion, we can find "0 > 0 and sequences
.xn/n�1; .yn/n�1 for which lim

n!1.xn � yn/ D 0 and jf .xn/ � f .yn/j � "0; for all

integers n � 1:

Because of compactness of D; the sequence .xn/n�1 has a convergent subse-
quence denoted .xkn/n�1: Because lim

n!1.xn � yn/ D 0; the sequence .ykn/n�1 is also

convergent to the same limit, say a. The inequality jf .xkn/ � f .ykn/j � "0; therefore,
contradicts the continuity of f at a. �

This result is extremely useful in a variety of problems concerning continuous
functions defined on compact spaces. Here is a nontrivial application:

Problem. Let U be the set of complex numbers of absolute value 1 and let
f W Œ0; 1� ! U be a continuous function. Prove the existence of a real continuous
function g such that f .x/ D eig.x/ for all x 2 Œ0; 1�.

Solution. We will begin with a definition: we will say that f has a lifting if there
exists such a function g. First of all, we will prove the following.

Lemma. Any continuous function f which is not onto has a lifting.

Indeed, we may assume that 1 is not in the range of f . Then, for all x, there
exists some g.x/ 2 .0; 2�/ such that f .x/ D eig.x/. We claim that this function g
is a lifting of f ; that is, g is continuous. Indeed, fix a number x0 and suppose that
g is not continuous at x0. Thus, there exists a sequence an converging to x0 and an
� > 0 such that jg.an/�g.x0/j � �. Because the sequence .g.an// is bounded, it has
a convergent subsequence, and by replacing eventually an with the corresponding
subsequence, we may assume that g.an/ converges to some l 2 Œ0; 2��. But then
f .an/ converges to eil, and by continuity of f , we must have eil D eig.x0/, which
means that l � g.x0/ is a multiple of 2� . But since g.x0/ 2 .0; 2�/, this forces
l D g.x0/, and thus we contradict the inequality jg.an/ � g.x0/j � " for sufficiently
large n. Thus g is continuous and f has a lifting. �

Now, we will employ the uniform continuity of f . Take N sufficiently large
such that

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

f
�

kx
N

�

f
�

.k�1/x
N

� � 1

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

< 1

for all x and all 1 � k � N. This is possible, since the maximal distance between
.k�1/x

N and kx
N (taken over all x) tends to 0 as N ! 1 and since f is uniformly

continuous. But then, if we define

hk.x/ D f
�

kx
N

�

f
�

.k�1/x
N

� ;
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these functions take their values in U and are not onto, since �1 is not in their range.
Thus, by the lemma, they have liftings g1; g2; : : : ; gN . By taking some a such that
f .0/ D eia, we observe immediately that a C g1 C � � � C gN is a lifting for f . �

We continue with an easier problem. However, it requires some geometric
interpretation:

Problem. Let f W Œ0; 1/ ! Œ0; 1/ be a continuous function such that

f

�
x C y

2

�

� f .x/ C f .y/

2

for all x; y. Prove that f is uniformly continuous.

Solution. First, we are going to prove that f is concave. Indeed, an immediate
induction shows that

f

�
x1 C x2 C � � � C x2n

2n

�

� f .x1/ C f .x2/ C � � � C f .x2n/

2n

for all nonnegative numbers x1; x2; : : : ; x2n and all positive integers n. Thus, by fixing
some 0 � k � 2n and two nonnegative integers x; y, we deduce that

f

�
k

2n
x C

�

1 � k

2n

�

y

�

� k

2n
f .x/ C

�

1 � k

2n

�

f .y/:

But, as we have seen in the chapter concerning density, the set of numbers of the
form k

2n with 0 � k � 2n � 1 is dense in Œ0; 1� and the continuity of f implies the
inequality

f .ax C .1 � a/y/ � af .x/ C .1 � a/f .y/

for all x; y � 0 and all a 2 Œ0; 1�. That is, f is concave.
Now, take some sequences an and bn such that an �bn converges to 0 and an < bn

for all n and suppose that f .an/ � f .bn/ does not converge to 0. Thus, an ! 1
(otherwise, it would have a convergent subsequence, and the same subsequence of
bn would converge to the same limit, thus contradicting the continuity of f ). Take
some c > d > 1 and observe that the concavity of f implies the inequality

f .bn/ � f .an/ � .bn � an/ � f .d/ � f .c/

d � c
:

Now, let us prove that f is increasing. This is quite clear, because for any a � 0, the
function

ha.x/ D f .x/ � f .a/

x � a
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is decreasing for x > a (since f is concave) and ha.x/ � � f .a/

x�a , the last quantity
converging to 0 as x ! 1. Thus ha must be nonnegative on .a; 1/, and so f is
increasing. Finally, this argument combined with the previous inequality gives the
estimation

0 � f .bn/ � f .an/ � .bn � an/ � f .d/ � f .c/

d � c
;

which shows that f .bn/ � f .an/ converges to 0. Using the theoretical results, we
finally deduce that f is uniformly continuous. �

The following problem is much more challenging:

Problem. Let I � R be an interval and let f W I ! R be uniformly continuous.
Define

ı."/ D supfı > 0 j 8 x1; x2 2 I; jx1 � x2j � ı ) jf .x1/ � f .x2/j � "g:

Prove that:

a) For all " > 0 and all x; y 2 I,

jf .x/ � f .y/j � "

ı."/
jx � yj C ":

b) lim
"!0

ı."/

"
D 0 if and only if f is not Lipschitz on I.

Solution. a) Let n D
� jx � yj

ı."/

	

. Everything is clear if n D 0, by definition of

ı."/, so assume that n � 1. Also, suppose that x < y. Let

x1 D x C ı."/; x2 D x C 2ı."/; : : : ; xn D x C nı."/:

Then

jf .x/ � f .x1/j � "; jf .x1/ � f .x2/j � "; : : : ; jf .xn/ � f .y/j � ";

thus

jf .x/ � f .y/j � .n C 1/" � jx � yj
ı."/

" C ":

b) Let us suppose that f is not Lipschitz and assume that lim
"!0

ı."/

"
is not 0 (it may

not exist); thus lim
"!0

"

ı."/
is not 1, so there is a decreasing sequence "n ! 0 and
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a real number � such that
"n

ı."n/
! � . Let C D sup

n

"n

ı."n/
< 1. Then by a), we

have

jf .x/ � f .y/j � Cjx � yj C "n; 8 n; 8 x; y 2 I:

For x; y 2 I fixed, let n ! 1. We obtain jf .x/ � f .y/j � Cjx � yj; thus f is
C-Lipschitz, a contradiction.

Now, suppose that lim
"!0

ı."/

"
D 0, but f is Lipschitz. Let C > 0 be such that

jf .x/� f .y/j � Cjx�yj for all x; y 2 I. Take " > 0. For x1; x2 2 I with jx1 �x2j � "

C
,

we have jf .x1/ � f .x2/j � ", thus ı."/ � "

C
) ı."/

"
� 1

C
. This contradicts the fact

that lim
"!0

ı."/

"
D 0. �

We continue with another quite difficult exercise:

Problem. Let f ; g W R ! R be continuous functions. Suppose that f is periodic

and nonconstant, and lim
x!1

g.x/

x
D 1. Prove that f ı g is not periodic.

Solution. Suppose the contrary. Then by proposed problem 13, f ıg is uniformly
continuous. Let T > 0 be a period for f and u; v 2 Œ0; T� be such that f .u/ D min

Œ0;T�
f ,

f .v/ D max
Œ0;T�

f . Let f .u/ D m, f .v/ D M, and " D M � m

2
. By uniform continuity,

there is ı such that

jx � yj � ı ) jf .g.x// � f .g.y//j � M � m

2
: (13.1)

We claim that there is an interval of length ı such that the variation of g on this
interval is greater than T . Indeed, otherwise

ˇ
ˇ
ˇ
ˇ

g.nı/

nı

ˇ
ˇ
ˇ
ˇ

� jg.0/j C jg.ı/ � g.0/j C � � � C jg.nı/ � g..n � 1/ı/j
nı

� jg.0/j
nı

C T

ı

and this contradicts the hypothesis made on g.
Thus, there are x1; x2 2 R with jx1 � x2j � ı such that jg.x1/ � g.x2/j > T . Thus

there are a; b between g.x1/ and g.x2/ such that f .a/ D m, f .b/ D M. By continuity
of g, there are x; y between x1; x2 such that a D g.x/, b D g.y/. Thus jx � yj � ı and

jf .g.x// � f .g.y//j D jf .a/ � f .b/j D M � m >
M � m

2
;

which contradicts (13.1). This finishes the solution. �
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Proposed Problems

1. Prove that the function f W .�1; 1/ ! R; f .x/ D x2 is uniformly continuous.

2. Prove that the function f W .0; 1/ ! R; f .x/ D sin
1

x
is not uniformly

continuous.
3. Prove that the function f W .0; 1/ ! R; f .x/ D sin

�

x2
�

is not uniformly
continuous.

4. Let f ; g W R ! R; f .x/ D x; g.x/ D sin x: Prove that f and g are uniformly
continuous, but their product fg is not uniformly continuous.

5. Let f W D � R ! R be a function with the property that

jf .x/ � f .y/j �
p

jx � yj;
for all x; y 2 D: Prove that f is uniformly continuous. Is this condition necessary
for uniform continuity?

6. Let f W D � R ! R be uniformly continuous and bounded. Prove that f 2 is
uniformly continuous.

7. For what ˛ is the function f W Œ0; 1/ ! R; f .x/ D x˛ uniformly continuous?
8. Prove that the function f W .a; 1/ ! R; f .x/ D ln x is uniformly continuous if

and only if a > 0:

9. Does there exist a uniformly continuous function that is not a Lipschitz
function?

10. Let f W Œ0; 1/ ! R be uniformly continuous. Prove that the function f has finite
limit at 1:

11. Let f W R ! R be continuous, having horizontal asymptotes at ˙1: Prove that
f is uniformly continuous.

12. Let f ; g W Œ0; 1/ ! R be continuous such that

lim
x!1 Œf .x/ � g.x/� D 0:

Prove that f is uniformly continuous if and only if g is uniformly continuous.
13. Let f W R ! R be continuous and periodic. Prove that f is uniformly continuous.
14. Let f W R ! R be uniformly continuous. Prove that

jf .x/j � a jxj C b;

for all x and some a; b:

15. Let f W R ! R be a uniformly continuous function. Prove that the function
g W R2 ! R; given by

g.x; y/ D
(

xf
�y

x

�

; x ¤ 0

0; x D 0

is continuous.



220 13 Uniform Continuity

Solutions

1. Let .xn/n�1 ; .yn/n�1 be sequences with elements in .�1; 1/ such that

lim
n!1 .xn � yn/ D 0:

Then

jf .xn/ � f .yn/j D ˇ
ˇx2

n � y2
n

ˇ
ˇ D jxn � ynj � .xn C yn/ � 2 jxn � ynj :

We used the inequality jxn C ynj � 2; which follows from xn; yn 2 .�1; 1/ :

Now, from the inequalities

0 � jf .xn/ � f .yn/j � 2 jxn � ynj ;

we derive lim
n!1.f .xn/ � f .yn// D 0: Hence f is uniformly continuous.

In fact, the uniform continuity of f can be established by using the fact that f
is differentiable with bounded derivative, jf 0.x/j � 2 jxj < 2; for all x in .�1; 1/:

On other hand, we can easily see that if a function is uniformly continuous
on D; then every restriction f jD0 ; with D0 � D remains uniformly continuous.
In our case, the given function f can be considered as a restriction of the
function F W Œ�2; 2� ! R; given by the law F.x/ D x2: Finally, F is uniformly
continuous on the compact set Œ�2; 2�:

2. We can take the sequences

xn D 1

2n�
; yn D 1

2n� � �=2
; n � 1:

Easily, lim
n!1.xn � yn/ D 0 and

lim
n!1.f .xn/ � f .yn// D lim

n!1
�

sin 2n� � sin
�

2n� � �

2

��

D 1;

so f is not uniformly continuous.
This proof uses sequences in a neighborhood of the origin, so a natural

question is if the restriction g D f jŒa;1/; with a > 0; is uniformly continuous or
not. In this case, we have

ˇ
ˇg0.x/

ˇ
ˇ D

ˇ
ˇcos 1

x

ˇ
ˇ

x2
� 1

x2
� 1

a2
;

for all x in Œa; 1/: Hence f jŒa;1/ is uniformly continuous, because it has
bounded derivative.
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3. First, note that the derivative f 0.x/ D 2x cos x2 is bounded on intervals of the
form .0; a�, a > 0; so f j.0;a� is uniformly continuous. Indeed,

ˇ
ˇf 0.x/

ˇ
ˇ D 2x

ˇ
ˇcos x2

ˇ
ˇ � 2x � 2a;

for all x in .0; a�: On .0; 1/, we can consider the sequences

xn D p
2n�; yn D

p

2n� � �=2; n � 1:

We have

lim
n!1.xn � yn/ D lim

n!1
�p

2n� �
p

2n� � �=2
�

D �

2
lim

n!1
1p

2n� C p

2n� � �=2
D 0:

However,

lim
n!1.f .xn/ � f .yn// D lim

n!1
�

sin 2n� � sin
�

2n� � �

2

��

D 1;

with lim
n!1.xn � yn/ D 0: Thus, f is not uniformly continuous.

4. The functions f and g are uniformly continuous, because they have bounded
derivatives on R,

ˇ
ˇf 0.x/

ˇ
ˇ D 1;

ˇ
ˇg0.x/

ˇ
ˇ D jcos xj � 1 ; x 2 R:

The product function h.x/ D x sin x, x 2 R; is not uniformly continuous.
Indeed, let us consider the sequences

xn D 2n�; yn D 2n� � 1

n
; n � 1:

We have lim
n!1.xn � yn/ D 0 and

h.xn/ � h.yn/ D
�

2n� � 1

n

�

� sin

�
1

n

�

converges to 2� . Hence h is not uniformly continuous.
5. Let .xn/n�1 ; .yn/n�1 � D be sequences such that lim

n!1.xn � yn/ D 0:

From the inequality

jf .xn/ � f .yn/j �
p

jxn � ynj;
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it follows that

lim
n!1 jf .xn/ � f .yn/j D 0;

so f is uniformly continuous. Clearly, there are uniformly continuous functions
which do not satisfy this condition, for example, f .x/ D x.

6. Let us assume that for some M > 0; we have jf .x/j � M; for all x 2 D: We
then deduce that

ˇ
ˇf 2.x/ � f 2.y/

ˇ
ˇ D jf .x/ C f .y/j � jf .x/ � f .y/j

so

ˇ
ˇf 2.x/ � f 2.y/

ˇ
ˇ � 2M � jf .x/ � f .y/j :

Now let .xn/n�1 ; .yn/n�1 � D be any sequences such that

lim
n!1 jxn � ynj D 0:

The function f is uniformly continuous, so lim
n!1 jf .xn/ � f .yn/j D 0: Hence

lim
n!1

ˇ
ˇf 2.xn/ � f 2.yn/

ˇ
ˇ D 0;

and the function f 2 is uniformly continuous.
7. First of all, let ˛ > 1: If f is uniformly continuous, then there is � > 0 so that

x; y 2 Œ0; 1/ ; jx � yj � � ) jx˛ � y˛j � 1:

In particular,

j.x C �/˛ � x˛j � 1;

for all nonnegative reals x: This contradicts the fact that

lim
x!1 Œ.x C �/˛ � x˛� D 1;

as follows immediately from Lagrange’s mean value theorem.
For 0 < ˛ � 1; we can see that f is uniformly continuous on Œ0; 1�

(continuous on a compact set) and f 0 is bounded on Œ1; 1/: It follows that f
is uniformly continuous on Œ0; 1/:
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8. First assume that a > 0: The function f is uniformly continuous because it has
bounded derivative,

f 0.x/ D 1

x
<

1

a
;

for all x 2 .a; 1/: In the case a D 0; consider the sequences

xn D 1

n
; yn D 1

n2
; n � 1:

We have

lim
n!1.xn � yn/ D lim

n!1

�
1

n
� 1

n2

�

D 0

and

lim
n!1 .f .xn/ � f .yn// D lim

n!1

�

ln
1

n
� ln

1

n2

�

D lim
n!1 ln n D 1;

so f is not uniformly continuous.
9. Yes. An example is f .x/ D p

x, x 2 Œ0; 1/: As we have already proved, f is
uniformly continuous. We have

sup
x¤y

ˇ
ˇ
ˇ
ˇ

f .x/ � f .y/

x � y

ˇ
ˇ
ˇ
ˇ

D sup
x¤y

ˇ
ˇ
ˇ
ˇ

p
x � p

y

x � y

ˇ
ˇ
ˇ
ˇ

D sup
x¤y

ˇ
ˇ
ˇ
ˇ

1p
x C p

y

ˇ
ˇ
ˇ
ˇ

D 1;

so f is not Lipschitz.
10. First of all, it is clear that if .xn/n�1 converges to 1, then .f .xn//n�1 is a

Cauchy sequence. Indeed, for � > 0, take � such that jx � yj � � implies
jf .x/ � f .y/j � �. Then (because .xn/n�1 is a Cauchy sequence) for sufficiently
large m; n, we have jxm � xnj � �, thus jf .xn/ � f .xm/j � � for all sufficiently
large m; n. Thus .f .xn//n�1 is a Cauchy sequence, thus convergent. We claim
that all such sequences have the same limit. This is easily seen by considering
the sequence x1; y1; x2; y2; : : : . Call its terms z1; z2; : : :. Then we know that
.f .zn//n�1 converges. Since .f .xn//n�1 and .f .yn//n�1 are subsequences of
.f .zn//n�1, they must have the same limit. This shows that .f .xn//n�1 converges
to a certain l for all .xn/n�1 convergent to 1. Thus f has a finite limit at 1.

11. Let us denote

a D lim
x!�1 f .x/; b D lim

x!1 f .x/:

Suppose that f is not uniformly continuous. By the theoretical part of the text,
we know that there exist two sequences .an/n�1 and .bn/n�1 such that lim

n!1.an �
bn/ D 0 and � > 0 such that jf .an/ � f .bn/j > � for all n. Next, .an/n�1 has
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a limit point in R [ f˙1g; that is, for some increasing sequence .kn/n�1, we
have lim

n!1 akn D l. Clearly, lim
n!1 bkn D l.

Now, if l is real, the inequality jf .akn/ � f .bkn/j > � cannot hold for all n
because f is continuous at l. Suppose for instance that l D 1. Then

lim
n!1 f .akn/ D b D lim

n!1 f .bkn/;

and again we reach a contradiction.
As a consequence, a continuous function having oblique asymptotes at ˙1

is in fact uniformly continuous. Indeed, if

lim
x!1.f .x/ � mx � n/ D 0;

with m; n 2 R, then g.x/ D f .x/ � mx � n defined on a neighborhood of C1 is
uniformly continuous, because it has horizontal asymptote y D 0: Finally,

f .x/ D g.x/ C .mx C n/

is uniformly continuous, as a sum of two uniformly continuous functions.
12. If we assume that f is uniformly continuous, then

8 " > 0; 9 �1 > 0; jx � yj < �1 ) jf .x/ � f .y/j <
"

6
:

Pick M > 0 with the following property:

x 2 ŒM; 1/ ) jf .x/ � g.x/j <
"

6
:

The function g is uniformly continuous on Œ0; M� ; so we can find �2 > 0 for
which

x; y 2 Œ0; M� ; jx � yj < �2 ) jg.x/ � g.y/j <
"

2
:

Now, with � D min f�1; �2g ; we can prove the implication

x; y 2 Œ0; 1/; jx � yj < � ) jg.x/ � g.y/j < ";

which solves the problem. The last implication is true in case x; y 2 Œ0; M�:

If x; y 2 ŒM; 1/; then

jg.x/ � g.y/j � jg.x/ � f .x/j C jf .x/ � f .y/j C jf .y/ � g.y/j
� "

6
C "

6
C "

6
D "

2
:
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If x 2 Œ0; M�; y 2 ŒM; 1/; then

jg.x/ � g.y/j � jg.x/ � g.M/j C jg.y/ � g.M/j
� "

2
C "

2
D ":

This result can be easily extended to continuous functions f ; g W R ! R for
which

lim
x!˙1 Œf .x/ � g.x/� D 0:

As a direct consequence, continuous functions with oblique asymptotes are
uniformly continuous. Indeed, if

lim
x!˙1 Œf .x/ � mx � n� D 0;

then g.x/ D mx C n is uniformly continuous, and so f is uniformly continuous.
More generally, the result remains true even if f has different asymptotes at �1
and +1:

13. Let T > 0 be a period of f : By the uniform continuity of f on the compact set
Œ0; T� ; we can state the following:

8 " > 0; 9 � > 0; x; y 2 Œ0; T�; jx � yj < � ) jf .x/ � f .y/j � "

2
:

The value � can be chosen less than T: We prove now the implication

x; y 2 R; jx � yj � � ) jf .x/ � f .y/j � ":

If 0 � y � x � �; then x; y 2 Œ.k � 1/T; kT� or

x 2 Œ.k � 1/T; kT� ; y 2 ŒkT; .k C 1/T� :

In the first case,

jf .x/ � f .y/j � jf .x � .k � 1/T/ � f .y � .k � 1/T/j � "

2
< ";

because

x � .k � 1/T; y � .k � 1/T 2 Œ0; T�:

Otherwise,

jf .x/ � f .y/j � jf .x/ � f .kT/j C jf .y/ � f .kT/j
D jf .x � .k � 1/T/ � f .0/j C jf .y � kT/ � f .0/j
� "

2
C "

2
D ":

In conclusion, f is uniformly continuous.
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14. Let � > 0 for which we have the implication

x; y 2 R; jx � yj < � ) jf .x/ � f .y/j < 1:

Let x 2 R; x ¤ 0 and let n D
h jxj

�

i

C 1; which is a positive integer. Then

ˇ
ˇ
ˇ
ˇ

kx

n
� .k � 1/x

n

ˇ
ˇ
ˇ
ˇ

< �;

and it follows that

jf .x/j � jf .0/j C
n�1X

kD0

ˇ
ˇ
ˇ
ˇ
f

�
kx

n

�

� f

�
k C 1

n
x

�ˇ
ˇ
ˇ
ˇ

� jf .0/j C n � jxj
�

C jf .0/j C 1:

This condition is not sufficient for uniform continuity. For example, the function
f .x/ D x sin x, x 2 R; is not uniformly continuous, as we have proved, but
jf .x/j � jxj ; for all x:

15. Let a; b be real numbers satisfying jf .x/j � a jxj C b; for all real numbers x:

Then

0 � jg.x; y/j D jxj �
ˇ
ˇ
ˇf

�y

x

�ˇ
ˇ
ˇ � jxj �

�

a �
ˇ
ˇ
ˇ
y

x

ˇ
ˇ
ˇ C b

�

D a � jyj C b � jxj :

Obviously, g is continuous at the origin, and consequently, it is continuous on
R � R:



Chapter 14
Derivatives and Functions’ Variation

The derivatives of a differentiable function f W Œa; b� ! R give us basic information
about the variation of the function. For instance, it is well-known that if f 0 � 0;

then the function f is increasing and if f 0 � 0; then f is decreasing. Also, a function
defined on an interval having the derivative equal to zero is in fact constant. All of
these are consequences of some very useful theorems due to Fermat, Cauchy, and
Lagrange. Fermat’s theorem states that the derivative of a function vanishes at each
interior extremum point of f : The proof is not difficult: suppose that x0 is a local
extremum, let us say a local minimum. Then f .x0 C h/ � f .x0/ � 0 for all h in an
open interval .�ı; ı/. By dividing by h and passing to the limit when h approaches
0, we deduce that f 0.x0/ � 0 (for h > 0) and f 0.x0/ � 0 (for h < 0); thus f 0.x0/ D 0.
Using this result, we can now easily prove the following useful theorem:

Theorem (Rolle). Let f W Œa; b� ! R be continuous on Œa; b� and differentiable
on .a; b/: If f .a/ D f .b/, then there exists c in .a; b/ satisfying f 0.c/ D 0.

As we said, the proof is not difficult. Because f is continuous on the compact
set Œa; b�, it is bounded and attains its extrema. We may of course assume that f is
not constant, so at least one extremum is not attained at a or b (here we use the
fact that f .a/ D f .b/). Thus there exists c 2 .a; b/ a point of global maximum or
minimum for f . By Fermat’s theorem, f 0 vanishes at this point. �

As a consequence, we obtain the following:

Theorem (Lagrange’s mean value theorem). Let f W Œa; b� ! Rbe continuous
on Œa; b� and differentiable on .a; b/: Then there exists c in .a; b/ satisfying the
equality

f .b/ � f .a/ D .b � a/ f 0.c/:

The proof is immediate using Rolle’s theorem: the function

h.x/ D .b � a/.f .x/ � f .a// � .f .b/ � f .a//.x � a/
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satisfies the conditions of Rolle’s theorem; thus its derivative vanishes at least at one
point, which is equivalent to the statement of the theorem. �
In exactly the same way, by considering the auxiliary function

h.x/ D .g.b/ � g.a//.f .x/ � f .a// � .f .b/ � f .a//.g.x/ � g.a//;

one can prove Cauchy’s theorem as an immediate consequence of Rolle’s theorem.

Theorem (Cauchy’s mean value theorem). Let f ; g W Œa; b� ! Rbe both
continuous on Œa; b� and differentiable on .a; b/: Assume also that the derivative
of g is never zero on .a; b/: Then g.b/ � g.a/ ¤ 0 and there exists c in .a; b/ such
that

f .b/ � f .a/

g.b/ � g.a/
D f 0.c/

g0.c/
:

Note that Lagrange’s theorem appears now to be a particular case of this last
theorem, and also note that it proves the assertions from the beginning of the chapter.
Yet another important result is the following.

Theorem (Taylor’s formula). Let f W I ! R be an n C 1 times differentiable
function on the interval I. Then, for every x0 and x in I, there exists c 2 I (depending
on x0 and x and between x0 and x) such that

f .x/ D
nX

kD0

f .k/.x0/

kŠ
.x � x0/k C f .nC1/.c/

.n C 1/Š
.x � x0/nC1:

Proof. Let F and G be defined by

F.t/ D f .t/ �
nX

kD0

f .k/.x0/

kŠ
.t � x0/k and G.t/ D .t � x0/nC1

.n C 1/Š

for all t 2 I. One immediately sees that F and G are n C 1 times differentiable
and that F.k/.x0/ D G.k/.x0/ D 0 for 0 � k � n, while F.nC1/.t/ D f .nC1/.t/ and
G.nC1/.t/ D 1 for all t 2 I. Cauchy’s theorem applies to F and G on the interval
from x0 to x and yields the existence of some c1 2 I with property

F.x/

G.x/
D F.x/ � F.x0/

G.x/ � G.x0/
D F0.c1/

G0.c1/
:

By Cauchy’s theorem again (for F0 and G0 on the interval from x0 to c1), we obtain
some c2 2 I such that

F0.c1/

G0.c1/
D F0.c1/ � F0.x0/

G0.c1/ � G0.x0/
D F00.c2/

G00.c2/
:
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We continue this procedure based on Cauchy’s theorem until we get

F.x/

G.x/
D F0.c1/

G0.c1/
D F00.c2/

G00.c2/
D � � � D F.nC1/.cnC1/

G.nC1/.cnC1/

for some c1; c2; : : : ; cnC1 2 I (actually between x0 and x). Now, with c D cnC1, the
equality

F.x/

G.x/
D F.nC1/.c/

G.nC1/.c/
D f .nC1/.c/

is precisely what we wanted to prove. �

So, we can deduce from Lagrange’s theorem the relationship between the
derivative’s sign and the monotonicity of f : Moreover, the second derivative f 00 is
closely related to the notion of convexity. Indeed, f is convex on intervals where f 00
is nonnegative and is concave on the intervals where f 00 is negative. Recall that f is
called convex if for all t 2 Œ0; 1� and x; y 2 Œa; b�; the following inequality holds

f ..1 � t/x C ty/ � .1 � t/f .x/ C tf .y/;

and it is concave if the reversed inequality holds for all t 2 Œ0; 1� and x; y 2 Œa; b�:

Any convex function satisfies Jensen’s inequality: for each positive integer n; for all
˛1; : : : ; ˛n 2 Œ0; 1� with sum 1, and for every x1; : : : ; xn 2 Œa; b�;

f .˛1x1 C � � � C ˛nxn/ � ˛1f .x1/ C � � � C ˛nf .xn/:

In particular,

f

�
x1 C � � � C xn

n

�
� f .x1/ C � � � C f .xn/

n
;

for every x1; : : : ; xn 2 Œa; b�: When the function is concave, each of the above
inequalities is reversed.

Let us see now how we can use the previous results in a few concrete problems.

Problem. Let a1; a2; : : : ; an be positive real numbers. Prove that the inequality

ax
1 C ax

2 C � � � C ax
n � n;

holds for all real numbers x if and only if a1a2 � � � an D 1:

Solution. If the product of all the ai is 1, we have, using the AM-GM inequality,

ax
1 C ax

2 C � � � C ax
n � n n

p
ax

1ax
2 � � � ax

n D n n
p

.a1a2 � � � an/x D n:
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For the converse, we give two approaches.

Method I. Let us define the function f W R ! R; given by

f .x/ D ax
1 C ax

2 C � � � C ax
n � n:

The given inequality can be written as f .x/ � f .0/; so 0 is a point of minimum.
According to Fermat’s theorem, f 0.0/ D 0: But

f 0.x/ D ax
1 ln a1 C ax

2 ln a2 C � � � C ax
n ln an;

thus ln a1 C ln a2 C � � � C ln an D 0, which is exactly the desired condition.

Method II. One can easily establish that

lim
x!0

�
ax

1 C ax
2 C � � � C ax

n

n

�1=x

D n
p

a1a2 � � � an:

For x > 0; we have

�
ax

1 C ax
2 C � � � C ax

n

n

�1=x

� 1 (14.1)

and for x < 0;

�
ax

1 C ax
2 C � � � C ax

n

n

�1=x

� 1: (14.2)

Now, if x & 0 in (14.1) and x % 0 in (14.1), then we deduce that n
p

a1a2 � � � an � 1

and n
p

a1a2 � � � an � 1; respectively: In conclusion, a1a2 � � � an D 1. �

Problem. Solve in R the equation 4x � 3x D x:

Solution. For each fixed real number x; define the function f W Œ3; 4� ! R; by
f .y/ D yx; with f 0.y/ D xyx�1: According to Lagrange’s mean value theorem,

f .4/ � f .3/ D .4 � 3/f 0.c/ , 4x � 3x D xcx�1;

for some c 2 .3; 4/: The given equation can be written as xcx�1 D x: One solution
is x D 0: For x ¤ 0; we derive cx�1 D 1 , x D 1: In conclusion, there are two
solutions: x D 0 and x D 1. �

Lagrange’s theorem also has important applications in transcendental number
theory. We present here Liouville’s famous theorem, which shows that algebraic
irrational numbers are badly approximable with rational numbers. This is the very
first nontrivial result in this active field of research:
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Theorem (Liouville). Let P be a nonzero polynomial with integer coefficients
and degree n. Suppose that a is an irrational zero of P. Then there exists a constant
C > 0 such that for all rational numbers p

q with p; q 2 Z; and q ¤ 0, we have

ˇ̌
ˇ̌a � p

q

ˇ̌
ˇ̌ � C

jqjn :

Solution. It is clear that there exists ı > 0 such that the only zero of f in I D
Œa � ı; a C ı� is a. Because P0 is continuous on I, it is bounded, and we can pick
M such that M � jP0.x/j for all x 2 I. Using Lagrange’s mean value theorem,

we deduce that
ˇ̌
ˇa � p

q

ˇ̌
ˇ � 1

M

ˇ̌
ˇP

�
p
q

�ˇ̌
ˇ for all x D p

q 2 I. Because P has integer

coefficients, the number jqjn
ˇ̌
ˇP

�
p
q

�ˇ̌
ˇ is a nonzero integer; thus it is at least equal

to 1. Thus for all p
q 2 I, we have ja � xj � 1

Mjqjn . If x does not belong to I, then

jx � aj � ı. Thus by taking C D min
�
ı; 1

M

�
, we always have

ˇ̌
ˇa � p

q

ˇ̌
ˇ � C

jqjn . �

The following result is often useful for studying the behavior of a function when
we know some of its zeros and the behavior of its derivatives. One can also see it as
a factorization result, similar to the well-known result for polynomials.

Problem. Let f be a n times continuously differentiable function defined on
Œ0; 1�, with real values, and let a1; a2; : : : ; an be n distinct real numbers in Œ0; 1�

such that f .a1/ D f .a2/ D � � � D f .an/ D 0. Then for all x 2 .0; 1/, there exists
c 2 .0; 1/ such that

f .x/ D .x � a1/.x � a2/ � � � .x � an/

nŠ
f .n/.c/:

Solution. The case when x is one of a1; a2; : : : ; an being immediate, let us
assume that x; a1; a2; : : : ; an are pairwise distinct. Consider the function

g.t/ D .t � a1/.t � a2/ � � � .t � an/f .x/ � .x � a1/.x � a2/ � � � .x � an/f .t/;

which is n times differentiable and satisfies g.x/ D g.a1/ D g.a2/ D � � � D g.an/

D 0. Let b0 < b1 < � � � < bn be the numbers x; a1; : : : ; an when arranged in
increasing order. By Rolle’s theorem, g0 has at least n zeros, one in each .bi; biC1/.
Applying again Rolle’s theorem and repeating the argument, we deduce that g.n/

vanishes at a point c 2 .0; 1/. Thus

nŠf .x/ D .x � a1/.x � a2/ � � � .x � an/f .n/.c/;

which is exactly what we needed. �

We continue with a particularly nice and surprising property of derivatives.
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Theorem (Darboux). The derivative of a differentiable function has the inter-
mediate value property.

Proof I. The proof is not difficult at all. Take f a differentiable function and
suppose that a < b and f 0.a/ < f 0.b/, for instance. Consider y 2 .f 0.a/; f 0.b//. We
need to prove that there exists x 2 .a; b/ such that y D f 0.x/. Let g.t/ D f .t/ � yt.
Then g0.a/ < 0; thus there exists a0 > a such that g.a0/ < g.a/. Similarly, there
exists b0 < b such that g.b0/ < g.b/. Because g is continuous on Œa; b�, it attains its
minimum at a point x. The previous remarks show that x 2 .a; b/. Thus by Fermat’s
theorem, we have g0.x/ D 0, that is, y D f 0.x/. �

Proof II. (See the note A New Proof of Darboux’s Theorem by Lars Olsen in
The American Mathematical Monthly, 8/2004). Let (for c 2 Œa; b�) hc be the function
defined for all x 2 Œa; b� by

hc.x/ D
� f .x/�f .c/

x�c ; for x ¤ c
f 0.c/; for x D c:

Clearly, any hc is continuous on the interval Œa; b�, and we have ha.a/ D f 0.a/,
hb.b/ D f 0.b/, and ha.b/ D hb.a/. Thus, if y is between f 0.a/ and f 0.b/, it is also
either between ha.a/ and ha.b/ or between hb.a/ and hb.b/. Suppose we are in the
first case. By the continuity of ha, we can find c between a and b such that y D
ha.c/ D .f .c/ � f .a//=.c � a/. But Lagrange’s mean value theorem ensures the
existence of some x between a and c such that .f .c/ � f .a//=.c � a/ D f 0.x/; thus
y D f 0.x/, and we are done.

When y is between hb.a/ and hb.b/, we proceed analogously, by using the fact
that hb, being continuous, has the intermediate value property. �

We now present a very useful criterion for proving that a function is continuously
differentiable k times. It is also a consequence of Lagrange’s theorem:

Proposition. Let I be a nontrivial interval of the set of real numbers, x0 2 I and
f W I ! R continuous on I; differentiable at all points of I except x0 and such that
f 0.x/ has a finite limit when x tends to x0. Then f 0.x0/ exists, and it is equal to this
limit.

Proof. Let ı; � > 0 be such that jf 0.x/�lj < � for all x 2 V D .x0 �ı; x0 Cı/\I,
x ¤ x0. From Lagrange’s theorem, for all x 2 V , x > x0, we have the existence of
some c.x/ between x and x0 such that f .x/�f .x0/

x�x0
D f 0.c.x//. Therefore

ˇ̌
ˇ̌l � f .x/ � f .x0/

x � x0

ˇ̌
ˇ̌ < �:

A similar argument shows that the last relation actually holds for all x 2 V , x ¤ x0.
This shows that f 0.x0/ D l. �
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Problem. Let x0 2 R and � > 0. Prove that there exists an infinitely many times
differentiable function f W R ! R, not identically zero and which vanishes outside
.x0 � �; x0 C �/.

Solution. First of all, consider the function g.x/ D e� 1
x for x > 0 and 0

otherwise. We claim that this function is infinitely many times differentiable on R.
This is clear at all points except 0. Using the above proposition, it is enough to prove
that g.k/ has a limit equal to 0 at 0 for all k. An inductive argument combined with
the proposition would finish the proof. But it is very easy to prove by induction that
g.k/.x/ equals 0 for x < 0 and Pk.

1
x /e� 1

x if x > 0, where Pk is a polynomial with
real coefficients and degree 2k. This shows that g.k/.x/ tends to 0 as x tends to 0

(from the right), and so g is indeed infinitely many times differentiable at 0 and thus
everywhere differentiable. Now, consider the function

f .x/ D g.�2 � .x � x0/2/:

This is also an infinitely many times differentiable function and, clearly, it is not
identically zero. However, f .x/ > 0 implies �2 > .x�x0/2, that is, x 2 .x0��; x0C�/.
This shows that this function is a solution of the problem. �

We continue with some problems taken from the Putnam Mathematical Compe-
tition.

Problem. Let f ; g W R ! R with f twice differentiable g.x/ � 0 for all x and

f 00.x/ C f .x/ D �xg.x/f 0.x/:

Prove that f is bounded.

Solution. Observe that f 0.x/f 00.x/ C f .x/f 0.x/ D �xg.x/.f 0.x//2 is negative for

positive x and positive for negative x. On the other hand, f 0f 00 C ff 0 D 1

2
.f 2 C f 02/0,

so f 2 C f 02 has a maximum at 0. Thus jf .x/j �
p

f 2.0/ C f 02 .0/ for all x and the
conclusion follows. �

Problem. Let f W R ! Œ�1; 1� twice differentiable such that f .0/2 C f 0.0/2 D 4.
Prove that there exists x0 such that f .x0/ C f 00.x0/ D 0.

Solution. Let g.x/ D f .x/2 C f 0.x/2. By Lagrange’s theorem there is a 2 .0; 2/

with f 0.a/ D f .2/ � f .0/

2
. Clearly, jf 0.a/j � 1, thus g.a/ � 2. Working in the same

way with .�2; 0/, we find b 2 .�2; 0/ with g.b/ � 2. Since g.0/ D 4, the maximum
of g on Œ�2; 2� appears at some c 2 .�2; 2/. Because g.c/ � g.0/ D 4, f 0.c/ ¤ 0.
But g0.c/ D 0, thus f .c/ C f 00.c/ D 0. �

Problem. How many real solutions does the equation 2x D 1 C x2 have?

Solution. Any such root is nonnegative since 2x � 1. If f .x/ D 2x � x2 � 1 then
f .0/ D 0, f .1/ D 0, f .4/ < 0 and f .5/ > 0, so f has at least three zeros. If f has
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at least four zeros, by Rolle’s theorem f 00 would have at least two zeros, which is
clearly wrong because f 00.x/ D .ln 2/2 � 2x � 2 is injective. Hence, the equation has
three real solutions. �

Proposed Problems

1. Solve in Œ1; 1/ the equation 9x � 8x D x2:

2. Solve in R the system

�
2x C 2y D 16

3x C 3y D 54
:

3. Find all positive real numbers a; such that the inequality

ax C 10x � 5x C 6x

holds for every real number x:

4. Let f W R ! R be a twice differentiable function whose graph meets the line
y D x three times. Prove that f 00.�/ D 0; for at least one real value �:

5. Let a; b; c; m; n; p be real numbers. Prove that

a sin x C b sin 2x C c sin 3x C m cos x C n cos 2x C p cos 3x D 0

for at least one real value x:

6. Prove that the function f W R ! R; given by f .x/ D sin x C sin.x2/ is not
periodic.

7. Let f ; g W Œa; b� ! R be differentiable, with continuous, positive, increasing
derivatives. Prove that there exists c such that

f .b/ � f .a/

b � a
� g.b/ � g.a/

b � a
D f 0.c/g0.c/:

8. Let f W R ! R be a differentiable, bounded function. Prove that f .c/f 0.c/ D c;

for some real number c:

9. Let f W R ! R be a convex function so that

lim
x!1.f .x/ � x � 1/ D 0:

Prove that f .x/ � x C 1; for all real numbers x:

10. Let f W R ! R be a concave, strictly monotone function. Prove that f is
unbounded from below.

11. Let f W R ! R be a three times differentiable function. Prove that there exists a
real number c such that

f .c/f 0.c/f 00.c/f 000.c/ � 0:
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12. Let f W R ! R be a function with fourth derivative such that f .x/ � 0, f .4/

.x/ � 0; for all real numbers x. Prove that there exist real numbers a; b; c such
that f .x/ D ax2 C bx C c; for all real x:

13. Let f W R ! R be a function with continuous third derivative such that
f .x/; f 0.x/; f 00.x/; f 000.x/ are positive and f 000.x/ � f .x/; for all real numbers x:

Prove that .f 00.0//
2

< 2f .0/f 0.0/:

14. Prove the following equality: 2 arctan � C arcsin
2�

1 C �2
D �:

15. Let f be a differentiable function defined on the set of real numbers, with values
in the same set. If f has infinitely many zeros, prove that its derivative also has
infinitely many zeros.

16. Determine all differentiable functions f W R ! R with the following two
properties:

(i) f 0.x/ D 0 for every integer x.
(ii) If x 2 R and f 0.x/ D 0, then f .x/ D 0.

17. Let a1; : : : ; an be real numbers, each greater than 1. If n � 2, prove that there is
exactly one solution in the interval .0; 1/ to

nY

jD1

.1 � xaj/ D 1 � x:

18. Let a; b; c; d be positive real numbers. Prove that

a

b C c
C b

c C d
C c

d C a
C d

a C b
� 2:

19. Prove that for all real t, and all ˛ � 2,

e˛t C e�˛t � 2 � .et C e�t/˛ � 2˛:

20. Let a > 1 be a real number. Prove that

1X

kD1

1

.n C k/a >
1

.n C 1/
�
.n C 1/a�1 � na�1

� ;

for any positive integer n.
21. Prove that the inequality

a

a3 C 1
C b

b3 C 1
C c

c3 C 1
� 3

2

holds for all positive real numbers a, b, and c for which abc D 1.
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Solutions

1. The solution is x D 1: Let us define the function f W Œ8; 9� ! R; by f .y/ D yx;

where x > 0 is arbitrary and fixed. There exists c 2 .8; 9/ such that

f .9/ � f .8/ D f 0.c/.9 � 8/ , 9x � 8x D xcx�1:

Now, the given equation can be written as xcx�1 D x2: We have x ¤ 0I thus
cx�1 D x: For x > 1; we have

cx�1 � ex�1 > x:

2. The solution is x D y D 3: Let us define

f .x/ D 2x; g.x/ D 3x; x 2 R:

If x < 3; then y > 3, and the system is equivalent to
�

f .x/ C f .y/ D 2f .3/

g.x/ C g.y/ D 2g.3/
,

�
f .y/ � f .3/ D f .3/ � f .x/

g.y/ � g.3/ D g.3/ � g.x/
;

so

f .y/ � f .3/

g.y/ � g.3/
D f .3/ � f .x/

g.3/ � g.x/
;

which is impossible. Indeed, by Cauchy’s theorem,

f .y/ � f .3/

g.y/ � g.3/
D f 0.c1/

g0.c1/
; and

f .3/ � f .x/

g.3/ � g.x/
D f 0.c2/

g0.c2/

for some c1 2 .3; y/ and c2 2 .x; 3/: The function x 7! f 0.x/

g0.x/
is injective, so the

equality

f 0.c1/

g0.c1/
D f 0.c2/

g0.c2/

cannot be true.
3. The answer is a D 3: Let f W R ! R; given by

f .x/ D ax C 10x � 5x � 6x:

According to the hypothesis, f is nonnegative, which is equivalent to f .x/ �
f .0/: Hence f 0.0/ D 0: We have

f 0.x/ D ax ln a C 10x ln 10 � 5x ln 5 � 6x ln 6;
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so f 0.0/ D ln
a

3
D 0 ) a D 3: If a D 3; the given inequality is

.2x � 1/.5x � 3x/ � 0;

which is true.
4. Assume that the function g.x/ D f .x/ � x, x 2 R; vanishes at a; b; c; a < b < c:

According to Rolle’s theorem,

g.a/ D g.b/ D 0 ) g0.�1/ D 0 ) f 0.�1/ D 1

g.b/ D g.c/ D 0 ) g0.�2/ D 0 ) f 0.�2/ D 1;

with �1 2 .a; b/; �2 2 .b; c/: Further,

f 0.�1/ D f 0.�2/ ) f 00.�/ D 0;

for some � 2 .�1; �2/:

5. Let us define the function f W R ! R; given by

f .x/ D �a cos x � b

2
cos 2x � c

3
cos 3x C m sin x C n

2
sin 2x C p

3
sin 3x:

Obviously,

f .0/ D f .2�/ D �a � b

2
� c

3
;

so we can find � 2 .0; 2�/ so that

f 0.�/ D 0 , a sin � C b sin 2� C c sin 3� C m cos � C n cos 2� C p cos 3� D 0:

6. If we assume by contradiction that f .x/ D sin x C sin.x2/ is periodic, then its
derivative must be also periodic. But then

f 0.x/ D cos x C 2x cos.x2/

would be continuous and periodic; hence f 0 must be bounded. This is a
contradiction, because for all positive integers n; we have

f 0 �p
2n�

�
D cos

p
2n� C 2

p
2n� ! 1 as n ! 1:

7. Let c1; c2 2 .a; b/; c1 � c2 be such that

f .b/ � f .a/

b � a
D f 0.c1/;

g.b/ � g.a/

b � a
D g0.c2/:
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Consider the function F W Œ0; 1� ! R given by

F.t/ D f 0.t/g0.t/ � f 0.c1/g0.c2/:

Then F.c1/ � 0, F.c2/ � 0; so there exists c 2 Œ0; 1� such that F.c/ D 0:

That is,

f 0.c/g0.c/ D f 0.c1/g0.c2/ D f .b/ � f .a/

b � a
� g.b/ � g.a/

b � a
:

8. Define the function g.x/ D f 2.x/ � x2, x 2 R: Because of boundedness of f ; we
have

lim
x!�1 g.x/ D lim

x!1 g.x/ D �1: (14.1)

If g0.x/ ¤ 0; for all reals x; then g is strictly monotone, which contradicts (14.1).
Thus there is c such that

g0.c/ D 0 , 2f .c/f 0.c/ � 2c D 0 , f .c/f 0.c/ D c:

9. Let us suppose that f .a/ < a C 1; for some a: Because

lim
x!1.f .x/ � x � 1/ D 0;

we can find b > a such that

m D f .b/ � f .a/

b � a
> 1:

From the convexity of f ; we deduce that the function � W Œb; 1/ ! R;

�.x/ D f .x/ � f .a/

x � a

is increasing, so

�.x/ � �.b/ ) f .x/ � f .a/

x � a
� m

) f .x/ � m.x � a/ C f .a/

) f .x/ � x � 1 � .m � 1/x C f .a/ � ma � 1:

Now, if x ! 1; we obtain 0 � 1; which is false.
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10. Suppose, by way of contradiction, that f > 0 and that f is decreasing. If a; b 2
R; a < b; let M.x0; 0/ be the intersection point of the line joining .a; f .a// and
.b; f .b// with the x-axis. Then, from the concavity of f ; it follows that f .x/ � 0;

for all x � x0; a contradiction.
11. Let us suppose, by way of contradiction, that

f .x/f 0.x/f 00.x/f 000.x/ < 0; 8 x 2 R:

In particular, f ; f 0; f 00; f 000 do not vanish on R, so they have constant sign.
Assume that f > 0; so

f 0.x/f 00.x/f 000.x/ < 0; 8 x 2 R:

If f 0 < 0; f 00 < 0 and f 000 < 0; then f is strictly decreasing, concave, and
bounded from below, which is a contradiction. If f 0 < 0; f 00 > 0; f 000 > 0, then
g D �f 0 is strictly decreasing, concave, and g > 0; which is impossible. The
case f 0 > 0 is proved analogously to be impossible.

Alternatively, one can use Taylor’s theorem (with the remainder in
Lagrange’s form); thus we have that, for all real x and t, there exist cx;t such
that

f .x/ D f .t/ C f 0.t/
1Š

.x � t/ C f 00.cx;t/

2Š
.x � t/2;

therefore, f .x/ > 0 and f 00.x/ < 0 together lead to the contradiction

0 < f .t/ C f 0.t/
1Š

.x � t/

for all x and t. Indeed, for fixed (but arbitrary) t, this is possible for all x only
if f 0.t/ D 0. (See also the following problem for such a reasoning.) But if f 0 is
identically zero, the same holds for f 00, which is not the case. Similarly, f .x/ < 0

and f 00.x/ > 0 for all x are incompatible. Thus, if f has the same sign on R, and
f 0 also has constant sign on R, then necessarily f .x/f 00.x/ > 0 for all x 2 R. Of
course, this also holds for f 0, that is, our assumption leads to f 0.x/f 000.x/ > 0 for
all x 2 R and the contradiction follows.

This is problem A3 from the 59th William Lowell Putnam Mathematical
Competition, 1998. A generalization (for a 4kC3 times differentiable function)
appeared as problem 11472, proposed by Mahdi Makhul in The American
Mathematical Monthly.

12. By Taylor’s theorem, for all real numbers x and t, there exists cx;t between x and
t such that

f .x/ D f .t/ C f 0.t/
1Š

.x � t/ C f 00.t/
2Š

.x � t/2 C f .3/.t/

3Š
.x � t/3 C f .4/.cx;t/

4Š
.x � t/4:
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Now, using the hypothesis, we have

0 � f .x/ � f .t/ C f 0.t/
1Š

.x � t/ C f 00.t/
2Š

.x � t/2 C f .3/.t/

3Š
.x � t/3

for all x and t. Considering t fixed, the right-hand side is an at most third-
degree polynomial in x that must have only nonnegative values. Clearly, this can
happen only if the coefficient of x3 is 0 (i.e., the polynomial’s degree must be
even). Thus we must have f .3/.t/ D 0 for any real number t—and this evidently
means that f is either a second-degree polynomial or a nonnegative constant
function.

Of course, a similar statement (with an identical proof) holds for a real
function that has a 2n-th order derivative (with n a positive integer), namely,
if f .x/ � 0 and f .2n/.x/ � 0 for all x 2 R, then f is a polynomial function of
even degree which is at most 2n � 2.

13. Let us define the function � W .�1; 0� ! R by the formula

�.x/ D f .0/

2
� x2 C xf 00.0/ C f .0/ � f 0.x/;

for every real number x: We have

�0.x/ D xf .0/ C f 00.0/ � f 00.x/

and �00.x/ D f .0/ � f 000.x/: The function f is increasing, because f 0 > 0: Then
for every x < 0; using the hypothesis again, we obtain f 000.x/ � f .x/ < f .0/ so
�00 > 0: Hence �0 is increasing and for x < 0; �0.x/ < �0.0/ D 0: Further, � is
decreasing, so for all x < 0;

�.x/ > �.0/ D f .0/ � f 0.0/:

Thus

g.x/ D f .0/

2
� x2 C xf 00.0/ C f 0.0/ > f 0.x/ > 0;

for all x 2 .�1; 0/ : Because f .0/; f 0.0/; f 00.0/ are positive, it follows that for
all nonnegative x;

g.x/ D f .0/

2
� x2 C xf 00.0/ C f 0.0/ > 0:

Hence this inequality holds for all real x; so the discriminant of g.x/ is negative:

.f 00.0//2 � 2f .0/f 0.0/ < 0;

which is what we wanted to prove.
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14. Define the function

f .x/ D 2 arctan x C arcsin
2x

1 C x2
; x > 1;

with

f 0.x/ D 2

1 C x2
C 1

r
1 �

�
2x

1Cx2

�2
�
�

2x

1 C x2

�0
D 0I

hence f is constant on .1; 1/ (try showing this as an exercise!). Thus

f .�/ D lim
x!1 f .x/ D �:

15. Let .an/n�1 be a sequence of distinct zeros of f . One may say that the problem
is obvious, because by Rolle’s theorem, f 0 vanishes in all intervals .an; anC1/.
However, we must be careful, because there is no reason for these zeros to
be increasingly ordered. The idea is that any infinite sequence has a monotone
subsequence. So, by working with a subsequence of .an/n�1, we may assume
that the sequence is monotone, say increasing. Then Rolle’s theorem says that
f 0 has a zero inside each of the intervals .an; anC1/; thus it has infinitely many
zeros.

16. Clearly the identically 0 function satisfies both conditions from the problem
statement. We prove that this is the only solution of the problem.

First note that, by (i) and (ii), we need to have f .x/ D f 0.x/ D 0 for all
x 2 Z. Suppose there is a 2 R with f .a/ ¤ 0. Of course, a is not an integer,
thus a 2 .n; nC1/, where n D Œa� (the integral part of a). Being continuous, f is
bounded and attains its extrema on Œn; nC1�; hence we can find b; c 2 Œn; nC1�

with f .b/ � f .x/ � f .c/ for all x 2 Œn; n C 1�. If we have f .a/ > 0, this implies
f .c/ > 0; thus c can be neither n nor n C 1 (since f is 0 at these points), that is,
c 2 .n; n C 1/. But in this case, Fermat’s theorem tells us that f 0.c/ D 0, while
property (ii) of f implies f .c/ D 0, which contradicts f .c/ > 0.

Similarly, f .a/ < 0 leads to f .b/ < 0, b 2 .n; n C 1/, f 0.b/ D 0 and finally
to the contradiction f .b/ D 0. Thus f .a/ ¤ 0 is impossible (for any a), and the
only function that satisfies both conditions (i) and (ii) remains f W R ! R given
by f .x/ D 0 for all x, as claimed.

This problem was proposed for the 11th grade in the Romanian National
Mathematics Olympiad in 2015.

17. First we solve the problem in the case when all the numbers aj are equal. We
begin by proving the following:

Lemma. Let a > 1 and 0 < b < 1 be given real numbers. The equation

xa C .1 � x/b D 1

has exactly one solution in the interval .0; 1/.
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An immediate consequence is that the equation

.1 � xa/n D 1 � x

has exactly one solution in the interval .0; 1/ for any real number a greater than
1 and any positive integer n � 2.

Proof. Consider the function f W Œ0; 1� ! .0; 1/ defined by

f .x/ D xa C .1 � x/b; 8x 2 Œ0; 1�:

We have f .0/ D f .1/ D 1 and

f 0.x/ D axa�1 � b

.1 � x/1�b
; 8x 2 Œ0; 1/:

Now we see that the graphs of the functions

g.x/ D axa�1 and h.x/ D b=.1 � x/1�b; x 2 Œ0; 1/

either intersect at two points or they do not intersect at all, since g increases on
this interval from 0 to a (its limit in 1) and it is convex or concave (as a > 2

and a < 2, respectively), while h increases from b to 1 and it is convex (the
convexity of the functions is easy to check by using their second derivatives).
But if g and h do not meet, f 0 has the same sign (it is negative) on Œ0; 1/,
as one can easily see, which means that f decreases on Œ0; 1/. Since f is
continuous on the entire interval Œ0; 1�, this would lead to the conclusion that
f .0/ > limx!1 f .x/ D f .1/, which is false; it remains the only possibility that
the graphs of g and h intersect at two points 0 < ˛ < ˇ < 1 in the interval .0; 1/

and that f 0 is negative on .0; ˛/ and .ˇ; 1/ and positive on .˛; ˇ/; therefore, f
decreases from f .0/ D 1 to f .˛/ < 1, then it increases from f .˛/ to f .ˇ/, and,
finally, it decreases again, from f .ˇ/ to f .1/ D 1 (hence f .ˇ/ must be greater
than 1). Clearly, f takes the value 1 exactly once, in the interval .˛; ˇ/ (apart
from the endpoints 0 and 1 of the interval), which proves our first claim.

As for the second claim, this is, as we said above, just a simple consequence
of the first (proved above) part of the lemma; indeed, the equation .1 � xa/n D
1 � x is equivalent to xa C .1 � x/1=n D 1, and 1=n is positive and less than 1.

Thus the lemma solves the case when the numbers a1; : : : ; an from the
problem statement are all equal; with its help, we can also prove the existence
of a solution of the equation

nY

jD1

.1 � xaj/ D 1 � x

in the interval .0; 1/. To do this, consider the function F W .0; 1/ ! R,
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F.x/ D
0

@
nY

jD1

.1 � xaj/

1

A C x � 1; 8x 2 .0; 1/:

and suppose that a D min
1�j�n

aj, b D max
1�j�n

aj. We may assume that a < b, since

the case a D b (that is when all the numbers are equal) has already been treated.
Of course, we have a > 1 and b > 1. Because the above product has at least
two factors (and all the factors are positive), we get the inequalities

.1 � xa/n C x � 1 <

0

@
nY

jD1

.1 � xaj/

1

A C x � 1 < .1 � xb/n C x � 1; 8x 2 .0; 1/:

According to the lemma, each of the equations .1�xa/n Cx D 1 and .1�xb/n C
x D 1 has precisely one solution in the interval .0; 1/: there are c and d in this
interval such that .1 � ca/n C c D 1 and .1 � db/n C d D 1. From the above
inequalities (replacing x with c and d, respectively), it follows that F.c/ > 0

and F.d/ < 0; now a typical continuity argument allows the conclusion that F
takes the value 0 between c and d, that is, in the interval .0; 1/; in other words,
the equation from the problem statement has at least one solution in .0; 1/.

In order to show the uniqueness of this solution, we rewrite the equation as

1
nY

jD1

.1 � xaj/

D 1

1 � x

and observe that both functions u; v W Œ0; 1/ ! .0; 1/, defined as

u.x/ D 1
nY

jD1

.1 � xaj/

and

v.x/ D 1

1 � x
;

for all x 2 Œ0; 1/, are strictly increasing, are strictly convex, and have the line
x D 1 as a vertical asymptote. The graphs of both u and v start from the point
with coordinates .0; 1/; therefore they must have at most one other common
point, and this is exactly what we intended to prove.

We still have to prove the claimed properties of the functions u and v. There
is no problem with their monotony, and, also, the convexity of v follows easily
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since its second derivative is

v00.x/ D 2

.1 � x/3
; 8x 2 Œ0; 1/:

The convexity of u is more complicated to establish.
We may write u.x/ D 1=w.x/ for

w.x/ D
nY

jD1

.1 � xaj/I

hence

u00.x/ D 2.w0.x//2 � w.x/w00.x/

.w.x//3
:

On the other hand, we have

log w.x/ D
nX

jD1

log.1 � xaj/;

and, by differentiation, we get

w0.x/

w.x/
D �

nX

jD1

ajxaj�1

1 � xaj
:

Differentiating one more time yields

w.x/w00.x/ � .w0.x//2

.w.x//2
D �

nX

jD1

ajŒ.aj � 1/xaj�2 C x2aj�2�

.1 � xaj/2
;

and the inequality

w.x/w00.x/ � .w0.x//2 < 0

follows for any x 2 .0; 1/. From this inequality, the positivity of the numerator
of u00.x/ is a direct consequence; hence (since the denominator is also positive)
u00.x/ > 0 for all x 2 .0; 1/—and the convexity of u—is established, completing
the proof.

This is problem 11226, proposed by Franck Beaucoup and Tamás Erdélyi in
The American Mathematical Monthly 6/2006. A simpler solution can be found
in Chapter 11.
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18. The function f .x/ D 1

x
, x > 0; is convex and we can use Jensen’s inequality.

Assume, without loss of generality, that a C b C c C d D 1. Then

a

b C c
C b

c C d
C c

d C a
C d

a C b

D af .b C c/ C bf .c C d/ C cf .d C a/ C df .a C b/

� f .a.b C c/ C b.c C d/ C c.d C a/ C d.a C b//

D 1

ab C 2ac C ad C bc C 2bd C cd
� 2;

because

2.ab C 2ac C ad C bc C 2bd C cd/ � .a C b C c C d/2 D 1

, .a � c/2 C .b � d/2 � 0;

which is true.
19. Claim 1. For all real numbers ˇ � 1 and y � 1, the inequality

.y � 1/.y C 1/ˇ � yˇC1 C 1 � 0

holds. For 0 < y � 1, the reverse inequality is true.

Proof. The function y 7! yˇ is strictly convex on the interval .0; 1/ for ˇ > 1,
and if y � 1, the numbers 1=y and .y � 1/=y are both nonnegative and sum to 1.
Then Jensen’s inequality yields

1

y
� 1ˇ C y � 1

y
.y C 1/ˇ �

�
1

y
� 1 C y � 1

y
.y C 1/

�ˇ

D yˇ;

which can be rearranged to get the desired inequality. For 0 < y � 1, we obtain,
again with Jensen’s inequality,

y � yˇ C .1 � y/.y C 1/ˇ � .y � y C .1 � y/.y C 1//ˇ D 1:

In both cases, the inequality is strict except for y D 1.
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Claim 2. For ˛ � 2, the function f W .0; 1/ ! R, defined by

f .x/ D
�

x C 1

x

�˛

� x˛ � 1

x˛
; 8x 2 .0; 1/;

attains its minimum value at x D 1.

Proof. The function f is differentiable and has the derivative

f 0.x/ D ˛

x˛C1
Œ.x2 � 1/.x2 C 1/˛�1 � x2˛ C 1�; 8x > 0:

For y D x2 and ˇ D ˛ � 1 � 1 in claim 1, one sees that the expression in the
square brackets is positive for x > 1 and negative for 0 < x < 1 (and 0 only
for x D 1), respectively. It follows that f decreases in the interval .0; 1� and
increases on Œ1; 1/, having thus (as claimed) an absolute minimum at 1.

This implies, of course, the inequality f .x/ � f .1/ for all x > 0 or

�
x C 1

x

�˛

� x˛ � 1

x˛
� 2˛ � 2; 8x > 0:

Just put here x D et (for any real t) and rearrange a bit to get precisely the
inequality stated in the problem.

This is problem 11369 proposed by Donald Knuth in The American Math-
ematical Monthly, 6/2008. The interested reader will find another solution, a
generalization, and other related inequalities in Grahame Bennett’s paper p-
Free lp Inequalities, in The American Mathematical Monthly, 4/2010.

20. We want to prove that

�.a/ � �n.a/ >
1

.n C 1/
�
.n C 1/a�1 � na�1

� ; 8n � 1;

where

�n.a/ D
nX

jD1

1

ja

and �.a/ D limn!1 �n.a/ is the Riemann zeta function. We can rewrite the
desired inequality as

�.a/ > �n.a/ C 1

.n C 1/
�
.n C 1/a�1 � na�1

� ; 8n � 1
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and we can prove this if we show that the sequence on the right hand side tends
to �.a/ and is increasing. So denote

xn .a/ D �n.a/ C 1

.n C 1/
�
.n C 1/a�1 � na�1

� ; 8n � 1;

and notice first that .xn .a//n�1 has the limit �.a/, since

lim
n!1 xn .a/ D �.a/ C lim

x!0

xa

.x C 1/
�
.x C 1/a�1 � 1

�

D �.a/ C lim
x!0

xa�1

x C 1

x

.x C 1/a�1 � 1
D �.a/:

Next

xnC1 .a/ � xn .a/ D 1

.n C 1/a C 1

.n C 2/
�
.n C 2/a�1 � .n C 1/a�1

�

� 1

.n C 1/
�
.n C 1/a�1 � na�1

� ;

for any n � 1; thus the inequality xnC1 .a/ > xn .a/ becomes

1

.n C 2/..n C 2/a�1 � .n C 1/a�1
>

1

.n C 1/..n C 1/a�1 � na�1/
� 1

.n C 1/a
;

or

1

.n C 2/..n C 2/a�1 � .n C 1/a�1/
>

na�1

.n C 1/a..n C 1/a�1 � na�1/
; 8n � 1:

After some small calculation, we find this is equivalent to

.n C 1/2a�1 C na�1 .n C 1/a�1 > na�1 .n C 2/a ; 8n � 1

and (after multiplication by n C 1) to

.n C 1/2a C na�1 .n C 1/a > na .n C 2/a C na�1 .n C 2/a :

Finally, we need to prove that

�
n2 C 2n C 1

�a � �
n2 C 2n

�a
> na�1 ..n C 2/a � .n C 1/a/ ; 8n � 1:
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Lagrange’s theorem for the function x 7! xa, on the intervals
�
n2 C 2n; n2C

2n C 1/ and .n C 1; n C 2/ yields the existence of some

c 2 �
n2 C 2n; n2 C 2n C 1

�
; and d 2 .n C 1; n C 2/ ;

such that
�
n2 C 2n C 1

�a � �
n2 C 2n

�a D aca�1;

and

.n C 2/a � .n C 1/a D ada�1:

Since a � 1 > 0, we have

�
n2 C 2n C 1

�a � �
n2 C 2n

�a
> a

�
n2 C 2n

�a�1
;

and

.n C 2/a � .n C 1/a < a .n C 2/a�1 :

Thus our inequality follows like this:

�
n2 C 2n C 1

�a � �
n2 C 2n

�a
> a

�
n2 C 2n

�a�1

D ana�1 .n C 2/a�1 > na�1 ..n C 2/a � .n C 1/a/ ;

and the proof is now complete.
21. Lemma 1. We have

x

x3 C 1
C y

y3 C 1
� 2˛

˛3 C 1

for any ˛ 2
h
1=

3
p

2; 1
i

and any positive x; y such that xy D ˛2.

Proof. By replacing y with ˛2=x, we get the equivalent form

x

x3 C 1
C ˛2x2

x3 C ˛6
� 2˛

˛3 C 1

of the inequality that we have to prove. After clearing the denominators and
some more simple (but prosaic) calculations, this becomes:

2˛x6 � .˛5 C ˛2/x5 � .˛3 C 1/x4 C 2.˛7 C ˛/x3

� .˛5 C ˛2/x2 � .˛9 C ˛6/x C 2˛7 � 0:
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As expected, the sixth-degree polynomial on the left-hand side is divisible by
.x � ˛/2; thus we can rewrite this as

.x � ˛/2.2˛x4 C .3˛2 � ˛5/x3 � .2˛6 � 3˛3 C 1/x2 C .3˛4 � ˛7/x C 2˛5/�0:

Now, the hypothesis ˛ 2
h
1=

3
p

2; 1
i

implies ˛3 2 Œ1=2; 1�; thus

�.2˛6 � 3˛3 C 1/ D .2˛3 � 1/.1 � ˛3/ � 0

and, also,

3˛2 � ˛5 D 2˛2 C ˛2.1 � ˛3/ > 0 and 3˛4 � ˛7 D 2˛4 C ˛4.1 � ˛3/ > 0I

therefore

2˛x4 C .3˛2 � ˛5/x3 � .2˛6 � 3˛3 C 1/x2 C .3˛4 � ˛7/x C 2˛5

is positive, as a sum of nonnegative terms (some of them being even strictly
positive), and the first lemma is proved.

Lemma 2. The inequality

2t2

t3 C 1
C t2

t6 C 1
� 3

2

is true for any positive t.

Proof. After clearing the denominators and some further calculations, the
inequality is equivalent to

3t9 � 4t8 C 3t6 � 2t5 C 3t3 � 6t2 C 3 � 0

, .t � 1/2.3t7 C 2t6 C t5 C 3t4 C 3t3 C 3t2 C 6t C 3/ � 0;

which is evident for t > 0.

Now let us solve our problem. Because we have abc D 1 (and a; b; c > 0),
one of the three numbers has to be greater than (or equal to) 1. Suppose (without
loss of generality, due to the symmetry) that this is c and consider two cases.

(i) First, assume that c 2
h
1;

3
p

4
i
; then

1p
c

2
	

1
3

p
2

; 1
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and ab D 1
c D

�
1p

c

�2

. According to the first lemma, we have

a

a3 C 1
C b

b3 C 1
�

2 1p
c

�
1p

c

�3 C 1

D 2c

c
p

c C 1

and this yields

a

a3 C 1
C b

b3 C 1
C c

c3 C 1
� 2c

c
p

c C 1
C c

c3 C 1
:

But lemma 2 (for t D p
c) tells us that

2c

c
p

c C 1
C c

c3 C 1
� 3

2
;

so we get the desired inequality:

a

a3 C 1
C b

b3 C 1
C c

c3 C 1
� 2c

c
p

c C 1
C c

c3 C 1
� 3

2
:

ii) Suppose now that c is greater than 3
p

4. One can easily observe that the
function

f W .0; 1/ ! .0; 1/; f .t/ D t

t3 C 1
; 8t > 0

has the derivative

f 0.t/ D 1 � 2t3

.t3 C 1/2
; 8t > 0I

therefore the function increases from 0 to 1
3
p

2
and decreases from 1

3
p

2
to

1, having an absolute maximum at 1
3
p

2
:

f .t/ � f

�
1

3
p

2

�
D 1

3

3
p

4; 8t > 0:

In particular, f .a/ and f .b/ are less than (or equal to) 1
3

3
p

4. Regarding f .c/,
we have

c � 3
p

4 ) f .c/ � f .
3

p
4/ D 1

5

3
p

4;
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because of the monotony of the function f . Finally

a

a3 C 1
C b

b3 C 1
C c

c3 C 1
D f .a/ C f .b/ C f .c/

�
�

2 � 1

3
C 1

5

�
3

p
4 D 13

15

3
p

4 <
13

15
� 8

5
D 104

75
<

3

2

(the inequality 3
p

4 < 1:6 is equivalent to 4 < 1:63 D 4:096; thus it is true)
and the proof ends here.

This is problem 245 (rephrased) from Gazeta Matematică, seria A,
3/2007. In the same magazine, number 3/2008, one can find two more
solutions (due to Marius Olteanu and Ilie Bulacu) and a generalization from
Ilie Bulacu.

Remarks. 1) One can also prove lemma 2 by using the derivative of t 7!
2t2=.t3 C 1/ C t2=.t6 C 1/. (It is just a matter of taste; the computations are
of the same difficulty.) Indeed, the derivative is

�2t
�
t3.t12 � 1/ C 3t6.t3 � 1/ C 3.t9 � 1/

�

.t3 C 1/2.t6 C 1/2

and the function has a maximum at 1 (equal to 3=2).
2) The reader is invited to prove, in the same vein, that

a

a4 C 1
C b

b4 C 1
C c

c4 C 1
� 3

2
;

for all positive a, b, and c with abc D 1.



Chapter 15
Riemann and Darboux Sums

Let f W Œa; b� ! R be continuous and positive. By the subgraph of f ; we mean the
region from the xy-plane delimited by the x-axis, the lines x D a; x D b; and the
curve y D f .x/: More precisely, the subgraph is the set

˚
.x; y/ 2 R

2 j a � x � b; 0 � y � f .x/
�
:

We study the problem of estimation of the area of the subgraph. A method is to
consider a division (or partition) of the interval Œa; b�; i.e.,

� D .a D x0 < x1 < � � � < xn�1 < xn D b/:

The real number denoted

k�k D max
1�k�n

.xk � xk�1/

is called the norm of �: Next, choose arbitrary points

�k 2 Œxk�1; xk�; 1 � k � n;

which we call a system of intermediate points. Then the area of the subgraph is
approximated by the following sum denoted

��.f ; �k/ D
nX

kD1
f .�k/.xk � xk�1/

and called a Riemann sum. Our intuition says that this estimation becomes better if
the norm of the division is smaller.

© Springer Science+Business Media LLC 2017
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This result remains true for a more general class of functions, namely, Riemann
integrable functions.

Definition. A function f W Œa; b� ! R is called Riemann integrable (or just
integrable) if there exists a real number I having the following property: for every
" > 0; there exists ı."/ > 0 such that for every division� of Œa; b� with k�k < ı."/
and for every system of intermediate points .�k/1�k�n ; we have j��.f ; �k/ � Ij < ":

If it exists, I with this property is unique. (We encourage the reader to prove this
uniqueness property.) Thus we may use a special notation for I, namely,

I D
Z b

a
f .x/ dx

and we call I the Riemann integral, or simply the (definite) integral of f on the
interval Œa; b�—or from a to b. Continuous functions and, also, monotone functions
are Riemann integrable—the reader can find the proofs of these properties in any
calculus book.

Clearly, the definition tells us that

Z b

a
f .x/ dx D lim

n!1 ��n

�
f ; �.n/k

�

for every sequence of partitions .�n/n�1, with lim
n!1 k�nk D 0, and for any choice

of the intermediate points �.n/k in the intervals of �n, n � 1. For instance, consider

the partitions �n determined by the points x.n/k D a C k
b � a

n
; 0 � k � n;

a < a C b � a

n
< a C 2

b � a

n
< � � � < a C .n � 1/b � a

n
< a C n

b � a

n
D b;

and the system of intermediate points

�
.n/
k D a C k

b � a

n
2
�

a C .k � 1/b � a

n
; a C k

b � a

n

�
; 1 � k � n:

Since x.n/k � x.n/k�1 D .b � a/=n; this �n is called an equidistant partition (all its
intervals have the same length), and the corresponding Riemann sum is

��n

�
f ; �.n/k

�
D b � a

n

nX

kD1
f

�
a C k

b � a

n

�
:
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Thus we have a method to compute the limit of a class of convergent sequences:

Proposition. For every Riemann integrable function f W Œa; b� ! R; we have

lim
n!1

b � a

n

nX

kD1
f

�
a C k

b � a

n

�
D
Z b

a
f .x/ dx:

In particular, if f W Œ0; 1� ! R is Riemann integrable, then

lim
n!1

1

n

nX

kD1
f

�
k

n

�
D
Z 1

0

f .x/ dx:

One of the most important results comes now. Because it connects the operations
of differentiation and integration, the theorem that follows is called the fundamental
theorem of calculus:

Theorem. a) Let f W Œa; b� ! R be any continuous function on Œa; b�, and let

F.x/ D
Z x

a
f .t/ dt;

for all x 2 Œa; b�. Then F is differentiable on Œa; b�, and

F0.x/ D f .x/

for all x 2 Œa; b�.
b) Let f W Œa; b� ! R be an integrable function on Œa; b�. Moreover, assume that

f has an antiderivative F W Œa; b� ! R. That is, F is differentiable on Œa; b� and
F0.x/ D f .x/ for every x 2 Œa; b�. Then

Z b

a
f .x/dx D F.b/ � F.a/:

Proof. a) We have, for (fixed, but arbitrary) x0 2 Œa; b�,

F.x/ � F.x0/ D
Z x

x0

f .t/ dt D .x � x0/f .cx/

for some cx between x0 and x (the last equality follows from the mean value
theorem for the definite integral—see the first proposed problem). Thus

F.x/ � F.x0/

x � x0
D f .cx/

has limit f .x0/ for x tending to x0 (which makes cx tend to x0 as well; remember
the continuity of f ). This means that F0.x0/ exists and equals f .x0/ at any x0 2
Œa; b�, which we intended to prove.
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b) Let �n be a sequence of divisions with the sequence of their norms convergent
to 0 (e.g., we can take the equidistant divisions of Œa; b�). If

a D x.n/0 < x.n/1 < � � � < x.n/pn
D b

are the points that define�n, we can apply to F Lagrange’s mean value theorem,
thus getting some �.n/k in each interval Œx.n/k�1; x

.n/
k � such that

F
�

x.n/k

�
� F

�
x.n/k�1

�
D
�

x.n/k � x.n/k�1
�

f
�
�
.n/
k

�

(do not forget that the derivative of F is f ). Consequently,

F.b/ � F.a/ D
pnX

kD1

�
F
�

x.n/k

�
� F

�
x.n/k�1

��
D

pnX

kD1

�
x.n/k � x.n/k�1

�
f
�
�
.n/
k

�
;

that is,

F.b/ � F.a/ D ��n

�
f ; �.n/k

�
;

for all n � 1. Now we only have to take the limit as n ! 1, in order to obtain
the desired result:

F.b/ � F.a/ D lim
n!1 ��n

�
f ; �.n/k

�
D
Z b

a
f .x/ dx: �

The second part of the fundamental theorem of calculus is usually named the
Newton-Leibniz formula and serves to evaluate definite integrals with the help of
derivatives. The notation

F.x/
ˇ̌
ˇ
b

a

is often used for F.b/ � F.a/. Thus

Z b

a
f .x/dx D F.x/

ˇ
ˇ̌b

a
D F.b/ � F.a/:

Also note that if f is a continuous function defined on any interval I, and a is any
point in I, then F defined by

F.x/ D
Z x

a
f .t/ dt

for all x 2 I is the antiderivative of f on I.
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Example. Compute lim
n!1 an; where an D 1

n C 1
C 1

n C 2
C � � � C 1

n C n
:

Solution. We have

an D
nX

kD1

1

n C k
D 1

n

nX

kD1

1

1C k
n

D 1

n

nX

kD1
f

�
k

n

�
;

where f .x/ D 1

1C x
, x 2 Œ0; 1�: According to the above theoretical results,

lim
n!1 an D

Z 1

0

1

1C x
dx D ln.1C x/

ˇ̌
ˇ
1

0
D ln 2: �

Another method to introduce the notion of integrability is due to Darboux. Let
f W Œa; b� ! R be a bounded function. For a division

a D x0 < x1 < � � � < xn�1 < xn D b

define

mk D inf
x2Œxk�1;xk�

f .x/; Mk D sup
x2Œxk�1;xk�

f .x/; 1 � k � n:

The sums denoted by

s�.f / D
nX

kD1
mk.xk � xk�1/; S�.f / D

nX

kD1
Mk.xk � xk�1/

are called the inferior Darboux sum, and the superior Darboux sum of f, respectively.
We have the following results (the interested reader can find their proofs in any
calculus book—see, for instance, [12]):

Theorem. Let f W Œa; b� ! R be bounded. The following assertions are
equivalent:

a) f is Riemann integrable.
b) for all " > 0; there exists ı."/ > 0 such that for all divisions� with k�k < ı."/;

we have

S�.f / � s�.f / < ":

This also holds in the following slightly different form:

Theorem. The function f is Riemann integrable on Œa; b� if and only if for every
� > 0, there exists a partition � of Œa; b� for which S�.f / � s�.f / < �.

We also mention a powerful result of Lebesgue.
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Theorem (Lebesgue). A bounded function f W Œa; b� ! R is integrable if and
only if it is continuous almost everywhere in Œa; b�, that is, for any " > 0, there is a
family of intervals with sum of lengths at most " such that any point of discontinuity
of f lies in an interval of the family. (We also say that the set of discontinuities of f
has Lebesgue measure zero or that it is a null set.)

The proof of this result is highly nontrivial and will not be presented here. We
show however some consequences of this theorem: first of all, the product of two
Riemann integrable functions is Riemann integrable. Trying to prove this using the
definition is not an easy task, but noting that

fg D .f C g/2 � f 2 � g2

2

reduces the problem to proving that the square of an integrable function is integrable.
This follows immediately from Lebesgue’s criterion, because the discontinuities of
f 2 are among those of f . A more general result (with essentially the same proof) is
the following:

Problem. Let f W Œa; b� ! Œ˛; ˇ� be a Riemann integrable function, and let
g W Œ˛; ˇ� ! R be continuous. Prove that g ı f is Riemann integrable on Œa; b�.

Solution I. Let � be an arbitrary positive number. Because g is continuous on
the compact interval Œ˛; ˇ�, it is also uniformly continuous; therefore we can find a
positive ı0 such that

jg.x/ � g.y/j < �

2.b � a/
whenever x; y 2 Œ˛; ˇ� and jx � yj < ı0:

Yet, g is bounded, so there exists M > 0 such that jg.x/j � M for all x 2 Œ˛; ˇ�.
Now let ı be a positive number, less than both ı0 and �=.4M/. Because f is

Riemann integrable on Œa; b�, there exists � > 0 such that whenever � is a partition
of Œa; b� with jj�jj < �, we have

S�.f / � s�.f / < ı
2:

Let us consider such a partition � D .a D x0 < x1 < � � � < xn D b/ of Œa; b�,
with jj�jj < �. We denote by mi.f / and Mi.f / the lower and upper bound of f ,
respectively, in the interval Œxi�1; xi�; mi.gı f / and Mi.gı f / have similar significance
for g ı f . We have

S�.g ı f / � s�.g ı f / D
nX

iD1
.xi � xi�1/.Mi.g ı f / � mi.g ı f //

D
0X
.xi � xi�1/.Mi.g ı f / � mi.g ı f //C

00X
.xi � xi�1/.Mi.g ı f / � mi.g ı f //:
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In the first sum (i.e., in
P 0), we collect the terms corresponding to indices 1 � i � n

for which Mi.f / � mi.f / < ı (and, therefore, Mi.f / � mi.f / < ı0, too), while the
second sum is over those i for which Mi.f / � mi.f / � ı. Consequently,

Mi.g ı f / � mi.g ı f / <
�

2.b � a/

for every i in the first sum (as jx � yj � Mi.f / � mi.f / < ı0 for all x; y 2 Œxi�1; xi�).
We further have

ı2 >
X 00.xi � xi�1/.Mi.f / � mi.f // �

X 00.xi � xi�1/ı;

hence

X 00.xi � xi�1/ < ı:

Putting all these together, we finally get

S�.g ı f / � s�.g ı f / D
nX

iD1
.xi � xi�1/.Mi.g ı f / � mi.g ı f //

D
X 0.xi � xi�1/.Mi.g ı f / � mi.g ı f //C

X 00.xi � xi�1/.Mi.g ı f / � mi.g ı f //

<
�

2.b � a/

X 0.xi � xi�1/C 2M
X 00.xi � xi�1/

� �

2.b � a/
.b � a/C 2Mı <

�

2
C �

2
D �;

and this happens for every partition � of Œa; b�, with jj�jj < �. Of course, this
means that g ı f is integrable on Œa; b�, which we intended to prove. �

Solution II. Lebesgue’s integrability criterion allows an almost one-line proof
of this result. Indeed, we clearly have g ı f bounded (for g is continuous on the
compact Œ˛; ˇ�). On the other hand, if Df and Dgıf are the sets of discontinuities of
f and g ı f , respectively, on Œa; b�, we obviously have Dgıf � Df (for continuous g).
(Equivalently we can say that if f is continuous at some point t 2 Œa; b�, then g ı f
is also continuous at t.) So, if f is Riemann integrable, then Df has null Lebesgue
measure, implying that Dgıf has null Lebesgue measure as well. Thus, g ı f is also
Riemann integrable, finishing the proof. �

A slightly more involved result is the following:

Problem. If f W Œa; b� ! R has the property that f Csin.f / is Riemann integrable,
then so is f .
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Solution. Using Lebesgue’s theorem, this is not difficult. Indeed, first of all note
that h D f C sin.f / is bounded, so f is also bounded, because jf .x/j � 1 C jh.x/j.
Now, note that the function g.x/ D xC sin x is continuous and bijective. Indeed, it is
increasing and has limits ˙1 at ˙1. Suppose that x0 is a point of discontinuity of
f , without being a point of discontinuity of h. Then there exists a sequence .yn/n�1
that converges to x0 and such that .f .yn//n�1 does not converge to f .x0/. However,
we know that .g.f .yn///n�1 converges to g.f .x0//. Let l be any limit point of the
sequence .f .yn//n�1 (i.e., l is the limit of some subsequence of .f .yn//n�1). Then
g.l/ D g.f .x0// and so l D f .x0/. Thus the bounded sequence .f .yn//n�1 has the
property that all its convergent subsequences have the same limit, f .x0/. It means
that it converges to f .x0/, a contradiction. Thus the discontinuity points of f are
among the discontinuity points of h; and thus the conditions of Lebesgue’s criterion
are satisfied for f , which shows that f is Riemann integrable. �

An important consequence of Lebesgue’s theorem is the following fact:

Problem. Any function f W Œa; b� ! R which has finite one-sided limits at any
point is Riemann integrable.

Solution. Indeed, let us prove first of all that f is bounded. Assuming the
contrary, we can find a sequence xn 2 Œa; b� such that jf .xn/j > n for all n. This
sequence has a convergent subsequence .xkn/n�1, whose limit is l 2 Œa; b�. The
inequality jf .xkn/j > kn shows that one of the one-sided limits of f at l is infinite,
which is a contradiction. Thus f is bounded on Œa; b�.

Next, let us prove that f is continuous almost everywhere. It is enough to prove
that the set of discontinuities of f is at most countable. For any x, let

f .xC/ D lim
t&x

f .t/

and

f .x�/ D lim
t%x

f .t/:

Clearly, it is enough to prove that the set of points x where f .xC/ > f .x�/ is at most
countable. But this set is the union of Ap;q, where Ap;q is the set of real numbers
x 2 Œa; b� such that f .x�/ < p < q < f .xC/ and the union is taken over all pairs
.p; q/ of rational numbers such that p < q. Clearly, any point of Ap;q is isolated. So,
because the union is taken over a countable set of pairs .p; q/, it is enough to prove
that each Ap;q is countable. This will follow if we manage to prove that a set X of real
numbers all of whose points are isolated is at most countable. Let I1; I2; : : : be all
open intervals whose extremities are rational numbers. For all x 2 X, we know that
there exists n.x/ such that x is the only common point of X and In.x/. The function
n defined on X is clearly injective, and because its values are positive integers, X
is at most countable. Thus f is continuous almost everywhere (we leave as an easy
exercise for the reader to prove that a countable set can be covered with a family of
intervals whose sum of lengths is at most ", for any " > 0), and so f is Riemann
integrable. �
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The following result is weaker than Lebesgue’s theorem, but still nontrivial:

Problem. A Riemann integrable function f W Œ0; 1� ! R is continuous on a
dense set of Œ0; 1�.

Solution. Let 0 � a < b � 1. We will prove that f is continuous at a point
in Œa; b�. Using Darboux’s criterion, we can construct by induction a sequence of
nested intervals In D Œan; bn� such that InC1 is a subset of .an; bn/, I0 D Œa; b�,
bn � an converges to 0, and

sup
x2In

f .x/ � inf
x2In

f .x/ <
1

n

for all n. Indeed, suppose we constructed In. There exists ı > 0 such that for any
division � with k�k < ı we have

S�.f / � s�.f / <
bn � an

2.n C 1/
:

Let r D min. 1
nC1 ;

bn�an
4
; ı/. For any division � D .x0; x1; : : : ; xk/ such that k�k <

r, let a0
nC1 be the smallest xi among those which belong to .an; bn/ and let b0

nC1 be the
greatest such xi. Clearly, Œa0

nC1; b0
nC1� is a subset of .an; bn/ and b0

nC1�a0
nC1 � bn�an

2
.

Also, let

xi0 D a0
nC1 < xi0C1 < � � � < xi0Cp D b0

nC1

be the points of � that belong to Œa0
nC1; b0

nC1�. Finally, let

Si D sup
x2Œxi;xiC1�

f .x/ � inf
x2Œxi;xiC1�

f .x/:

Then

bn � an

2.n C 1/
>

p�1X

jD0
Si0Cj.xi0CjC1 � xi0Cj/:

If Si0Cl is the smallest among the Si0Cj, we deduce that

Si0Cl <
bn � an

2.b0
nC1 � a0

nC1/.n C 1/
� 1

n C 1
:

Therefore we can choose anC1 D xi0Cl and bnC1 D xi0ClC1. Now, using the lemma
of nested intervals, there exists x0 belonging to the intersection of all In. Clearly, f
is continuous at x0. �
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Finally, a beautiful application of Riemann sums and subtle estimations appears
in the solution to the following problem, taken from a Romanian Olympiad.

Problem. Let f W Œ0;1/ ! R be a 1-periodic and Riemann integrable function
on Œ0; 1�. For a strictly increasing, unbounded sequence .xn/n�0 ; with x0 D 0 and
lim

n!1 .xnC1 � xn/ D 0; denote

r.n/ D max fk 2 N j xk � ng :

a) Prove that

lim
n!1

1

n

r.n/X

kD1
.xkC1 � xk/f .xk/ D

Z 1

0

f .x/ dx:

b) Prove that

lim
n!1

1

ln n

nX

kD1

f .ln k/

k
D
Z 1

0

f .x/ dx:

Solution. a) Let us denote

sp D
X

p�1<xk�p

.xkC1 � xk/f .xk/; p � 1:

Then, if

an D 1

n

r.n/X

kD1
.xkC1 � xk/f .xk/;

we have an D 1

n

nX

pD1
sp and according to the Cesàro-Stolz theorem, lim

n!1 an D
lim

n!1 sn; if the limit on the right-hand side exists. However, note that

sn D
X

n�1<xk�n

.xkC1 � xk/f .xk/ D
X

0<xk�.n�1/�1
.ykC1 � yk/f .yk/

with yk D xk � .n � 1/; represents the Riemann sum related to the function f and
the division .yk/r.n�1/<k�r.n/ which tends to zero in norm, as n ! 1: Also note
that f .xk/ D f .yk/ because f is 1-periodic. Thus,
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lim
n!1 sn D

Z 1

0

f .x/ dx:

b) For xn D ln n; we have

sn D 1

n

Œen�X

kD1
ln

k C 1

k
f .ln k/ !

Z 1

0

f .x/ dx:

We also have

lim
n!1 sŒln n� D

Z 1

0

f .x/ dx;

so

1

Œln n�

ŒeŒln n��X

kD1
ln

k C 1

k
f .ln k/ !

Z 1

0

f .x/ dx; as n ! 1:

Now,

1

ln n

nX

kD1
ln

k C 1

k
f .ln k/ D 1

ln n

h
eŒln n�

i

X

kD1
ln

k C 1

k
f .ln k/C 1

ln n

nX

kDŒeŒln n��C1
ln

k C 1

k
f .ln k/:

Let us prove that

lim
n!1

1

ln n

nX

kDŒeŒln n��C1
ln

k C 1

k
f .ln k/ D 0:

First, with M D supx2Œ0;1� jf .x/j ;
ˇ̌
ˇ̌
ˇ̌
ˇ

nX

kDŒeŒln n��C1
ln

k C 1

k
f .ln k/

ˇ̌
ˇ̌
ˇ̌
ˇ

� M �
nX

kDŒeŒln n��C1
ln

k C 1

k
D M ln

n C 1
	
eŒln n�


C 1
;

which tends to zero, as n ! 1: Finally,

ˇ̌
ˇ̌
ˇ
1

ln n

nX

kD1

�
1

k
� ln

k C 1

k

�
f .ln k/

ˇ̌
ˇ̌
ˇ

� M � 1

ln n

nX

kD1

�
1

k
� ln

k C 1

k

�

D M � 1C 1
2

C � � � C 1
n � ln.n C 1/

ln n
! 0; as n ! 1: �
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Proposed Problems

1. a) Prove the monotonicity property of the Riemann integral, namely, that if f ; g W
Œa; b� ! R are two Riemann integrable functions such that f � g on Œa; b�,
then

Z b

a
f .x/ dx �

Z b

a
g.x/ dx:

b) Prove the mean value property for the Riemann integral. Namely, show that if
f W Œa; b� is a continuous function, then there exists c 2 Œa; b� such that

Z b

a
f .x/ dx D .b � a/f .c/:

2. Find the limit of the sequence an D
nX

kD1

sin k�
np

n2 C k
:

3. Find the limit of the sequence an D
nX

kD1

1

k C p
n2 C kn C k

; n � 1:

4. Does there exist a Riemann integrable function f W Œ0; 1� ! R such that for
every p; q 2 .0; 1/; p < q there exist c; d 2 .p; q/ for which f .c/ D c2 and
f .d/ D d3‹

5. Let f W Œ0; 1� ! R be a Riemann integrable function such that

0 � f
�m

n

�
� 1

n � m

for all positive integers m < n; gcd.m; n/ D 1: Compute
Z 1

0

f .x/ dx:

6. Let f W Œ0; 1� ! R be integrable such that

f .x/C f .y/

2
� f .

p
xy/;

for every x; y in Œ0; 1�: Prove that if f is continuous at e�1; then
Z 1

0

f .x/ dx � f .e�1/:

7. Let f W Œa; b� ! R be with the property that for all " > 0; the set

fx 2 Œa; b� j jf .x/j > "g

is finite or empty. Prove that f is integrable and
Z 1

0

f .x/ dx D 0:



Proposed Problems 265

8. Let f W Œ0; 1� ! R be an integrable function such that for every
p; q 2 .0; 1/; p < q, there exists � 2 .p; q/ for which f .�/ D 0: Prove thatZ 1

0

f .x/ dx D 0:

9. Let f W Œ0; 1� ! R be an integrable function such that for every
p; q 2 .0; 1/; p < q, there exist c; d 2 .p; q/ for which f .c/ C f .d/ D 2:

Prove that

Z 1

0

f .x/ dx D 1:

10. Let f ; g W Œ0; 1� ! R be increasing, with g.0/ > 0 and let .an/n�1 � .0;1/ be
such that .nan/n�1 converges to 1 and is monotonically increasing. Compute

lim
n!1

f .an/C f .2an/C � � � C f .nan/

g.an/C g.2an/C � � � C g.nan/
:

11. Prove that the function f W Œ0; 1� ! R; given by

f .x/ D

8
<̂

:̂

1

2n
; x D 1

n
; n 2 N

�

0; x 6D 1

n
; n 2 N

�

is integrable and
Z 1

0

f .x/ dx D 0:

12. Let f W Œ0; 1� ! R be increasing. Prove that

ˇ̌
ˇ̌
ˇ

Z 1

0

f .x/ dx � 1

n

nX

kD1
f

�
k

n

�ˇ̌
ˇ̌
ˇ

� f .1/ � f .0/

n
;

for all positive integers n:
13. Let a1 D 0:5; and anC1 D p

1C nan for n � 1: Compute

lim
n!1

�
1

n2 C an
C 2

n2 C 2an
C � � � C n

n2 C nan

�
:

14. Let f ; g W Œa; b� ! R be such that

jf .x/ � f .y/j � jg.x/ � g.y/j

for all x; y in Œa; b�: Prove that f is integrable if g is integrable.
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15. Let f W Œ0; 1� ! R be integrable. Prove that

lim
n!1

�
f
�
1
n

� � f .0/
�2 C �

f
�
2
n

� � f
�
1
n

��2 C � � � C �
f .1/ � f

�
n�1

n

��2

n
D 0:

16. Let f W Œ0; 1� ! R be integrable and let .an/n�1 be a sequence such that

ˇ̌
ˇ̌
ˇ

nX

kD1
ak

ˇ̌
ˇ̌
ˇ

� 1;

for all positive integers n: Prove that

lim
n!1

1

n

nX

kD1
f

�
k

n

�
ak D 0:

17. Let f W Œ0; 1� ! R be a continuously differentiable function. Prove that

lim
n!1 n

 Z 1

0

f .x/ dx � 1

n

n�1X

kD0
f

�
k

n

�!

D f .1/ � f .0/

2
:

18. Compute the limit lim
n!1 n

 
�

4
�

n�1X

kD0

n

n2 C k2

!

:

19. Are there polynomials P; Q with real coefficients satisfying the equalities

Z ln n

0

P.x/

Q.x/
dx D 1C 1

2
C 1

3
C � � � C 1

n
;

for each integer n � 2‹

20. Let f W .0; 1� ! R be a continuous function such that

lim
x!0

Z 1

x
f .t/dt D

Z 1

0

f .x/dx

exists and is finite. Does it follow that the sequence .Sn/n�1, where

Sn D 1

n

nX

kD1
f

�
k

n

�
;

converges to
Z 1

0

f .x/dx? What if f is decreasing and lim
x!0

xf .x/ D 0?
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21. Let f and g be two functions defined on a compact interval Œa; b�, such that f is
Riemann integrable on Œa; b�, g has an antiderivative G on Œa; b�, and f .x/ � g.x/
for all x 2 Œa; b�.

a) Prove that
Z b

a
f .x/ dx � G.b/ � G.a/.

b) Prove that if
Z b

a
f .x/ dx D G.b/ � G.a/, then g is Riemann integrable on

Œa; b�.

22. Let g W Œ˛; ˇ� ! R be a Riemann integrable function, and let f W Œa; b� ! Œ˛; ˇ�

be a continuous function having the property that for every a0 2 .a; b�, there
exists an L > 0 (depending on a0) such that jf .x/ � f .y/j � Ljx � yj for all
x; y 2 Œa0; b�. Prove that g ı f is Riemann integrable on Œa; b�.

23. Let An D
Z �=2

0

cos2n x dx and Bn D
Z �=2

0

x2 cos2n x dx.

a) Prove that An�1 � An D 1

2n � 1An and that An D n.2n � 1/Bn�1 � 2n2Bn for

all n � 1.
b) Conclude that

1

n2
D 2

�
Bn�1
An�1

� Bn

An

�

for all n � 1, and then deduce that

	.2/ D
1X

nD1

1

n2
D �2

6
:

Solutions

1. a) If f .x/ � g.x/ for all x 2 Œa; b�, it follows easily that ��n

�
f ; �.n/k

�
�

��n

�
g; �.n/k

�
for every n � 1, where �n is a sequence of partitions of Œa; b�

with lim
n!1 k�nk D 0, and �.n/k are some corresponding intermediate points.

Thus the result follows by passing to the limit for n ! 1:

Z b

a
f .x/ dx D lim

n!1 ��n

�
f ; �.n/k

�
� lim

n!1 ��n

�
g; �.n/k

�
D
Z b

a
g.x/ dx:

Note that, in particular, the integral of a nonnegative function is also
nonnegative. Also, one can show that if continuity on Œa; b� is assumed for f
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and g, the equality in the inequality that we proved is achieved if and only if
f D g on Œa; b�.

b) Let m D inf
x2Œa;b� f .x/, and M D sup

x2Œa;b�
f .x/ be the extrema of f on Œa; b�. The

extreme value theorem tells us that m and M are actually values assumed by
f . The monotonicity of the Riemann integral applied to the functions f � m
and 0 to f � M and 0, respectively, yields

m.b � a/ �
Z b

a
f .x/ dx � M.b � a/:

Thus

1

b � a

Z b

a
f .x/ dx

is between m and M—two values of f ; now the intermediate value property
of f ensures the existence of c 2 Œa; b� such that

1

b � a

Z b

a
f .x/ dx D f .c/:

We used this result in the proof of the fundamental theorem of calculus. So,
now we know that if f is continuous on Œa; b�, then the function

x 7! F.x/ D
Z x

a
f .t/ dt

is an antiderivative of f . Thus the equality from the mean value theorem reads
F.b/ � F.a/ D .b � a/F0.c/, that is, it can be inferred from Lagrange’s mean
value theorem applied to F. This shows that c can be actually chosen in the
open interval .a; b/.

2. For every integer 1 � k � n; we have the estimations

p
n2 C 1 �

p
n2 C k �

p
n2 C n;

so

1p
n2 C n

nX

kD1
sin

k�

n
� an � 1p

n2 C 1

nX

kD1
sin

k�

n
:

Now let us consider the function f W Œ0; 1� ! R, f .x/ D sin�x: The function f
is continuous, so it is integrable. It follows that
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lim
n!1

1

n

nX

kD1
sin

k�

n
D lim

n!1
1

n

nX

kD1
f

�
k

n

�
D
Z 1

0

f .x/ dx

D
Z 1

0

sin�x dx D � 1
�

� cos�x

ˇ̌
ˇ̌
1

0

D 2

�
:

Because

np
n2 C n

� 1
n

nX

kD1
sin

k�

n
� an � np

n2 C 1
� 1

n

nX

kD1
sin

k�

n

it follows that lim
n!1 an D 2

�
:

3. We have

an D 1

n

nX

kD1

1

k
n C

q
1C k

n C k
n2

;

so

1

n

nX

kD1

1

k
n C k

n2
C
q
1C k

n C k
n2

< an <
1

n

nX

kD1

1

k
n C

q
1C k

n

:

The numbers

k

n
C k

n2
2
�

k

n
;

k C 1

n

�
;

k

n
2
�

k

n
;

k C 1

n

�

can be viewed as systems of intermediate points associated to the division

� D
�
0 <

1

n
<
2

n
< � � � < n � 1

n
< 1

�

and the function f W Œ0; 1� ! R; f .x/ D 1

x C p
1C x

: Thus

lim
n!1 an D

Z 1

0

dx

x C p
1C x

:

4. The answer is no. Supposing the contrary, consider the division

�n D
�
0 <

1

n
<
2

n
< � � � < n

n
D 1

�
; n � 1
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of the interval Œ0; 1� with the norm jj�njj D 1
n ! 0, as n ! 1: According to

the hypothesis, we can find

�k; �k 2
�

k � 1
n

;
k

n

�
; 1 � k � n

such that

f .�k/ D �2k ; f .�k/ D �3k :

Hence

lim
n!1

1

n

nX

kD1
f .�k/ D lim

n!1
1

n

nX

kD1
f .�k/ D

Z 1

0

f .x/ dx:

And yet, these limits are different, so the problem is solved. Indeed, consider
the sum

1

n

nX

kD1
f .�k/ D 1

n

nX

kD1
�2k ; �k 2

�
k � 1

n
;

k

n

�

as a Riemann sum associated to the continuous function 
 W Œ0; 1� ! R, 
.x/ D
x2: Therefore

lim
n!1

1

n

nX

kD1
�2k D

Z 1

0


.x/ dx D
Z 1

0

x2 dx D 1

3
:

Similarly, if we consider the continuous function  W Œ0; 1� ! R,  .x/ D x3;
then

lim
n!1

1

n

nX

kD1
�3k D

Z 1

0

 .x/ dx D
Z 1

0

x3 dx D 1

4
:

5. First note that the sequence

an D 1

n

n�1X

kD1
f

�
k

n

�

is convergent and

lim
n!1 an D

Z 1

0

f .x/ dx:
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If p is prime, then

0 � ap D 1

p

p�1X

kD1
f

�
k

p

�
� 1

p

p�1X

kD1

1

p � k
D
1C 1

2
C � � � C 1

p�1
p

:

Using the Cesàro-Stolz theorem, we have

lim
p!1

1C 1
2

C � � � C 1
p�1

p
D lim

p!1

1
p�1

p � .p � 1/ D 0:

In conclusion, the convergent sequence .an/n�1 has a subsequence which

converges to zero. Hence an ! 0 and
Z 1

0

f .x/ dx D 0:

6. We can prove by induction (using the same trick as the one Cauchy used to
prove the AM-GM inequality) that

f .x1/C f .x2/C � � � C f .xn/

n
� f

�
n

p
x1x2 � � � xn

�
;

for all positive integers n and all x1; x2; : : : ; xn. Thus

an D 1

n

nX

kD1
f

�
k

n

�
� f

 
n

r
1

n
� 2

n
� � � n

n

!

D f

 
n

p
nŠ

n

!

:

Now, using the well known limit lim
n!1

npnŠ
n D e�1; we obtain

Z 1

0

f .x/ dx D lim
n!1 an � lim

n!1 f

 
n

p
nŠ

n

!

D f
�
e�1� :

7. For " > 0; denote by

A" D fx 2 Œa; b� j jf .x/j > "g

and assume that card A" D n": Obviously, f is bounded so let

M D sup
x2Œa;b�

jf .x/j :

Let

� D .a D x0 < x1 < � � � < xn D b/
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be a division of the interval Œa; b� and let �k 2 Œxk�1; xk�, 1 � k � n be a system
of intermediate points. We have

ˇ̌
ˇ̌
ˇ

nX

kD1
f .�k/.xk � xk�1/

ˇ̌
ˇ̌
ˇ

�
nX

kD1
jf .�k/j .xk � xk�1/

D
X

�k2A"

jf .�k/j .xk � xk�1/C
X

�k…A"

jf .�k/j .xk � xk�1/

� jj�jj �
X

�k2A"

jf .�k/j C " �
X

�k…A"

.xk � xk�1/ � Mn" � jj�jj C ".b � a/:

Now, if jj�jj < "

Mn"
; then

0 �
ˇ
ˇ̌
ˇ̌

nX

kD1
f .�k/.xk � xk�1/

ˇ
ˇ̌
ˇ̌ � ".b � a C 1/

and consequently,
Z 1

0

f .x/ dx D 0:

8. For each integer n � 2; let us consider the equidistant division

�n D
�
0 <

1

n
<
2

n
< � � � < n � 1

n
< 1

�

of the interval Œ0; 1� : Define the system of intermediate points

�
.n/
k 2

�
k � 1

n
;

k

n

�
; with f .�.n/k / D 0;

for all integers 1 � k � n: The norm jj�njj D 1
n tends to zero, as n ! 1; so

the corresponding Riemann sum tends to
Z 1

0

f .x/ dx as n ! 1 W

lim
n!1

1

n

nX

kD1
f .�.n/k / D

Z 1

0

f .x/ dx:

But the sums are identically zero, because all their terms are zero. Thus,

Z 1

0

f .x/ dx D 0:
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9. Consider the division

�n D
�
0 <

1

n
<
2

n
< � � � < n � 1

n
< 1

�

of the interval Œ0; 1�: According to the hypothesis, we can find

�n
k ; �

n
k 2

�
k � 1

n
;

k

n

�
; 1 � k � n;

so that f .�n
k /C f .�n

k/ D 2: From the fact that f is integrable, it follows that

lim
n!1

1

n

nX

kD1
f .�n

k / D lim
n!1

1

n

nX

kD1
f .�n

k/ D
Z 1

0

f .x/ dx:

Therefore

2

Z 1

0

f .x/ dx D lim
n!1

1

n

nX

kD1
f .�n

k /C lim
n!1

1

n

nX

kD1
f .�n

k/

D lim
n!1

1

n

nX

kD1

�
f .�n

k /C f .�n
k/
� D 2;

so
Z 1

0

f .x/ dx D 1:

10. Let us consider the divisions

�n D .0 < an < 2an < � � � < nan < 1/; n � 1

of the interval Œ0; 1�: Easily,

jj�njj D max fan; 1 � nang ! 0; as n ! 1:

The functions f ; g are increasing, so they are integrable on Œ0; 1�: If we choose
the points

�k D kan 2 Œ.k � 1/an; kan� ; 1 � k � n;

then

lim
n!1

nX

kD1
f .kan/.kan � .k � 1/an/ D lim

n!1 an

nX

kD1
f .kan/ D

Z 1

0

f .x/ dx
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and

lim
n!1

nX

kD1
g.kan/.kan � .k � 1/an/ D lim

n!1 an

nX

kD1
g.kan/ D

Z 1

0

g.x/ dx:

Finally,

lim
n!1

nX

kD1
f .kan/

nX

kD1
g.kan/

D lim
n!1

an

nX

kD1
f .kan/

an

nX

kD1
g.kan/

D

Z 1

0

f .x/ dx

Z 1

0

g.x/ dx

:

11. The function f is bounded and continuous almost everywhere (continuous on
Œ0; 1� n f1=n j n 2 N

�g). In order to compute the integral, we will choose the
particular division

� D
�
0 <

1

n
<
2

n
< � � � < n � 1

n
< 1

�

and the system of intermediate points

�k 2
�

k � 1
n

;
k

n

�
\ .R n Q/; 1 � k � n:

We have f .�k/ D 0 and

Z 1

0

f .x/ dx D lim
n!1

1

n

nX

kD1
f .�k/ D 0:

More generally, any integrable function that vanishes on a dense subset of Œa; b�
has integral equal to 0 (as we have seen in a previous exercise).

12. We have
ˇ̌
ˇ̌
ˇ

Z 1

0

f .x/ dx � 1

n

nX

kD1
f

�
k

n

�ˇ̌
ˇ̌
ˇ

D
ˇ̌
ˇ̌
ˇ

nX

kD1

Z k
n

k�1
n

f .x/ dx � 1

n

nX

kD1
f

�
k

n

�ˇ̌
ˇ̌
ˇ

D
ˇ̌
ˇ̌
ˇ

nX

kD1

Z k
n

k�1
n

�
f .x/ � f

�
k

n

��
dx

ˇ̌
ˇ̌
ˇ

D
nX

kD1

Z k
n

k�1
n

�
f

�
k

n

�
� f .x/

�
dx
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�
nX

kD1

Z k
n

k�1
n

�
f

�
k

n

�
� f

�
k � 1

n

��
dx

D f .1/ � f .0/

n
:

13. First we can prove by induction that n � 2 < an < n: Under this assumption,
we have

anC1 D
p
1C nan >

p
1C n.n � 2/ D n � 1

and

anC1 D
p
1C nan <

p
1C n2 < n C 1;

so n � 1 < anC1 < n C 1: These inequalities show that
an

n
converges to 1. Let

us consider the function f W Œ0; 1� ! R; given by the formula f .x/ D x

x C 1
,

x 2 Œ0; 1� and the division

� D
�
0 <

an

n2
<
2an

n2
< � � � < nan

n2
< 1

�
:

For the system of intermediate points

�k D kan

n2
2
�
.k � 1/an

n2
;

kan

n2

�
; 1 � k � n;

we have

Z 1

0

f .x/ dx D lim
n!1

nX

kD1
f

�
kan

n2

��
kan

n2
� .k � 1/an

n2

�

D lim
n!1

an

n2

nX

kD1

kan

n2 C kan
D lim

n!1
a2n
n2

nX

kD1

k

n2 C kan
:

In conclusion,

lim
n!1

nX

kD1

k

n2 C kan
D
Z 1

0

f .x/ dx D 1 � ln 2:

14. Let " > 0: For every division

� D .a D x0 < x1 < � � � < xn D b/
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with norm jj�jj < ı."/; we have S�.g/ � s�.g/ < ": Let us denote

mg
k D inf

x2Œxk�1;xk�
g.x/; Mg

k D sup
x2Œxk�1;xk�

g.x/

and

mf
k D inf

x2Œxk�1;xk�
f .x/; Mf

k D sup
x2Œxk�1;xk�

f .x/:

From the given inequality, we deduce

Mf
k � mf

k � Mg
k � mg

k ; 1 � k � n:

Therefore

S�.f / � s�.f / D
nX

kD1
.Mf

k � mf
k/.xk � xk�1/ �

nX

kD1
.Mg

k � mg
k/.xk � xk�1/

D S�.g/ � s�.g/ < ":

In conclusion, f is integrable. Alternatively, observe that the hypothesis and the
fact that g is bounded easily imply that f is bounded: all we need is to note
that jf .x/j � jf .a/j C jg.x/j C jg.a/j. Also, for an x0 2 .a; b/, the inequality
jf .x/ � f .x0/j � jg.x/ � g.x0/j implies that f is continuous at x0 if g is. Thus,
the discontinuity points of f are included in the set of discontinuity points of g
and we can apply Lebesgue’s criterion in order to complete the solution.

15. The function f is integrable, so it is bounded. Assume that jf .x/j � M for all
x 2 Œ0; 1� and for some M > 0: For every integer 1 � k � n; we have

ˇ̌
ˇ̌f
�

k

n

�
� f

�
k � 1

n

�ˇ̌
ˇ̌ �

ˇ̌
ˇ̌f
�

k

n

�ˇ̌
ˇ̌C

ˇ̌
ˇ̌f
�

k � 1
n

�ˇ̌
ˇ̌ � 2M

and thus

�
f

�
k

n

�
� f

�
k � 1

n

��2
� 2M �

ˇ̌
ˇ̌f
�

k

n

�
� f

�
k � 1

n

�ˇ̌
ˇ̌ :

By adding these inequalities, we obtain

1

n

nX

kD1

�
f

�
k

n

�
� f

�
k � 1

n

��2
� 2M

n

nX

kD1

ˇ
ˇ̌
ˇf
�

k

n

�
� f

�
k � 1

n

�ˇˇ̌
ˇ :
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Next,

1

n

nX

kD1

ˇ
ˇ̌
ˇf
�

k

n

�
� f

�
k � 1

n

�ˇˇ̌
ˇ D

nX

kD1

ˇ
ˇ̌
ˇf
�

k

n

�
� f

�
k � 1

n

�ˇˇ̌
ˇ �
�

k

n
� k � 1

n

�

� S�.f / � s�.f / ! 0;

where S�.f / and s�.f / are the Darboux sums corresponding to the equidistant
division

� D
�
0 <

1

n
<
2

n
< � � � < n � 1

n
< 1

�
:

Thus

1

n

nX

kD1

ˇ̌
ˇ
ˇf
�

k

n

�
� f

�
k � 1

n

�ˇ̌
ˇ
ˇ ! 0

and the problem is solved.

16. Let us define the sequence .bn/n�0 by the formula bn D
nX

kD1
ak; with b0 D 0:

By using the Abel-Dirichlet summation method, we have

1

n

ˇ̌
ˇ̌
ˇ

nX

kD1
f

�
k

n

�
ak

ˇ̌
ˇ̌
ˇ

D 1

n

ˇ̌
ˇ̌
ˇ

nX

kD1
f

�
k

n

�
.bk � bk�1/

ˇ̌
ˇ̌
ˇ

D 1

n

ˇ
ˇ̌
ˇb1

�
f

�
1

n

�
� f

�
2

n

��
C b2

�
f

�
2

n

�
� f

�
3

n

��
C � � �

Cbn�1
�

f

�
n � 1

n

�
� f .1/

�
C bnf .1/

ˇ̌
ˇ̌

� 1

n

�
jb1j �

ˇ̌
ˇ̌f
�
1

n

�
� f

�
2

n

�ˇ̌
ˇ̌C jb2j �

ˇ̌
ˇ̌f
�
2

n

�
� f

�
3

n

�ˇ̌
ˇ̌C � � �

C jbn�1j �
ˇ̌
ˇ̌f
�

n � 1
n

�
� f .1/

ˇ̌
ˇ̌C jbnj � jf .1/j

�

� 1

n

�ˇˇ̌
ˇf
�
1

n

�
� f

�
2

n

�ˇˇ̌
ˇC

ˇ
ˇ̌
ˇf
�
2

n

�
� f

�
3

n

�ˇˇ̌
ˇC � � �

C
ˇ̌
ˇ̌f
�

n � 1
n

�
� f .1/

ˇ̌
ˇ̌C jf .1/j

�
;
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which tends to zero, as n ! 1; because, as we have seen in the previous
problem,

lim
n!1

ˇ̌
f
�
2
n

� � f
�
1
n

�ˇ̌C ˇ̌
f
�
3
n

� � f
�
2
n

�ˇ̌C � � � C ˇ̌
f .1/ � f

�
n�1

n

�ˇ̌

n
D 0:

17. We have

xn D n

 Z 1

0

f .x/ dx � 1

n

nX

kD1
f

�
k � 1

n

�!

D n

 
nX

kD1

Z k
n

k�1
n

f .x/ dx � 1

n

nX

kD1
f

�
k � 1

n

�!

D n
nX

kD1

Z 1
n

0

�
f

�
x C k � 1

n

�
� f

�
k � 1

n

�
� xf 0

�
k � 1

n

��
dx

C 1

2n

n�1X

kD0
f 0
�

k

n

�
:

Pick � > 0. Because f 0 is continuous on Œ0; 1�, it is uniformly continuous, and so
there exists n0 such that for all n � n0 and all x; y such that jx �yj � 1

n , we have
jf 0.x/ � f 0.y/j � �. From now on, we consider n � n0. For a fixed x 2 	

0; 1n


,

Lagrange’s theorem asserts the existence of a point ck;n;x 2 	 k�1
n ; x C k�1

n



such

that

f

�
x C k � 1

n

�
� f

�
k � 1

n

�
D xf 0.ck;n;x/:

Because
ˇ̌
cn;k;x � k�1

n

ˇ̌ � 1
n , we deduce that

ˇ̌
ˇ̌f
�

x C k � 1
n

�
� f

�
k � 1

n

�
� xf 0

�
k � 1

n

�ˇ̌
ˇ̌ < � � x

for all k; x. By integrating this between 0 and 1
n , we deduce that

ˇ̌
ˇ
ˇ̌
Z 1

n

0

�
f

�
x C k � 1

n

�
� f

�
k � 1

n

�
� xf 0

�
k � 1

n

��
dx

ˇ̌
ˇ
ˇ̌ <

�

2n2
;
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which shows (by summation) that the term

n
nX

kD1

Z 1
n

0

�
f

�
x C k � 1

n

�
� f

�
k � 1

n

�
� xf 0

�
k � 1

n

��
dx

converges to 0. Because the term
1

2n

n�1X

kD0
f 0
�

k

n

�
converges to

Z 1

0

f 0.x/dx

2
D f .1/ � f .0/

2
;

the conclusion follows.
18. Let us consider the function f W Œ0; 1� ! R; given by f .x/ D 1

1Cx2
, x 2 Œ0; 1�:

According to the previous problem,

lim
n!1 n

 Z 1

0

f .x/ dx � 1

n

n�1X

kD0
f

�
k

n

�!

D f .1/ � f .0/

2
;

which can be written as

lim
n!1 n

 
�

4
�

n�1X

kD0

n

n2 C k2

!

D �1
4
:

19. The answer is no. We have

Z ln n

0

�
P.x/

Q.x/
� 1

�
dx D 1C 1

2
C 1

3
C � � � C 1

n
� ln n;

or

Z ln n

0

R.x/

Q.x/
dx D cn;

where R.x/ D P.x/ � Q.x/ and

cn D 1C 1

2
C 1

3
C � � � C 1

n
� ln n:

It can be easily proved that

lim
n!1 n2.cnC1 � cn/ D �1

2
;
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using

ln

�
1C 1

n

�
D 1

n
� 1

2n2
C o

�
1

n2

�
:

Further,

Z ln.nC1/

ln n

R.x/

Q.x/
dx D cnC1 � cn

and, according to Leibniz-Newton’s theorem, there exists �n 2 .ln n; ln.n C 1//

so that

.ln.n C 1/ � ln n/ � R.�n/

Q.�n/
D cnC1 � cn:

Equivalently,

R.�n/

Q.�n/
� ln

�
1C 1

n

�
D cnC1 � cn;

or

nR.�n/

Q.�n/
D n2.cnC1 � cn/

ln
�
1C 1

n

�n ;

so

lim
n!1

nR.�n/

Q.�n/
D �1

2
:

With k D deg Q � deg R; we have k � 1; because

lim
n!1

R.�n/

Q.�n/
D 0:

Furthermore, the limit

lim
n!1

�k
nR.�n/

Q.�n/

is finite and nonzero. It follows that

�1
2

D lim
n!1

nR.�n/

Q.�n/
D lim

n!1
�k

nR.�n/

Q.�n/
� lim

n!1
n

�k
n

;
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hence the limit lim
n!1

n
�k

n
is finite and nonzero. But this is a contradiction, because

n

�k
n

� n

lnk.n C 1/
:

20. The answer to the first question is negative. Indeed, for positive integers n, the
intervals

In D
�
1

2n
� 1

2 � 4n
;
1

2n
C 1

2 � 4n

�

are pairwise disjoint; thus one can define a continuous function which is
piecewise linear on these intervals, zero between them, and such that

f

�
1

2n

�
D 2n

and f vanishes at the endpoints of In. Then f is positive,

S2n � 1

2n
f

�
1

2n

�
� 1;

and one can easily check that

Z 1

1
2n � 1

2�4n

f .x/dx D
nX

iD1

1

2iC1 ;

which converges to 1
2
. As expected, the second question has a positive answer.

The fact that f is decreasing implies the inequality

Z k
n

k�1
n

f .x/dx � 1

n
f

�
k

n

�
�
Z kC1

n

k
n

f .x/dx:

This implies the inequality

1

n
f

�
1

n

�
C
Z 1

1
n

f .x/dx � Sn � 1

n
f .1/C

Z 1

1
n

f .x/dx;

which combined with the hypothesis lim
n!1

1
n f
�
1
n

� D 0 gives the desired result.

21. (Sorin Rădulescu, District Mathematical Olympiad, 1984)

a) Let

�n D .a D xn
0 < xn

1 < � � � < xn
kn�1 < xn

kn
D b/
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be a sequence of divisions of the interval Œa; b�, with limn!1 jj�njj D 0.
For every positive integer n and every 1 � i � kn, choose in the interval
Œxn

i�1; xn
i � the point �n

i (whose existence is ensured by Lagrange’s mean value
theorem) having the property that G.xn

i / � G.xn
i�1/ D .xn

i � xn
i�1/g.�n

i /. We
then have, for each n � 1,

��n.f ; �
n/ D

knX

iD1
.xn

i � xn
i�1/f .�n

i / �
knX

iD1
.xn

i � xn
i�1/g.�n

i / D

D
nX

iD1
.G.xn

i / � G.xn
i�1// D G.b/ � G.a/:

Therefore, by passing to the limit and using the definition of the Riemann
integral,

Z b

a
f .x/ dx D lim

n!1 ��n.f ; �
n/ � G.b/ � G.a/;

as we intended to prove.
b) Clearly, one can prove, in the exact same way as above, that

Z b0

a0

f .x/ dx � G.b0/ � G.a0/

for all a � a0 � b0 � b. Thus, for a � ˛ � ˇ � b,

Z ˛

a
f .x/ dx � G.˛/ � G.a/;

Z ˇ

˛

f .x/ dx � G.ˇ/ � G.˛/;

Z b

ˇ

f .x/ dx � G.b/ � G.ˇ/:

But we also have, by hypothesis,

Z ˛

a
f .x/ dx C

Z ˇ

˛

f .x/ dx C
Z b

ˇ

f .x/ dx D
Z b

a
f .x/ dx D G.b/ � G.a/

D G.˛/ � G.a/C G.ˇ/ � G.˛/C G.b/ � G.ˇ/I
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therefore all the above inequalities must be, in fact, equalities. This shows that,

actually,
R b0

a0

f .x/dx D G.b0/ � G.a0/ for all a � a0 � b0 � b.
Now, for such a0 and b0, and any (arbitrarily chosen, but fixed for the

moment) x0 2 Œa0; b0� and any x 2 Œa0; b0�, we have that

G.x/ � G.x0/

x � x0
D
R x

x0
f .t/dt

x � x0

is between the bounds of f in the interval Œa0; b0�. Thus, the limit of this ratio for
x ! x0 (which is g.x0/; if x0 is one end of the interval Œa0; b0�, we only take a
one-sided limit) is also between these bounds; therefore

inf
x2Œa0;b0�

f .x/ � g.x0/ � sup
x2Œa0;b0�

f .x/

for every x0 2 Œa0; b0�. We deduce that

inf
x2Œa0;b0�

f .x/ � inf
x2Œa0;b0�

g.x/ � sup
x2Œa0;b0�

g.x/ � sup
x2Œa0;b0�

f .x/

for any subinterval Œa0; b0� of Œa; b�. (Of course, the first of these inequalities
also follows from the hypothesis f .x/ � g.x/ for all x 2 Œa; b�, but that is not the
case with the last inequality.) Now it’s an immediate consequence of the above
inequalities that

s�.f / � s�.g/ � S�.g/ � S�.f / ) S�.g/ � s�.g/ � S�.f / � s�.f /;

for any partition� of Œa; b�, and the Darboux criterion for Riemann integrability
shows that the Riemann integrability of f implies the Riemann integrability of
g, finishing the proof.

22. Solution I. First we see that f is injective on .a; b�. Indeed, for some x; y 2
.a; b� choose an a0 > a such that x; y 2 Œa0; b�, and let L be the corresponding
constant for this interval. If we assume f .x/ D f .y/, the inequality jf .x/ �
f .y/j � Ljx � yj shows that we necessarily have x D y. Being continuous and
injective, f is strictly monotone on .a; b�, and, by continuity, it is actually strictly
monotone on Œa; b�. We can assume, without loss of generality, that f is strictly
increasing and that Œ˛; ˇ� is actually the image of Œa; b� under the continuously
increasing map f (so that f .a/ D ˛ and f .b/ D ˇ).

Consider an arbitrary � > 0, and let M > 0 be such that jg.x/j � M for all
x; y 2 Œ˛; ˇ�. Let a0 D minfa C �=.4M/; bg and let ˛0 D f .a0/. Consider L > 0
with property that jf .x/ � f .y/j � Ljx � yj for all x; y 2 Œa0; b�.

Because g is integrable on Œ˛; ˇ�, it is also integrable on Œ˛0; ˇ�, hence we
can find a division �0 D .˛0 D y1 < � � � < yn D ˇ/ of the interval Œ˛0; ˇ�
such that S�0.g/ � s�0.g/ < L�=2. Of course, for each yi, there exists a unique
xi 2 Œ˛; ˇ� such that f .xi/ D yi and, in fact, a0 D x1 < x2 < � � � < xn D b.
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Now we consider the partition � D .a D x0 < x1 < � � � < xn D b/ of Œa; b�
and compute

S�.g ı f / � s�.g ı f /

D .a0 � a/.M1.g ı f / � m1.g ı f //C
nX

iD2
.xi � xi�1/.Mi.g ı f / � mi.g ı f //;

where Mi.g ı f / and mi.g ı f / are the respective upper and lower bounds of
g ı f in the interval Œxi�1; xi�. One sees immediately that Mi.g ı f / D Mi.f / and
mi.g ı f / D mi.f /, where Mi.f / and mi.f / are the corresponding bounds of f in
the interval Œyi�1; yi�, for i � 2. For such i we have xi � xi�1 � .1=L/.f .xi/ �
f .xi�1/ D .1=L/.yi � yi�1/; therefore the above expression of the difference
between the upper and lower Darboux sums of g ı f on the interval Œa; b� can be
evaluated as follows:

S�.g ı f / � s�.g ı f / � .a0 � a/2M C 1

L

nX

iD2
.yi � yi�1/.Mi.g/ � mi.g//

D .a0 � a/2M C 1

L
.S�0.g/ � s�0.g//

<
�

4M
� 2M C 1

L
� L�

2
D �:

Thus, for every � > 0, there exists a partition � of Œa; b� such that S�.g ı f / �
s�.g ı f / < �, which means that g ı f is Riemann integrable on Œa; b�, finishing
our (first) proof.

Solution II. We use the Lebesgue criterion for Riemann integrability. As in
the previous solution, we may assume that f is one to one from Œa; b� onto Œ˛; ˇ�
and strictly increasing. Of course, g ı f is bounded, so all we need to prove is
that g ı f is continuous almost everywhere. We observe that Dgıf � f �1.Dg/,
where by Dh we denote the set of discontinuities of the function h. (This is just
another way to put the fact that if g is continuous at some point of the form
f .x0/, x0 2 Œa; b�, then g ı f is continuous at x0.) Thus it suffices to show that
f �1.Dg/ is a null set.

Let � > 0 be given, and let c D minfa C �=2; bg. Consider � D f .c/ ,
c D f �1.�/, and L > 0 such that jf .x/ � f .y/j � Ljx � yj for all x; y 2 Œc; b�. It
follows that jf �1.x/� f �1.y/j � .1=L/jx�yj for all x; y 2 Œ�; ˇ�. The set Dg can
be covered by the union of intervals Œai; bi� whose sum of lengths is less than
L�=2, and we can assume that each and every such interval is included in Œ˛; ˇ�
(because Dg is included in this interval; therefore it can also be covered by the
union of Œai; bi� \ Œ˛; ˇ�—whose sum of lengths is at most equal to the sum of
lengths of Œai; bi�). We have
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Dg �
[

i

Œai; bi� ) f �1.Dg/ �
[

i

Œf �1.ai/; f
�1.bi/�

) f �1.Dg/ � Œa; c� [
 
[

i

.Œf �1.ai/; f
�1.bi/� \ Œc; b�/

!

:

Each intersection Œf �1.ai/; f �1.bi/� \ Œc; b� is either empty, or reduced to
one single point, or Œc; f �1.bi/� D Œf �1.�/; f �1.bi/�, or the whole interval
Œf �1.ai/; f �1.bi/�. In the first two cases, the length of such an interval is zero, in
the third case, its length is

f �1.bi/ � f �1.�/ � 1

L
.bi � �/ � 1

L
.bi � ai/;

and in the fourth case, its length is again at most .1=L/.bi � ai/. Thus we
managed to cover f �1.Dg/ with a set of intervals whose sum of lengths does
not exceed

c � a C 1

L

X

i

.bi � ai/ � �

2
C 1

L
� L�

2
D �;

which is what we intended to do.

Remarks. 1) The result remains true if f satisfies the weaker condition: there
exists L > 0 such that jf .x/ � f .y/j � Ljx � yj for all x; y 2 Œa; b�. Any of
the above proofs can be adapted to prove it in this form, with an obviously
simpler wording of the demonstration.

2) We have already seen that the composition g ı f of a continuous g with
an integrable f is integrable. This result shows that we can ensure the
integrability of g ı f when g is integrable, and f is continuous, if we add
some extra condition for f (some kind of a reverse Lipschitzian property).

3) When g W Œ0; 1� ! R is an integrable function, the function h W Œ0; 1� ! R

given by h.x/ D g.x2/, for all x 2 Œ0; 1� is also integrable. We had
this problem, proposed by Sorin Rădulescu, in the National Mathematics
Olympiad, as 12th grade students in 1986.

23. (See, for example, Daniel Daners: A Short Elementary Proof of
P
1=k2 D

�2=6, in Mathematics Magazine, 5/2012, pp 361–364, where many other good
references are given.) This is actually not about Riemann sums (or Darboux
sums)—but the Riemann integral appears so beautifully in the evaluation of the
celebrated sum of the inverses of the squares of positive integers that we can’t
miss it.
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a) The first part is well known. Integration by parts solves it immediately:

An�1 � An D
Z �=2

0

cos2n�2 x sin2 x dx

D � 1

2n � 1
Z �=2

0

.cos2n�1 x/0 sin x dx

D � 1

2n � 1

 

cos2n�1 x sin x
ˇ̌
ˇ�=20 �

Z �=2

0

cos2n�1 x � cos x dx

!

D 1

2n � 1An:

Note that An�1 D 2n

2n � 1An follows. Integrating by parts (twice), we can

get the second formula. Namely, we have,

An D x cos2n x
ˇ̌
ˇ�=20 �

Z �=2

0

x � 2n cos2n�1 x � .� sin x/ dx

D n
Z �=2

0

.x2/0 cos2n�1 x sin x dx

D nx2 cos2n�1 x sin x dx
ˇ̌
ˇ�=20 �n

Z �=2

0

x2.cos2n x�.2n�1/ cos2n�2 x sin2 x/ dx

D �nBn C n.2n � 1/.Bn�1 � Bn/ D n.2n � 1/Bn�1 � 2n2Bn:

b) By dividing the second equation from the first part by n2An, and by using

2n

2n � 1An D An�1;

we get exactly

1

n2
D 2

�
Bn�1
An�1

� Bn

An

�
:

Summing up from n D 1 to n D N we get (by telescoping)

NX

nD1

1

n2
D 2

�
B0
A0

� BN

AN

�
D 2

�
�2

12
� BN

AN

�
:
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Now we use the well-known inequality x < �
2

sin x, valid for x 2 .0; �=2/

(it becomes an equality at the endpoints of the interval; the inequality actually
expresses the geometric fact that the graph of the concave function x 7! sin x
is situated above the chord that connects the points .0; 0/ and .�=2; 1/).
Accordingly, we have

Bn D
Z �=2

0

x2 cos2n x dx <
�2

4

Z �=2

0

sin2 x cos2n x dx

D �2

4

Z �=2

0

.1 � cos2 x/ cos2n x dx

D �2

4
.An � AnC1/ D �2

4
� 1

2n C 2
An:

Putting together the last two results, we get

0 <
�2

6
�

NX

nD1

1

n2
<

�2

4.N C 1/
;

and the desired conclusion follows by making N tend to infinity. This is one
classical approach to evaluate the value 	.2/ of the Riemann zeta function (the
celebrated Basel problem, solved by Euler in 1735, at the age of twenty-eight).

Note that if, instead of the integrals An and Bn, one would rather work with

Cn D
Z �=2

0

cos2nC1 xdx and Dn D
Z �=2

0

x2 cos2nC1 xdx;

then one would obtain

NX

nD0

1

.2n C 1/2
D �2

8
� 1

2
� DN

CN
:

The ratio DN=CN can be shown to approach zero, as N goes to infinity (in the
same manner, we proceeded with BN=AN), and hence

1X

nD0

1

.2n C 1/2
D �2

8

can be proved in this way. This is no surprise: the latter equation is well known
to be equivalent to 	.2/ D �2=6.



Chapter 16
Antiderivatives

An antiderivative of the function f W I � R ! R is a differentiable function
F W I ! R, such that F0 D f : If F is an antiderivative of f , then F C c is also an
antiderivative of the function f ; for every real constant c: In fact, when I is an interval
(and in most cases it is) these functions F C c; c 2 R, are all the antiderivatives of
f : (This is because if F and G are two antiderivatives for the same function f on
the interval I, then the derivative of G � F vanishes on I; therefore the difference
G � F must be a constant. Note the importance of the fact that I is an interval.) We
denote by

Z
f .x/dx D fF C c j c 2 Rg

the set of all antiderivatives of the function f : Starting with the classical formula

.fg/0 D f 0g C fg0

one obtains the formula of integration by parts,

Z
f 0.x/g.x/dx D f .x/g.x/ �

Z
f .x/g0.x/dx:

We recall the formula of change of the variable, which can be deduced from the
formula of derivation of composition of two functions,

Œf .g.x//�0 D f 0.g.x//g0.x/:

More precisely,

Z
f 0.g.x//g0.x/dx D .f ı g/.x/ C c:

© Springer Science+Business Media LLC 2017
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The existence of antiderivatives of a given function cannot be taken for granted—in
general—and we will see below examples of functions that fail to have antideriva-
tives. However, as an immediate corollary of the fundamental theorem of calculus
(see the previous chapter), it follows that continuous functions have antiderivatives.
Namely, if f W I ! R (where I is an interval) is continuous, then any F defined on
I by

F.x/ D
Z x

a
f .t/ dt C c;

(with a 2 I, and c 2 R) is an antiderivative of f . Note that, although the above
expression of F may give the impression that we can evaluate the antiderivatives of
any continuous function, this is not at all the case. For example, the function

F.x/ D
Z x

0

e�t2 dt

is definitely an antiderivative of x 7! e�x2
. However, there is no way to express

this (or any other antiderivative of x 7! e�x2
) by means of elementary functions.

Nevertheless, such expressions of the antiderivatives of continuous functions can be
useful in various problems.

Problem. Let f ; g W I � R ! R, f with antiderivatives and g 2 C1; that
is, g is differentiable with continuous derivative. Prove that the function fg has
antiderivatives.

Solution. Let F be an antiderivative of the function f : Then by the formula

.Fg/0 D fg C Fg0

we deduce that

fg D .Fg/0 � Fg0:

The function Fg0 is continuous, so it has antiderivatives. Hence fg has antiderivatives
as a difference of two functions with antiderivatives. �

Problem. Let f ; g W R ! R be functions with the following properties:

i) f is continuous and bijective.
ii) g is nonnegative and has antiderivatives.

Prove that fg also has antiderivatives.

Solution. Let G be an antiderivative for g and let H be an antiderivative for
G.f �1.x//. We claim that the function

F.x/ D f .x/G.x/ � H.f .x//
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is an antiderivative for fg. Consider a real number x0. Let

S.x/ D F.x/ � F.x0/

x � x0

:

Observe that we can also write

S.x/ D f .x/ � G.x/ � G.x0/

x � x0

C G.x0/ � f .x/ � f .x0/

x � x0

� H.f .x// � H.f .x0//

x � x0

:

Using the mean value theorem, we can write

H.f .x// � H.f .x0//

x � x0

D H0.f .c.x/// � f .x/ � f .x0/

x � x0

for some c.x/ between x0 and x. The choice of H gives H0.f .c.x/// D G.c.x//. In
order to prove that S.x/ tends to f .x0/g.x0/ when x tends to x0, it is enough to show
that

G.x/ � G.c.x//

x � x0

is bounded in a neighborhood of x0 (we use here the continuity of f ). However, this
is not difficult, since G is increasing (because G0 D g � 0) and

ˇ̌
ˇ̌G.x0/ � G.c.x//

x � x0

ˇ̌
ˇ̌ �

ˇ̌
ˇ̌G.x0/ � G.x/

x � x0

ˇ̌
ˇ̌ :

The last quantity is bounded as x tends to x0, by the differentiability of G at x0. This
finishes the proof. �

Problem. Let f W R ! R be a continuous function such that the following limit
exists:

lim
jxj!1

1

x

Z x

0

f .t/dt D I.f /:

Prove that the function g defined by g.0/ D I.f / and g.x/ D f . 1
x / if x ¤ 0 has

antiderivatives.

Solution. Let F be an antiderivative for f . Then we clearly have for all x ¤ 0

�
x2F

�
1

x

��0
D 2xF

�
1

x

�
� g.x/:

Now, consider the function h defined by h.0/ D 2I.f / and h.x/ D 2xF. 1
x / for

nonzero x. The hypothesis of the problem implies that h is continuous, so it has
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an antiderivative H. We can write g as the difference of two functions having
antiderivatives g D H0 � U0, where U is defined by U.x/ D x2F. 1

x / if x ¤ 0

and U.0/ D 0. �

We have seen several conditions under which a function has antiderivatives. But
how can we prove that a function does not have antiderivatives? The easiest and
most practical way is the observation that any function which has antiderivatives
also has the intermediate value property. This follows from Darboux’s theorem,
stating that for any differentiable function F, its derivative has the intermediate
value property. The proof of this result has been presented in Chapter 14. There are
countless examples of situations in which this criterion works very well, but we will
limit ourselves to one problem. Before that, note however that there are functions
having the intermediate value property which do not have antiderivatives. We let
the reader check that such an example is given by the function f .x/ D 1

x cos. 1
x / for

x ¤ 0 and f .0/ D 0.

Problem. Prove that any function f W I ! R defined on a nontrivial interval I
and satisfying f .f .x// D �x does not have antiderivatives.

Solution. Suppose that f has antiderivatives. Therefore, f has the intermediate
value property. Note however that f is injective, because if f .x/ D f .y/, then �x D
f .f .x// D f .f .y// D �y and so x D y. Therefore f is monotone. This implies that
f .f .x// is increasing, which is impossible, because g.x/ D �x is decreasing. This
contradiction shows that f cannot have antiderivatives. �

Here is a more subtle problem, which needs several arguments.

Problem. Prove that there exists no function f W Œ0; 1� ! Œ0; 1� having an
antiderivative F W Œ0; 1� ! Œ0; 1� such that F.f .x// D x for all x.

Solution. Suppose, by way of contradiction, that f is such a function. Clearly,
f is injective because f .x/ D f .y/ ) x D F.f .x// D F.f .y// D y. Because
f is injective and has the intermediate value property, f is strictly monotone and
continuous. Because F0 D f � 0, F is increasing. We also deduce that f is
increasing.

Suppose now that f .0/ > 0, thus F.f .0// > F.0/, thus F.0/ < 0, a contradiction.
Thus f .0/ D 0, so 0 D F.f .0// D F.0/. Similarly, f .1/ D F.1/ D 1. Now take
x 2 .0; 1/; then Lagrange’s theorem gives c1; c2 2 .0; 1/ such that

�
F.x/ � F.0/ D xf .c1/

F.1/ � F.x/ D .1 � x/f .c2/

Thus F.x/ < x and 1 � F.x/ < 1 � x, which is impossible. Therefore such a
function cannot exist. �

We continue with a functional equation involving antiderivatives.
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Problem. Let a be a nonzero real number. Find all functions f W .0; 1/ ! R

having an antiderivative F such that

f .x/F

�
1

x

�
D a

x
:

Solution. Replacing x with
1

x
, we also obtain

f

�
1

x

�
F.x/ D ax:

Thus

f

�
1

x

�
F.x/ D x2f .x/F

�
1

x

�
) f .x/

F.x/
D 1

x2

f

�
1

x

�

F

�
1

x

� :

This implies

.ln jF.x/j/0 D �
�

ln F

�
1

x

��0
;

so there exists a constant c such that F.x/F

�
1

x

�
D c. Replace this in the statement

of the problem to obtain

F0.x/

F.x/
D a

cx
) F.x/ D bx

a
c

for some b. Because F

�
1

x

�
D bx� a

c , we deduce that b D p
c. Thus the solution of

the problem is f .x/ D 1p
c

x
a
c �1 for some constant c > 0. �

Problem. Let f W R ! R be a continuous differentiable function, strictly
monotone, such that f .0/ D 0. Prove that the function g W R ! R

g.x/ D
8<
:

f 0.x/ sin
1

f .x/
; x ¤ 0

0; x D 0

has antiderivatives.
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Solution. Let us observe that

�
f 2.x/ cos

1

f .x/

�0
D 2f .x/f 0.x/ cos

1

f .x/
C f 0.x/ sin

1

f .x/

which can be also written as

f 0.x/ sin
1

f .x/
D
�

f 2.x/ cos
1

f .x/

�0
� 2f .x/f 0.x/ cos

1

f .x/
:

Consider

h.x/ D
8<
:

2f .x/f 0.x/ cos
1

f .x/
; x ¤ 0

0; x D 0

;

which is clearly continuous. Take H to be an antiderivative of h and consider

G.x/ D
8<
:

f 2.x/ cos
1

f .x/
� H.x/; x 2 R

�

�H.0/; x D 0

:

Note that G is continuous because f is and f .0/ D 0. Also,

lim
x!0

G.x/ � G.0/

x
D lim

x!0

f 2.x/ cos
1

f .x/
� H.x/ C H.0/

x

D lim
x!0

f .x/

x
f .x/ cos

1

f .x/
� H.x/ � H.0/

x

D f 0.0/ lim
x!0

f .x/ cos
1

f .x/
� h.0/ D 0:

Thus G is differentiable and G0 D g. �

Proposed Problems

1. Find the integrals

I D
Z qp

x C p
x � 1

1 C p
x

dx; J D
Z qp

x � p
x � 1

1 C p
x

dx; x 2 .1; 1/:
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2. Let F W R ! R be an antiderivative of the function f W
�

�

3
;

2�

3

�
! R with

f .x/ D x

sin x
:

Prove that

F

�
2�

3

�
� F

��

3

�
D �

2
ln 3:

3. Let f W Œ0; 2�� ! R be continuous and decreasing such that f .�/ D 0: Prove
that for every antiderivative F of the function f ; we have

Z 2�

0

F.x/ cos xdx � 0:

4. Show that if f W R ! R has antiderivatives, then the same is true for h W R ! R

defined by h.x/ D jxjf .x/ for all x.
5. Prove that the function f W R ! R given by the formula

f .x/ D
�

sin 1
x ; x ¤ 0

0; x D 0

has antiderivatives.
6. Let f W R ! R be such that one of its antiderivatives F has the property that

lim
x!�1 F.x/ D 0: Prove that the function g W Œ0; 1/ ! R given by the formula

g.x/ D
�

f .ln x/; x > 0

0; x D 0

has antiderivatives.
7. Let f W R ! R be such that the functions g; h W R ! R,

g.x/ D f .x/ sin x; h.x/ D f .x/ cos x

have antiderivatives. Prove that f has antiderivatives.
8. For a function f W R ! R and for every positive integer n; denote by fn the

restriction of the function f to the interval .�n; 1/. Decide if the following
assertions are true:

a) If the functions fn have the intermediate value property, for all positive
integers n; then the function f has the intermediate value property.

b) If the functions fn have antiderivatives, for all positive integers n, then the
function f has antiderivatives.
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c) Answer similar questions for a function f W Œ0; 1/ ! R with its restrictions
fn on the interval Œ1=n; 1/; n 2 N

�:

9. Find an antiderivative of the function g W .0; 1/ ! R, g.x/ D ex2C 1

x2 , if we
know an antiderivative F of the function f W R ! R, f .x/ D ex2

:

10. Find an antiderivative of the function f W R ! R; f .x/ D ex2
, if we know an

antiderivative G of the function g W .0; 1/ ! R, g.x/ D ex2C 1

x2 :

11. Let f W .��=2; �=2/ ! Œ0; 1� and let us define the function g W .��=2; �=2/ !
R; by the formula

g.x/ D f .x/ tan x:

Prove that:

a) If f has antiderivatives, then g has antiderivatives.
b) If g has antiderivatives and f is continuous at zero, then f has antiderivatives.

12. Are there differentiable functions f W R ! .0; 1/ such that ln f is an
antiderivative of ln F; for some antiderivative F of f ‹

13. Let f W R ! R be a function with antiderivatives such that

f .x/ D f .f .x/ � x/;

for all real numbers x: Prove that the function f is continuous.
14. Let f W Œ0; 1/ ! R; with f .0/ D 0; continuous on .0; 1/; satisfying the

following properties:

a) there exist positive real numbers r and M such that jf .x/j � M; for all real
numbers x 2 Œ0; r�;

b) there exists a decreasing sequence .xn/n�0; converging to zero, with

lim
n!1

xnC1

xn
D 1; and such that

Z xnC1

xn

f .x/dx D 0;

for all positive integers n: Prove that the function f has antiderivatives.

15. Consider the function f W Œ0; 1/ ! R; with f .0/ D 0; continuous on .0; 1/

and linear on each interval of the form

�
1

n C 1
;

1

n

�
; n � 1 such that

f

�
1

n

�
D .�1/n;

for all positive integers n: Prove that the function f has antiderivatives.
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16. Let f be a real function with an antiderivative F on R. Prove that if

f .x/ � jxj
1 C jxj

for all x 2 R, then F has a unique fixed point (i.e., there exists precisely one
x0 2 R such that F.x0/ D x0).

17. Let f ; g W R ! R be two continuously differentiable functions such that f 0 is
bounded, limx!˙1 f .x/=x D 0, g.x/ D 0 if and only if x D 0, and g0.0/ ¤ 0.
Prove that h W R ! R defined by

h.x/ D
(

f 0
�

1
g.x/

�
; for x ¤ 0

0; for x D 0

has antiderivatives on R.
18. (Jarnik’s theorem) Let f ; g W R ! R be real functions that have antiderivatives

and such that g is nonzero on R. Show that f =g has the intermediate value
property.

Solutions

1. First let us compute

I C J D
Z qp

x C p
x � 1 C

qp
x � p

x � 1

1 C p
x

dx

With the notation

f .x/ D
qp

x C p
x � 1 C

qp
x � p

x � 1;

we have

f 2.x/ D .
p

x C p
x � 1/ C .

p
x � p

x � 1/ C 2

q
.
p

x C p
x � 1/.

p
x � p

x � 1/

D 2
p

x C 2;

so f .x/ D p
2.1 C p

x/: It follows that

I C J D
Z p

2.1 C p
x/

1 C p
x

dx D p
2

Z
dxp

1 C p
x

:
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By changing the variable
1p

1 C p
x

D t; we obtain

I C J D 4
p

2

3
.
p

x � 2/

q
1 C p

x C C:

Next,

I � J D
Z qp

x C p
x � 1 �

qp
x � p

x � 1

1 C p
x

dx:

With the notation

g.x/ D
qp

x C p
x � 1 �

qp
x � p

x � 1;

we have

g2.x/ D 2
p

x � 2 ) g.x/ D
q

2.
p

x � 1/:

Therefore

I � J D
Z p

2.
p

x � 1/

1 C p
x

dx D p
2

Z pp
x � 1p

x C 1
dx

D 4.
p

x � 4/
pp

x � 1

3
� 4

p
2 arctan

pp
x � 1p
2

C c:

2. By the Leibniz-Newton formula,

I D F

�
2�

3

�
� F

��

3

�
D
Z 2�=3

�=3

x

sin x
dx

then with x D � � t; it follows that

I D
Z 2�=3

�=3

� � t

sin t
dt D

Z 2�=3

�=3

� � x

sin x
dx:

(Note the general useful result that hides behind, namely, the formula

Z b

a
f .x/dx D

Z b

a
f .a C b � x/dx:
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We mentioned this in Chapter 1, too.) Hence

2I D
Z 2�=3

�=3

�

sin x
dx D � ln

�
tan

x

2

� ˇ̌
ˇ2�=3

�=3
D � ln 3:

3. For x 2 Œ0; �� ; f .x/ � 0 and for x 2 Œ�; 2�� ; f .x/ � 0: Thus f .x/ sin x � 0; for
all x 2 Œ0; 2��: By integrating by parts, we have

Z 2�

0

F.x/ cos xdx D
Z 2�

0

F.x/.sin x/0dx

D F.x/sin x
ˇ̌
ˇ2�

0
�
Z 2�

0

f .x/ sin xdx

D �
Z 2�

0

f .x/ sin xdx � 0:

4. Let F be an antiderivative of f ; thus F0 D f on R. Because
Z

xf .x/dx D
Z

xF0.x/dx D xF.x/ �
Z

F.x/dx

the idea is to consider an antiderivative G of F (F is differentiable, thus
continuous, thus it has antiderivatives), then note that x 7! xF.x/ � G.x/ is
an antiderivative of x 7! xf .x/. Finally glue together two such antiderivatives
of x 7! �xf .x/ (for x < 0) and of x 7! xf .x/ (for x > 0) in order to obtain a
continuous function. Namely, consider H W R ! R defined by

H.x/ D
� �xF.x/ C G.x/; for x < 0

xF.x/ � G.x/ C 2G.0/; for x � 0:

We have H0.x/ D jxjf .x/ for all x ¤ 0, and, by the corollary of Lagrange’s
theorem, the differentiability of H at the origin follows; moreover,

H0.0/ D lim
x!0

H0.x/ D lim
x!0

h.x/ D h.0/

follows; therefore H is an antiderivative of h on R.
5. Let us define the function

h.x/ D
�

x2 cos 1
x ; x ¤ 0

0; x D 0
:

For every nonzero real x; we have

h0.x/ D 2x cos
1

x
C sin

1

x



300 16 Antiderivatives

and

lim
x!0

h.x/ � h.0/

x � 0
D lim

x!0

�
x cos

1

x

�
D 0:

Hence the function h is differentiable with

h0.x/ D
�

2x cos 1
x C sin 1

x ; x ¤ 0

0; x D 0
:

Moreover, if we denote

u.x/ D
�

2x cos 1
x ; x ¤ 0

0; x D 0
;

then u is continuous, and

h0.x/ D u.x/ C f .x/:

Hence f .x/ D h0.x/�u.x/ has antiderivatives, as the difference of two functions
with antiderivatives. Observe that this is a special case of a problem discussed
in the theoretical part.

6. Let us define the function h W Œ0; 1/ ! R by the formula

h.x/ D
�

xF.ln x/; x > 0

0; x D 0
:

For x > 0; we have

h0.x/ D F.ln x/ C f .ln x/:

Also

lim
x!0

h.x/ � h.0/

x � 0
D lim

x!0
F.ln x/ D lim

y!�1 F.y/ D 0;

so h is differentiable with

h0.x/ D
�

F.ln x/ C f .ln x/; x > 0

0; x D 0
:

If u W Œ0; 1/ ! R,

u.x/ D
�

F.ln x/; x > 0

0; x D 0
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then u is continuous, and h0.x/ D u.x/ C g.x/: From here,

g.x/ D h0.x/ � u.x/;

so the function g has antiderivatives, as a difference of two functions that have
antiderivatives.

7. We will use the fact that the product of a C1-function and a function with
antiderivatives is also a function with antiderivatives. Here, g.x/ has antideriva-
tives, and the functions sin and cos are C1; so the functions g.x/ sin x and
h.x/ cos x have antiderivatives. We have

g.x/ sin x D f .x/ sin2 x; h.x/ cos x D f .x/ cos2 x:

Their sum also has antiderivatives,

f .x/ sin2 x C f .x/ cos2 x D f .x/:

8. a) True. For a < b, we prove that f .I/ is an interval, where I D .a; b/. For
c < a, c < 0, f has the intermediate value property on .c; 1/, so f .I/ is an
interval.

b) True. If Fn is the antiderivative of fn with Fn.1/ D 0, then the function
F W R ! R given by the formula

F.x/ D Fn.x/; x 2 .�n; 1/

is well defined, and it is an antiderivative of the function f .
c) False. One example is the function f W Œ0; 1/ ! R given by the formula

f .x/ D
�

sin 1
x ; x 2 .0; 1/

2007; x D 0
:

9. We have

�
F

�
x C 1

x

��0
D f

�
x C 1

x

��
1 � 1

x2

�
D
�

1 � 1

x2

�
e.xC 1

x /
2

;

so

�
F

�
x C 1

x

��0
D e2

�
1 � 1

x2

�
ex2C 1

x2 : (16.1)

Then

�
F

�
x � 1

x

��0
D f

�
x � 1

x

��
1 C 1

x2

�
D
�

1 C 1

x2

�
e.x� 1

x /
2
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and
�

F

�
x � 1

x

��0
D e�2

�
1 C 1

x2

�
ex2C 1

x2 : (16.2)

From relations (16.1) and (16.2), we obtain
8̂
ˆ̂<
ˆ̂̂:

e�2

�
F

�
x C 1

x

��0
D
�

1 � 1

x2

�
ex2C 1

x2

e2

�
F

�
x � 1

x

��0
D
�

1 C 1

x2

�
ex2C 1

x2

and by adding, we deduce that

2ex2C 1

x2 D e�2

�
F

�
x C 1

x

��0
C e2

�
F

�
x � 1

x

��0
:

Hence an antiderivative of the function g is

G.x/ D 1

2

�
e�2F

�
x C 1

x

�
C e2F

�
x � 1

x

��
:

10. We have

�
G.x/ � G

�
1

x

��0
D g.x/ � g

�
1

x

��
� 1

x2

�
D g.x/ C 1

x2
� g

�
1

x

�

D ex2C 1

x2 C 1

x2
� ex2C 1

x2 D
�

1 C 1

x2

�
ex2C 1

x2

D e2

�
x � 1

x

�0
e.x� 1

x /
2 D e2

�
F

�
x � 1

x

��0
;

so
�

G.x/ � G

�
1

x

��0
D e2

�
F

�
x � 1

x

��0
:

By integration,

F

�
x � 1

x

�
D e�2

�
G.x/ � G

�
1

x

��
:

With the notation x � 1

x
D y, we have

x D
p

y2 C 4 C y

2
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and so

F.y/ D e�2

"
G

 p
y2 C 4 C y

2

!
� G

 p
y2 C 4 � y

2

!#
:

11. a) The function f has antiderivatives, and the tangent function (defined
on .��=2; �=2/) is differentiable, with continuous derivative, so g has
antiderivatives.

b) We have

f .x/ D g.x/ cot x;

for all x 2 .��=2; 0/ [ .0; �=2/; so f has antiderivatives on the intervals
.��=2; 0/ and .0; �=2/; as the product between a function with antideriva-
tives and a C1-function. Let F1; F2 be antiderivatives of the function f on the
intervals .��=2; 0/ and .0; �=2/ ; respectively: The functions F1 and F2 are
monotone, so there exist the limits

lim
x!0

F1.x/ D l1; lim
x!0

F2.x/ D l2:

These limits are finite, because according to Lagrange’s theorem,

ˇ̌
ˇF1.x/ � F1

�
��

4

�ˇ̌
ˇ D

ˇ̌
ˇf .cx/

�
x C �

4

�ˇ̌
ˇ � �

4

and similarly for F2: Now let us define the function F W .��=2; �=2/ ! R; by

F.x/ D
8<
:

F1.x/ � l1; x 2 .��=2; 0/

0; x D 0

F2.x/ � l2; x 2 .0; �=2/

:

Then F is continuous on .��=2; �=2/ and differentiable on .��=2; �=2/nf0g ;

with F0.x/ D f .x/: Thus, F is an antiderivative of the function f .
12. The answer is yes. One example is

f .x/ D e1CxCex
:

We have

.ln f /0 D ln F ) f 0

f
D ln F ) f 0 D f ln F

or

f 0 D .F ln F � F/0:



304 16 Antiderivatives

Therefore the functions f and F ln F � F differ by a constant. We try to find a
function for which f D F ln F � F or

f

F ln F � F
D 1;

if we are lucky to find a function for which the denominator is not zero. Then
ŒG.F.x//�0 D 1; where G is an antiderivative of

1

x ln x � x
:

Let us put y D ln x; then

Z
dx

x ln x � x
D
Z

dx

x.ln x � 1/
D
Z

dy

y � 1
D ln.ln x � 1/ C C:

Thus

ln.ln F.x/ � 1/ D x ) ln F.x/ � 1 D ex ) F.x/ D e1Cex
;

so f .x/ D e1CxCex
:

13. Let us define the function g W R ! R by the formula g.x/ D f .x/ � x: The
function g has antiderivatives, as the difference of two functions which have
antiderivatives. We have

g.g.x// D g.f .x/ � x/ D f .f .x/ � x/ � .f .x/ � x/ D x;

so g ı g D 1R: From this it follows that g is injective. But any injective function
with antiderivatives is continuous.

Finally, the function f .x/ D x C g.x/ is continuous, as the sum of two
continuous functions.

14. We will prove that the function F W Œ0; 1/ ! R given by the formula

F.x/ D
8<
:
Z x

x0

f .t/dt; x > 0

0; x D 0

;

for a fixed x0 > 0 is an antiderivative of the function f ; i.e., F0 D f : For x > 0;

F0.x/ D
�Z x

x0

f .t/dt

�0
D f .x/:
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Let now .yn/n�0 be a sequence convergent to 0 and let kn be such that yn 2
.xknC1; xkn � for all n. Then the hypothesis implies

Z yn

x0

f .t/dt D
Z x1

x0

f .t/dt C � � � C
Z xkn

xkn�1

f .t/dt C
Z yn

xkn

f .t/dt D
Z yn

xkn

f .t/dt;

so ˇ̌
ˇ̌F.yn/ � F.0/

yn

ˇ̌
ˇ̌ � M

�
xkn

xknC1

� 1

�
:

This last quantity being convergent to 0, it follows that F is differentiable at 0

and F0.0/ D f .0/ D 0. This finishes the proof.

15. The problem follows from the previous one, by taking xn D 1

n C 1
, n 2 N:

Being linear on each interval

�
1

n C 1
;

1

n

�
with

f

�
1

n C 1

�
D .�1/nC1; f

�
1

n

�
D .�1/n;

it follows that
Z 1=n

1=.nC1/

f .t/dt D 0;

for all nonnegative integers n: Now we are under the hypothesis of the previous
problem.

16. The relation

f .x/ � x

1 C x
D 1 � 1

1 C x

for all x � 0 can also be expressed by saying that the derivative of the function
G.x/ D F.x/ � x C ln.1 C x/ is nonpositive on Œ0; 1/. Thus G decreases on
Œ0; 1/, consequently, G.x/ � G.0/ for all x � 0, that is,

F.x/ � x � F.0/ � ln.1 C x/

for x � 0. Letting x go to infinity, we get lim
x!1.F.x/ � x/ D �1.

Similarly, we have

f .x/ � �x

1 � x
D 1 � 1

1 � x

for all x � 0, which yields the nonpositivity of the derivative of

H.x/ D F.x/ � x � ln.1 � x/;
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then

F.x/ � x � F.0/ C ln.1 � x/

for x � 0, and, further, lim
x!�1.F.x/ � x/ D 1.

Now, x 7! F.x/ � x is a continuous function whose limits at ˙1 have
opposite signs. By the intermediate value theorem, there must be a point at
which this function has zero value, that is, there exists a fixed point for F.

However, two such points cannot exist. For, if we assumed that a ¤ b,
F.a/ D a, and F.b/ D b, then we would get the contradiction

1 D F.b/ � F.a/

b � a
D f .c/ � jcj

1 C jcj , 1 C jcj � jcj

by using Lagrange’s mean value theorem (c is the intermediate point between a
and b whose existence is assured by the theorem). (Actually, the condition for f
shows that F is a contraction; hence it cannot have more than one fixed point.)

This is a problem proposed by Sorin Rădulescu for the Romanian Mathe-
matical Olympiad in the year 1986. (Yes, we were there.)

17. Let A; b; c be defined by

A.x/ D
(

g2.x/f
�

1
g.x/

�
; for x ¤ 0

0; for x D 0

b.x/ D
(

2g.x/g0.x/f
�

1
g.x/

�
; for x ¤ 0

0; for x D 0

and

c.x/ D
(

.g0.x/ � g0.0//f 0
�

1
g.x/

�
; for x ¤ 0

0; for x D 0:

One immediately sees that A0.x/ D b.x/ � c.x/ � g0.0/h.x/ for all x ¤ 0.
Because

lim
x!0

g.x/f

�
1

g.x/

�
D lim

x!0

f .1=g.x//

1=g.x/
D lim

t!˙1
f .t/

t
D 0

and g.x/=x has a finite limit (g0.0/) at the origin, we also have

A0.0/ D lim
x!0

A.x/

x
D lim

x!0

g.x/

x
� g.x/f

�
1

g.x/

�
D 0I
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hence the equality A0.x/ D b.x/ � c.x/ � g0.0/h.x/ actually holds for all x 2 R.
Because (as we have just seen) lim

x!0
g.x/f .1=g.x// D 0 and because

lim
x!0

g0.x/ D g0.0/ is finite, the continuity of b at the origin follows. Similarly,

since lim
x!0

.g0.x/ � g0.0// D 0 and f 0 is bounded, c is continuous at the origin.

Also, the fact that b and c are continuous at nonzero points is a consequence
of the conditions from the hypothesis—thus b and c are continuous functions
on R. Being continuous, they surely have antiderivatives, while A0 obviously
has antiderivative A. All the above facts yield the conclusion that

h D 1

g0.0/
.b � c � A0/

has antiderivatives, too, which finishes the proof.
This is a problem proposed by Ion Chiţescu for the Romanian Mathematical

Olympiad in the year 1990. (We were not there anymore.)
18. Let a < b be reals such that f .a/=g.a/ and f .b/=g.b/ are distinct and let y

be between f .a/=g.a/ and f .b/=g.b/. Note that g has the intermediate value
property, because it has antiderivatives. Since g is nonzero, it must have a
constant sign on R. It follows that g.a/ and g.b/ have the same sign; hence
f .a/�yg.a/ and f .b/�yg.b/ have opposite signs. Thus for the function h defined
by h.t/ D f .t/ � yg.t/, for t 2 Œa; b�, we have h.a/h.b/ < 0. On the other hand,
because f and g both have antiderivatives, h has also antiderivatives; therefore h
has the intermediate value property. Consequently, there exists x 2 .a; b/ such
that h.x/ D 0, meaning that .f =g/.x/ D y.
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